1*> \brief \b ZTPQRT 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZTPQRT + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztpqrt.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztpqrt.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztpqrt.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE ZTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, 22* INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LDA, LDB, LDT, N, M, L, NB 26* .. 27* .. Array Arguments .. 28* COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> ZTPQRT computes a blocked QR factorization of a complex 38*> "triangular-pentagonal" matrix C, which is composed of a 39*> triangular block A and pentagonal block B, using the compact 40*> WY representation for Q. 41*> \endverbatim 42* 43* Arguments: 44* ========== 45* 46*> \param[in] M 47*> \verbatim 48*> M is INTEGER 49*> The number of rows of the matrix B. 50*> M >= 0. 51*> \endverbatim 52*> 53*> \param[in] N 54*> \verbatim 55*> N is INTEGER 56*> The number of columns of the matrix B, and the order of the 57*> triangular matrix A. 58*> N >= 0. 59*> \endverbatim 60*> 61*> \param[in] L 62*> \verbatim 63*> L is INTEGER 64*> The number of rows of the upper trapezoidal part of B. 65*> MIN(M,N) >= L >= 0. See Further Details. 66*> \endverbatim 67*> 68*> \param[in] NB 69*> \verbatim 70*> NB is INTEGER 71*> The block size to be used in the blocked QR. N >= NB >= 1. 72*> \endverbatim 73*> 74*> \param[in,out] A 75*> \verbatim 76*> A is COMPLEX*16 array, dimension (LDA,N) 77*> On entry, the upper triangular N-by-N matrix A. 78*> On exit, the elements on and above the diagonal of the array 79*> contain the upper triangular matrix R. 80*> \endverbatim 81*> 82*> \param[in] LDA 83*> \verbatim 84*> LDA is INTEGER 85*> The leading dimension of the array A. LDA >= max(1,N). 86*> \endverbatim 87*> 88*> \param[in,out] B 89*> \verbatim 90*> B is COMPLEX*16 array, dimension (LDB,N) 91*> On entry, the pentagonal M-by-N matrix B. The first M-L rows 92*> are rectangular, and the last L rows are upper trapezoidal. 93*> On exit, B contains the pentagonal matrix V. See Further Details. 94*> \endverbatim 95*> 96*> \param[in] LDB 97*> \verbatim 98*> LDB is INTEGER 99*> The leading dimension of the array B. LDB >= max(1,M). 100*> \endverbatim 101*> 102*> \param[out] T 103*> \verbatim 104*> T is COMPLEX*16 array, dimension (LDT,N) 105*> The upper triangular block reflectors stored in compact form 106*> as a sequence of upper triangular blocks. See Further Details. 107*> \endverbatim 108*> 109*> \param[in] LDT 110*> \verbatim 111*> LDT is INTEGER 112*> The leading dimension of the array T. LDT >= NB. 113*> \endverbatim 114*> 115*> \param[out] WORK 116*> \verbatim 117*> WORK is COMPLEX*16 array, dimension (NB*N) 118*> \endverbatim 119*> 120*> \param[out] INFO 121*> \verbatim 122*> INFO is INTEGER 123*> = 0: successful exit 124*> < 0: if INFO = -i, the i-th argument had an illegal value 125*> \endverbatim 126* 127* Authors: 128* ======== 129* 130*> \author Univ. of Tennessee 131*> \author Univ. of California Berkeley 132*> \author Univ. of Colorado Denver 133*> \author NAG Ltd. 134* 135*> \date November 2013 136* 137*> \ingroup complex16OTHERcomputational 138* 139*> \par Further Details: 140* ===================== 141*> 142*> \verbatim 143*> 144*> The input matrix C is a (N+M)-by-N matrix 145*> 146*> C = [ A ] 147*> [ B ] 148*> 149*> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal 150*> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N 151*> upper trapezoidal matrix B2: 152*> 153*> B = [ B1 ] <- (M-L)-by-N rectangular 154*> [ B2 ] <- L-by-N upper trapezoidal. 155*> 156*> The upper trapezoidal matrix B2 consists of the first L rows of a 157*> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, 158*> B is rectangular M-by-N; if M=L=N, B is upper triangular. 159*> 160*> The matrix W stores the elementary reflectors H(i) in the i-th column 161*> below the diagonal (of A) in the (N+M)-by-N input matrix C 162*> 163*> C = [ A ] <- upper triangular N-by-N 164*> [ B ] <- M-by-N pentagonal 165*> 166*> so that W can be represented as 167*> 168*> W = [ I ] <- identity, N-by-N 169*> [ V ] <- M-by-N, same form as B. 170*> 171*> Thus, all of information needed for W is contained on exit in B, which 172*> we call V above. Note that V has the same form as B; that is, 173*> 174*> V = [ V1 ] <- (M-L)-by-N rectangular 175*> [ V2 ] <- L-by-N upper trapezoidal. 176*> 177*> The columns of V represent the vectors which define the H(i)'s. 178*> 179*> The number of blocks is B = ceiling(N/NB), where each 180*> block is of order NB except for the last block, which is of order 181*> IB = N - (B-1)*NB. For each of the B blocks, a upper triangular block 182*> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB 183*> for the last block) T's are stored in the NB-by-N matrix T as 184*> 185*> T = [T1 T2 ... TB]. 186*> \endverbatim 187*> 188* ===================================================================== 189 SUBROUTINE ZTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, 190 $ INFO ) 191* 192* -- LAPACK computational routine (version 3.5.0) -- 193* -- LAPACK is a software package provided by Univ. of Tennessee, -- 194* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 195* November 2013 196* 197* .. Scalar Arguments .. 198 INTEGER INFO, LDA, LDB, LDT, N, M, L, NB 199* .. 200* .. Array Arguments .. 201 COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * ) 202* .. 203* 204* ===================================================================== 205* 206* .. 207* .. Local Scalars .. 208 INTEGER I, IB, LB, MB, IINFO 209* .. 210* .. External Subroutines .. 211 EXTERNAL ZTPQRT2, ZTPRFB, XERBLA 212* .. 213* .. Executable Statements .. 214* 215* Test the input arguments 216* 217 INFO = 0 218 IF( M.LT.0 ) THEN 219 INFO = -1 220 ELSE IF( N.LT.0 ) THEN 221 INFO = -2 222 ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN 223 INFO = -3 224 ELSE IF( NB.LT.1 .OR. (NB.GT.N .AND. N.GT.0)) THEN 225 INFO = -4 226 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 227 INFO = -6 228 ELSE IF( LDB.LT.MAX( 1, M ) ) THEN 229 INFO = -8 230 ELSE IF( LDT.LT.NB ) THEN 231 INFO = -10 232 END IF 233 IF( INFO.NE.0 ) THEN 234 CALL XERBLA( 'ZTPQRT', -INFO ) 235 RETURN 236 END IF 237* 238* Quick return if possible 239* 240 IF( M.EQ.0 .OR. N.EQ.0 ) RETURN 241* 242 DO I = 1, N, NB 243* 244* Compute the QR factorization of the current block 245* 246 IB = MIN( N-I+1, NB ) 247 MB = MIN( M-L+I+IB-1, M ) 248 IF( I.GE.L ) THEN 249 LB = 0 250 ELSE 251 LB = MB-M+L-I+1 252 END IF 253* 254 CALL ZTPQRT2( MB, IB, LB, A(I,I), LDA, B( 1, I ), LDB, 255 $ T(1, I ), LDT, IINFO ) 256* 257* Update by applying H**H to B(:,I+IB:N) from the left 258* 259 IF( I+IB.LE.N ) THEN 260 CALL ZTPRFB( 'L', 'C', 'F', 'C', MB, N-I-IB+1, IB, LB, 261 $ B( 1, I ), LDB, T( 1, I ), LDT, 262 $ A( I, I+IB ), LDA, B( 1, I+IB ), LDB, 263 $ WORK, IB ) 264 END IF 265 END DO 266 RETURN 267* 268* End of ZTPQRT 269* 270 END 271