1/*
2Copyright 2017 Google LLC
3
4Licensed under the Apache License, Version 2.0 (the "License");
5you may not use this file except in compliance with the License.
6You may obtain a copy of the License at
7
8    http://www.apache.org/licenses/LICENSE-2.0
9
10Unless required by applicable law or agreed to in writing, software
11distributed under the License is distributed on an "AS IS" BASIS,
12WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13See the License for the specific language governing permissions and
14limitations under the License.
15*/
16
17package spanner
18
19import (
20	"bytes"
21	"fmt"
22	"time"
23
24	"cloud.google.com/go/civil"
25	proto3 "github.com/golang/protobuf/ptypes/struct"
26	sppb "google.golang.org/genproto/googleapis/spanner/v1"
27	"google.golang.org/grpc/codes"
28)
29
30// A Key can be either a Cloud Spanner row's primary key or a secondary index
31// key. It is essentially an interface{} array, which represents a set of Cloud
32// Spanner columns. A Key can be used as:
33//
34//   - A primary key which uniquely identifies a Cloud Spanner row.
35//   - A secondary index key which maps to a set of Cloud Spanner rows indexed under it.
36//   - An endpoint of primary key/secondary index ranges; see the KeyRange type.
37//
38// Rows that are identified by the Key type are outputs of read operation or
39// targets of delete operation in a mutation. Note that for
40// Insert/Update/InsertOrUpdate/Update mutation types, although they don't
41// require a primary key explicitly, the column list provided must contain
42// enough columns that can comprise a primary key.
43//
44// Keys are easy to construct.  For example, suppose you have a table with a
45// primary key of username and product ID.  To make a key for this table:
46//
47//	key := spanner.Key{"john", 16}
48//
49// See the description of Row and Mutation types for how Go types are mapped to
50// Cloud Spanner types. For convenience, Key type supports a wide range of Go
51// types:
52//   - int, int8, int16, int32, int64, and NullInt64 are mapped to Cloud Spanner's INT64 type.
53//   - uint8, uint16 and uint32 are also mapped to Cloud Spanner's INT64 type.
54//   - float32, float64, NullFloat64 are mapped to Cloud Spanner's FLOAT64 type.
55//   - bool and NullBool are mapped to Cloud Spanner's BOOL type.
56//   - []byte is mapped to Cloud Spanner's BYTES type.
57//   - string and NullString are mapped to Cloud Spanner's STRING type.
58//   - time.Time and NullTime are mapped to Cloud Spanner's TIMESTAMP type.
59//   - civil.Date and NullDate are mapped to Cloud Spanner's DATE type.
60type Key []interface{}
61
62// errInvdKeyPartType returns error for unsupported key part type.
63func errInvdKeyPartType(part interface{}) error {
64	return spannerErrorf(codes.InvalidArgument, "key part has unsupported type %T", part)
65}
66
67// keyPartValue converts a part of the Key (which is a valid Cloud Spanner type)
68// into a proto3.Value. Used for encoding Key type into protobuf.
69func keyPartValue(part interface{}) (pb *proto3.Value, err error) {
70	switch v := part.(type) {
71	case int:
72		pb, _, err = encodeValue(int64(v))
73	case int8:
74		pb, _, err = encodeValue(int64(v))
75	case int16:
76		pb, _, err = encodeValue(int64(v))
77	case int32:
78		pb, _, err = encodeValue(int64(v))
79	case uint8:
80		pb, _, err = encodeValue(int64(v))
81	case uint16:
82		pb, _, err = encodeValue(int64(v))
83	case uint32:
84		pb, _, err = encodeValue(int64(v))
85	case float32:
86		pb, _, err = encodeValue(float64(v))
87	case int64, float64, NullInt64, NullFloat64, bool, NullBool, []byte, string, NullString, time.Time, civil.Date, NullTime, NullDate:
88		pb, _, err = encodeValue(v)
89	default:
90		return nil, errInvdKeyPartType(v)
91	}
92	return pb, err
93}
94
95// proto converts a spanner.Key into a proto3.ListValue.
96func (key Key) proto() (*proto3.ListValue, error) {
97	lv := &proto3.ListValue{}
98	lv.Values = make([]*proto3.Value, 0, len(key))
99	for _, part := range key {
100		v, err := keyPartValue(part)
101		if err != nil {
102			return nil, err
103		}
104		lv.Values = append(lv.Values, v)
105	}
106	return lv, nil
107}
108
109// keySetProto lets a single Key act as a KeySet.
110func (key Key) keySetProto() (*sppb.KeySet, error) {
111	kp, err := key.proto()
112	if err != nil {
113		return nil, err
114	}
115	return &sppb.KeySet{Keys: []*proto3.ListValue{kp}}, nil
116}
117
118// String implements fmt.Stringer for Key. For string, []byte and NullString, it
119// prints the uninterpreted bytes of their contents, leaving caller with the
120// opportunity to escape the output.
121func (key Key) String() string {
122	b := &bytes.Buffer{}
123	fmt.Fprint(b, "(")
124	for i, part := range []interface{}(key) {
125		if i != 0 {
126			fmt.Fprint(b, ",")
127		}
128		switch v := part.(type) {
129		case int, int8, int16, int32, int64, uint, uint8, uint16, uint32, float32, float64, bool:
130			// Use %v to print numeric types and bool.
131			fmt.Fprintf(b, "%v", v)
132		case string:
133			fmt.Fprintf(b, "%q", v)
134		case []byte:
135			if v != nil {
136				fmt.Fprintf(b, "%q", v)
137			} else {
138				fmt.Fprint(b, "<null>")
139			}
140		case NullInt64, NullFloat64, NullBool, NullString, NullTime, NullDate:
141			// The above types implement fmt.Stringer.
142			fmt.Fprintf(b, "%s", v)
143		case civil.Date:
144			fmt.Fprintf(b, "%q", v)
145		case time.Time:
146			fmt.Fprintf(b, "%q", v.Format(time.RFC3339Nano))
147		default:
148			fmt.Fprintf(b, "%v", v)
149		}
150	}
151	fmt.Fprint(b, ")")
152	return b.String()
153}
154
155// AsPrefix returns a KeyRange for all keys where k is the prefix.
156func (key Key) AsPrefix() KeyRange {
157	return KeyRange{
158		Start: key,
159		End:   key,
160		Kind:  ClosedClosed,
161	}
162}
163
164// KeyRangeKind describes the kind of interval represented by a KeyRange:
165// whether it is open or closed on the left and right.
166type KeyRangeKind int
167
168const (
169	// ClosedOpen is closed on the left and open on the right: the Start
170	// key is included, the End key is excluded.
171	ClosedOpen KeyRangeKind = iota
172
173	// ClosedClosed is closed on the left and the right: both keys are included.
174	ClosedClosed
175
176	// OpenClosed is open on the left and closed on the right: the Start
177	// key is excluded, the End key is included.
178	OpenClosed
179
180	// OpenOpen is open on the left and the right: neither key is included.
181	OpenOpen
182)
183
184// A KeyRange represents a range of rows in a table or index.
185//
186// A range has a Start key and an End key.  IncludeStart and IncludeEnd
187// indicate whether the Start and End keys are included in the range.
188//
189// For example, consider the following table definition:
190//
191//	CREATE TABLE UserEvents (
192//	  UserName STRING(MAX),
193//	  EventDate STRING(10),
194//	) PRIMARY KEY(UserName, EventDate);
195//
196// The following keys name rows in this table:
197//
198//	spanner.Key{"Bob", "2014-09-23"}
199//	spanner.Key{"Alfred", "2015-06-12"}
200//
201// Since the UserEvents table's PRIMARY KEY clause names two columns, each
202// UserEvents key has two elements; the first is the UserName, and the second
203// is the EventDate.
204//
205// Key ranges with multiple components are interpreted lexicographically by
206// component using the table or index key's declared sort order. For example,
207// the following range returns all events for user "Bob" that occurred in the
208// year 2015:
209//
210// 	spanner.KeyRange{
211//		Start: spanner.Key{"Bob", "2015-01-01"},
212//		End:   spanner.Key{"Bob", "2015-12-31"},
213//		Kind:  ClosedClosed,
214//	}
215//
216// Start and end keys can omit trailing key components. This affects the
217// inclusion and exclusion of rows that exactly match the provided key
218// components: if IncludeStart is true, then rows that exactly match the
219// provided components of the Start key are included; if IncludeStart is false
220// then rows that exactly match are not included.  IncludeEnd and End key
221// behave in the same fashion.
222//
223// For example, the following range includes all events for "Bob" that occurred
224// during and after the year 2000:
225//
226//	spanner.KeyRange{
227//		Start: spanner.Key{"Bob", "2000-01-01"},
228//		End:   spanner.Key{"Bob"},
229//		Kind:  ClosedClosed,
230//	}
231//
232// The next example retrieves all events for "Bob":
233//
234//	spanner.Key{"Bob"}.AsPrefix()
235//
236// To retrieve events before the year 2000:
237//
238//	spanner.KeyRange{
239//		Start: spanner.Key{"Bob"},
240//		End:   spanner.Key{"Bob", "2000-01-01"},
241//		Kind:  ClosedOpen,
242//	}
243//
244// Although we specified a Kind for this KeyRange, we didn't need to, because
245// the default is ClosedOpen. In later examples we'll omit Kind if it is
246// ClosedOpen.
247//
248// The following range includes all rows in a table or under a
249// index:
250//
251//	spanner.AllKeys()
252//
253// This range returns all users whose UserName begins with any
254// character from A to C:
255//
256//	spanner.KeyRange{
257//		Start: spanner.Key{"A"},
258//		End:   spanner.Key{"D"},
259//	}
260//
261// This range returns all users whose UserName begins with B:
262//
263//	spanner.KeyRange{
264//		Start: spanner.Key{"B"},
265//		End:   spanner.Key{"C"},
266//	}
267//
268// Key ranges honor column sort order. For example, suppose a table is defined
269// as follows:
270//
271//	CREATE TABLE DescendingSortedTable {
272//	  Key INT64,
273//	  ...
274//	) PRIMARY KEY(Key DESC);
275//
276// The following range retrieves all rows with key values between 1 and 100
277// inclusive:
278//
279//	spanner.KeyRange{
280//		Start: spanner.Key{100},
281//		End:   spanner.Key{1},
282//		Kind:  ClosedClosed,
283//	}
284//
285// Note that 100 is passed as the start, and 1 is passed as the end, because
286// Key is a descending column in the schema.
287type KeyRange struct {
288	// Start specifies the left boundary of the key range; End specifies
289	// the right boundary of the key range.
290	Start, End Key
291
292	// Kind describes whether the boundaries of the key range include
293	// their keys.
294	Kind KeyRangeKind
295}
296
297// String implements fmt.Stringer for KeyRange type.
298func (r KeyRange) String() string {
299	var left, right string
300	switch r.Kind {
301	case ClosedClosed:
302		left, right = "[", "]"
303	case ClosedOpen:
304		left, right = "[", ")"
305	case OpenClosed:
306		left, right = "(", "]"
307	case OpenOpen:
308		left, right = "(", ")"
309	default:
310		left, right = "?", "?"
311	}
312	return fmt.Sprintf("%s%s,%s%s", left, r.Start, r.End, right)
313}
314
315// proto converts KeyRange into sppb.KeyRange.
316func (r KeyRange) proto() (*sppb.KeyRange, error) {
317	var err error
318	var start, end *proto3.ListValue
319	pb := &sppb.KeyRange{}
320	if start, err = r.Start.proto(); err != nil {
321		return nil, err
322	}
323	if end, err = r.End.proto(); err != nil {
324		return nil, err
325	}
326	if r.Kind == ClosedClosed || r.Kind == ClosedOpen {
327		pb.StartKeyType = &sppb.KeyRange_StartClosed{StartClosed: start}
328	} else {
329		pb.StartKeyType = &sppb.KeyRange_StartOpen{StartOpen: start}
330	}
331	if r.Kind == ClosedClosed || r.Kind == OpenClosed {
332		pb.EndKeyType = &sppb.KeyRange_EndClosed{EndClosed: end}
333	} else {
334		pb.EndKeyType = &sppb.KeyRange_EndOpen{EndOpen: end}
335	}
336	return pb, nil
337}
338
339// keySetProto lets a KeyRange act as a KeySet.
340func (r KeyRange) keySetProto() (*sppb.KeySet, error) {
341	rp, err := r.proto()
342	if err != nil {
343		return nil, err
344	}
345	return &sppb.KeySet{Ranges: []*sppb.KeyRange{rp}}, nil
346}
347
348// A KeySet defines a collection of Cloud Spanner keys and/or key ranges. All
349// the keys are expected to be in the same table or index. The keys need not be
350// sorted in any particular way.
351//
352// An individual Key can act as a KeySet, as can a KeyRange. Use the KeySets
353// function to create a KeySet consisting of multiple Keys and KeyRanges. To
354// obtain an empty KeySet, call KeySets with no arguments.
355//
356// If the same key is specified multiple times in the set (for example if two
357// ranges, two keys, or a key and a range overlap), the Cloud Spanner backend
358// behaves as if the key were only specified once.
359type KeySet interface {
360	keySetProto() (*sppb.KeySet, error)
361}
362
363// AllKeys returns a KeySet that represents all Keys of a table or a index.
364func AllKeys() KeySet {
365	return all{}
366}
367
368type all struct{}
369
370func (all) keySetProto() (*sppb.KeySet, error) {
371	return &sppb.KeySet{All: true}, nil
372}
373
374// KeySets returns the union of the KeySets. If any of the KeySets is AllKeys,
375// then the resulting KeySet will be equivalent to AllKeys.
376func KeySets(keySets ...KeySet) KeySet {
377	u := make(union, len(keySets))
378	copy(u, keySets)
379	return u
380}
381
382type union []KeySet
383
384func (u union) keySetProto() (*sppb.KeySet, error) {
385	upb := &sppb.KeySet{}
386	for _, ks := range u {
387		pb, err := ks.keySetProto()
388		if err != nil {
389			return nil, err
390		}
391		if pb.All {
392			return pb, nil
393		}
394		upb.Keys = append(upb.Keys, pb.Keys...)
395		upb.Ranges = append(upb.Ranges, pb.Ranges...)
396	}
397	return upb, nil
398}
399