1TermVector B : unknown "v " (real scalar)
2   (1,0) * Linear form (real) of integral type on domain 'Omega' with unnknown 'v' : intg_Omega one *  v, FEM computation, triangle->Misc P_2 Hammer Stroud (nbq = 3), based on operator :
3   operator identity v returns a real scalar
4   left operand :  function 'one' * (product)
5   using triangle->Misc P_2 Hammer Stroud (nbq = 3)
6
7 121 values, first and last 10 values
8   FE dof 1   (0.1, 0)   -> 0.005
9   FE dof 2   (0, 0.1)   -> 0.005
10   FE dof 3   (0, 0)     -> 0.00166666666667
11   FE dof 4   (0.1, 0.1) -> 0.01
12   FE dof 5   (0.2, 0)   -> 0.005
13   FE dof 6   (0.2, 0.1) -> 0.01
14   FE dof 7   (0.3, 0)   -> 0.005
15   FE dof 8   (0.3, 0.1) -> 0.01
16   FE dof 9   (0.4, 0)   -> 0.005
17   FE dof 10  (0.4, 0.1) -> 0.01
18   ...
19   FE dof 112 (0.1, 1)   -> 0.005
20   FE dof 113 (0.2, 1)   -> 0.005
21   FE dof 114 (0.3, 1)   -> 0.005
22   FE dof 115 (0.4, 1)   -> 0.005
23   FE dof 116 (0.5, 1)   -> 0.005
24   FE dof 117 (0.6, 1)   -> 0.005
25   FE dof 118 (0.7, 1)   -> 0.005
26   FE dof 119 (0.8, 1)   -> 0.005
27   FE dof 120 (0.9, 1)   -> 0.005
28   FE dof 121 (1, 1)     -> 0.00166666666667
29
30
31 B1|un=1
32
33TermVector Bxy : unknown "v " (real scalar)
34   (1,0) * Linear form (real) of integral type on domain 'Omega' with unnknown 'v' : intg_Omega fun *  v, FEM computation, triangle->Misc P_2 Hammer Stroud (nbq = 3), based on operator :
35   operator identity v returns a real scalar
36   left operand :  function '?' * (product)
37   using triangle->Misc P_2 Hammer Stroud (nbq = 3)
38
39 121 values, first and last 10 values
40   FE dof 1   (0.1, 0)   -> 1.25e-05
41   FE dof 2   (0, 0.1)   -> 1.25e-05
42   FE dof 3   (0, 0)     -> 9.25925925926e-07
43   FE dof 4   (0.1, 0.1) -> 9.16666666667e-05
44   FE dof 5   (0.2, 0)   -> 2.91666666667e-05
45   FE dof 6   (0.2, 0.1) -> 0.000191666666667
46   FE dof 7   (0.3, 0)   -> 4.58333333333e-05
47   FE dof 8   (0.3, 0.1) -> 0.000291666666667
48   FE dof 9   (0.4, 0)   -> 6.25e-05
49   FE dof 10  (0.4, 0.1) -> 0.000391666666667
50   ...
51   FE dof 112 (0.1, 1)   -> 0.0005625
52   FE dof 113 (0.2, 1)   -> 0.00104583333333
53   FE dof 114 (0.3, 1)   -> 0.00152916666667
54   FE dof 115 (0.4, 1)   -> 0.0020125
55   FE dof 116 (0.5, 1)   -> 0.00249583333333
56   FE dof 117 (0.6, 1)   -> 0.00297916666667
57   FE dof 118 (0.7, 1)   -> 0.0034625
58   FE dof 119 (0.8, 1)   -> 0.00394583333333
59   FE dof 120 (0.9, 1)   -> 0.00442916666667
60   FE dof 121 (1, 1)     -> 0.00158425925926
61
62
63 Bxy|un=0.25
64
65TermVector C1 : unknown "v " (real scalar)
66   (1,0) * Linear form (real) of integral type on domain 'Gamma_2' with unnknown 'v' : intg_Gamma_2 v, FEM computation, segment->Gauss_Legendre_1 (nbq = 1), based on operator :
67   operator identity v returns a real scalar
68   using segment->Gauss_Legendre_1 (nbq = 1)
69
70 11 values, all values
71   FE dof 2  (0, 0.1)  -> 0.1
72   FE dof 3  (0, 0)    -> 0.05
73   FE dof 23 (0, 0.2)  -> 0.1
74   FE dof 34 (0, 0.3)  -> 0.1
75   FE dof 45 (0, 0.4)  -> 0.1
76   FE dof 56 (0, 0.5)  -> 0.1
77   FE dof 67 (0, 0.6)  -> 0.1
78   FE dof 78 (0, 0.7)  -> 0.1
79   FE dof 89 (0, 0.8)  -> 0.1
80   FE dof 100 (0, 0.9) -> 0.1
81   FE dof 111 (0, 1)   -> 0.05
82
83TermVector  : unknown "v " (real scalar)
84   (2,0) * Linear form (real) of integral type on domain 'Omega' with unnknown 'v' : intg_Omega one *  v, FEM computation, triangle->Misc P_2 Hammer Stroud (nbq = 3), based on operator :
85   operator identity v returns a real scalar
86   left operand :  function 'one' * (product)
87   using triangle->Misc P_2 Hammer Stroud (nbq = 3)
88
89 121 values, first and last 10 values
90   FE dof 1   (0.1, 0)   -> 0.01
91   FE dof 2   (0, 0.1)   -> 0.01
92   FE dof 3   (0, 0)     -> 0.00333333333333
93   FE dof 4   (0.1, 0.1) -> 0.02
94   FE dof 5   (0.2, 0)   -> 0.01
95   FE dof 6   (0.2, 0.1) -> 0.02
96   FE dof 7   (0.3, 0)   -> 0.01
97   FE dof 8   (0.3, 0.1) -> 0.02
98   FE dof 9   (0.4, 0)   -> 0.01
99   FE dof 10  (0.4, 0.1) -> 0.02
100   ...
101   FE dof 112 (0.1, 1)   -> 0.01
102   FE dof 113 (0.2, 1)   -> 0.01
103   FE dof 114 (0.3, 1)   -> 0.01
104   FE dof 115 (0.4, 1)   -> 0.01
105   FE dof 116 (0.5, 1)   -> 0.01
106   FE dof 117 (0.6, 1)   -> 0.01
107   FE dof 118 (0.7, 1)   -> 0.01
108   FE dof 119 (0.8, 1)   -> 0.01
109   FE dof 120 (0.9, 1)   -> 0.01
110   FE dof 121 (1, 1)     -> 0.00333333333333
111
112TermVector  : unknown "v " (real scalar)
113   (3.14159265359,0) * Linear form (real) of integral type on domain 'Omega' with unnknown 'v' : intg_Omega one *  v, FEM computation, triangle->Misc P_2 Hammer Stroud (nbq = 3), based on operator :
114   operator identity v returns a real scalar
115   left operand :  function 'one' * (product)
116   using triangle->Misc P_2 Hammer Stroud (nbq = 3)
117
118 121 values, first and last 10 values
119   FE dof 1   (0.1, 0)   -> 0.0157079632679
120   FE dof 2   (0, 0.1)   -> 0.0157079632679
121   FE dof 3   (0, 0)     -> 0.00523598775598
122   FE dof 4   (0.1, 0.1) -> 0.0314159265359
123   FE dof 5   (0.2, 0)   -> 0.0157079632679
124   FE dof 6   (0.2, 0.1) -> 0.0314159265359
125   FE dof 7   (0.3, 0)   -> 0.0157079632679
126   FE dof 8   (0.3, 0.1) -> 0.0314159265359
127   FE dof 9   (0.4, 0)   -> 0.0157079632679
128   FE dof 10  (0.4, 0.1) -> 0.0314159265359
129   ...
130   FE dof 112 (0.1, 1)   -> 0.0157079632679
131   FE dof 113 (0.2, 1)   -> 0.0157079632679
132   FE dof 114 (0.3, 1)   -> 0.0157079632679
133   FE dof 115 (0.4, 1)   -> 0.0157079632679
134   FE dof 116 (0.5, 1)   -> 0.0157079632679
135   FE dof 117 (0.6, 1)   -> 0.0157079632679
136   FE dof 118 (0.7, 1)   -> 0.0157079632679
137   FE dof 119 (0.8, 1)   -> 0.0157079632679
138   FE dof 120 (0.9, 1)   -> 0.0157079632679
139   FE dof 121 (1, 1)     -> 0.00523598775598
140
141TermVector  : unknown "v " (complex scalar)
142   (0,1) * Linear form (real) of integral type on domain 'Omega' with unnknown 'v' : intg_Omega one *  v, FEM computation, triangle->Misc P_2 Hammer Stroud (nbq = 3), based on operator :
143   operator identity v returns a real scalar
144   left operand :  function 'one' * (product)
145   using triangle->Misc P_2 Hammer Stroud (nbq = 3)
146
147 121 values, first and last 10 values
148   FE dof 1   (0.1, 0)   -> (0,0.005)
149   FE dof 2   (0, 0.1)   -> (0,0.005)
150   FE dof 3   (0, 0)     -> (0,0.00166666666667)
151   FE dof 4   (0.1, 0.1) -> (0,0.01)
152   FE dof 5   (0.2, 0)   -> (0,0.005)
153   FE dof 6   (0.2, 0.1) -> (0,0.01)
154   FE dof 7   (0.3, 0)   -> (0,0.005)
155   FE dof 8   (0.3, 0.1) -> (0,0.01)
156   FE dof 9   (0.4, 0)   -> (0,0.005)
157   FE dof 10  (0.4, 0.1) -> (0,0.01)
158   ...
159   FE dof 112 (0.1, 1)   -> (0,0.005)
160   FE dof 113 (0.2, 1)   -> (0,0.005)
161   FE dof 114 (0.3, 1)   -> (0,0.005)
162   FE dof 115 (0.4, 1)   -> (0,0.005)
163   FE dof 116 (0.5, 1)   -> (0,0.005)
164   FE dof 117 (0.6, 1)   -> (0,0.005)
165   FE dof 118 (0.7, 1)   -> (0,0.005)
166   FE dof 119 (0.8, 1)   -> (0,0.005)
167   FE dof 120 (0.9, 1)   -> (0,0.005)
168   FE dof 121 (1, 1)     -> (0,0.00166666666667)
169
170TermVector  : unknown "v " (real scalar)
171   (3,0) * Linear form (real) of integral type on domain 'Omega' with unnknown 'v' : intg_Omega one *  v, FEM computation, triangle->Misc P_2 Hammer Stroud (nbq = 3), based on operator :
172   operator identity v returns a real scalar
173   left operand :  function 'one' * (product)
174   using triangle->Misc P_2 Hammer Stroud (nbq = 3)
175
176 121 values, first and last 10 values
177   FE dof 1   (0.1, 0)   -> 0.015
178   FE dof 2   (0, 0.1)   -> 0.015
179   FE dof 3   (0, 0)     -> 0.005
180   FE dof 4   (0.1, 0.1) -> 0.03
181   FE dof 5   (0.2, 0)   -> 0.015
182   FE dof 6   (0.2, 0.1) -> 0.03
183   FE dof 7   (0.3, 0)   -> 0.015
184   FE dof 8   (0.3, 0.1) -> 0.03
185   FE dof 9   (0.4, 0)   -> 0.015
186   FE dof 10  (0.4, 0.1) -> 0.03
187   ...
188   FE dof 112 (0.1, 1)   -> 0.015
189   FE dof 113 (0.2, 1)   -> 0.015
190   FE dof 114 (0.3, 1)   -> 0.015
191   FE dof 115 (0.4, 1)   -> 0.015
192   FE dof 116 (0.5, 1)   -> 0.015
193   FE dof 117 (0.6, 1)   -> 0.015
194   FE dof 118 (0.7, 1)   -> 0.015
195   FE dof 119 (0.8, 1)   -> 0.015
196   FE dof 120 (0.9, 1)   -> 0.015
197   FE dof 121 (1, 1)     -> 0.005
198
199TermVector  : unknown "v " (complex scalar)
200   (0,3) * Linear form (real) of integral type on domain 'Omega' with unnknown 'v' : intg_Omega one *  v, FEM computation, triangle->Misc P_2 Hammer Stroud (nbq = 3), based on operator :
201   operator identity v returns a real scalar
202   left operand :  function 'one' * (product)
203   using triangle->Misc P_2 Hammer Stroud (nbq = 3)
204
205 121 values, first and last 10 values
206   FE dof 1   (0.1, 0)   -> (0,0.015)
207   FE dof 2   (0, 0.1)   -> (0,0.015)
208   FE dof 3   (0, 0)     -> (0,0.005)
209   FE dof 4   (0.1, 0.1) -> (0,0.03)
210   FE dof 5   (0.2, 0)   -> (0,0.015)
211   FE dof 6   (0.2, 0.1) -> (0,0.03)
212   FE dof 7   (0.3, 0)   -> (0,0.015)
213   FE dof 8   (0.3, 0.1) -> (0,0.03)
214   FE dof 9   (0.4, 0)   -> (0,0.015)
215   FE dof 10  (0.4, 0.1) -> (0,0.03)
216   ...
217   FE dof 112 (0.1, 1)   -> (0,0.015)
218   FE dof 113 (0.2, 1)   -> (0,0.015)
219   FE dof 114 (0.3, 1)   -> (0,0.015)
220   FE dof 115 (0.4, 1)   -> (0,0.015)
221   FE dof 116 (0.5, 1)   -> (0,0.015)
222   FE dof 117 (0.6, 1)   -> (0,0.015)
223   FE dof 118 (0.7, 1)   -> (0,0.015)
224   FE dof 119 (0.8, 1)   -> (0,0.015)
225   FE dof 120 (0.9, 1)   -> (0,0.015)
226   FE dof 121 (1, 1)     -> (0,0.005)
227
228TermVector from FunctionTermVector F1 : unknown "u " (real scalar)
229 121 values, first and last 10 values
230   FE dof 1   (0.1, 0)   -> 0
231   FE dof 2   (0, 0.1)   -> 0
232   FE dof 3   (0, 0)     -> 0
233   FE dof 4   (0.1, 0.1) -> 0.01
234   FE dof 5   (0.2, 0)   -> 0
235   FE dof 6   (0.2, 0.1) -> 0.02
236   FE dof 7   (0.3, 0)   -> 0
237   FE dof 8   (0.3, 0.1) -> 0.03
238   FE dof 9   (0.4, 0)   -> 0
239   FE dof 10  (0.4, 0.1) -> 0.04
240   ...
241   FE dof 112 (0.1, 1)   -> 0.1
242   FE dof 113 (0.2, 1)   -> 0.2
243   FE dof 114 (0.3, 1)   -> 0.3
244   FE dof 115 (0.4, 1)   -> 0.4
245   FE dof 116 (0.5, 1)   -> 0.5
246   FE dof 117 (0.6, 1)   -> 0.6
247   FE dof 118 (0.7, 1)   -> 0.7
248   FE dof 119 (0.8, 1)   -> 0.8
249   FE dof 120 (0.9, 1)   -> 0.9
250   FE dof 121 (1, 1)     -> 1
251
252TermVector from SymbolicFunctionTermVector F2 : unknown "u " (real scalar)
253 121 values, first and last 10 values
254   FE dof 1   (0.1, 0)   -> 0
255   FE dof 2   (0, 0.1)   -> 0
256   FE dof 3   (0, 0)     -> 0
257   FE dof 4   (0.1, 0.1) -> 0.01
258   FE dof 5   (0.2, 0)   -> 0
259   FE dof 6   (0.2, 0.1) -> 0.02
260   FE dof 7   (0.3, 0)   -> 0
261   FE dof 8   (0.3, 0.1) -> 0.03
262   FE dof 9   (0.4, 0)   -> 0
263   FE dof 10  (0.4, 0.1) -> 0.04
264   ...
265   FE dof 112 (0.1, 1)   -> 0.1
266   FE dof 113 (0.2, 1)   -> 0.2
267   FE dof 114 (0.3, 1)   -> 0.3
268   FE dof 115 (0.4, 1)   -> 0.4
269   FE dof 116 (0.5, 1)   -> 0.5
270   FE dof 117 (0.6, 1)   -> 0.6
271   FE dof 118 (0.7, 1)   -> 0.7
272   FE dof 119 (0.8, 1)   -> 0.8
273   FE dof 120 (0.9, 1)   -> 0.9
274   FE dof 121 (1, 1)     -> 1
275
276TermVector from Function involving normal vectorTermVector Fn : unknown "u " (real scalar)
277 11 values, all values
278   FE dof 2  (0, 0.1)  -> 0
279   FE dof 3  (0, 0)    -> 0
280   FE dof 23 (0, 0.2)  -> 0
281   FE dof 34 (0, 0.3)  -> 0
282   FE dof 45 (0, 0.4)  -> 0
283   FE dof 56 (0, 0.5)  -> 0
284   FE dof 67 (0, 0.6)  -> 0
285   FE dof 78 (0, 0.7)  -> 0
286   FE dof 89 (0, 0.8)  -> 0
287   FE dof 100 (0, 0.9) -> 0
288   FE dof 111 (0, 1)   -> 0
289
290
291 C1|ung2=1
292
293 C1|ung1=0.05
294
295 C1|un=1
296TermVector B2 : unknown "v2 " (real scalar)
297   (1,0) * Linear form (real) of integral type on domain 'Omega' with unnknown 'v2' : intg_Omega one *  v2, FEM computation, triangle->Symmetrical Gauss_4 (nbq = 6), based on operator :
298   operator identity v2 returns a real scalar
299   left operand :  function 'one' * (product)
300   using triangle->Symmetrical Gauss_4 (nbq = 6)
301
302 441 values, first and last 10 values
303   FE dof 1   (0.1, 0)     -> 8.13151629364e-19
304   FE dof 2   (0, 0.1)     -> 7.5894152074e-19
305   FE dof 3   (0, 0)       -> 1.08420217249e-19
306   FE dof 4   (0.05, 0.05) -> 0.00333333333333
307   FE dof 5   (0, 0.05)    -> 0.00166666666667
308   FE dof 6   (0.05, 0)    -> 0.00166666666667
309   FE dof 7   (0.1, 0.1)   -> 1.5720931501e-18
310   FE dof 8   (0.1, 0.05)  -> 0.00333333333333
311   FE dof 9   (0.05, 0.1)  -> 0.00333333333333
312   FE dof 10  (0.2, 0)     -> 7.5894152074e-19
313   ...
314   FE dof 432 (0.8, 0.95)  -> 0.00333333333333
315   FE dof 433 (0.75, 1)    -> 0.00166666666667
316   FE dof 434 (0.85, 0.95) -> 0.00333333333333
317   FE dof 435 (0.9, 1)     -> 7.65717784318e-19
318   FE dof 436 (0.9, 0.95)  -> 0.00333333333333
319   FE dof 437 (0.85, 1)    -> 0.00166666666667
320   FE dof 438 (0.95, 0.95) -> 0.00333333333333
321   FE dof 439 (1, 1)       -> 1.08420217249e-19
322   FE dof 440 (1, 0.95)    -> 0.00166666666667
323   FE dof 441 (0.95, 1)    -> 0.00166666666667
324
325
326 B2|un2=1
327
328TermVector Bxy2 : unknown "v2 " (real scalar)
329   (1,0) * Linear form (real) of integral type on domain 'Omega' with unnknown 'v2' : intg_Omega fun *  v2, FEM computation, triangle->Symmetrical Gauss_4 (nbq = 6), based on operator :
330   operator identity v2 returns a real scalar
331   left operand :  function '?' * (product)
332   using triangle->Symmetrical Gauss_4 (nbq = 6)
333
334 441 values, first and last 10 values
335   FE dof 1   (0.1, 0)     -> -1.94444444444e-06
336   FE dof 2   (0, 0.1)     -> -1.94444444444e-06
337   FE dof 3   (0, 0)       -> -2.77777777778e-07
338   FE dof 4   (0.05, 0.05) -> 7.77777777778e-06
339   FE dof 5   (0, 0.05)    -> 1.11111111111e-06
340   FE dof 6   (0.05, 0)    -> 1.11111111111e-06
341   FE dof 7   (0.1, 0.1)   -> 2.77777777778e-06
342   FE dof 8   (0.1, 0.05)  -> 1.55555555556e-05
343   FE dof 9   (0.05, 0.1)  -> 1.55555555556e-05
344   FE dof 10  (0.2, 0)     -> -5.27777777778e-06
345   ...
346   FE dof 432 (0.8, 0.95)  -> 0.00253222222222
347   FE dof 433 (0.75, 1)    -> 0.00124111111111
348   FE dof 434 (0.85, 0.95) -> 0.00269111111111
349   FE dof 435 (0.9, 1)     -> 1.47222222222e-05
350   FE dof 436 (0.9, 0.95)  -> 0.00284888888889
351   FE dof 437 (0.85, 1)    -> 0.00140444444444
352   FE dof 438 (0.95, 0.95) -> 0.00300777777778
353   FE dof 439 (1, 1)       -> 1.63888888889e-05
354   FE dof 440 (1, 0.95)    -> 0.00156777777778
355   FE dof 441 (0.95, 1)    -> 0.00156777777778
356
357
358 Bxy2|un2=0.25
359
360TermVector C2 : unknown "v2 " (real scalar)
361   (1,0) * Linear form (real) of integral type on domain 'Gamma_2' with unnknown 'v2' : intg_Gamma_2 v2, FEM computation, segment->Gauss_Legendre_2 (nbq = 2), based on operator :
362   operator identity v2 returns a real scalar
363   using segment->Gauss_Legendre_2 (nbq = 2)
364
365 21 values, first and last 10 values
366   FE dof 2  (0, 0.1)   -> 0.0333333333333
367   FE dof 3  (0, 0)     -> 0.0166666666667
368   FE dof 5  (0, 0.05)  -> 0.0666666666667
369   FE dof 64 (0, 0.2)   -> 0.0333333333333
370   FE dof 66 (0, 0.15)  -> 0.0666666666667
371   FE dof 106 (0, 0.3)  -> 0.0333333333333
372   FE dof 108 (0, 0.25) -> 0.0666666666667
373   FE dof 148 (0, 0.4)  -> 0.0333333333333
374   FE dof 150 (0, 0.35) -> 0.0666666666667
375   FE dof 190 (0, 0.5)  -> 0.0333333333333
376   ...
377   FE dof 232 (0, 0.6)  -> 0.0333333333333
378   FE dof 234 (0, 0.55) -> 0.0666666666667
379   FE dof 274 (0, 0.7)  -> 0.0333333333333
380   FE dof 276 (0, 0.65) -> 0.0666666666667
381   FE dof 316 (0, 0.8)  -> 0.0333333333333
382   FE dof 318 (0, 0.75) -> 0.0666666666667
383   FE dof 358 (0, 0.9)  -> 0.0333333333333
384   FE dof 360 (0, 0.85) -> 0.0666666666667
385   FE dof 400 (0, 1)    -> 0.0166666666667
386   FE dof 402 (0, 0.95) -> 0.0666666666667
387
388
389 C2|ung22=1
390
391 C2|ung12=0.0166666666667
392
393 C2|un2=1
394
395 t1 = TermVector  : unknown "u " (real scalar)
396 121 values, first and last 10 values
397   FE dof 1   (0.1, 0)   -> 0
398   FE dof 2   (0, 0.1)   -> 0
399   FE dof 3   (0, 0)     -> 0
400   FE dof 4   (0.1, 0.1) -> 0.01
401   FE dof 5   (0.2, 0)   -> 0
402   FE dof 6   (0.2, 0.1) -> 0.02
403   FE dof 7   (0.3, 0)   -> 0
404   FE dof 8   (0.3, 0.1) -> 0.03
405   FE dof 9   (0.4, 0)   -> 0
406   FE dof 10  (0.4, 0.1) -> 0.04
407   ...
408   FE dof 112 (0.1, 1)   -> 0.1
409   FE dof 113 (0.2, 1)   -> 0.2
410   FE dof 114 (0.3, 1)   -> 0.3
411   FE dof 115 (0.4, 1)   -> 0.4
412   FE dof 116 (0.5, 1)   -> 0.5
413   FE dof 117 (0.6, 1)   -> 0.6
414   FE dof 118 (0.7, 1)   -> 0.7
415   FE dof 119 (0.8, 1)   -> 0.8
416   FE dof 120 (0.9, 1)   -> 0.9
417   FE dof 121 (1, 1)     -> 1
418
419
420
421 t2 = TermVector  : unknown "u " (real scalar)
422 11 values, all values
423   FE dof 3  (0, 0)   -> 1
424   FE dof 1  (0.1, 0) -> 1
425   FE dof 5  (0.2, 0) -> 1
426   FE dof 7  (0.3, 0) -> 1
427   FE dof 9  (0.4, 0) -> 1
428   FE dof 11 (0.5, 0) -> 1
429   FE dof 13 (0.6, 0) -> 1
430   FE dof 15 (0.7, 0) -> 1
431   FE dof 17 (0.8, 0) -> 1
432   FE dof 19 (0.9, 0) -> 1
433   FE dof 21 (1, 0)   -> 1
434
435
436
437 t1 + t2 = TermVector  : unknown "u " (real scalar)
438 121 values, first and last 10 values
439   FE dof 1   (0.1, 0)   -> 1
440   FE dof 2   (0, 0.1)   -> 0
441   FE dof 3   (0, 0)     -> 1
442   FE dof 4   (0.1, 0.1) -> 0.01
443   FE dof 5   (0.2, 0)   -> 1
444   FE dof 6   (0.2, 0.1) -> 0.02
445   FE dof 7   (0.3, 0)   -> 1
446   FE dof 8   (0.3, 0.1) -> 0.03
447   FE dof 9   (0.4, 0)   -> 1
448   FE dof 10  (0.4, 0.1) -> 0.04
449   ...
450   FE dof 112 (0.1, 1)   -> 0.1
451   FE dof 113 (0.2, 1)   -> 0.2
452   FE dof 114 (0.3, 1)   -> 0.3
453   FE dof 115 (0.4, 1)   -> 0.4
454   FE dof 116 (0.5, 1)   -> 0.5
455   FE dof 117 (0.6, 1)   -> 0.6
456   FE dof 118 (0.7, 1)   -> 0.7
457   FE dof 119 (0.8, 1)   -> 0.8
458   FE dof 120 (0.9, 1)   -> 0.9
459   FE dof 121 (1, 1)     -> 1
460
461
462
463 2*t1+Complex(0.,1.)*t2 = TermVector  : unknown "u " (complex scalar)
464 121 values, first and last 10 values
465   FE dof 1   (0.1, 0)   -> (0,1)
466   FE dof 2   (0, 0.1)   -> (0,0)
467   FE dof 3   (0, 0)     -> (0,1)
468   FE dof 4   (0.1, 0.1) -> (0.02,0)
469   FE dof 5   (0.2, 0)   -> (0,1)
470   FE dof 6   (0.2, 0.1) -> (0.04,0)
471   FE dof 7   (0.3, 0)   -> (0,1)
472   FE dof 8   (0.3, 0.1) -> (0.06,0)
473   FE dof 9   (0.4, 0)   -> (0,1)
474   FE dof 10  (0.4, 0.1) -> (0.08,0)
475   ...
476   FE dof 112 (0.1, 1)   -> (0.2,0)
477   FE dof 113 (0.2, 1)   -> (0.4,0)
478   FE dof 114 (0.3, 1)   -> (0.6,0)
479   FE dof 115 (0.4, 1)   -> (0.8,0)
480   FE dof 116 (0.5, 1)   -> (1,0)
481   FE dof 117 (0.6, 1)   -> (1.2,0)
482   FE dof 118 (0.7, 1)   -> (1.4,0)
483   FE dof 119 (0.8, 1)   -> (1.6,0)
484   FE dof 120 (0.9, 1)   -> (1.8,0)
485   FE dof 121 (1, 1)     -> (2,0)
486
487
488
489 2*t1-Complex(0.,1.)*t2 = TermVector  : unknown "u " (complex scalar)
490 121 values, first and last 10 values
491   FE dof 1   (0.1, 0)   -> (0,-1)
492   FE dof 2   (0, 0.1)   -> (0,0)
493   FE dof 3   (0, 0)     -> (0,-1)
494   FE dof 4   (0.1, 0.1) -> (0.02,0)
495   FE dof 5   (0.2, 0)   -> (0,-1)
496   FE dof 6   (0.2, 0.1) -> (0.04,0)
497   FE dof 7   (0.3, 0)   -> (0,-1)
498   FE dof 8   (0.3, 0.1) -> (0.06,0)
499   FE dof 9   (0.4, 0)   -> (0,-1)
500   FE dof 10  (0.4, 0.1) -> (0.08,0)
501   ...
502   FE dof 112 (0.1, 1)   -> (0.2,0)
503   FE dof 113 (0.2, 1)   -> (0.4,0)
504   FE dof 114 (0.3, 1)   -> (0.6,0)
505   FE dof 115 (0.4, 1)   -> (0.8,0)
506   FE dof 116 (0.5, 1)   -> (1,0)
507   FE dof 117 (0.6, 1)   -> (1.2,0)
508   FE dof 118 (0.7, 1)   -> (1.4,0)
509   FE dof 119 (0.8, 1)   -> (1.6,0)
510   FE dof 120 (0.9, 1)   -> (1.8,0)
511   FE dof 121 (1, 1)     -> (2,0)
512
513
514
515 abs(t) = TermVector  : unknown "u " (real scalar)
516 121 values, first and last 10 values
517   FE dof 1   (0.1, 0)   -> 1
518   FE dof 2   (0, 0.1)   -> 0
519   FE dof 3   (0, 0)     -> 1
520   FE dof 4   (0.1, 0.1) -> 0.02
521   FE dof 5   (0.2, 0)   -> 1
522   FE dof 6   (0.2, 0.1) -> 0.04
523   FE dof 7   (0.3, 0)   -> 1
524   FE dof 8   (0.3, 0.1) -> 0.06
525   FE dof 9   (0.4, 0)   -> 1
526   FE dof 10  (0.4, 0.1) -> 0.08
527   ...
528   FE dof 112 (0.1, 1)   -> 0.2
529   FE dof 113 (0.2, 1)   -> 0.4
530   FE dof 114 (0.3, 1)   -> 0.6
531   FE dof 115 (0.4, 1)   -> 0.8
532   FE dof 116 (0.5, 1)   -> 1
533   FE dof 117 (0.6, 1)   -> 1.2
534   FE dof 118 (0.7, 1)   -> 1.4
535   FE dof 119 (0.8, 1)   -> 1.6
536   FE dof 120 (0.9, 1)   -> 1.8
537   FE dof 121 (1, 1)     -> 2
538
539
540
541 imag(t) = TermVector  : unknown "u " (real scalar)
542 121 values, first and last 10 values
543   FE dof 1   (0.1, 0)   -> -1
544   FE dof 2   (0, 0.1)   -> 0
545   FE dof 3   (0, 0)     -> -1
546   FE dof 4   (0.1, 0.1) -> 0
547   FE dof 5   (0.2, 0)   -> -1
548   FE dof 6   (0.2, 0.1) -> 0
549   FE dof 7   (0.3, 0)   -> -1
550   FE dof 8   (0.3, 0.1) -> 0
551   FE dof 9   (0.4, 0)   -> -1
552   FE dof 10  (0.4, 0.1) -> 0
553   ...
554   FE dof 112 (0.1, 1)   -> 0
555   FE dof 113 (0.2, 1)   -> 0
556   FE dof 114 (0.3, 1)   -> 0
557   FE dof 115 (0.4, 1)   -> 0
558   FE dof 116 (0.5, 1)   -> 0
559   FE dof 117 (0.6, 1)   -> 0
560   FE dof 118 (0.7, 1)   -> 0
561   FE dof 119 (0.8, 1)   -> 0
562   FE dof 120 (0.9, 1)   -> 0
563   FE dof 121 (1, 1)     -> 0
564
565
566
567 real(t) = TermVector  : unknown "u " (real scalar)
568 121 values, first and last 10 values
569   FE dof 1   (0.1, 0)   -> 0
570   FE dof 2   (0, 0.1)   -> 0
571   FE dof 3   (0, 0)     -> 0
572   FE dof 4   (0.1, 0.1) -> 0.02
573   FE dof 5   (0.2, 0)   -> 0
574   FE dof 6   (0.2, 0.1) -> 0.04
575   FE dof 7   (0.3, 0)   -> 0
576   FE dof 8   (0.3, 0.1) -> 0.06
577   FE dof 9   (0.4, 0)   -> 0
578   FE dof 10  (0.4, 0.1) -> 0.08
579   ...
580   FE dof 112 (0.1, 1)   -> 0.2
581   FE dof 113 (0.2, 1)   -> 0.4
582   FE dof 114 (0.3, 1)   -> 0.6
583   FE dof 115 (0.4, 1)   -> 0.8
584   FE dof 116 (0.5, 1)   -> 1
585   FE dof 117 (0.6, 1)   -> 1.2
586   FE dof 118 (0.7, 1)   -> 1.4
587   FE dof 119 (0.8, 1)   -> 1.6
588   FE dof 120 (0.9, 1)   -> 1.8
589   FE dof 121 (1, 1)     -> 2
590
591
592
593 conj(t) = TermVector  : unknown "u " (complex scalar)
594 121 values, first and last 10 values
595   FE dof 1   (0.1, 0)   -> (0,1)
596   FE dof 2   (0, 0.1)   -> (0,-0)
597   FE dof 3   (0, 0)     -> (0,1)
598   FE dof 4   (0.1, 0.1) -> (0.02,-0)
599   FE dof 5   (0.2, 0)   -> (0,1)
600   FE dof 6   (0.2, 0.1) -> (0.04,-0)
601   FE dof 7   (0.3, 0)   -> (0,1)
602   FE dof 8   (0.3, 0.1) -> (0.06,-0)
603   FE dof 9   (0.4, 0)   -> (0,1)
604   FE dof 10  (0.4, 0.1) -> (0.08,-0)
605   ...
606   FE dof 112 (0.1, 1)   -> (0.2,-0)
607   FE dof 113 (0.2, 1)   -> (0.4,-0)
608   FE dof 114 (0.3, 1)   -> (0.6,-0)
609   FE dof 115 (0.4, 1)   -> (0.8,-0)
610   FE dof 116 (0.5, 1)   -> (1,-0)
611   FE dof 117 (0.6, 1)   -> (1.2,-0)
612   FE dof 118 (0.7, 1)   -> (1.4,-0)
613   FE dof 119 (0.8, 1)   -> (1.6,-0)
614   FE dof 120 (0.9, 1)   -> (1.8,-0)
615   FE dof 121 (1, 1)     -> (2,-0)
616
617
618
619 (t1-t2)/dt = TermVector  : unknown "u " (real scalar)
620 121 values, first and last 10 values
621   FE dof 1   (0.1, 0)   -> -0.5
622   FE dof 2   (0, 0.1)   -> 0
623   FE dof 3   (0, 0)     -> -0.5
624   FE dof 4   (0.1, 0.1) -> 0.005
625   FE dof 5   (0.2, 0)   -> -0.5
626   FE dof 6   (0.2, 0.1) -> 0.01
627   FE dof 7   (0.3, 0)   -> -0.5
628   FE dof 8   (0.3, 0.1) -> 0.015
629   FE dof 9   (0.4, 0)   -> -0.5
630   FE dof 10  (0.4, 0.1) -> 0.02
631   ...
632   FE dof 112 (0.1, 1)   -> 0.05
633   FE dof 113 (0.2, 1)   -> 0.1
634   FE dof 114 (0.3, 1)   -> 0.15
635   FE dof 115 (0.4, 1)   -> 0.2
636   FE dof 116 (0.5, 1)   -> 0.25
637   FE dof 117 (0.6, 1)   -> 0.3
638   FE dof 118 (0.7, 1)   -> 0.35
639   FE dof 119 (0.8, 1)   -> 0.4
640   FE dof 120 (0.9, 1)   -> 0.45
641   FE dof 121 (1, 1)     -> 0.5
642
643
644
645 on the fly abs((t1-t2)/dt) = TermVector  : unknown "u " (real scalar)
646 121 values, first and last 10 values
647   FE dof 1   (0.1, 0)   -> 0.5
648   FE dof 2   (0, 0.1)   -> 0
649   FE dof 3   (0, 0)     -> 0.5
650   FE dof 4   (0.1, 0.1) -> 0.005
651   FE dof 5   (0.2, 0)   -> 0.5
652   FE dof 6   (0.2, 0.1) -> 0.01
653   FE dof 7   (0.3, 0)   -> 0.5
654   FE dof 8   (0.3, 0.1) -> 0.015
655   FE dof 9   (0.4, 0)   -> 0.5
656   FE dof 10  (0.4, 0.1) -> 0.02
657   ...
658   FE dof 112 (0.1, 1)   -> 0.05
659   FE dof 113 (0.2, 1)   -> 0.1
660   FE dof 114 (0.3, 1)   -> 0.15
661   FE dof 115 (0.4, 1)   -> 0.2
662   FE dof 116 (0.5, 1)   -> 0.25
663   FE dof 117 (0.6, 1)   -> 0.3
664   FE dof 118 (0.7, 1)   -> 0.35
665   FE dof 119 (0.8, 1)   -> 0.4
666   FE dof 120 (0.9, 1)   -> 0.45
667   FE dof 121 (1, 1)     -> 0.5
668
669
670
671 on the fly out<<(t1-t2)/dt = TermVector  : unknown "u " (real scalar)
672 121 values, first and last 10 values
673   FE dof 1   (0.1, 0)   -> -0.5
674   FE dof 2   (0, 0.1)   -> 0
675   FE dof 3   (0, 0)     -> -0.5
676   FE dof 4   (0.1, 0.1) -> 0.005
677   FE dof 5   (0.2, 0)   -> -0.5
678   FE dof 6   (0.2, 0.1) -> 0.01
679   FE dof 7   (0.3, 0)   -> -0.5
680   FE dof 8   (0.3, 0.1) -> 0.015
681   FE dof 9   (0.4, 0)   -> -0.5
682   FE dof 10  (0.4, 0.1) -> 0.02
683   ...
684   FE dof 112 (0.1, 1)   -> 0.05
685   FE dof 113 (0.2, 1)   -> 0.1
686   FE dof 114 (0.3, 1)   -> 0.15
687   FE dof 115 (0.4, 1)   -> 0.2
688   FE dof 116 (0.5, 1)   -> 0.25
689   FE dof 117 (0.6, 1)   -> 0.3
690   FE dof 118 (0.7, 1)   -> 0.35
691   FE dof 119 (0.8, 1)   -> 0.4
692   FE dof 120 (0.9, 1)   -> 0.45
693   FE dof 121 (1, 1)     -> 0.5
694
695
696t1.subVector(u)(p,r) = 0.25
697t1.subVector(u)(q,r) = 0.036
698t1(p,r) = 0.25
699t1(q,r) = 0.036
700t1(u,p,r) = 0.25
701t1(u,q,r) = 0.036
702by fun t1*t1 = TermVector  : unknown "u " (real scalar)
703 121 values, first and last 10 values
704   FE dof 1   (0.1, 0)   -> 0
705   FE dof 2   (0, 0.1)   -> 0
706   FE dof 3   (0, 0)     -> 0
707   FE dof 4   (0.1, 0.1) -> 0.0001
708   FE dof 5   (0.2, 0)   -> 0
709   FE dof 6   (0.2, 0.1) -> 0.0004
710   FE dof 7   (0.3, 0)   -> 0
711   FE dof 8   (0.3, 0.1) -> 0.0009
712   FE dof 9   (0.4, 0)   -> 0
713   FE dof 10  (0.4, 0.1) -> 0.0016
714   ...
715   FE dof 112 (0.1, 1)   -> 0.01
716   FE dof 113 (0.2, 1)   -> 0.04
717   FE dof 114 (0.3, 1)   -> 0.09
718   FE dof 115 (0.4, 1)   -> 0.16
719   FE dof 116 (0.5, 1)   -> 0.25
720   FE dof 117 (0.6, 1)   -> 0.36
721   FE dof 118 (0.7, 1)   -> 0.49
722   FE dof 119 (0.8, 1)   -> 0.64
723   FE dof 120 (0.9, 1)   -> 0.81
724   FE dof 121 (1, 1)     -> 1
725
726
727by symbolic function t1^2 = TermVector (x1^2) : unknown "u " (real scalar)
728 121 values, first and last 10 values
729   FE dof 1   (0.1, 0)   -> 0
730   FE dof 2   (0, 0.1)   -> 0
731   FE dof 3   (0, 0)     -> 0
732   FE dof 4   (0.1, 0.1) -> 0.0001
733   FE dof 5   (0.2, 0)   -> 0
734   FE dof 6   (0.2, 0.1) -> 0.0004
735   FE dof 7   (0.3, 0)   -> 0
736   FE dof 8   (0.3, 0.1) -> 0.0009
737   FE dof 9   (0.4, 0)   -> 0
738   FE dof 10  (0.4, 0.1) -> 0.0016
739   ...
740   FE dof 112 (0.1, 1)   -> 0.01
741   FE dof 113 (0.2, 1)   -> 0.04
742   FE dof 114 (0.3, 1)   -> 0.09
743   FE dof 115 (0.4, 1)   -> 0.16
744   FE dof 116 (0.5, 1)   -> 0.25
745   FE dof 117 (0.6, 1)   -> 0.36
746   FE dof 118 (0.7, 1)   -> 0.49
747   FE dof 119 (0.8, 1)   -> 0.64
748   FE dof 120 (0.9, 1)   -> 0.81
749   FE dof 121 (1, 1)     -> 1
750
751
752t1*t1 = TermVector (x1*x2) : unknown "u " (real scalar)
753 121 values, first and last 10 values
754   FE dof 1   (0.1, 0)   -> 0
755   FE dof 2   (0, 0.1)   -> 0
756   FE dof 3   (0, 0)     -> 0
757   FE dof 4   (0.1, 0.1) -> 0.0001
758   FE dof 5   (0.2, 0)   -> 0
759   FE dof 6   (0.2, 0.1) -> 0.0004
760   FE dof 7   (0.3, 0)   -> 0
761   FE dof 8   (0.3, 0.1) -> 0.0009
762   FE dof 9   (0.4, 0)   -> 0
763   FE dof 10  (0.4, 0.1) -> 0.0016
764   ...
765   FE dof 112 (0.1, 1)   -> 0.01
766   FE dof 113 (0.2, 1)   -> 0.04
767   FE dof 114 (0.3, 1)   -> 0.09
768   FE dof 115 (0.4, 1)   -> 0.16
769   FE dof 116 (0.5, 1)   -> 0.25
770   FE dof 117 (0.6, 1)   -> 0.36
771   FE dof 118 (0.7, 1)   -> 0.49
772   FE dof 119 (0.8, 1)   -> 0.64
773   FE dof 120 (0.9, 1)   -> 0.81
774   FE dof 121 (1, 1)     -> 1
775
776
777st1 = TermVector sin(x1) : unknown "u " (real scalar)
778 121 values, first and last 10 values
779   FE dof 1   (0.1, 0)   -> 0
780   FE dof 2   (0, 0.1)   -> 0
781   FE dof 3   (0, 0)     -> 0
782   FE dof 4   (0.1, 0.1) -> 0.00999983333417
783   FE dof 5   (0.2, 0)   -> 0
784   FE dof 6   (0.2, 0.1) -> 0.0199986666933
785   FE dof 7   (0.3, 0)   -> 0
786   FE dof 8   (0.3, 0.1) -> 0.0299955002025
787   FE dof 9   (0.4, 0)   -> 0
788   FE dof 10  (0.4, 0.1) -> 0.0399893341866
789   ...
790   FE dof 112 (0.1, 1)   -> 0.0998334166468
791   FE dof 113 (0.2, 1)   -> 0.198669330795
792   FE dof 114 (0.3, 1)   -> 0.295520206661
793   FE dof 115 (0.4, 1)   -> 0.389418342309
794   FE dof 116 (0.5, 1)   -> 0.479425538604
795   FE dof 117 (0.6, 1)   -> 0.564642473395
796   FE dof 118 (0.7, 1)   -> 0.644217687238
797   FE dof 119 (0.8, 1)   -> 0.7173560909
798   FE dof 120 (0.9, 1)   -> 0.783326909627
799   FE dof 121 (1, 1)     -> 0.841470984808
800
801
802abs(st1+t1) = TermVector abs((sin(x1)+x2)) : unknown "u " (real scalar)
803 121 values, first and last 10 values
804   FE dof 1   (0.1, 0)   -> 0
805   FE dof 2   (0, 0.1)   -> 0
806   FE dof 3   (0, 0)     -> 0
807   FE dof 4   (0.1, 0.1) -> 0.0199998333342
808   FE dof 5   (0.2, 0)   -> 0
809   FE dof 6   (0.2, 0.1) -> 0.0399986666933
810   FE dof 7   (0.3, 0)   -> 0
811   FE dof 8   (0.3, 0.1) -> 0.0599955002025
812   FE dof 9   (0.4, 0)   -> 0
813   FE dof 10  (0.4, 0.1) -> 0.0799893341866
814   ...
815   FE dof 112 (0.1, 1)   -> 0.199833416647
816   FE dof 113 (0.2, 1)   -> 0.398669330795
817   FE dof 114 (0.3, 1)   -> 0.595520206661
818   FE dof 115 (0.4, 1)   -> 0.789418342309
819   FE dof 116 (0.5, 1)   -> 0.979425538604
820   FE dof 117 (0.6, 1)   -> 1.1646424734
821   FE dof 118 (0.7, 1)   -> 1.34421768724
822   FE dof 119 (0.8, 1)   -> 1.5173560909
823   FE dof 120 (0.9, 1)   -> 1.68332690963
824   FE dof 121 (1, 1)     -> 1.84147098481
825
826
827abs(sin(t1)+t1)= TermVector  : unknown "u " (real scalar)
828 121 values, first and last 10 values
829   FE dof 1   (0.1, 0)   -> 0
830   FE dof 2   (0, 0.1)   -> 0
831   FE dof 3   (0, 0)     -> 0
832   FE dof 4   (0.1, 0.1) -> 0.0199998333342
833   FE dof 5   (0.2, 0)   -> 0
834   FE dof 6   (0.2, 0.1) -> 0.0399986666933
835   FE dof 7   (0.3, 0)   -> 0
836   FE dof 8   (0.3, 0.1) -> 0.0599955002025
837   FE dof 9   (0.4, 0)   -> 0
838   FE dof 10  (0.4, 0.1) -> 0.0799893341866
839   ...
840   FE dof 112 (0.1, 1)   -> 0.199833416647
841   FE dof 113 (0.2, 1)   -> 0.398669330795
842   FE dof 114 (0.3, 1)   -> 0.595520206661
843   FE dof 115 (0.4, 1)   -> 0.789418342309
844   FE dof 116 (0.5, 1)   -> 0.979425538604
845   FE dof 117 (0.6, 1)   -> 1.1646424734
846   FE dof 118 (0.7, 1)   -> 1.34421768724
847   FE dof 119 (0.8, 1)   -> 1.5173560909
848   FE dof 120 (0.9, 1)   -> 1.68332690963
849   FE dof 121 (1, 1)     -> 1.84147098481
850
851
852TermVector(intg(omega,F1*v)) : TermVector  : unknown "v " (real scalar)
853   (1,0) * Linear form (real) of integral type on domain 'Omega' with unnknown 'v' : intg_Omega interpolation from TermVector F1 *  v, FEM computation, triangle->Misc P_2 Hammer Stroud (nbq = 3), based on operator :
854   operator identity v returns a real scalar
855   left operand :  function 'interpolation from TermVector F1' * (product)
856   using triangle->Misc P_2 Hammer Stroud (nbq = 3)
857
858 121 values, first and last 10 values
859   FE dof 1   (0.1, 0)   -> 8.33333333333e-06
860   FE dof 2   (0, 0.1)   -> 8.33333333333e-06
861   FE dof 3   (0, 0)     -> 0
862   FE dof 4   (0.1, 0.1) -> 8.33333333333e-05
863   FE dof 5   (0.2, 0)   -> 2.5e-05
864   FE dof 6   (0.2, 0.1) -> 0.000183333333333
865   FE dof 7   (0.3, 0)   -> 4.16666666667e-05
866   FE dof 8   (0.3, 0.1) -> 0.000283333333333
867   FE dof 9   (0.4, 0)   -> 5.83333333333e-05
868   FE dof 10  (0.4, 0.1) -> 0.000383333333333
869   ...
870   FE dof 112 (0.1, 1)   -> 0.000558333333333
871   FE dof 113 (0.2, 1)   -> 0.00104166666667
872   FE dof 114 (0.3, 1)   -> 0.001525
873   FE dof 115 (0.4, 1)   -> 0.00200833333333
874   FE dof 116 (0.5, 1)   -> 0.00249166666667
875   FE dof 117 (0.6, 1)   -> 0.002975
876   FE dof 118 (0.7, 1)   -> 0.00345833333333
877   FE dof 119 (0.8, 1)   -> 0.00394166666667
878   FE dof 120 (0.9, 1)   -> 0.004425
879   FE dof 121 (1, 1)     -> 0.00158333333333
880
881
882