1*> \brief \b SSTEDC 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SSTEDC + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstedc.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstedc.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstedc.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, 22* LIWORK, INFO ) 23* 24* .. Scalar Arguments .. 25* CHARACTER COMPZ 26* INTEGER INFO, LDZ, LIWORK, LWORK, N 27* .. 28* .. Array Arguments .. 29* INTEGER IWORK( * ) 30* REAL D( * ), E( * ), WORK( * ), Z( LDZ, * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> SSTEDC computes all eigenvalues and, optionally, eigenvectors of a 40*> symmetric tridiagonal matrix using the divide and conquer method. 41*> The eigenvectors of a full or band real symmetric matrix can also be 42*> found if SSYTRD or SSPTRD or SSBTRD has been used to reduce this 43*> matrix to tridiagonal form. 44*> 45*> This code makes very mild assumptions about floating point 46*> arithmetic. It will work on machines with a guard digit in 47*> add/subtract, or on those binary machines without guard digits 48*> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. 49*> It could conceivably fail on hexadecimal or decimal machines 50*> without guard digits, but we know of none. See SLAED3 for details. 51*> \endverbatim 52* 53* Arguments: 54* ========== 55* 56*> \param[in] COMPZ 57*> \verbatim 58*> COMPZ is CHARACTER*1 59*> = 'N': Compute eigenvalues only. 60*> = 'I': Compute eigenvectors of tridiagonal matrix also. 61*> = 'V': Compute eigenvectors of original dense symmetric 62*> matrix also. On entry, Z contains the orthogonal 63*> matrix used to reduce the original matrix to 64*> tridiagonal form. 65*> \endverbatim 66*> 67*> \param[in] N 68*> \verbatim 69*> N is INTEGER 70*> The dimension of the symmetric tridiagonal matrix. N >= 0. 71*> \endverbatim 72*> 73*> \param[in,out] D 74*> \verbatim 75*> D is REAL array, dimension (N) 76*> On entry, the diagonal elements of the tridiagonal matrix. 77*> On exit, if INFO = 0, the eigenvalues in ascending order. 78*> \endverbatim 79*> 80*> \param[in,out] E 81*> \verbatim 82*> E is REAL array, dimension (N-1) 83*> On entry, the subdiagonal elements of the tridiagonal matrix. 84*> On exit, E has been destroyed. 85*> \endverbatim 86*> 87*> \param[in,out] Z 88*> \verbatim 89*> Z is REAL array, dimension (LDZ,N) 90*> On entry, if COMPZ = 'V', then Z contains the orthogonal 91*> matrix used in the reduction to tridiagonal form. 92*> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the 93*> orthonormal eigenvectors of the original symmetric matrix, 94*> and if COMPZ = 'I', Z contains the orthonormal eigenvectors 95*> of the symmetric tridiagonal matrix. 96*> If COMPZ = 'N', then Z is not referenced. 97*> \endverbatim 98*> 99*> \param[in] LDZ 100*> \verbatim 101*> LDZ is INTEGER 102*> The leading dimension of the array Z. LDZ >= 1. 103*> If eigenvectors are desired, then LDZ >= max(1,N). 104*> \endverbatim 105*> 106*> \param[out] WORK 107*> \verbatim 108*> WORK is REAL array, dimension (MAX(1,LWORK)) 109*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 110*> \endverbatim 111*> 112*> \param[in] LWORK 113*> \verbatim 114*> LWORK is INTEGER 115*> The dimension of the array WORK. 116*> If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. 117*> If COMPZ = 'V' and N > 1 then LWORK must be at least 118*> ( 1 + 3*N + 2*N*lg N + 4*N**2 ), 119*> where lg( N ) = smallest integer k such 120*> that 2**k >= N. 121*> If COMPZ = 'I' and N > 1 then LWORK must be at least 122*> ( 1 + 4*N + N**2 ). 123*> Note that for COMPZ = 'I' or 'V', then if N is less than or 124*> equal to the minimum divide size, usually 25, then LWORK need 125*> only be max(1,2*(N-1)). 126*> 127*> If LWORK = -1, then a workspace query is assumed; the routine 128*> only calculates the optimal size of the WORK array, returns 129*> this value as the first entry of the WORK array, and no error 130*> message related to LWORK is issued by XERBLA. 131*> \endverbatim 132*> 133*> \param[out] IWORK 134*> \verbatim 135*> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) 136*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. 137*> \endverbatim 138*> 139*> \param[in] LIWORK 140*> \verbatim 141*> LIWORK is INTEGER 142*> The dimension of the array IWORK. 143*> If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. 144*> If COMPZ = 'V' and N > 1 then LIWORK must be at least 145*> ( 6 + 6*N + 5*N*lg N ). 146*> If COMPZ = 'I' and N > 1 then LIWORK must be at least 147*> ( 3 + 5*N ). 148*> Note that for COMPZ = 'I' or 'V', then if N is less than or 149*> equal to the minimum divide size, usually 25, then LIWORK 150*> need only be 1. 151*> 152*> If LIWORK = -1, then a workspace query is assumed; the 153*> routine only calculates the optimal size of the IWORK array, 154*> returns this value as the first entry of the IWORK array, and 155*> no error message related to LIWORK is issued by XERBLA. 156*> \endverbatim 157*> 158*> \param[out] INFO 159*> \verbatim 160*> INFO is INTEGER 161*> = 0: successful exit. 162*> < 0: if INFO = -i, the i-th argument had an illegal value. 163*> > 0: The algorithm failed to compute an eigenvalue while 164*> working on the submatrix lying in rows and columns 165*> INFO/(N+1) through mod(INFO,N+1). 166*> \endverbatim 167* 168* Authors: 169* ======== 170* 171*> \author Univ. of Tennessee 172*> \author Univ. of California Berkeley 173*> \author Univ. of Colorado Denver 174*> \author NAG Ltd. 175* 176*> \date November 2015 177* 178*> \ingroup auxOTHERcomputational 179* 180*> \par Contributors: 181* ================== 182*> 183*> Jeff Rutter, Computer Science Division, University of California 184*> at Berkeley, USA \n 185*> Modified by Francoise Tisseur, University of Tennessee 186*> 187* ===================================================================== 188 SUBROUTINE SSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, 189 $ LIWORK, INFO ) 190* 191* -- LAPACK computational routine (version 3.6.0) -- 192* -- LAPACK is a software package provided by Univ. of Tennessee, -- 193* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 194* November 2015 195* 196* .. Scalar Arguments .. 197 CHARACTER COMPZ 198 INTEGER INFO, LDZ, LIWORK, LWORK, N 199* .. 200* .. Array Arguments .. 201 INTEGER IWORK( * ) 202 REAL D( * ), E( * ), WORK( * ), Z( LDZ, * ) 203* .. 204* 205* ===================================================================== 206* 207* .. Parameters .. 208 REAL ZERO, ONE, TWO 209 PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 ) 210* .. 211* .. Local Scalars .. 212 LOGICAL LQUERY 213 INTEGER FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN, 214 $ LWMIN, M, SMLSIZ, START, STOREZ, STRTRW 215 REAL EPS, ORGNRM, P, TINY 216* .. 217* .. External Functions .. 218 LOGICAL LSAME 219 INTEGER ILAENV 220 REAL SLAMCH, SLANST 221 EXTERNAL ILAENV, LSAME, SLAMCH, SLANST 222* .. 223* .. External Subroutines .. 224 EXTERNAL SGEMM, SLACPY, SLAED0, SLASCL, SLASET, SLASRT, 225 $ SSTEQR, SSTERF, SSWAP, XERBLA 226* .. 227* .. Intrinsic Functions .. 228 INTRINSIC ABS, INT, LOG, MAX, MOD, REAL, SQRT 229* .. 230* .. Executable Statements .. 231* 232* Test the input parameters. 233* 234 INFO = 0 235 LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) 236* 237 IF( LSAME( COMPZ, 'N' ) ) THEN 238 ICOMPZ = 0 239 ELSE IF( LSAME( COMPZ, 'V' ) ) THEN 240 ICOMPZ = 1 241 ELSE IF( LSAME( COMPZ, 'I' ) ) THEN 242 ICOMPZ = 2 243 ELSE 244 ICOMPZ = -1 245 END IF 246 IF( ICOMPZ.LT.0 ) THEN 247 INFO = -1 248 ELSE IF( N.LT.0 ) THEN 249 INFO = -2 250 ELSE IF( ( LDZ.LT.1 ) .OR. 251 $ ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN 252 INFO = -6 253 END IF 254* 255 IF( INFO.EQ.0 ) THEN 256* 257* Compute the workspace requirements 258* 259 SMLSIZ = ILAENV( 9, 'SSTEDC', ' ', 0, 0, 0, 0 ) 260 IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN 261 LIWMIN = 1 262 LWMIN = 1 263 ELSE IF( N.LE.SMLSIZ ) THEN 264 LIWMIN = 1 265 LWMIN = 2*( N - 1 ) 266 ELSE 267 LGN = INT( LOG( REAL( N ) )/LOG( TWO ) ) 268 IF( 2**LGN.LT.N ) 269 $ LGN = LGN + 1 270 IF( 2**LGN.LT.N ) 271 $ LGN = LGN + 1 272 IF( ICOMPZ.EQ.1 ) THEN 273 LWMIN = 1 + 3*N + 2*N*LGN + 4*N**2 274 LIWMIN = 6 + 6*N + 5*N*LGN 275 ELSE IF( ICOMPZ.EQ.2 ) THEN 276 LWMIN = 1 + 4*N + N**2 277 LIWMIN = 3 + 5*N 278 END IF 279 END IF 280 WORK( 1 ) = LWMIN 281 IWORK( 1 ) = LIWMIN 282* 283 IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN 284 INFO = -8 285 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN 286 INFO = -10 287 END IF 288 END IF 289* 290 IF( INFO.NE.0 ) THEN 291 CALL XERBLA( 'SSTEDC', -INFO ) 292 RETURN 293 ELSE IF (LQUERY) THEN 294 RETURN 295 END IF 296* 297* Quick return if possible 298* 299 IF( N.EQ.0 ) 300 $ RETURN 301 IF( N.EQ.1 ) THEN 302 IF( ICOMPZ.NE.0 ) 303 $ Z( 1, 1 ) = ONE 304 RETURN 305 END IF 306* 307* If the following conditional clause is removed, then the routine 308* will use the Divide and Conquer routine to compute only the 309* eigenvalues, which requires (3N + 3N**2) real workspace and 310* (2 + 5N + 2N lg(N)) integer workspace. 311* Since on many architectures SSTERF is much faster than any other 312* algorithm for finding eigenvalues only, it is used here 313* as the default. If the conditional clause is removed, then 314* information on the size of workspace needs to be changed. 315* 316* If COMPZ = 'N', use SSTERF to compute the eigenvalues. 317* 318 IF( ICOMPZ.EQ.0 ) THEN 319 CALL SSTERF( N, D, E, INFO ) 320 GO TO 50 321 END IF 322* 323* If N is smaller than the minimum divide size (SMLSIZ+1), then 324* solve the problem with another solver. 325* 326 IF( N.LE.SMLSIZ ) THEN 327* 328 CALL SSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) 329* 330 ELSE 331* 332* If COMPZ = 'V', the Z matrix must be stored elsewhere for later 333* use. 334* 335 IF( ICOMPZ.EQ.1 ) THEN 336 STOREZ = 1 + N*N 337 ELSE 338 STOREZ = 1 339 END IF 340* 341 IF( ICOMPZ.EQ.2 ) THEN 342 CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDZ ) 343 END IF 344* 345* Scale. 346* 347 ORGNRM = SLANST( 'M', N, D, E ) 348 IF( ORGNRM.EQ.ZERO ) 349 $ GO TO 50 350* 351 EPS = SLAMCH( 'Epsilon' ) 352* 353 START = 1 354* 355* while ( START <= N ) 356* 357 10 CONTINUE 358 IF( START.LE.N ) THEN 359* 360* Let FINISH be the position of the next subdiagonal entry 361* such that E( FINISH ) <= TINY or FINISH = N if no such 362* subdiagonal exists. The matrix identified by the elements 363* between START and FINISH constitutes an independent 364* sub-problem. 365* 366 FINISH = START 367 20 CONTINUE 368 IF( FINISH.LT.N ) THEN 369 TINY = EPS*SQRT( ABS( D( FINISH ) ) )* 370 $ SQRT( ABS( D( FINISH+1 ) ) ) 371 IF( ABS( E( FINISH ) ).GT.TINY ) THEN 372 FINISH = FINISH + 1 373 GO TO 20 374 END IF 375 END IF 376* 377* (Sub) Problem determined. Compute its size and solve it. 378* 379 M = FINISH - START + 1 380 IF( M.EQ.1 ) THEN 381 START = FINISH + 1 382 GO TO 10 383 END IF 384 IF( M.GT.SMLSIZ ) THEN 385* 386* Scale. 387* 388 ORGNRM = SLANST( 'M', M, D( START ), E( START ) ) 389 CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M, 390 $ INFO ) 391 CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ), 392 $ M-1, INFO ) 393* 394 IF( ICOMPZ.EQ.1 ) THEN 395 STRTRW = 1 396 ELSE 397 STRTRW = START 398 END IF 399 CALL SLAED0( ICOMPZ, N, M, D( START ), E( START ), 400 $ Z( STRTRW, START ), LDZ, WORK( 1 ), N, 401 $ WORK( STOREZ ), IWORK, INFO ) 402 IF( INFO.NE.0 ) THEN 403 INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) + 404 $ MOD( INFO, ( M+1 ) ) + START - 1 405 GO TO 50 406 END IF 407* 408* Scale back. 409* 410 CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M, 411 $ INFO ) 412* 413 ELSE 414 IF( ICOMPZ.EQ.1 ) THEN 415* 416* Since QR won't update a Z matrix which is larger than 417* the length of D, we must solve the sub-problem in a 418* workspace and then multiply back into Z. 419* 420 CALL SSTEQR( 'I', M, D( START ), E( START ), WORK, M, 421 $ WORK( M*M+1 ), INFO ) 422 CALL SLACPY( 'A', N, M, Z( 1, START ), LDZ, 423 $ WORK( STOREZ ), N ) 424 CALL SGEMM( 'N', 'N', N, M, M, ONE, 425 $ WORK( STOREZ ), N, WORK, M, ZERO, 426 $ Z( 1, START ), LDZ ) 427 ELSE IF( ICOMPZ.EQ.2 ) THEN 428 CALL SSTEQR( 'I', M, D( START ), E( START ), 429 $ Z( START, START ), LDZ, WORK, INFO ) 430 ELSE 431 CALL SSTERF( M, D( START ), E( START ), INFO ) 432 END IF 433 IF( INFO.NE.0 ) THEN 434 INFO = START*( N+1 ) + FINISH 435 GO TO 50 436 END IF 437 END IF 438* 439 START = FINISH + 1 440 GO TO 10 441 END IF 442* 443* endwhile 444* 445 IF( ICOMPZ.EQ.0 ) THEN 446* 447* Use Quick Sort 448* 449 CALL SLASRT( 'I', N, D, INFO ) 450* 451 ELSE 452* 453* Use Selection Sort to minimize swaps of eigenvectors 454* 455 DO 40 II = 2, N 456 I = II - 1 457 K = I 458 P = D( I ) 459 DO 30 J = II, N 460 IF( D( J ).LT.P ) THEN 461 K = J 462 P = D( J ) 463 END IF 464 30 CONTINUE 465 IF( K.NE.I ) THEN 466 D( K ) = D( I ) 467 D( I ) = P 468 CALL SSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 ) 469 END IF 470 40 CONTINUE 471 END IF 472 END IF 473* 474 50 CONTINUE 475 WORK( 1 ) = LWMIN 476 IWORK( 1 ) = LIWMIN 477* 478 RETURN 479* 480* End of SSTEDC 481* 482 END 483