1*> \brief \b ZLAGS2 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZLAGS2 + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlags2.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlags2.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlags2.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE ZLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, 22* SNV, CSQ, SNQ ) 23* 24* .. Scalar Arguments .. 25* LOGICAL UPPER 26* DOUBLE PRECISION A1, A3, B1, B3, CSQ, CSU, CSV 27* COMPLEX*16 A2, B2, SNQ, SNU, SNV 28* .. 29* 30* 31*> \par Purpose: 32* ============= 33*> 34*> \verbatim 35*> 36*> ZLAGS2 computes 2-by-2 unitary matrices U, V and Q, such 37*> that if ( UPPER ) then 38*> 39*> U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 ) 40*> ( 0 A3 ) ( x x ) 41*> and 42*> V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 ) 43*> ( 0 B3 ) ( x x ) 44*> 45*> or if ( .NOT.UPPER ) then 46*> 47*> U**H *A*Q = U**H *( A1 0 )*Q = ( x x ) 48*> ( A2 A3 ) ( 0 x ) 49*> and 50*> V**H *B*Q = V**H *( B1 0 )*Q = ( x x ) 51*> ( B2 B3 ) ( 0 x ) 52*> where 53*> 54*> U = ( CSU SNU ), V = ( CSV SNV ), 55*> ( -SNU**H CSU ) ( -SNV**H CSV ) 56*> 57*> Q = ( CSQ SNQ ) 58*> ( -SNQ**H CSQ ) 59*> 60*> The rows of the transformed A and B are parallel. Moreover, if the 61*> input 2-by-2 matrix A is not zero, then the transformed (1,1) entry 62*> of A is not zero. If the input matrices A and B are both not zero, 63*> then the transformed (2,2) element of B is not zero, except when the 64*> first rows of input A and B are parallel and the second rows are 65*> zero. 66*> \endverbatim 67* 68* Arguments: 69* ========== 70* 71*> \param[in] UPPER 72*> \verbatim 73*> UPPER is LOGICAL 74*> = .TRUE.: the input matrices A and B are upper triangular. 75*> = .FALSE.: the input matrices A and B are lower triangular. 76*> \endverbatim 77*> 78*> \param[in] A1 79*> \verbatim 80*> A1 is DOUBLE PRECISION 81*> \endverbatim 82*> 83*> \param[in] A2 84*> \verbatim 85*> A2 is COMPLEX*16 86*> \endverbatim 87*> 88*> \param[in] A3 89*> \verbatim 90*> A3 is DOUBLE PRECISION 91*> On entry, A1, A2 and A3 are elements of the input 2-by-2 92*> upper (lower) triangular matrix A. 93*> \endverbatim 94*> 95*> \param[in] B1 96*> \verbatim 97*> B1 is DOUBLE PRECISION 98*> \endverbatim 99*> 100*> \param[in] B2 101*> \verbatim 102*> B2 is COMPLEX*16 103*> \endverbatim 104*> 105*> \param[in] B3 106*> \verbatim 107*> B3 is DOUBLE PRECISION 108*> On entry, B1, B2 and B3 are elements of the input 2-by-2 109*> upper (lower) triangular matrix B. 110*> \endverbatim 111*> 112*> \param[out] CSU 113*> \verbatim 114*> CSU is DOUBLE PRECISION 115*> \endverbatim 116*> 117*> \param[out] SNU 118*> \verbatim 119*> SNU is COMPLEX*16 120*> The desired unitary matrix U. 121*> \endverbatim 122*> 123*> \param[out] CSV 124*> \verbatim 125*> CSV is DOUBLE PRECISION 126*> \endverbatim 127*> 128*> \param[out] SNV 129*> \verbatim 130*> SNV is COMPLEX*16 131*> The desired unitary matrix V. 132*> \endverbatim 133*> 134*> \param[out] CSQ 135*> \verbatim 136*> CSQ is DOUBLE PRECISION 137*> \endverbatim 138*> 139*> \param[out] SNQ 140*> \verbatim 141*> SNQ is COMPLEX*16 142*> The desired unitary matrix Q. 143*> \endverbatim 144* 145* Authors: 146* ======== 147* 148*> \author Univ. of Tennessee 149*> \author Univ. of California Berkeley 150*> \author Univ. of Colorado Denver 151*> \author NAG Ltd. 152* 153*> \date November 2011 154* 155*> \ingroup complex16OTHERauxiliary 156* 157* ===================================================================== 158 SUBROUTINE ZLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, 159 $ SNV, CSQ, SNQ ) 160* 161* -- LAPACK auxiliary routine (version 3.4.0) -- 162* -- LAPACK is a software package provided by Univ. of Tennessee, -- 163* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 164* November 2011 165* 166* .. Scalar Arguments .. 167 LOGICAL UPPER 168 DOUBLE PRECISION A1, A3, B1, B3, CSQ, CSU, CSV 169 COMPLEX*16 A2, B2, SNQ, SNU, SNV 170* .. 171* 172* ===================================================================== 173* 174* .. Parameters .. 175 DOUBLE PRECISION ZERO, ONE 176 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 177* .. 178* .. Local Scalars .. 179 DOUBLE PRECISION A, AUA11, AUA12, AUA21, AUA22, AVB12, AVB11, 180 $ AVB21, AVB22, CSL, CSR, D, FB, FC, S1, S2, 181 $ SNL, SNR, UA11R, UA22R, VB11R, VB22R 182 COMPLEX*16 B, C, D1, R, T, UA11, UA12, UA21, UA22, VB11, 183 $ VB12, VB21, VB22 184* .. 185* .. External Subroutines .. 186 EXTERNAL DLASV2, ZLARTG 187* .. 188* .. Intrinsic Functions .. 189 INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG 190* .. 191* .. Statement Functions .. 192 DOUBLE PRECISION ABS1 193* .. 194* .. Statement Function definitions .. 195 ABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) ) 196* .. 197* .. Executable Statements .. 198* 199 IF( UPPER ) THEN 200* 201* Input matrices A and B are upper triangular matrices 202* 203* Form matrix C = A*adj(B) = ( a b ) 204* ( 0 d ) 205* 206 A = A1*B3 207 D = A3*B1 208 B = A2*B1 - A1*B2 209 FB = ABS( B ) 210* 211* Transform complex 2-by-2 matrix C to real matrix by unitary 212* diagonal matrix diag(1,D1). 213* 214 D1 = ONE 215 IF( FB.NE.ZERO ) 216 $ D1 = B / FB 217* 218* The SVD of real 2 by 2 triangular C 219* 220* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) 221* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) 222* 223 CALL DLASV2( A, FB, D, S1, S2, SNR, CSR, SNL, CSL ) 224* 225 IF( ABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) ) 226 $ THEN 227* 228* Compute the (1,1) and (1,2) elements of U**H *A and V**H *B, 229* and (1,2) element of |U|**H *|A| and |V|**H *|B|. 230* 231 UA11R = CSL*A1 232 UA12 = CSL*A2 + D1*SNL*A3 233* 234 VB11R = CSR*B1 235 VB12 = CSR*B2 + D1*SNR*B3 236* 237 AUA12 = ABS( CSL )*ABS1( A2 ) + ABS( SNL )*ABS( A3 ) 238 AVB12 = ABS( CSR )*ABS1( B2 ) + ABS( SNR )*ABS( B3 ) 239* 240* zero (1,2) elements of U**H *A and V**H *B 241* 242 IF( ( ABS( UA11R )+ABS1( UA12 ) ).EQ.ZERO ) THEN 243 CALL ZLARTG( -DCMPLX( VB11R ), DCONJG( VB12 ), CSQ, SNQ, 244 $ R ) 245 ELSE IF( ( ABS( VB11R )+ABS1( VB12 ) ).EQ.ZERO ) THEN 246 CALL ZLARTG( -DCMPLX( UA11R ), DCONJG( UA12 ), CSQ, SNQ, 247 $ R ) 248 ELSE IF( AUA12 / ( ABS( UA11R )+ABS1( UA12 ) ).LE.AVB12 / 249 $ ( ABS( VB11R )+ABS1( VB12 ) ) ) THEN 250 CALL ZLARTG( -DCMPLX( UA11R ), DCONJG( UA12 ), CSQ, SNQ, 251 $ R ) 252 ELSE 253 CALL ZLARTG( -DCMPLX( VB11R ), DCONJG( VB12 ), CSQ, SNQ, 254 $ R ) 255 END IF 256* 257 CSU = CSL 258 SNU = -D1*SNL 259 CSV = CSR 260 SNV = -D1*SNR 261* 262 ELSE 263* 264* Compute the (2,1) and (2,2) elements of U**H *A and V**H *B, 265* and (2,2) element of |U|**H *|A| and |V|**H *|B|. 266* 267 UA21 = -DCONJG( D1 )*SNL*A1 268 UA22 = -DCONJG( D1 )*SNL*A2 + CSL*A3 269* 270 VB21 = -DCONJG( D1 )*SNR*B1 271 VB22 = -DCONJG( D1 )*SNR*B2 + CSR*B3 272* 273 AUA22 = ABS( SNL )*ABS1( A2 ) + ABS( CSL )*ABS( A3 ) 274 AVB22 = ABS( SNR )*ABS1( B2 ) + ABS( CSR )*ABS( B3 ) 275* 276* zero (2,2) elements of U**H *A and V**H *B, and then swap. 277* 278 IF( ( ABS1( UA21 )+ABS1( UA22 ) ).EQ.ZERO ) THEN 279 CALL ZLARTG( -DCONJG( VB21 ), DCONJG( VB22 ), CSQ, SNQ, 280 $ R ) 281 ELSE IF( ( ABS1( VB21 )+ABS( VB22 ) ).EQ.ZERO ) THEN 282 CALL ZLARTG( -DCONJG( UA21 ), DCONJG( UA22 ), CSQ, SNQ, 283 $ R ) 284 ELSE IF( AUA22 / ( ABS1( UA21 )+ABS1( UA22 ) ).LE.AVB22 / 285 $ ( ABS1( VB21 )+ABS1( VB22 ) ) ) THEN 286 CALL ZLARTG( -DCONJG( UA21 ), DCONJG( UA22 ), CSQ, SNQ, 287 $ R ) 288 ELSE 289 CALL ZLARTG( -DCONJG( VB21 ), DCONJG( VB22 ), CSQ, SNQ, 290 $ R ) 291 END IF 292* 293 CSU = SNL 294 SNU = D1*CSL 295 CSV = SNR 296 SNV = D1*CSR 297* 298 END IF 299* 300 ELSE 301* 302* Input matrices A and B are lower triangular matrices 303* 304* Form matrix C = A*adj(B) = ( a 0 ) 305* ( c d ) 306* 307 A = A1*B3 308 D = A3*B1 309 C = A2*B3 - A3*B2 310 FC = ABS( C ) 311* 312* Transform complex 2-by-2 matrix C to real matrix by unitary 313* diagonal matrix diag(d1,1). 314* 315 D1 = ONE 316 IF( FC.NE.ZERO ) 317 $ D1 = C / FC 318* 319* The SVD of real 2 by 2 triangular C 320* 321* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) 322* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) 323* 324 CALL DLASV2( A, FC, D, S1, S2, SNR, CSR, SNL, CSL ) 325* 326 IF( ABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) ) 327 $ THEN 328* 329* Compute the (2,1) and (2,2) elements of U**H *A and V**H *B, 330* and (2,1) element of |U|**H *|A| and |V|**H *|B|. 331* 332 UA21 = -D1*SNR*A1 + CSR*A2 333 UA22R = CSR*A3 334* 335 VB21 = -D1*SNL*B1 + CSL*B2 336 VB22R = CSL*B3 337* 338 AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS1( A2 ) 339 AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS1( B2 ) 340* 341* zero (2,1) elements of U**H *A and V**H *B. 342* 343 IF( ( ABS1( UA21 )+ABS( UA22R ) ).EQ.ZERO ) THEN 344 CALL ZLARTG( DCMPLX( VB22R ), VB21, CSQ, SNQ, R ) 345 ELSE IF( ( ABS1( VB21 )+ABS( VB22R ) ).EQ.ZERO ) THEN 346 CALL ZLARTG( DCMPLX( UA22R ), UA21, CSQ, SNQ, R ) 347 ELSE IF( AUA21 / ( ABS1( UA21 )+ABS( UA22R ) ).LE.AVB21 / 348 $ ( ABS1( VB21 )+ABS( VB22R ) ) ) THEN 349 CALL ZLARTG( DCMPLX( UA22R ), UA21, CSQ, SNQ, R ) 350 ELSE 351 CALL ZLARTG( DCMPLX( VB22R ), VB21, CSQ, SNQ, R ) 352 END IF 353* 354 CSU = CSR 355 SNU = -DCONJG( D1 )*SNR 356 CSV = CSL 357 SNV = -DCONJG( D1 )*SNL 358* 359 ELSE 360* 361* Compute the (1,1) and (1,2) elements of U**H *A and V**H *B, 362* and (1,1) element of |U|**H *|A| and |V|**H *|B|. 363* 364 UA11 = CSR*A1 + DCONJG( D1 )*SNR*A2 365 UA12 = DCONJG( D1 )*SNR*A3 366* 367 VB11 = CSL*B1 + DCONJG( D1 )*SNL*B2 368 VB12 = DCONJG( D1 )*SNL*B3 369* 370 AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS1( A2 ) 371 AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS1( B2 ) 372* 373* zero (1,1) elements of U**H *A and V**H *B, and then swap. 374* 375 IF( ( ABS1( UA11 )+ABS1( UA12 ) ).EQ.ZERO ) THEN 376 CALL ZLARTG( VB12, VB11, CSQ, SNQ, R ) 377 ELSE IF( ( ABS1( VB11 )+ABS1( VB12 ) ).EQ.ZERO ) THEN 378 CALL ZLARTG( UA12, UA11, CSQ, SNQ, R ) 379 ELSE IF( AUA11 / ( ABS1( UA11 )+ABS1( UA12 ) ).LE.AVB11 / 380 $ ( ABS1( VB11 )+ABS1( VB12 ) ) ) THEN 381 CALL ZLARTG( UA12, UA11, CSQ, SNQ, R ) 382 ELSE 383 CALL ZLARTG( VB12, VB11, CSQ, SNQ, R ) 384 END IF 385* 386 CSU = SNR 387 SNU = DCONJG( D1 )*CSR 388 CSV = SNL 389 SNV = DCONJG( D1 )*CSL 390* 391 END IF 392* 393 END IF 394* 395 RETURN 396* 397* End of ZLAGS2 398* 399 END 400