1*> \brief <b> ZSPSV computes the solution to system of linear equations A * X = B for OTHER matrices</b> 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZSPSV + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspsv.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspsv.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspsv.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE ZSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) 22* 23* .. Scalar Arguments .. 24* CHARACTER UPLO 25* INTEGER INFO, LDB, N, NRHS 26* .. 27* .. Array Arguments .. 28* INTEGER IPIV( * ) 29* COMPLEX*16 AP( * ), B( LDB, * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> ZSPSV computes the solution to a complex system of linear equations 39*> A * X = B, 40*> where A is an N-by-N symmetric matrix stored in packed format and X 41*> and B are N-by-NRHS matrices. 42*> 43*> The diagonal pivoting method is used to factor A as 44*> A = U * D * U**T, if UPLO = 'U', or 45*> A = L * D * L**T, if UPLO = 'L', 46*> where U (or L) is a product of permutation and unit upper (lower) 47*> triangular matrices, D is symmetric and block diagonal with 1-by-1 48*> and 2-by-2 diagonal blocks. The factored form of A is then used to 49*> solve the system of equations A * X = B. 50*> \endverbatim 51* 52* Arguments: 53* ========== 54* 55*> \param[in] UPLO 56*> \verbatim 57*> UPLO is CHARACTER*1 58*> = 'U': Upper triangle of A is stored; 59*> = 'L': Lower triangle of A is stored. 60*> \endverbatim 61*> 62*> \param[in] N 63*> \verbatim 64*> N is INTEGER 65*> The number of linear equations, i.e., the order of the 66*> matrix A. N >= 0. 67*> \endverbatim 68*> 69*> \param[in] NRHS 70*> \verbatim 71*> NRHS is INTEGER 72*> The number of right hand sides, i.e., the number of columns 73*> of the matrix B. NRHS >= 0. 74*> \endverbatim 75*> 76*> \param[in,out] AP 77*> \verbatim 78*> AP is COMPLEX*16 array, dimension (N*(N+1)/2) 79*> On entry, the upper or lower triangle of the symmetric matrix 80*> A, packed columnwise in a linear array. The j-th column of A 81*> is stored in the array AP as follows: 82*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; 83*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. 84*> See below for further details. 85*> 86*> On exit, the block diagonal matrix D and the multipliers used 87*> to obtain the factor U or L from the factorization 88*> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as 89*> a packed triangular matrix in the same storage format as A. 90*> \endverbatim 91*> 92*> \param[out] IPIV 93*> \verbatim 94*> IPIV is INTEGER array, dimension (N) 95*> Details of the interchanges and the block structure of D, as 96*> determined by ZSPTRF. If IPIV(k) > 0, then rows and columns 97*> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 98*> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, 99*> then rows and columns k-1 and -IPIV(k) were interchanged and 100*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and 101*> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and 102*> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 103*> diagonal block. 104*> \endverbatim 105*> 106*> \param[in,out] B 107*> \verbatim 108*> B is COMPLEX*16 array, dimension (LDB,NRHS) 109*> On entry, the N-by-NRHS right hand side matrix B. 110*> On exit, if INFO = 0, the N-by-NRHS solution matrix X. 111*> \endverbatim 112*> 113*> \param[in] LDB 114*> \verbatim 115*> LDB is INTEGER 116*> The leading dimension of the array B. LDB >= max(1,N). 117*> \endverbatim 118*> 119*> \param[out] INFO 120*> \verbatim 121*> INFO is INTEGER 122*> = 0: successful exit 123*> < 0: if INFO = -i, the i-th argument had an illegal value 124*> > 0: if INFO = i, D(i,i) is exactly zero. The factorization 125*> has been completed, but the block diagonal matrix D is 126*> exactly singular, so the solution could not be 127*> computed. 128*> \endverbatim 129* 130* Authors: 131* ======== 132* 133*> \author Univ. of Tennessee 134*> \author Univ. of California Berkeley 135*> \author Univ. of Colorado Denver 136*> \author NAG Ltd. 137* 138*> \date November 2011 139* 140*> \ingroup complex16OTHERsolve 141* 142*> \par Further Details: 143* ===================== 144*> 145*> \verbatim 146*> 147*> The packed storage scheme is illustrated by the following example 148*> when N = 4, UPLO = 'U': 149*> 150*> Two-dimensional storage of the symmetric matrix A: 151*> 152*> a11 a12 a13 a14 153*> a22 a23 a24 154*> a33 a34 (aij = aji) 155*> a44 156*> 157*> Packed storage of the upper triangle of A: 158*> 159*> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] 160*> \endverbatim 161*> 162* ===================================================================== 163 SUBROUTINE ZSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) 164* 165* -- LAPACK driver routine (version 3.4.0) -- 166* -- LAPACK is a software package provided by Univ. of Tennessee, -- 167* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 168* November 2011 169* 170* .. Scalar Arguments .. 171 CHARACTER UPLO 172 INTEGER INFO, LDB, N, NRHS 173* .. 174* .. Array Arguments .. 175 INTEGER IPIV( * ) 176 COMPLEX*16 AP( * ), B( LDB, * ) 177* .. 178* 179* ===================================================================== 180* 181* .. External Functions .. 182 LOGICAL LSAME 183 EXTERNAL LSAME 184* .. 185* .. External Subroutines .. 186 EXTERNAL XERBLA, ZSPTRF, ZSPTRS 187* .. 188* .. Intrinsic Functions .. 189 INTRINSIC MAX 190* .. 191* .. Executable Statements .. 192* 193* Test the input parameters. 194* 195 INFO = 0 196 IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 197 INFO = -1 198 ELSE IF( N.LT.0 ) THEN 199 INFO = -2 200 ELSE IF( NRHS.LT.0 ) THEN 201 INFO = -3 202 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN 203 INFO = -7 204 END IF 205 IF( INFO.NE.0 ) THEN 206 CALL XERBLA( 'ZSPSV ', -INFO ) 207 RETURN 208 END IF 209* 210* Compute the factorization A = U*D*U**T or A = L*D*L**T. 211* 212 CALL ZSPTRF( UPLO, N, AP, IPIV, INFO ) 213 IF( INFO.EQ.0 ) THEN 214* 215* Solve the system A*X = B, overwriting B with X. 216* 217 CALL ZSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) 218* 219 END IF 220 RETURN 221* 222* End of ZSPSV 223* 224 END 225