1*> \brief \b ZLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLARZ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarz.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarz.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarz.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
22*
23*       .. Scalar Arguments ..
24*       CHARACTER          SIDE
25*       INTEGER            INCV, L, LDC, M, N
26*       COMPLEX*16         TAU
27*       ..
28*       .. Array Arguments ..
29*       COMPLEX*16         C( LDC, * ), V( * ), WORK( * )
30*       ..
31*
32*
33*> \par Purpose:
34*  =============
35*>
36*> \verbatim
37*>
38*> ZLARZ applies a complex elementary reflector H to a complex
39*> M-by-N matrix C, from either the left or the right. H is represented
40*> in the form
41*>
42*>       H = I - tau * v * v**H
43*>
44*> where tau is a complex scalar and v is a complex vector.
45*>
46*> If tau = 0, then H is taken to be the unit matrix.
47*>
48*> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
49*> tau.
50*>
51*> H is a product of k elementary reflectors as returned by ZTZRZF.
52*> \endverbatim
53*
54*  Arguments:
55*  ==========
56*
57*> \param[in] SIDE
58*> \verbatim
59*>          SIDE is CHARACTER*1
60*>          = 'L': form  H * C
61*>          = 'R': form  C * H
62*> \endverbatim
63*>
64*> \param[in] M
65*> \verbatim
66*>          M is INTEGER
67*>          The number of rows of the matrix C.
68*> \endverbatim
69*>
70*> \param[in] N
71*> \verbatim
72*>          N is INTEGER
73*>          The number of columns of the matrix C.
74*> \endverbatim
75*>
76*> \param[in] L
77*> \verbatim
78*>          L is INTEGER
79*>          The number of entries of the vector V containing
80*>          the meaningful part of the Householder vectors.
81*>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
82*> \endverbatim
83*>
84*> \param[in] V
85*> \verbatim
86*>          V is COMPLEX*16 array, dimension (1+(L-1)*abs(INCV))
87*>          The vector v in the representation of H as returned by
88*>          ZTZRZF. V is not used if TAU = 0.
89*> \endverbatim
90*>
91*> \param[in] INCV
92*> \verbatim
93*>          INCV is INTEGER
94*>          The increment between elements of v. INCV <> 0.
95*> \endverbatim
96*>
97*> \param[in] TAU
98*> \verbatim
99*>          TAU is COMPLEX*16
100*>          The value tau in the representation of H.
101*> \endverbatim
102*>
103*> \param[in,out] C
104*> \verbatim
105*>          C is COMPLEX*16 array, dimension (LDC,N)
106*>          On entry, the M-by-N matrix C.
107*>          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
108*>          or C * H if SIDE = 'R'.
109*> \endverbatim
110*>
111*> \param[in] LDC
112*> \verbatim
113*>          LDC is INTEGER
114*>          The leading dimension of the array C. LDC >= max(1,M).
115*> \endverbatim
116*>
117*> \param[out] WORK
118*> \verbatim
119*>          WORK is COMPLEX*16 array, dimension
120*>                         (N) if SIDE = 'L'
121*>                      or (M) if SIDE = 'R'
122*> \endverbatim
123*
124*  Authors:
125*  ========
126*
127*> \author Univ. of Tennessee
128*> \author Univ. of California Berkeley
129*> \author Univ. of Colorado Denver
130*> \author NAG Ltd.
131*
132*> \date September 2012
133*
134*> \ingroup complex16OTHERcomputational
135*
136*> \par Contributors:
137*  ==================
138*>
139*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
140*
141*> \par Further Details:
142*  =====================
143*>
144*> \verbatim
145*> \endverbatim
146*>
147*  =====================================================================
148      SUBROUTINE ZLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
149*
150*  -- LAPACK computational routine (version 3.4.2) --
151*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
152*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
153*     September 2012
154*
155*     .. Scalar Arguments ..
156      CHARACTER          SIDE
157      INTEGER            INCV, L, LDC, M, N
158      COMPLEX*16         TAU
159*     ..
160*     .. Array Arguments ..
161      COMPLEX*16         C( LDC, * ), V( * ), WORK( * )
162*     ..
163*
164*  =====================================================================
165*
166*     .. Parameters ..
167      COMPLEX*16         ONE, ZERO
168      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
169     $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
170*     ..
171*     .. External Subroutines ..
172      EXTERNAL           ZAXPY, ZCOPY, ZGEMV, ZGERC, ZGERU, ZLACGV
173*     ..
174*     .. External Functions ..
175      LOGICAL            LSAME
176      EXTERNAL           LSAME
177*     ..
178*     .. Executable Statements ..
179*
180      IF( LSAME( SIDE, 'L' ) ) THEN
181*
182*        Form  H * C
183*
184         IF( TAU.NE.ZERO ) THEN
185*
186*           w( 1:n ) = conjg( C( 1, 1:n ) )
187*
188            CALL ZCOPY( N, C, LDC, WORK, 1 )
189            CALL ZLACGV( N, WORK, 1 )
190*
191*           w( 1:n ) = conjg( w( 1:n ) + C( m-l+1:m, 1:n )**H * v( 1:l ) )
192*
193            CALL ZGEMV( 'Conjugate transpose', L, N, ONE, C( M-L+1, 1 ),
194     $                  LDC, V, INCV, ONE, WORK, 1 )
195            CALL ZLACGV( N, WORK, 1 )
196*
197*           C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
198*
199            CALL ZAXPY( N, -TAU, WORK, 1, C, LDC )
200*
201*           C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
202*                               tau * v( 1:l ) * w( 1:n )**H
203*
204            CALL ZGERU( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ),
205     $                  LDC )
206         END IF
207*
208      ELSE
209*
210*        Form  C * H
211*
212         IF( TAU.NE.ZERO ) THEN
213*
214*           w( 1:m ) = C( 1:m, 1 )
215*
216            CALL ZCOPY( M, C, 1, WORK, 1 )
217*
218*           w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
219*
220            CALL ZGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC,
221     $                  V, INCV, ONE, WORK, 1 )
222*
223*           C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
224*
225            CALL ZAXPY( M, -TAU, WORK, 1, C, 1 )
226*
227*           C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
228*                               tau * w( 1:m ) * v( 1:l )**H
229*
230            CALL ZGERC( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ),
231     $                  LDC )
232*
233         END IF
234*
235      END IF
236*
237      RETURN
238*
239*     End of ZLARZ
240*
241      END
242