1*> \brief \b ZSPTRI 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZSPTRI + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsptri.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsptri.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsptri.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO ) 22* 23* .. Scalar Arguments .. 24* CHARACTER UPLO 25* INTEGER INFO, N 26* .. 27* .. Array Arguments .. 28* INTEGER IPIV( * ) 29* COMPLEX*16 AP( * ), WORK( * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> ZSPTRI computes the inverse of a complex symmetric indefinite matrix 39*> A in packed storage using the factorization A = U*D*U**T or 40*> A = L*D*L**T computed by ZSPTRF. 41*> \endverbatim 42* 43* Arguments: 44* ========== 45* 46*> \param[in] UPLO 47*> \verbatim 48*> UPLO is CHARACTER*1 49*> Specifies whether the details of the factorization are stored 50*> as an upper or lower triangular matrix. 51*> = 'U': Upper triangular, form is A = U*D*U**T; 52*> = 'L': Lower triangular, form is A = L*D*L**T. 53*> \endverbatim 54*> 55*> \param[in] N 56*> \verbatim 57*> N is INTEGER 58*> The order of the matrix A. N >= 0. 59*> \endverbatim 60*> 61*> \param[in,out] AP 62*> \verbatim 63*> AP is COMPLEX*16 array, dimension (N*(N+1)/2) 64*> On entry, the block diagonal matrix D and the multipliers 65*> used to obtain the factor U or L as computed by ZSPTRF, 66*> stored as a packed triangular matrix. 67*> 68*> On exit, if INFO = 0, the (symmetric) inverse of the original 69*> matrix, stored as a packed triangular matrix. The j-th column 70*> of inv(A) is stored in the array AP as follows: 71*> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; 72*> if UPLO = 'L', 73*> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. 74*> \endverbatim 75*> 76*> \param[in] IPIV 77*> \verbatim 78*> IPIV is INTEGER array, dimension (N) 79*> Details of the interchanges and the block structure of D 80*> as determined by ZSPTRF. 81*> \endverbatim 82*> 83*> \param[out] WORK 84*> \verbatim 85*> WORK is COMPLEX*16 array, dimension (N) 86*> \endverbatim 87*> 88*> \param[out] INFO 89*> \verbatim 90*> INFO is INTEGER 91*> = 0: successful exit 92*> < 0: if INFO = -i, the i-th argument had an illegal value 93*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its 94*> inverse could not be computed. 95*> \endverbatim 96* 97* Authors: 98* ======== 99* 100*> \author Univ. of Tennessee 101*> \author Univ. of California Berkeley 102*> \author Univ. of Colorado Denver 103*> \author NAG Ltd. 104* 105*> \date November 2011 106* 107*> \ingroup complex16OTHERcomputational 108* 109* ===================================================================== 110 SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO ) 111* 112* -- LAPACK computational routine (version 3.4.0) -- 113* -- LAPACK is a software package provided by Univ. of Tennessee, -- 114* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 115* November 2011 116* 117* .. Scalar Arguments .. 118 CHARACTER UPLO 119 INTEGER INFO, N 120* .. 121* .. Array Arguments .. 122 INTEGER IPIV( * ) 123 COMPLEX*16 AP( * ), WORK( * ) 124* .. 125* 126* ===================================================================== 127* 128* .. Parameters .. 129 COMPLEX*16 ONE, ZERO 130 PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), 131 $ ZERO = ( 0.0D+0, 0.0D+0 ) ) 132* .. 133* .. Local Scalars .. 134 LOGICAL UPPER 135 INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP 136 COMPLEX*16 AK, AKKP1, AKP1, D, T, TEMP 137* .. 138* .. External Functions .. 139 LOGICAL LSAME 140 COMPLEX*16 ZDOTU 141 EXTERNAL LSAME, ZDOTU 142* .. 143* .. External Subroutines .. 144 EXTERNAL XERBLA, ZCOPY, ZSPMV, ZSWAP 145* .. 146* .. Intrinsic Functions .. 147 INTRINSIC ABS 148* .. 149* .. Executable Statements .. 150* 151* Test the input parameters. 152* 153 INFO = 0 154 UPPER = LSAME( UPLO, 'U' ) 155 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 156 INFO = -1 157 ELSE IF( N.LT.0 ) THEN 158 INFO = -2 159 END IF 160 IF( INFO.NE.0 ) THEN 161 CALL XERBLA( 'ZSPTRI', -INFO ) 162 RETURN 163 END IF 164* 165* Quick return if possible 166* 167 IF( N.EQ.0 ) 168 $ RETURN 169* 170* Check that the diagonal matrix D is nonsingular. 171* 172 IF( UPPER ) THEN 173* 174* Upper triangular storage: examine D from bottom to top 175* 176 KP = N*( N+1 ) / 2 177 DO 10 INFO = N, 1, -1 178 IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO ) 179 $ RETURN 180 KP = KP - INFO 181 10 CONTINUE 182 ELSE 183* 184* Lower triangular storage: examine D from top to bottom. 185* 186 KP = 1 187 DO 20 INFO = 1, N 188 IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO ) 189 $ RETURN 190 KP = KP + N - INFO + 1 191 20 CONTINUE 192 END IF 193 INFO = 0 194* 195 IF( UPPER ) THEN 196* 197* Compute inv(A) from the factorization A = U*D*U**T. 198* 199* K is the main loop index, increasing from 1 to N in steps of 200* 1 or 2, depending on the size of the diagonal blocks. 201* 202 K = 1 203 KC = 1 204 30 CONTINUE 205* 206* If K > N, exit from loop. 207* 208 IF( K.GT.N ) 209 $ GO TO 50 210* 211 KCNEXT = KC + K 212 IF( IPIV( K ).GT.0 ) THEN 213* 214* 1 x 1 diagonal block 215* 216* Invert the diagonal block. 217* 218 AP( KC+K-1 ) = ONE / AP( KC+K-1 ) 219* 220* Compute column K of the inverse. 221* 222 IF( K.GT.1 ) THEN 223 CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 ) 224 CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ), 225 $ 1 ) 226 AP( KC+K-1 ) = AP( KC+K-1 ) - 227 $ ZDOTU( K-1, WORK, 1, AP( KC ), 1 ) 228 END IF 229 KSTEP = 1 230 ELSE 231* 232* 2 x 2 diagonal block 233* 234* Invert the diagonal block. 235* 236 T = AP( KCNEXT+K-1 ) 237 AK = AP( KC+K-1 ) / T 238 AKP1 = AP( KCNEXT+K ) / T 239 AKKP1 = AP( KCNEXT+K-1 ) / T 240 D = T*( AK*AKP1-ONE ) 241 AP( KC+K-1 ) = AKP1 / D 242 AP( KCNEXT+K ) = AK / D 243 AP( KCNEXT+K-1 ) = -AKKP1 / D 244* 245* Compute columns K and K+1 of the inverse. 246* 247 IF( K.GT.1 ) THEN 248 CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 ) 249 CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ), 250 $ 1 ) 251 AP( KC+K-1 ) = AP( KC+K-1 ) - 252 $ ZDOTU( K-1, WORK, 1, AP( KC ), 1 ) 253 AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) - 254 $ ZDOTU( K-1, AP( KC ), 1, AP( KCNEXT ), 255 $ 1 ) 256 CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 ) 257 CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, 258 $ AP( KCNEXT ), 1 ) 259 AP( KCNEXT+K ) = AP( KCNEXT+K ) - 260 $ ZDOTU( K-1, WORK, 1, AP( KCNEXT ), 1 ) 261 END IF 262 KSTEP = 2 263 KCNEXT = KCNEXT + K + 1 264 END IF 265* 266 KP = ABS( IPIV( K ) ) 267 IF( KP.NE.K ) THEN 268* 269* Interchange rows and columns K and KP in the leading 270* submatrix A(1:k+1,1:k+1) 271* 272 KPC = ( KP-1 )*KP / 2 + 1 273 CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 ) 274 KX = KPC + KP - 1 275 DO 40 J = KP + 1, K - 1 276 KX = KX + J - 1 277 TEMP = AP( KC+J-1 ) 278 AP( KC+J-1 ) = AP( KX ) 279 AP( KX ) = TEMP 280 40 CONTINUE 281 TEMP = AP( KC+K-1 ) 282 AP( KC+K-1 ) = AP( KPC+KP-1 ) 283 AP( KPC+KP-1 ) = TEMP 284 IF( KSTEP.EQ.2 ) THEN 285 TEMP = AP( KC+K+K-1 ) 286 AP( KC+K+K-1 ) = AP( KC+K+KP-1 ) 287 AP( KC+K+KP-1 ) = TEMP 288 END IF 289 END IF 290* 291 K = K + KSTEP 292 KC = KCNEXT 293 GO TO 30 294 50 CONTINUE 295* 296 ELSE 297* 298* Compute inv(A) from the factorization A = L*D*L**T. 299* 300* K is the main loop index, increasing from 1 to N in steps of 301* 1 or 2, depending on the size of the diagonal blocks. 302* 303 NPP = N*( N+1 ) / 2 304 K = N 305 KC = NPP 306 60 CONTINUE 307* 308* If K < 1, exit from loop. 309* 310 IF( K.LT.1 ) 311 $ GO TO 80 312* 313 KCNEXT = KC - ( N-K+2 ) 314 IF( IPIV( K ).GT.0 ) THEN 315* 316* 1 x 1 diagonal block 317* 318* Invert the diagonal block. 319* 320 AP( KC ) = ONE / AP( KC ) 321* 322* Compute column K of the inverse. 323* 324 IF( K.LT.N ) THEN 325 CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 ) 326 CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1, 327 $ ZERO, AP( KC+1 ), 1 ) 328 AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ), 329 $ 1 ) 330 END IF 331 KSTEP = 1 332 ELSE 333* 334* 2 x 2 diagonal block 335* 336* Invert the diagonal block. 337* 338 T = AP( KCNEXT+1 ) 339 AK = AP( KCNEXT ) / T 340 AKP1 = AP( KC ) / T 341 AKKP1 = AP( KCNEXT+1 ) / T 342 D = T*( AK*AKP1-ONE ) 343 AP( KCNEXT ) = AKP1 / D 344 AP( KC ) = AK / D 345 AP( KCNEXT+1 ) = -AKKP1 / D 346* 347* Compute columns K-1 and K of the inverse. 348* 349 IF( K.LT.N ) THEN 350 CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 ) 351 CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1, 352 $ ZERO, AP( KC+1 ), 1 ) 353 AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ), 354 $ 1 ) 355 AP( KCNEXT+1 ) = AP( KCNEXT+1 ) - 356 $ ZDOTU( N-K, AP( KC+1 ), 1, 357 $ AP( KCNEXT+2 ), 1 ) 358 CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 ) 359 CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1, 360 $ ZERO, AP( KCNEXT+2 ), 1 ) 361 AP( KCNEXT ) = AP( KCNEXT ) - 362 $ ZDOTU( N-K, WORK, 1, AP( KCNEXT+2 ), 1 ) 363 END IF 364 KSTEP = 2 365 KCNEXT = KCNEXT - ( N-K+3 ) 366 END IF 367* 368 KP = ABS( IPIV( K ) ) 369 IF( KP.NE.K ) THEN 370* 371* Interchange rows and columns K and KP in the trailing 372* submatrix A(k-1:n,k-1:n) 373* 374 KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1 375 IF( KP.LT.N ) 376 $ CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 ) 377 KX = KC + KP - K 378 DO 70 J = K + 1, KP - 1 379 KX = KX + N - J + 1 380 TEMP = AP( KC+J-K ) 381 AP( KC+J-K ) = AP( KX ) 382 AP( KX ) = TEMP 383 70 CONTINUE 384 TEMP = AP( KC ) 385 AP( KC ) = AP( KPC ) 386 AP( KPC ) = TEMP 387 IF( KSTEP.EQ.2 ) THEN 388 TEMP = AP( KC-N+K-1 ) 389 AP( KC-N+K-1 ) = AP( KC-N+KP-1 ) 390 AP( KC-N+KP-1 ) = TEMP 391 END IF 392 END IF 393* 394 K = K - KSTEP 395 KC = KCNEXT 396 GO TO 60 397 80 CONTINUE 398 END IF 399* 400 RETURN 401* 402* End of ZSPTRI 403* 404 END 405