1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--                          G N A T . R E G P A T                           --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--               Copyright (C) 1986 by University of Toronto.               --
10--                      Copyright (C) 1999-2020, AdaCore                    --
11--                                                                          --
12-- GNAT is free software;  you can  redistribute it  and/or modify it under --
13-- terms of the  GNU General Public License as published  by the Free Soft- --
14-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
15-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
16-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
17-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
18--                                                                          --
19-- As a special exception under Section 7 of GPL version 3, you are granted --
20-- additional permissions described in the GCC Runtime Library Exception,   --
21-- version 3.1, as published by the Free Software Foundation.               --
22--                                                                          --
23-- You should have received a copy of the GNU General Public License and    --
24-- a copy of the GCC Runtime Library Exception along with this program;     --
25-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
26-- <http://www.gnu.org/licenses/>.                                          --
27--                                                                          --
28-- GNAT was originally developed  by the GNAT team at  New York University. --
29-- Extensive contributions were provided by Ada Core Technologies Inc.      --
30--                                                                          --
31------------------------------------------------------------------------------
32
33--  This is an altered Ada 95 version of the original V8 style regular
34--  expression library written in C by Henry Spencer. Apart from the
35--  translation to Ada, the interface has been considerably changed to
36--  use the Ada String type instead of C-style nul-terminated strings.
37
38--  Beware that some of this code is subtly aware of the way operator
39--  precedence is structured in regular expressions. Serious changes in
40--  regular-expression syntax might require a total rethink.
41
42with System.IO;               use System.IO;
43with Ada.Characters.Handling; use Ada.Characters.Handling;
44with Ada.Unchecked_Conversion;
45
46package body System.Regpat is
47
48   Debug : constant Boolean := False;
49   --  Set to True to activate debug traces. This is normally set to constant
50   --  False to simply delete all the trace code. It is to be edited to True
51   --  for internal debugging of the package.
52
53   ----------------------------
54   -- Implementation details --
55   ----------------------------
56
57   --  This is essentially a linear encoding of a nondeterministic
58   --  finite-state machine, also known as syntax charts or
59   --  "railroad normal form" in parsing technology.
60
61   --  Each node is an opcode plus a "next" pointer, possibly plus an
62   --  operand. "Next" pointers of all nodes except BRANCH implement
63   --  concatenation; a "next" pointer with a BRANCH on both ends of it
64   --  is connecting two alternatives.
65
66   --  The operand of some types of node is a literal string; for others,
67   --  it is a node leading into a sub-FSM. In particular, the operand of
68   --  a BRANCH node is the first node of the branch.
69   --  (NB this is *not* a tree structure:  the tail of the branch connects
70   --  to the thing following the set of BRANCHes).
71
72   --  You can see the exact byte-compiled version by using the Dump
73   --  subprogram. However, here are a few examples:
74
75   --  (a|b):  1 : BRANCH  (next at  9)
76   --          4 :    EXACT  (next at  17)   operand=a
77   --          9 : BRANCH  (next at  17)
78   --         12 :    EXACT  (next at  17)   operand=b
79   --         17 : EOP  (next at 0)
80   --
81   --  (ab)*:  1 : CURLYX  (next at  25)  { 0, 32767}
82   --          8 :    OPEN 1  (next at  12)
83   --         12 :       EXACT  (next at  18)   operand=ab
84   --         18 :    CLOSE 1  (next at  22)
85   --         22 :    WHILEM  (next at 0)
86   --         25 : NOTHING  (next at  28)
87   --         28 : EOP  (next at 0)
88
89   --  The opcodes are:
90
91   type Opcode is
92
93      --  Name          Operand?  Meaning
94
95     (EOP,        -- no        End of program
96      MINMOD,     -- no        Next operator is not greedy
97
98      --  Classes of characters
99
100      ANY,        -- no        Match any one character except newline
101      SANY,       -- no        Match any character, including new line
102      ANYOF,      -- class     Match any character in this class
103      EXACT,      -- str       Match this string exactly
104      EXACTF,     -- str       Match this string (case-folding is one)
105      NOTHING,    -- no        Match empty string
106      SPACE,      -- no        Match any whitespace character
107      NSPACE,     -- no        Match any non-whitespace character
108      DIGIT,      -- no        Match any numeric character
109      NDIGIT,     -- no        Match any non-numeric character
110      ALNUM,      -- no        Match any alphanumeric character
111      NALNUM,     -- no        Match any non-alphanumeric character
112
113      --  Branches
114
115      BRANCH,     -- node      Match this alternative, or the next
116
117      --  Simple loops (when the following node is one character in length)
118
119      STAR,       -- node      Match this simple thing 0 or more times
120      PLUS,       -- node      Match this simple thing 1 or more times
121      CURLY,      -- 2num node Match this simple thing between n and m times.
122
123      --  Complex loops
124
125      CURLYX,     -- 2num node Match this complex thing {n,m} times
126      --                       The nums are coded on two characters each
127
128      WHILEM,     -- no        Do curly processing and see if rest matches
129
130      --  Matches after or before a word
131
132      BOL,        -- no        Match "" at beginning of line
133      MBOL,       -- no        Same, assuming multiline (match after \n)
134      SBOL,       -- no        Same, assuming single line (don't match at \n)
135      EOL,        -- no        Match "" at end of line
136      MEOL,       -- no        Same, assuming multiline (match before \n)
137      SEOL,       -- no        Same, assuming single line (don't match at \n)
138
139      BOUND,      -- no        Match "" at any word boundary
140      NBOUND,     -- no        Match "" at any word non-boundary
141
142      --  Parenthesis groups handling
143
144      REFF,       -- num       Match some already matched string, folded
145      OPEN,       -- num       Mark this point in input as start of #n
146      CLOSE);     -- num       Analogous to OPEN
147
148   for Opcode'Size use 8;
149
150   --  Opcode notes:
151
152   --  BRANCH
153   --    The set of branches constituting a single choice are hooked
154   --    together with their "next" pointers, since precedence prevents
155   --    anything being concatenated to any individual branch. The
156   --    "next" pointer of the last BRANCH in a choice points to the
157   --    thing following the whole choice. This is also where the
158   --    final "next" pointer of each individual branch points; each
159   --    branch starts with the operand node of a BRANCH node.
160
161   --  STAR,PLUS
162   --    '?', and complex '*' and '+', are implemented with CURLYX.
163   --    branches. Simple cases (one character per match) are implemented with
164   --    STAR and PLUS for speed and to minimize recursive plunges.
165
166   --  OPEN,CLOSE
167   --    ...are numbered at compile time.
168
169   --  EXACT, EXACTF
170   --    There are in fact two arguments, the first one is the length (minus
171   --    one of the string argument), coded on one character, the second
172   --    argument is the string itself, coded on length + 1 characters.
173
174   --  A node is one char of opcode followed by two chars of "next" pointer.
175   --  "Next" pointers are stored as two 8-bit pieces, high order first. The
176   --  value is a positive offset from the opcode of the node containing it.
177   --  An operand, if any, simply follows the node. (Note that much of the
178   --  code generation knows about this implicit relationship.)
179
180   --  Using two bytes for the "next" pointer is vast overkill for most
181   --  things, but allows patterns to get big without disasters.
182
183   Next_Pointer_Bytes : constant := 3;
184   --  Points after the "next pointer" data. An instruction is therefore:
185   --     1 byte: instruction opcode
186   --     2 bytes: pointer to next instruction
187   --     * bytes: optional data for the instruction
188
189   -----------------------
190   -- Character classes --
191   -----------------------
192   --  This is the implementation for character classes ([...]) in the
193   --  syntax for regular expressions. Each character (0..256) has an
194   --  entry into the table. This makes for a very fast matching
195   --  algorithm.
196
197   type Class_Byte is mod 256;
198   type Character_Class is array (Class_Byte range 0 .. 31) of Class_Byte;
199
200   type Bit_Conversion_Array is array (Class_Byte range 0 .. 7) of Class_Byte;
201   Bit_Conversion : constant Bit_Conversion_Array :=
202                      (1, 2, 4, 8, 16, 32, 64, 128);
203
204   type Std_Class is (ANYOF_NONE,
205                      ANYOF_ALNUM,   --  Alphanumeric class [a-zA-Z0-9]
206                      ANYOF_NALNUM,
207                      ANYOF_SPACE,   --  Space class [ \t\n\r\f]
208                      ANYOF_NSPACE,
209                      ANYOF_DIGIT,   --  Digit class [0-9]
210                      ANYOF_NDIGIT,
211                      ANYOF_ALNUMC,  --  Alphanumeric class [a-zA-Z0-9]
212                      ANYOF_NALNUMC,
213                      ANYOF_ALPHA,   --  Alpha class [a-zA-Z]
214                      ANYOF_NALPHA,
215                      ANYOF_ASCII,   --  Ascii class (7 bits) 0..127
216                      ANYOF_NASCII,
217                      ANYOF_CNTRL,   --  Control class
218                      ANYOF_NCNTRL,
219                      ANYOF_GRAPH,   --  Graphic class
220                      ANYOF_NGRAPH,
221                      ANYOF_LOWER,   --  Lower case class [a-z]
222                      ANYOF_NLOWER,
223                      ANYOF_PRINT,   --  printable class
224                      ANYOF_NPRINT,
225                      ANYOF_PUNCT,   --
226                      ANYOF_NPUNCT,
227                      ANYOF_UPPER,   --  Upper case class [A-Z]
228                      ANYOF_NUPPER,
229                      ANYOF_XDIGIT,  --  Hexadecimal digit
230                      ANYOF_NXDIGIT
231                      );
232
233   procedure Set_In_Class
234     (Bitmap : in out Character_Class;
235      C      : Character);
236   --  Set the entry to True for C in the class Bitmap
237
238   function Get_From_Class
239     (Bitmap : Character_Class;
240      C      : Character) return Boolean;
241   --  Return True if the entry is set for C in the class Bitmap
242
243   procedure Reset_Class (Bitmap : out Character_Class);
244   --  Clear all the entries in the class Bitmap
245
246   pragma Inline (Set_In_Class);
247   pragma Inline (Get_From_Class);
248   pragma Inline (Reset_Class);
249
250   -----------------------
251   -- Local Subprograms --
252   -----------------------
253
254   function "=" (Left : Character; Right : Opcode) return Boolean;
255
256   function Is_Alnum (C : Character) return Boolean;
257   --  Return True if C is an alphanum character or an underscore ('_')
258
259   function Is_White_Space (C : Character) return Boolean;
260   --  Return True if C is a whitespace character
261
262   function Is_Printable (C : Character) return Boolean;
263   --  Return True if C is a printable character
264
265   function Operand (P : Pointer) return Pointer;
266   --  Return a pointer to the first operand of the node at P
267
268   function String_Length
269     (Program : Program_Data;
270      P       : Pointer) return Program_Size;
271   --  Return the length of the string argument of the node at P
272
273   function String_Operand (P : Pointer) return Pointer;
274   --  Return a pointer to the string argument of the node at P
275
276   procedure Bitmap_Operand
277     (Program : Program_Data;
278      P       : Pointer;
279      Op      : out Character_Class);
280   --  Return a pointer to the string argument of the node at P
281
282   function Get_Next
283     (Program : Program_Data;
284      IP      : Pointer) return Pointer;
285   --  Dig the next instruction pointer out of a node
286
287   procedure Optimize (Self : in out Pattern_Matcher);
288   --  Optimize a Pattern_Matcher by noting certain special cases
289
290   function Read_Natural
291     (Program : Program_Data;
292      IP      : Pointer) return Natural;
293   --  Return the 2-byte natural coded at position IP
294
295   --  All of the subprograms above are tiny and should be inlined
296
297   pragma Inline ("=");
298   pragma Inline (Is_Alnum);
299   pragma Inline (Is_White_Space);
300   pragma Inline (Get_Next);
301   pragma Inline (Operand);
302   pragma Inline (Read_Natural);
303   pragma Inline (String_Length);
304   pragma Inline (String_Operand);
305
306   type Expression_Flags is record
307      Has_Width,            -- Known never to match null string
308      Simple,               -- Simple enough to be STAR/PLUS operand
309      SP_Start  : Boolean;  -- Starts with * or +
310   end record;
311
312   Worst_Expression : constant Expression_Flags := (others => False);
313   --  Worst case
314
315   procedure Dump_Until
316     (Program  : Program_Data;
317      Index    : in out Pointer;
318      Till     : Pointer;
319      Indent   : Natural;
320      Do_Print : Boolean := True);
321   --  Dump the program until the node Till (not included) is met. Every line
322   --  is indented with Index spaces at the beginning Dumps till the end if
323   --  Till is 0.
324
325   procedure Dump_Operation
326      (Program      : Program_Data;
327       Index        : Pointer;
328       Indent       : Natural);
329   --  Same as above, but only dumps a single operation, and compute its
330   --  indentation from the program.
331
332   ---------
333   -- "=" --
334   ---------
335
336   function "=" (Left : Character; Right : Opcode) return Boolean is
337   begin
338      return Character'Pos (Left) = Opcode'Pos (Right);
339   end "=";
340
341   --------------------
342   -- Bitmap_Operand --
343   --------------------
344
345   procedure Bitmap_Operand
346     (Program : Program_Data;
347      P       : Pointer;
348      Op      : out Character_Class)
349   is
350      function Convert is new Ada.Unchecked_Conversion
351        (Program_Data, Character_Class);
352
353   begin
354      Op (0 .. 31) := Convert (Program (P + Next_Pointer_Bytes .. P + 34));
355   end Bitmap_Operand;
356
357   -------------
358   -- Compile --
359   -------------
360
361   procedure Compile
362     (Matcher         : out Pattern_Matcher;
363      Expression      : String;
364      Final_Code_Size : out Program_Size;
365      Flags           : Regexp_Flags := No_Flags)
366   is
367      --  We can't allocate space until we know how big the compiled form
368      --  will be, but we can't compile it (and thus know how big it is)
369      --  until we've got a place to put the code. So we cheat: we compile
370      --  it twice, once with code generation turned off and size counting
371      --  turned on, and once "for real".
372
373      --  This also means that we don't allocate space until we are sure
374      --  that the thing really will compile successfully, and we never
375      --  have to move the code and thus invalidate pointers into it.
376
377      --  Beware that the optimization-preparation code in here knows
378      --  about some of the structure of the compiled regexp.
379
380      PM        : Pattern_Matcher renames Matcher;
381      Program   : Program_Data renames PM.Program;
382
383      Emit_Ptr  : Pointer := Program_First;
384
385      Parse_Pos : Natural := Expression'First; -- Input-scan pointer
386      Parse_End : constant Natural := Expression'Last;
387
388      ----------------------------
389      -- Subprograms for Create --
390      ----------------------------
391
392      procedure Emit (B : Character);
393      --  Output the Character B to the Program. If code-generation is
394      --  disabled, simply increments the program counter.
395
396      function  Emit_Node (Op : Opcode) return Pointer;
397      --  If code-generation is enabled, Emit_Node outputs the
398      --  opcode Op and reserves space for a pointer to the next node.
399      --  Return value is the location of new opcode, i.e. old Emit_Ptr.
400
401      procedure Emit_Natural (IP : Pointer; N : Natural);
402      --  Split N on two characters at position IP
403
404      procedure Emit_Class (Bitmap : Character_Class);
405      --  Emits a character class
406
407      procedure Case_Emit (C : Character);
408      --  Emit C, after converting is to lower-case if the regular
409      --  expression is case insensitive.
410
411      procedure Parse
412        (Parenthesized : Boolean;
413         Capturing     : Boolean;
414         Flags         : out Expression_Flags;
415         IP            : out Pointer);
416      --  Parse regular expression, i.e. main body or parenthesized thing.
417      --  Caller must absorb opening parenthesis. Capturing should be set to
418      --  True when we have an open parenthesis from which we want the user
419      --  to extra text.
420
421      procedure Parse_Branch
422        (Flags         : out Expression_Flags;
423         First         : Boolean;
424         IP            : out Pointer);
425      --  Implements the concatenation operator and handles '|'.
426      --  First should be true if this is the first item of the alternative.
427
428      procedure Parse_Piece
429        (Expr_Flags : out Expression_Flags;
430         IP         : out Pointer);
431      --  Parse something followed by possible [*+?]
432
433      procedure Parse_Atom
434        (Expr_Flags : out Expression_Flags;
435         IP         : out Pointer);
436      --  Parse_Atom is the lowest level parse procedure.
437      --
438      --  Optimization: Gobbles an entire sequence of ordinary characters so
439      --  that it can turn them into a single node, which is smaller to store
440      --  and faster to run. Backslashed characters are exceptions, each
441      --  becoming a separate node; the code is simpler that way and it's
442      --  not worth fixing.
443
444      procedure Insert_Operator
445        (Op       : Opcode;
446         Operand  : Pointer;
447         Greedy   : Boolean := True);
448      --  Insert_Operator inserts an operator in front of an already-emitted
449      --  operand and relocates the operand. This applies to PLUS and STAR.
450      --  If Minmod is True, then the operator is non-greedy.
451
452      function Insert_Operator_Before
453        (Op      : Opcode;
454         Operand : Pointer;
455         Greedy  : Boolean;
456         Opsize  : Pointer) return Pointer;
457      --  Insert an operator before Operand (and move the latter forward in the
458      --  program). Opsize is the size needed to represent the operator. This
459      --  returns the position at which the operator was inserted, and moves
460      --  Emit_Ptr after the new position of the operand.
461
462      procedure Insert_Curly_Operator
463        (Op      : Opcode;
464         Min     : Natural;
465         Max     : Natural;
466         Operand : Pointer;
467         Greedy  : Boolean := True);
468      --  Insert an operator for CURLY ({Min}, {Min,} or {Min,Max}).
469      --  If Minmod is True, then the operator is non-greedy.
470
471      procedure Link_Tail (P, Val : Pointer);
472      --  Link_Tail sets the next-pointer at the end of a node chain
473
474      procedure Link_Operand_Tail (P, Val : Pointer);
475      --  Link_Tail on operand of first argument; noop if operand-less
476
477      procedure Fail (M : String);
478      pragma No_Return (Fail);
479      --  Fail with a diagnostic message, if possible
480
481      function Is_Curly_Operator (IP : Natural) return Boolean;
482      --  Return True if IP is looking at a '{' that is the beginning
483      --  of a curly operator, i.e. it matches {\d+,?\d*}
484
485      function Is_Mult (IP : Natural) return Boolean;
486      --  Return True if C is a regexp multiplier: '+', '*' or '?'
487
488      procedure Get_Curly_Arguments
489        (IP     : Natural;
490         Min    : out Natural;
491         Max    : out Natural;
492         Greedy : out Boolean);
493      --  Parse the argument list for a curly operator.
494      --  It is assumed that IP is indeed pointing at a valid operator.
495      --  So what is IP and how come IP is not referenced in the body ???
496
497      procedure Parse_Character_Class (IP : out Pointer);
498      --  Parse a character class.
499      --  The calling subprogram should consume the opening '[' before.
500
501      procedure Parse_Literal
502        (Expr_Flags : out Expression_Flags;
503         IP         : out Pointer);
504      --  Parse_Literal encodes a string of characters to be matched exactly
505
506      function Parse_Posix_Character_Class return Std_Class;
507      --  Parse a posix character class, like [:alpha:] or [:^alpha:].
508      --  The caller is supposed to absorb the opening [.
509
510      pragma Inline (Is_Mult);
511      pragma Inline (Emit_Natural);
512      pragma Inline (Parse_Character_Class); --  since used only once
513
514      ---------------
515      -- Case_Emit --
516      ---------------
517
518      procedure Case_Emit (C : Character) is
519      begin
520         if (Flags and Case_Insensitive) /= 0 then
521            Emit (To_Lower (C));
522
523         else
524            --  Dump current character
525
526            Emit (C);
527         end if;
528      end Case_Emit;
529
530      ----------
531      -- Emit --
532      ----------
533
534      procedure Emit (B : Character) is
535      begin
536         if Emit_Ptr <= PM.Size then
537            Program (Emit_Ptr) := B;
538         end if;
539
540         Emit_Ptr := Emit_Ptr + 1;
541      end Emit;
542
543      ----------------
544      -- Emit_Class --
545      ----------------
546
547      procedure Emit_Class (Bitmap : Character_Class) is
548         subtype Program31 is Program_Data (0 .. 31);
549
550         function Convert is new Ada.Unchecked_Conversion
551           (Character_Class, Program31);
552
553      begin
554         --  What is the mysterious constant 31 here??? Can't it be expressed
555         --  symbolically (size of integer - 1 or some such???). In any case
556         --  it should be declared as a constant (and referenced presumably
557         --  as this constant + 1 below.
558
559         if Emit_Ptr + 31 <= PM.Size then
560            Program (Emit_Ptr .. Emit_Ptr + 31) := Convert (Bitmap);
561         end if;
562
563         Emit_Ptr := Emit_Ptr + 32;
564      end Emit_Class;
565
566      ------------------
567      -- Emit_Natural --
568      ------------------
569
570      procedure Emit_Natural (IP : Pointer; N : Natural) is
571      begin
572         if IP + 1 <= PM.Size then
573            Program (IP + 1) := Character'Val (N / 256);
574            Program (IP) := Character'Val (N mod 256);
575         end if;
576      end Emit_Natural;
577
578      ---------------
579      -- Emit_Node --
580      ---------------
581
582      function Emit_Node (Op : Opcode) return Pointer is
583         Result : constant Pointer := Emit_Ptr;
584
585      begin
586         if Emit_Ptr + 2 <= PM.Size then
587            Program (Emit_Ptr) := Character'Val (Opcode'Pos (Op));
588            Program (Emit_Ptr + 1) := ASCII.NUL;
589            Program (Emit_Ptr + 2) := ASCII.NUL;
590         end if;
591
592         Emit_Ptr := Emit_Ptr + Next_Pointer_Bytes;
593         return Result;
594      end Emit_Node;
595
596      ----------
597      -- Fail --
598      ----------
599
600      procedure Fail (M : String) is
601      begin
602         raise Expression_Error with M;
603      end Fail;
604
605      -------------------------
606      -- Get_Curly_Arguments --
607      -------------------------
608
609      procedure Get_Curly_Arguments
610        (IP     : Natural;
611         Min    : out Natural;
612         Max    : out Natural;
613         Greedy : out Boolean)
614      is
615         pragma Unreferenced (IP);
616
617         Save_Pos : Natural := Parse_Pos + 1;
618
619      begin
620         Min := 0;
621         Max := Max_Curly_Repeat;
622
623         while Expression (Parse_Pos) /= '}'
624           and then Expression (Parse_Pos) /= ','
625         loop
626            Parse_Pos := Parse_Pos + 1;
627         end loop;
628
629         Min := Natural'Value (Expression (Save_Pos .. Parse_Pos - 1));
630
631         if Expression (Parse_Pos) = ',' then
632            Save_Pos := Parse_Pos + 1;
633            while Expression (Parse_Pos) /= '}' loop
634               Parse_Pos := Parse_Pos + 1;
635            end loop;
636
637            if Save_Pos /= Parse_Pos then
638               Max := Natural'Value (Expression (Save_Pos .. Parse_Pos - 1));
639            end if;
640
641         else
642            Max := Min;
643         end if;
644
645         if Parse_Pos < Expression'Last
646           and then Expression (Parse_Pos + 1) = '?'
647         then
648            Greedy := False;
649            Parse_Pos := Parse_Pos + 1;
650
651         else
652            Greedy := True;
653         end if;
654      end Get_Curly_Arguments;
655
656      ---------------------------
657      -- Insert_Curly_Operator --
658      ---------------------------
659
660      procedure Insert_Curly_Operator
661        (Op      : Opcode;
662         Min     : Natural;
663         Max     : Natural;
664         Operand : Pointer;
665         Greedy  : Boolean := True)
666      is
667         Old    : Pointer;
668      begin
669         Old := Insert_Operator_Before (Op, Operand, Greedy, Opsize => 7);
670         Emit_Natural (Old + Next_Pointer_Bytes, Min);
671         Emit_Natural (Old + Next_Pointer_Bytes + 2, Max);
672      end Insert_Curly_Operator;
673
674      ----------------------------
675      -- Insert_Operator_Before --
676      ----------------------------
677
678      function Insert_Operator_Before
679        (Op      : Opcode;
680         Operand : Pointer;
681         Greedy  : Boolean;
682         Opsize  : Pointer) return Pointer
683      is
684         Dest : constant Pointer := Emit_Ptr;
685         Old  : Pointer;
686         Size : Pointer := Opsize;
687
688      begin
689         --  If not greedy, we have to emit another opcode first
690
691         if not Greedy then
692            Size := Size + Next_Pointer_Bytes;
693         end if;
694
695         --  Move the operand in the byte-compilation, so that we can insert
696         --  the operator before it.
697
698         if Emit_Ptr + Size <= PM.Size then
699            Program (Operand + Size .. Emit_Ptr + Size) :=
700              Program (Operand .. Emit_Ptr);
701         end if;
702
703         --  Insert the operator at the position previously occupied by the
704         --  operand.
705
706         Emit_Ptr := Operand;
707
708         if not Greedy then
709            Old := Emit_Node (MINMOD);
710            Link_Tail (Old, Old + Next_Pointer_Bytes);
711         end if;
712
713         Old := Emit_Node (Op);
714         Emit_Ptr := Dest + Size;
715         return Old;
716      end Insert_Operator_Before;
717
718      ---------------------
719      -- Insert_Operator --
720      ---------------------
721
722      procedure Insert_Operator
723        (Op      : Opcode;
724         Operand : Pointer;
725         Greedy  : Boolean := True)
726      is
727         Discard : Pointer;
728         pragma Warnings (Off, Discard);
729      begin
730         Discard := Insert_Operator_Before
731            (Op, Operand, Greedy, Opsize => Next_Pointer_Bytes);
732      end Insert_Operator;
733
734      -----------------------
735      -- Is_Curly_Operator --
736      -----------------------
737
738      function Is_Curly_Operator (IP : Natural) return Boolean is
739         Scan : Natural := IP;
740
741      begin
742         if Expression (Scan) /= '{'
743           or else Scan + 2 > Expression'Last
744           or else not Is_Digit (Expression (Scan + 1))
745         then
746            return False;
747         end if;
748
749         Scan := Scan + 1;
750
751         --  The first digit
752
753         loop
754            Scan := Scan + 1;
755
756            if Scan > Expression'Last then
757               return False;
758            end if;
759
760            exit when not Is_Digit (Expression (Scan));
761         end loop;
762
763         if Expression (Scan) = ',' then
764            loop
765               Scan := Scan + 1;
766
767               if Scan > Expression'Last then
768                  return False;
769               end if;
770
771               exit when not Is_Digit (Expression (Scan));
772            end loop;
773         end if;
774
775         return Expression (Scan) = '}';
776      end Is_Curly_Operator;
777
778      -------------
779      -- Is_Mult --
780      -------------
781
782      function Is_Mult (IP : Natural) return Boolean is
783         C : constant Character := Expression (IP);
784
785      begin
786         return     C = '*'
787           or else  C = '+'
788           or else  C = '?'
789           or else (C = '{' and then Is_Curly_Operator (IP));
790      end Is_Mult;
791
792      -----------------------
793      -- Link_Operand_Tail --
794      -----------------------
795
796      procedure Link_Operand_Tail (P, Val : Pointer) is
797      begin
798         if P <= PM.Size and then Program (P) = BRANCH then
799            Link_Tail (Operand (P), Val);
800         end if;
801      end Link_Operand_Tail;
802
803      ---------------
804      -- Link_Tail --
805      ---------------
806
807      procedure Link_Tail (P, Val : Pointer) is
808         Scan   : Pointer;
809         Temp   : Pointer;
810         Offset : Pointer;
811
812      begin
813         --  Find last node (the size of the pattern matcher might be too
814         --  small, so don't try to read past its end).
815
816         Scan := P;
817         while Scan + Next_Pointer_Bytes <= PM.Size loop
818            Temp := Get_Next (Program, Scan);
819            exit when Temp = Scan;
820            Scan := Temp;
821         end loop;
822
823         Offset := Val - Scan;
824
825         Emit_Natural (Scan + 1, Natural (Offset));
826      end Link_Tail;
827
828      -----------
829      -- Parse --
830      -----------
831
832      --  Combining parenthesis handling with the base level of regular
833      --  expression is a trifle forced, but the need to tie the tails of the
834      --  the branches to what follows makes it hard to avoid.
835
836      procedure Parse
837         (Parenthesized : Boolean;
838          Capturing     : Boolean;
839          Flags         : out Expression_Flags;
840          IP            : out Pointer)
841      is
842         E           : String renames Expression;
843         Br, Br2     : Pointer;
844         Ender       : Pointer;
845         Par_No      : Natural;
846         New_Flags   : Expression_Flags;
847         Have_Branch : Boolean := False;
848
849      begin
850         Flags := (Has_Width => True, others => False);  -- Tentatively
851
852         --  Make an OPEN node, if parenthesized
853
854         if Parenthesized and then Capturing then
855            if Matcher.Paren_Count > Max_Paren_Count then
856               Fail ("too many ()");
857            end if;
858
859            Par_No := Matcher.Paren_Count + 1;
860            Matcher.Paren_Count := Matcher.Paren_Count + 1;
861            IP := Emit_Node (OPEN);
862            Emit (Character'Val (Par_No));
863         else
864            IP := 0;
865            Par_No := 0;
866         end if;
867
868         --  Pick up the branches, linking them together
869
870         Parse_Branch (New_Flags, True, Br);
871
872         if Br = 0 then
873            IP := 0;
874            return;
875         end if;
876
877         if Parse_Pos <= Parse_End
878           and then E (Parse_Pos) = '|'
879         then
880            Insert_Operator (BRANCH, Br);
881            Have_Branch := True;
882         end if;
883
884         if IP /= 0 then
885            Link_Tail (IP, Br);   -- OPEN -> first
886         else
887            IP := Br;
888         end if;
889
890         if not New_Flags.Has_Width then
891            Flags.Has_Width := False;
892         end if;
893
894         Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
895
896         while Parse_Pos <= Parse_End
897           and then (E (Parse_Pos) = '|')
898         loop
899            Parse_Pos := Parse_Pos + 1;
900            Parse_Branch (New_Flags, False, Br);
901
902            if Br = 0 then
903               IP := 0;
904               return;
905            end if;
906
907            Link_Tail (IP, Br);   -- BRANCH -> BRANCH
908
909            if not New_Flags.Has_Width then
910               Flags.Has_Width := False;
911            end if;
912
913            Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
914         end loop;
915
916         --  Make a closing node, and hook it on the end
917
918         if Parenthesized then
919            if Capturing then
920               Ender := Emit_Node (CLOSE);
921               Emit (Character'Val (Par_No));
922               Link_Tail (IP, Ender);
923
924            else
925               --  Need to keep looking after the closing parenthesis
926               Ender := Emit_Ptr;
927            end if;
928
929         else
930            Ender := Emit_Node (EOP);
931            Link_Tail (IP, Ender);
932         end if;
933
934         if Have_Branch and then Emit_Ptr <= PM.Size + 1 then
935
936            --  Hook the tails of the branches to the closing node
937
938            Br := IP;
939            loop
940               Link_Operand_Tail (Br, Ender);
941               Br2 := Get_Next (Program, Br);
942               exit when Br2 = Br;
943               Br := Br2;
944            end loop;
945         end if;
946
947         --  Check for proper termination
948
949         if Parenthesized then
950            if Parse_Pos > Parse_End or else E (Parse_Pos) /= ')' then
951               Fail ("unmatched ()");
952            end if;
953
954            Parse_Pos := Parse_Pos + 1;
955
956         elsif Parse_Pos <= Parse_End then
957            if E (Parse_Pos) = ')'  then
958               Fail ("unmatched ')'");
959            else
960               Fail ("junk on end");         -- "Can't happen"
961            end if;
962         end if;
963      end Parse;
964
965      ----------------
966      -- Parse_Atom --
967      ----------------
968
969      procedure Parse_Atom
970        (Expr_Flags : out Expression_Flags;
971         IP         : out Pointer)
972      is
973         C : Character;
974
975      begin
976         --  Tentatively set worst expression case
977
978         Expr_Flags := Worst_Expression;
979
980         C := Expression (Parse_Pos);
981         Parse_Pos := Parse_Pos + 1;
982
983         case (C) is
984            when '^' =>
985               IP :=
986                 Emit_Node
987                   (if (Flags and Multiple_Lines) /= 0 then MBOL
988                    elsif (Flags and Single_Line) /= 0 then SBOL
989                    else BOL);
990
991            when '$' =>
992               IP :=
993                 Emit_Node
994                   (if (Flags and Multiple_Lines) /= 0 then MEOL
995                    elsif (Flags and Single_Line) /= 0 then SEOL
996                    else EOL);
997
998            when '.' =>
999               IP :=
1000                 Emit_Node
1001                   (if (Flags and Single_Line) /= 0 then SANY else ANY);
1002
1003               Expr_Flags.Has_Width := True;
1004               Expr_Flags.Simple := True;
1005
1006            when '[' =>
1007               Parse_Character_Class (IP);
1008               Expr_Flags.Has_Width := True;
1009               Expr_Flags.Simple := True;
1010
1011            when '(' =>
1012               declare
1013                  New_Flags : Expression_Flags;
1014
1015               begin
1016                  if Parse_Pos <= Parse_End - 1
1017                    and then Expression (Parse_Pos) = '?'
1018                    and then Expression (Parse_Pos + 1) = ':'
1019                  then
1020                     Parse_Pos := Parse_Pos + 2;
1021
1022                     --  Non-capturing parenthesis
1023
1024                     Parse (True, False, New_Flags, IP);
1025
1026                  else
1027                     --  Capturing parenthesis
1028
1029                     Parse (True, True, New_Flags, IP);
1030                     Expr_Flags.Has_Width :=
1031                       Expr_Flags.Has_Width or else New_Flags.Has_Width;
1032                     Expr_Flags.SP_Start :=
1033                       Expr_Flags.SP_Start or else New_Flags.SP_Start;
1034                     if IP = 0 then
1035                        return;
1036                     end if;
1037                  end if;
1038               end;
1039
1040            when '|' | ASCII.LF | ')' =>
1041               Fail ("internal urp");  --  Supposed to be caught earlier
1042
1043            when '?' | '+' | '*' =>
1044               Fail (C & " follows nothing");
1045
1046            when '{' =>
1047               if Is_Curly_Operator (Parse_Pos - 1) then
1048                  Fail (C & " follows nothing");
1049               else
1050                  Parse_Literal (Expr_Flags, IP);
1051               end if;
1052
1053            when '\' =>
1054               if Parse_Pos > Parse_End then
1055                  Fail ("trailing \");
1056               end if;
1057
1058               Parse_Pos := Parse_Pos + 1;
1059
1060               case Expression (Parse_Pos - 1) is
1061                  when 'b'        =>
1062                     IP := Emit_Node (BOUND);
1063
1064                  when 'B'        =>
1065                     IP := Emit_Node (NBOUND);
1066
1067                  when 's'        =>
1068                     IP := Emit_Node (SPACE);
1069                     Expr_Flags.Simple := True;
1070                     Expr_Flags.Has_Width := True;
1071
1072                  when 'S'        =>
1073                     IP := Emit_Node (NSPACE);
1074                     Expr_Flags.Simple := True;
1075                     Expr_Flags.Has_Width := True;
1076
1077                  when 'd'        =>
1078                     IP := Emit_Node (DIGIT);
1079                     Expr_Flags.Simple := True;
1080                     Expr_Flags.Has_Width := True;
1081
1082                  when 'D'        =>
1083                     IP := Emit_Node (NDIGIT);
1084                     Expr_Flags.Simple := True;
1085                     Expr_Flags.Has_Width := True;
1086
1087                  when 'w'        =>
1088                     IP := Emit_Node (ALNUM);
1089                     Expr_Flags.Simple := True;
1090                     Expr_Flags.Has_Width := True;
1091
1092                  when 'W'        =>
1093                     IP := Emit_Node (NALNUM);
1094                     Expr_Flags.Simple := True;
1095                     Expr_Flags.Has_Width := True;
1096
1097                  when 'A'        =>
1098                     IP := Emit_Node (SBOL);
1099
1100                  when 'G'        =>
1101                     IP := Emit_Node (SEOL);
1102
1103                  when '0' .. '9' =>
1104                     IP := Emit_Node (REFF);
1105
1106                     declare
1107                        Save : constant Natural := Parse_Pos - 1;
1108
1109                     begin
1110                        while Parse_Pos <= Expression'Last
1111                          and then Is_Digit (Expression (Parse_Pos))
1112                        loop
1113                           Parse_Pos := Parse_Pos + 1;
1114                        end loop;
1115
1116                        Emit (Character'Val (Natural'Value
1117                               (Expression (Save .. Parse_Pos - 1))));
1118                     end;
1119
1120                  when others =>
1121                     Parse_Pos := Parse_Pos - 1;
1122                     Parse_Literal (Expr_Flags, IP);
1123               end case;
1124
1125            when others =>
1126               Parse_Literal (Expr_Flags, IP);
1127         end case;
1128      end Parse_Atom;
1129
1130      ------------------
1131      -- Parse_Branch --
1132      ------------------
1133
1134      procedure Parse_Branch
1135        (Flags : out Expression_Flags;
1136         First : Boolean;
1137         IP    : out Pointer)
1138      is
1139         E         : String renames Expression;
1140         Chain     : Pointer;
1141         Last      : Pointer;
1142         New_Flags : Expression_Flags;
1143
1144         Discard : Pointer;
1145         pragma Warnings (Off, Discard);
1146
1147      begin
1148         Flags := Worst_Expression;    -- Tentatively
1149         IP := (if First then Emit_Ptr else Emit_Node (BRANCH));
1150
1151         Chain := 0;
1152         while Parse_Pos <= Parse_End
1153           and then E (Parse_Pos) /= ')'
1154           and then E (Parse_Pos) /= ASCII.LF
1155           and then E (Parse_Pos) /= '|'
1156         loop
1157            Parse_Piece (New_Flags, Last);
1158
1159            if Last = 0 then
1160               IP := 0;
1161               return;
1162            end if;
1163
1164            Flags.Has_Width := Flags.Has_Width or else New_Flags.Has_Width;
1165
1166            if Chain = 0 then            -- First piece
1167               Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
1168            else
1169               Link_Tail (Chain, Last);
1170            end if;
1171
1172            Chain := Last;
1173         end loop;
1174
1175         --  Case where loop ran zero CURLY
1176
1177         if Chain = 0 then
1178            Discard := Emit_Node (NOTHING);
1179         end if;
1180      end Parse_Branch;
1181
1182      ---------------------------
1183      -- Parse_Character_Class --
1184      ---------------------------
1185
1186      procedure Parse_Character_Class (IP : out Pointer) is
1187         Bitmap      : Character_Class;
1188         Invert      : Boolean := False;
1189         In_Range    : Boolean := False;
1190         Named_Class : Std_Class := ANYOF_NONE;
1191         Value       : Character;
1192         Last_Value  : Character := ASCII.NUL;
1193
1194      begin
1195         Reset_Class (Bitmap);
1196
1197         --  Do we have an invert character class ?
1198
1199         if Parse_Pos <= Parse_End
1200           and then Expression (Parse_Pos) = '^'
1201         then
1202            Invert := True;
1203            Parse_Pos := Parse_Pos + 1;
1204         end if;
1205
1206         --  First character can be ] or - without closing the class
1207
1208         if Parse_Pos <= Parse_End
1209           and then (Expression (Parse_Pos) = ']'
1210                      or else Expression (Parse_Pos) = '-')
1211         then
1212            Set_In_Class (Bitmap, Expression (Parse_Pos));
1213            Parse_Pos := Parse_Pos + 1;
1214         end if;
1215
1216         --  While we don't have the end of the class
1217
1218         while Parse_Pos <= Parse_End
1219           and then Expression (Parse_Pos) /= ']'
1220         loop
1221            Named_Class := ANYOF_NONE;
1222            Value := Expression (Parse_Pos);
1223            Parse_Pos := Parse_Pos + 1;
1224
1225            --  Do we have a Posix character class
1226            if Value = '[' then
1227               Named_Class := Parse_Posix_Character_Class;
1228
1229            elsif Value = '\' then
1230               if Parse_Pos = Parse_End then
1231                  Fail ("Trailing \");
1232               end if;
1233               Value := Expression (Parse_Pos);
1234               Parse_Pos := Parse_Pos + 1;
1235
1236               case Value is
1237                  when 'w' => Named_Class := ANYOF_ALNUM;
1238                  when 'W' => Named_Class := ANYOF_NALNUM;
1239                  when 's' => Named_Class := ANYOF_SPACE;
1240                  when 'S' => Named_Class := ANYOF_NSPACE;
1241                  when 'd' => Named_Class := ANYOF_DIGIT;
1242                  when 'D' => Named_Class := ANYOF_NDIGIT;
1243                  when 'n' => Value := ASCII.LF;
1244                  when 'r' => Value := ASCII.CR;
1245                  when 't' => Value := ASCII.HT;
1246                  when 'f' => Value := ASCII.FF;
1247                  when 'e' => Value := ASCII.ESC;
1248                  when 'a' => Value := ASCII.BEL;
1249
1250                  --  when 'x'  => ??? hexadecimal value
1251                  --  when 'c'  => ??? control character
1252                  --  when '0'..'9' => ??? octal character
1253
1254                  when others => null;
1255               end case;
1256            end if;
1257
1258            --  Do we have a character class?
1259
1260            if Named_Class /= ANYOF_NONE then
1261
1262               --  A range like 'a-\d' or 'a-[:digit:] is not a range
1263
1264               if In_Range then
1265                  Set_In_Class (Bitmap, Last_Value);
1266                  Set_In_Class (Bitmap, '-');
1267                  In_Range := False;
1268               end if;
1269
1270               --  Expand the range
1271
1272               case Named_Class is
1273                  when ANYOF_NONE => null;
1274
1275                  when ANYOF_ALNUM | ANYOF_ALNUMC =>
1276                     for Value in Class_Byte'Range loop
1277                        if Is_Alnum (Character'Val (Value)) then
1278                           Set_In_Class (Bitmap, Character'Val (Value));
1279                        end if;
1280                     end loop;
1281
1282                  when ANYOF_NALNUM | ANYOF_NALNUMC =>
1283                     for Value in Class_Byte'Range loop
1284                        if not Is_Alnum (Character'Val (Value)) then
1285                           Set_In_Class (Bitmap, Character'Val (Value));
1286                        end if;
1287                     end loop;
1288
1289                  when ANYOF_SPACE =>
1290                     for Value in Class_Byte'Range loop
1291                        if Is_White_Space (Character'Val (Value)) then
1292                           Set_In_Class (Bitmap, Character'Val (Value));
1293                        end if;
1294                     end loop;
1295
1296                  when ANYOF_NSPACE =>
1297                     for Value in Class_Byte'Range loop
1298                        if not Is_White_Space (Character'Val (Value)) then
1299                           Set_In_Class (Bitmap, Character'Val (Value));
1300                        end if;
1301                     end loop;
1302
1303                  when ANYOF_DIGIT =>
1304                     for Value in Class_Byte'Range loop
1305                        if Is_Digit (Character'Val (Value)) then
1306                           Set_In_Class (Bitmap, Character'Val (Value));
1307                        end if;
1308                     end loop;
1309
1310                  when ANYOF_NDIGIT =>
1311                     for Value in Class_Byte'Range loop
1312                        if not Is_Digit (Character'Val (Value)) then
1313                           Set_In_Class (Bitmap, Character'Val (Value));
1314                        end if;
1315                     end loop;
1316
1317                  when ANYOF_ALPHA =>
1318                     for Value in Class_Byte'Range loop
1319                        if Is_Letter (Character'Val (Value)) then
1320                           Set_In_Class (Bitmap, Character'Val (Value));
1321                        end if;
1322                     end loop;
1323
1324                  when ANYOF_NALPHA =>
1325                     for Value in Class_Byte'Range loop
1326                        if not Is_Letter (Character'Val (Value)) then
1327                           Set_In_Class (Bitmap, Character'Val (Value));
1328                        end if;
1329                     end loop;
1330
1331                  when ANYOF_ASCII =>
1332                     for Value in 0 .. 127 loop
1333                        Set_In_Class (Bitmap, Character'Val (Value));
1334                     end loop;
1335
1336                  when ANYOF_NASCII =>
1337                     for Value in 128 .. 255 loop
1338                        Set_In_Class (Bitmap, Character'Val (Value));
1339                     end loop;
1340
1341                  when ANYOF_CNTRL =>
1342                     for Value in Class_Byte'Range loop
1343                        if Is_Control (Character'Val (Value)) then
1344                           Set_In_Class (Bitmap, Character'Val (Value));
1345                        end if;
1346                     end loop;
1347
1348                  when ANYOF_NCNTRL =>
1349                     for Value in Class_Byte'Range loop
1350                        if not Is_Control (Character'Val (Value)) then
1351                           Set_In_Class (Bitmap, Character'Val (Value));
1352                        end if;
1353                     end loop;
1354
1355                  when ANYOF_GRAPH =>
1356                     for Value in Class_Byte'Range loop
1357                        if Is_Graphic (Character'Val (Value)) then
1358                           Set_In_Class (Bitmap, Character'Val (Value));
1359                        end if;
1360                     end loop;
1361
1362                  when ANYOF_NGRAPH =>
1363                     for Value in Class_Byte'Range loop
1364                        if not Is_Graphic (Character'Val (Value)) then
1365                           Set_In_Class (Bitmap, Character'Val (Value));
1366                        end if;
1367                     end loop;
1368
1369                  when ANYOF_LOWER =>
1370                     for Value in Class_Byte'Range loop
1371                        if Is_Lower (Character'Val (Value)) then
1372                           Set_In_Class (Bitmap, Character'Val (Value));
1373                        end if;
1374                     end loop;
1375
1376                  when ANYOF_NLOWER =>
1377                     for Value in Class_Byte'Range loop
1378                        if not Is_Lower (Character'Val (Value)) then
1379                           Set_In_Class (Bitmap, Character'Val (Value));
1380                        end if;
1381                     end loop;
1382
1383                  when ANYOF_PRINT =>
1384                     for Value in Class_Byte'Range loop
1385                        if Is_Printable (Character'Val (Value)) then
1386                           Set_In_Class (Bitmap, Character'Val (Value));
1387                        end if;
1388                     end loop;
1389
1390                  when ANYOF_NPRINT =>
1391                     for Value in Class_Byte'Range loop
1392                        if not Is_Printable (Character'Val (Value)) then
1393                           Set_In_Class (Bitmap, Character'Val (Value));
1394                        end if;
1395                     end loop;
1396
1397                  when ANYOF_PUNCT =>
1398                     for Value in Class_Byte'Range loop
1399                        if Is_Printable (Character'Val (Value))
1400                          and then not Is_White_Space (Character'Val (Value))
1401                          and then not Is_Alnum (Character'Val (Value))
1402                        then
1403                           Set_In_Class (Bitmap, Character'Val (Value));
1404                        end if;
1405                     end loop;
1406
1407                  when ANYOF_NPUNCT =>
1408                     for Value in Class_Byte'Range loop
1409                        if not Is_Printable (Character'Val (Value))
1410                          or else Is_White_Space (Character'Val (Value))
1411                          or else Is_Alnum (Character'Val (Value))
1412                        then
1413                           Set_In_Class (Bitmap, Character'Val (Value));
1414                        end if;
1415                     end loop;
1416
1417                  when ANYOF_UPPER =>
1418                     for Value in Class_Byte'Range loop
1419                        if Is_Upper (Character'Val (Value)) then
1420                           Set_In_Class (Bitmap, Character'Val (Value));
1421                        end if;
1422                     end loop;
1423
1424                  when ANYOF_NUPPER =>
1425                     for Value in Class_Byte'Range loop
1426                        if not Is_Upper (Character'Val (Value)) then
1427                           Set_In_Class (Bitmap, Character'Val (Value));
1428                        end if;
1429                     end loop;
1430
1431                  when ANYOF_XDIGIT =>
1432                     for Value in Class_Byte'Range loop
1433                        if Is_Hexadecimal_Digit (Character'Val (Value)) then
1434                           Set_In_Class (Bitmap, Character'Val (Value));
1435                        end if;
1436                     end loop;
1437
1438                  when ANYOF_NXDIGIT =>
1439                     for Value in Class_Byte'Range loop
1440                        if not Is_Hexadecimal_Digit
1441                          (Character'Val (Value))
1442                        then
1443                           Set_In_Class (Bitmap, Character'Val (Value));
1444                        end if;
1445                     end loop;
1446
1447               end case;
1448
1449            --  Not a character range
1450
1451            elsif not In_Range then
1452               Last_Value := Value;
1453
1454               if Parse_Pos > Expression'Last then
1455                  Fail ("Empty character class []");
1456               end if;
1457
1458               if Expression (Parse_Pos) = '-'
1459                 and then Parse_Pos < Parse_End
1460                 and then Expression (Parse_Pos + 1) /= ']'
1461               then
1462                  Parse_Pos := Parse_Pos + 1;
1463                  In_Range := True;
1464               else
1465                  Set_In_Class (Bitmap, Value);
1466               end if;
1467
1468            --  Else in a character range
1469
1470            else
1471               if Last_Value > Value then
1472                  Fail ("Invalid Range [" & Last_Value'Img
1473                        & "-" & Value'Img & "]");
1474               end if;
1475
1476               while Last_Value <= Value loop
1477                  Set_In_Class (Bitmap, Last_Value);
1478                  Last_Value := Character'Succ (Last_Value);
1479               end loop;
1480
1481               In_Range := False;
1482
1483            end if;
1484
1485         end loop;
1486
1487         --  Optimize case-insensitive ranges (put the upper case or lower
1488         --  case character into the bitmap)
1489
1490         if (Flags and Case_Insensitive) /= 0 then
1491            for C in Character'Range loop
1492               if Get_From_Class (Bitmap, C) then
1493                  Set_In_Class (Bitmap, To_Lower (C));
1494                  Set_In_Class (Bitmap, To_Upper (C));
1495               end if;
1496            end loop;
1497         end if;
1498
1499         --  Optimize inverted classes
1500
1501         if Invert then
1502            for J in Bitmap'Range loop
1503               Bitmap (J) := not Bitmap (J);
1504            end loop;
1505         end if;
1506
1507         Parse_Pos := Parse_Pos + 1;
1508
1509         --  Emit the class
1510
1511         IP := Emit_Node (ANYOF);
1512         Emit_Class (Bitmap);
1513      end Parse_Character_Class;
1514
1515      -------------------
1516      -- Parse_Literal --
1517      -------------------
1518
1519      --  This is a bit tricky due to quoted chars and due to
1520      --  the multiplier characters '*', '+', and '?' that
1521      --  take the SINGLE char previous as their operand.
1522
1523      --  On entry, the character at Parse_Pos - 1 is going to go
1524      --  into the string, no matter what it is. It could be
1525      --  following a \ if Parse_Atom was entered from the '\' case.
1526
1527      --  Basic idea is to pick up a good char in C and examine
1528      --  the next char. If Is_Mult (C) then twiddle, if it's a \
1529      --  then frozzle and if it's another magic char then push C and
1530      --  terminate the string. If none of the above, push C on the
1531      --  string and go around again.
1532
1533      --  Start_Pos is used to remember where "the current character"
1534      --  starts in the string, if due to an Is_Mult we need to back
1535      --  up and put the current char in a separate 1-character string.
1536      --  When Start_Pos is 0, C is the only char in the string;
1537      --  this is used in Is_Mult handling, and in setting the SIMPLE
1538      --  flag at the end.
1539
1540      procedure Parse_Literal
1541        (Expr_Flags : out Expression_Flags;
1542         IP         : out Pointer)
1543      is
1544         Start_Pos  : Natural := 0;
1545         C          : Character;
1546         Length_Ptr : Pointer;
1547
1548         Has_Special_Operator : Boolean := False;
1549
1550      begin
1551         Expr_Flags := Worst_Expression;  --  Ensure Expr_Flags is initialized
1552         Parse_Pos  := Parse_Pos - 1;     --  Look at current character
1553
1554         IP :=
1555           Emit_Node
1556             (if (Flags and Case_Insensitive) /= 0 then EXACTF else EXACT);
1557
1558         Length_Ptr := Emit_Ptr;
1559         Emit_Ptr := String_Operand (IP);
1560
1561         Parse_Loop :
1562         loop
1563            C := Expression (Parse_Pos); --  Get current character
1564
1565            case C is
1566               when '.' | '[' | '(' | ')' | '|' | ASCII.LF | '$' | '^' =>
1567
1568                  if Start_Pos = 0 then
1569                     Start_Pos := Parse_Pos;
1570                     Emit (C);         --  First character is always emitted
1571                  else
1572                     exit Parse_Loop;  --  Else we are done
1573                  end if;
1574
1575               when '?' | '+' | '*' | '{' =>
1576
1577                  if Start_Pos = 0 then
1578                     Start_Pos := Parse_Pos;
1579                     Emit (C);         --  First character is always emitted
1580
1581                  --  Are we looking at an operator, or is this
1582                  --  simply a normal character ?
1583
1584                  elsif not Is_Mult (Parse_Pos) then
1585                     Start_Pos := Parse_Pos;
1586                     Case_Emit (C);
1587
1588                  else
1589                     --  We've got something like "abc?d".  Mark this as a
1590                     --  special case. What we want to emit is a first
1591                     --  constant string for "ab", then one for "c" that will
1592                     --  ultimately be transformed with a CURLY operator, A
1593                     --  special case has to be handled for "a?", since there
1594                     --  is no initial string to emit.
1595
1596                     Has_Special_Operator := True;
1597                     exit Parse_Loop;
1598                  end if;
1599
1600               when '\' =>
1601                  Start_Pos := Parse_Pos;
1602
1603                  if Parse_Pos = Parse_End then
1604                     Fail ("Trailing \");
1605
1606                  else
1607                     case Expression (Parse_Pos + 1) is
1608                        when 'b' | 'B' | 's' | 'S' | 'd' | 'D'
1609                          | 'w' | 'W' | '0' .. '9' | 'G' | 'A'
1610                          => exit Parse_Loop;
1611                        when 'n'         => Emit (ASCII.LF);
1612                        when 't'         => Emit (ASCII.HT);
1613                        when 'r'         => Emit (ASCII.CR);
1614                        when 'f'         => Emit (ASCII.FF);
1615                        when 'e'         => Emit (ASCII.ESC);
1616                        when 'a'         => Emit (ASCII.BEL);
1617                        when others      => Emit (Expression (Parse_Pos + 1));
1618                     end case;
1619
1620                     Parse_Pos := Parse_Pos + 1;
1621                  end if;
1622
1623               when others =>
1624                  Start_Pos := Parse_Pos;
1625                  Case_Emit (C);
1626            end case;
1627
1628            Parse_Pos := Parse_Pos + 1;
1629            exit Parse_Loop when Parse_Pos > Parse_End
1630              or else Emit_Ptr - Length_Ptr = 254;
1631         end loop Parse_Loop;
1632
1633         --  Is the string followed by a '*+?{' operator ? If yes, and if there
1634         --  is an initial string to emit, do it now.
1635
1636         if Has_Special_Operator
1637           and then Emit_Ptr >= Length_Ptr + Next_Pointer_Bytes
1638         then
1639            Emit_Ptr := Emit_Ptr - 1;
1640            Parse_Pos := Start_Pos;
1641         end if;
1642
1643         if Length_Ptr <= PM.Size then
1644            Program (Length_Ptr) := Character'Val (Emit_Ptr - Length_Ptr - 2);
1645         end if;
1646
1647         Expr_Flags.Has_Width := True;
1648
1649         --  Slight optimization when there is a single character
1650
1651         if Emit_Ptr = Length_Ptr + 2 then
1652            Expr_Flags.Simple := True;
1653         end if;
1654      end Parse_Literal;
1655
1656      -----------------
1657      -- Parse_Piece --
1658      -----------------
1659
1660      --  Note that the branching code sequences used for '?' and the
1661      --  general cases of '*' and + are somewhat optimized: they use
1662      --  the same NOTHING node as both the endmarker for their branch
1663      --  list and the body of the last branch. It might seem that
1664      --  this node could be dispensed with entirely, but the endmarker
1665      --  role is not redundant.
1666
1667      procedure Parse_Piece
1668        (Expr_Flags : out Expression_Flags;
1669         IP         : out Pointer)
1670      is
1671         Op        : Character;
1672         New_Flags : Expression_Flags;
1673         Greedy    : Boolean := True;
1674
1675      begin
1676         Parse_Atom (New_Flags, IP);
1677
1678         if IP = 0
1679           or else Parse_Pos > Parse_End
1680           or else not Is_Mult (Parse_Pos)
1681         then
1682            Expr_Flags := New_Flags;
1683            return;
1684         end if;
1685
1686         Op := Expression (Parse_Pos);
1687
1688         Expr_Flags :=
1689           (if Op /= '+'
1690            then (SP_Start  => True, others => False)
1691            else (Has_Width => True, others => False));
1692
1693         --  Detect non greedy operators in the easy cases
1694
1695         if Op /= '{'
1696           and then Parse_Pos + 1 <= Parse_End
1697           and then Expression (Parse_Pos + 1) = '?'
1698         then
1699            Greedy := False;
1700            Parse_Pos := Parse_Pos + 1;
1701         end if;
1702
1703         --  Generate the byte code
1704
1705         case Op is
1706            when '*' =>
1707
1708               if New_Flags.Simple then
1709                  Insert_Operator (STAR, IP, Greedy);
1710               else
1711                  Link_Tail (IP, Emit_Node (WHILEM));
1712                  Insert_Curly_Operator
1713                    (CURLYX, 0, Max_Curly_Repeat, IP, Greedy);
1714                  Link_Tail (IP, Emit_Node (NOTHING));
1715               end if;
1716
1717            when '+' =>
1718
1719               if New_Flags.Simple then
1720                  Insert_Operator (PLUS, IP, Greedy);
1721               else
1722                  Link_Tail (IP, Emit_Node (WHILEM));
1723                  Insert_Curly_Operator
1724                    (CURLYX, 1, Max_Curly_Repeat, IP, Greedy);
1725                  Link_Tail (IP, Emit_Node (NOTHING));
1726               end if;
1727
1728            when '?' =>
1729               if New_Flags.Simple then
1730                  Insert_Curly_Operator (CURLY, 0, 1, IP, Greedy);
1731               else
1732                  Link_Tail (IP, Emit_Node (WHILEM));
1733                  Insert_Curly_Operator (CURLYX, 0, 1, IP, Greedy);
1734                  Link_Tail (IP, Emit_Node (NOTHING));
1735               end if;
1736
1737            when '{' =>
1738               declare
1739                  Min, Max : Natural;
1740
1741               begin
1742                  Get_Curly_Arguments (Parse_Pos, Min, Max, Greedy);
1743
1744                  if New_Flags.Simple then
1745                     Insert_Curly_Operator (CURLY, Min, Max, IP, Greedy);
1746                  else
1747                     Link_Tail (IP, Emit_Node (WHILEM));
1748                     Insert_Curly_Operator (CURLYX, Min, Max, IP, Greedy);
1749                     Link_Tail (IP, Emit_Node (NOTHING));
1750                  end if;
1751               end;
1752
1753            when others =>
1754               null;
1755         end case;
1756
1757         Parse_Pos := Parse_Pos + 1;
1758
1759         if Parse_Pos <= Parse_End
1760           and then Is_Mult (Parse_Pos)
1761         then
1762            Fail ("nested *+{");
1763         end if;
1764      end Parse_Piece;
1765
1766      ---------------------------------
1767      -- Parse_Posix_Character_Class --
1768      ---------------------------------
1769
1770      function Parse_Posix_Character_Class return Std_Class is
1771         Invert : Boolean := False;
1772         Class  : Std_Class := ANYOF_NONE;
1773         E      : String renames Expression;
1774
1775         --  Class names. Note that code assumes that the length of all
1776         --  classes starting with the same letter have the same length.
1777
1778         Alnum   : constant String := "alnum:]";
1779         Alpha   : constant String := "alpha:]";
1780         Ascii_C : constant String := "ascii:]";
1781         Cntrl   : constant String := "cntrl:]";
1782         Digit   : constant String := "digit:]";
1783         Graph   : constant String := "graph:]";
1784         Lower   : constant String := "lower:]";
1785         Print   : constant String := "print:]";
1786         Punct   : constant String := "punct:]";
1787         Space   : constant String := "space:]";
1788         Upper   : constant String := "upper:]";
1789         Word    : constant String := "word:]";
1790         Xdigit  : constant String := "xdigit:]";
1791
1792      begin
1793         --  Case of character class specified
1794
1795         if Parse_Pos <= Parse_End
1796           and then Expression (Parse_Pos) = ':'
1797         then
1798            Parse_Pos := Parse_Pos + 1;
1799
1800            --  Do we have something like:  [[:^alpha:]]
1801
1802            if Parse_Pos <= Parse_End
1803              and then Expression (Parse_Pos) = '^'
1804            then
1805               Invert := True;
1806               Parse_Pos := Parse_Pos + 1;
1807            end if;
1808
1809            --  Check for class names based on first letter
1810
1811            case Expression (Parse_Pos) is
1812               when 'a' =>
1813
1814                  --  All 'a' classes have the same length (Alnum'Length)
1815
1816                  if Parse_Pos + Alnum'Length - 1 <= Parse_End then
1817                     if
1818                       E (Parse_Pos .. Parse_Pos + Alnum'Length - 1) = Alnum
1819                     then
1820                        Class :=
1821                          (if Invert then ANYOF_NALNUMC else ANYOF_ALNUMC);
1822                        Parse_Pos := Parse_Pos + Alnum'Length;
1823
1824                     elsif
1825                       E (Parse_Pos .. Parse_Pos + Alpha'Length - 1) = Alpha
1826                     then
1827                        Class :=
1828                          (if Invert then ANYOF_NALPHA else ANYOF_ALPHA);
1829                        Parse_Pos := Parse_Pos + Alpha'Length;
1830
1831                     elsif E (Parse_Pos .. Parse_Pos + Ascii_C'Length - 1) =
1832                                                                      Ascii_C
1833                     then
1834                        Class :=
1835                          (if Invert then ANYOF_NASCII else ANYOF_ASCII);
1836                        Parse_Pos := Parse_Pos + Ascii_C'Length;
1837                     else
1838                        Fail ("Invalid character class: " & E);
1839                     end if;
1840
1841                  else
1842                     Fail ("Invalid character class: " & E);
1843                  end if;
1844
1845               when 'c' =>
1846                  if Parse_Pos + Cntrl'Length - 1 <= Parse_End
1847                    and then
1848                      E (Parse_Pos .. Parse_Pos + Cntrl'Length - 1) = Cntrl
1849                  then
1850                     Class := (if Invert then ANYOF_NCNTRL else ANYOF_CNTRL);
1851                     Parse_Pos := Parse_Pos + Cntrl'Length;
1852                  else
1853                     Fail ("Invalid character class: " & E);
1854                  end if;
1855
1856               when 'd' =>
1857                  if Parse_Pos + Digit'Length - 1 <= Parse_End
1858                    and then
1859                      E (Parse_Pos .. Parse_Pos + Digit'Length - 1) = Digit
1860                  then
1861                     Class := (if Invert then ANYOF_NDIGIT else ANYOF_DIGIT);
1862                     Parse_Pos := Parse_Pos + Digit'Length;
1863                  end if;
1864
1865               when 'g' =>
1866                  if Parse_Pos + Graph'Length - 1 <= Parse_End
1867                    and then
1868                      E (Parse_Pos .. Parse_Pos + Graph'Length - 1) = Graph
1869                  then
1870                     Class := (if Invert then ANYOF_NGRAPH else ANYOF_GRAPH);
1871                     Parse_Pos := Parse_Pos + Graph'Length;
1872                  else
1873                     Fail ("Invalid character class: " & E);
1874                  end if;
1875
1876               when 'l' =>
1877                  if Parse_Pos + Lower'Length - 1 <= Parse_End
1878                    and then
1879                      E (Parse_Pos .. Parse_Pos + Lower'Length - 1) = Lower
1880                  then
1881                     Class := (if Invert then ANYOF_NLOWER else ANYOF_LOWER);
1882                     Parse_Pos := Parse_Pos + Lower'Length;
1883                  else
1884                     Fail ("Invalid character class: " & E);
1885                  end if;
1886
1887               when 'p' =>
1888
1889                  --  All 'p' classes have the same length
1890
1891                  if Parse_Pos + Print'Length - 1 <= Parse_End then
1892                     if
1893                       E (Parse_Pos .. Parse_Pos + Print'Length - 1) = Print
1894                     then
1895                        Class :=
1896                          (if Invert then ANYOF_NPRINT else ANYOF_PRINT);
1897                        Parse_Pos := Parse_Pos + Print'Length;
1898
1899                     elsif
1900                       E (Parse_Pos .. Parse_Pos + Punct'Length - 1) = Punct
1901                     then
1902                        Class :=
1903                          (if Invert then ANYOF_NPUNCT else ANYOF_PUNCT);
1904                        Parse_Pos := Parse_Pos + Punct'Length;
1905
1906                     else
1907                        Fail ("Invalid character class: " & E);
1908                     end if;
1909
1910                  else
1911                     Fail ("Invalid character class: " & E);
1912                  end if;
1913
1914               when 's' =>
1915                  if Parse_Pos + Space'Length - 1 <= Parse_End
1916                    and then
1917                      E (Parse_Pos .. Parse_Pos + Space'Length - 1) = Space
1918                  then
1919                     Class := (if Invert then ANYOF_NSPACE else ANYOF_SPACE);
1920                     Parse_Pos := Parse_Pos + Space'Length;
1921                  else
1922                     Fail ("Invalid character class: " & E);
1923                  end if;
1924
1925               when 'u' =>
1926                  if Parse_Pos + Upper'Length - 1 <= Parse_End
1927                    and then
1928                      E (Parse_Pos .. Parse_Pos + Upper'Length - 1) = Upper
1929                  then
1930                     Class := (if Invert then ANYOF_NUPPER else ANYOF_UPPER);
1931                     Parse_Pos := Parse_Pos + Upper'Length;
1932                  else
1933                     Fail ("Invalid character class: " & E);
1934                  end if;
1935
1936               when 'w' =>
1937                  if Parse_Pos + Word'Length - 1 <= Parse_End
1938                    and then
1939                      E (Parse_Pos .. Parse_Pos + Word'Length - 1) = Word
1940                  then
1941                     Class := (if Invert then ANYOF_NALNUM else ANYOF_ALNUM);
1942                     Parse_Pos := Parse_Pos + Word'Length;
1943                  else
1944                     Fail ("Invalid character class: " & E);
1945                  end if;
1946
1947               when 'x' =>
1948                  if Parse_Pos + Xdigit'Length - 1 <= Parse_End
1949                    and then
1950                      E (Parse_Pos .. Parse_Pos + Xdigit'Length - 1) = Xdigit
1951                  then
1952                     Class := (if Invert then ANYOF_NXDIGIT else ANYOF_XDIGIT);
1953                     Parse_Pos := Parse_Pos + Xdigit'Length;
1954
1955                  else
1956                     Fail ("Invalid character class: " & E);
1957                  end if;
1958
1959               when others =>
1960                  Fail ("Invalid character class: " & E);
1961            end case;
1962
1963         --  Character class not specified
1964
1965         else
1966            return ANYOF_NONE;
1967         end if;
1968
1969         return Class;
1970      end Parse_Posix_Character_Class;
1971
1972      --  Local Declarations
1973
1974      Result : Pointer;
1975
1976      Expr_Flags : Expression_Flags;
1977      pragma Unreferenced (Expr_Flags);
1978
1979   --  Start of processing for Compile
1980
1981   begin
1982      Parse (False, False, Expr_Flags, Result);
1983
1984      if Result = 0 then
1985         Fail ("Couldn't compile expression");
1986      end if;
1987
1988      Final_Code_Size := Emit_Ptr - 1;
1989
1990      --  Do we want to actually compile the expression, or simply get the
1991      --  code size ???
1992
1993      if Emit_Ptr <= PM.Size then
1994         Optimize (PM);
1995      end if;
1996
1997      PM.Flags := Flags;
1998   end Compile;
1999
2000   function Compile
2001     (Expression : String;
2002      Flags      : Regexp_Flags := No_Flags) return Pattern_Matcher
2003   is
2004      --  Assume the compiled regexp will fit in 1000 chars. If it does not we
2005      --  will have to compile a second time once the correct size is known. If
2006      --  it fits, we save a significant amount of time by avoiding the second
2007      --  compilation.
2008
2009      Dummy : Pattern_Matcher (1000);
2010      Size  : Program_Size;
2011
2012   begin
2013      Compile (Dummy, Expression, Size, Flags);
2014
2015      if Size <= Dummy.Size then
2016         return Pattern_Matcher'
2017           (Size             => Size,
2018            First            => Dummy.First,
2019            Anchored         => Dummy.Anchored,
2020            Must_Have        => Dummy.Must_Have,
2021            Must_Have_Length => Dummy.Must_Have_Length,
2022            Paren_Count      => Dummy.Paren_Count,
2023            Flags            => Dummy.Flags,
2024            Program          =>
2025              Dummy.Program
2026                (Dummy.Program'First .. Dummy.Program'First + Size - 1));
2027      else
2028         --  We have to recompile now that we know the size
2029         --  ??? Can we use Ada 2005's return construct ?
2030
2031         declare
2032            Result : Pattern_Matcher (Size);
2033         begin
2034            Compile (Result, Expression, Size, Flags);
2035            return Result;
2036         end;
2037      end if;
2038   end Compile;
2039
2040   procedure Compile
2041     (Matcher    : out Pattern_Matcher;
2042      Expression : String;
2043      Flags      : Regexp_Flags := No_Flags)
2044   is
2045      Size : Program_Size;
2046
2047   begin
2048      Compile (Matcher, Expression, Size, Flags);
2049
2050      if Size > Matcher.Size then
2051         raise Expression_Error with "Pattern_Matcher is too small";
2052      end if;
2053   end Compile;
2054
2055   --------------------
2056   -- Dump_Operation --
2057   --------------------
2058
2059   procedure Dump_Operation
2060      (Program : Program_Data;
2061       Index   : Pointer;
2062       Indent  : Natural)
2063   is
2064      Current : Pointer := Index;
2065   begin
2066      Dump_Until (Program, Current, Current + 1, Indent);
2067   end Dump_Operation;
2068
2069   ----------------
2070   -- Dump_Until --
2071   ----------------
2072
2073   procedure Dump_Until
2074      (Program  : Program_Data;
2075       Index    : in out Pointer;
2076       Till     : Pointer;
2077       Indent   : Natural;
2078       Do_Print : Boolean := True)
2079   is
2080      function Image (S : String) return String;
2081      --  Remove leading space
2082
2083      -----------
2084      -- Image --
2085      -----------
2086
2087      function Image (S : String) return String is
2088      begin
2089         if S (S'First) = ' ' then
2090            return S (S'First + 1 .. S'Last);
2091         else
2092            return S;
2093         end if;
2094      end Image;
2095
2096      --  Local variables
2097
2098      Op           : Opcode;
2099      Next         : Pointer;
2100      Length       : Pointer;
2101      Local_Indent : Natural := Indent;
2102
2103   --  Start of processing for Dump_Until
2104
2105   begin
2106      while Index < Till loop
2107         Op   := Opcode'Val (Character'Pos ((Program (Index))));
2108         Next := Get_Next (Program, Index);
2109
2110         if Do_Print then
2111            declare
2112               Point   : constant String := Pointer'Image (Index);
2113            begin
2114               Put ((1 .. 4 - Point'Length => ' ')
2115                    & Point & ":"
2116                    & (1 .. Local_Indent * 2 => ' ') & Opcode'Image (Op));
2117            end;
2118
2119            --  Print the parenthesis number
2120
2121            if Op = OPEN or else Op = CLOSE or else Op = REFF then
2122               Put (Image (Natural'Image
2123                            (Character'Pos
2124                               (Program (Index + Next_Pointer_Bytes)))));
2125            end if;
2126
2127            if Next = Index then
2128               Put (" (-)");
2129            else
2130               Put (" (" & Image (Pointer'Image (Next)) & ")");
2131            end if;
2132         end if;
2133
2134         case Op is
2135            when ANYOF =>
2136               declare
2137                  Bitmap       : Character_Class;
2138                  Last         : Character := ASCII.NUL;
2139                  Current      : Natural := 0;
2140                  Current_Char : Character;
2141
2142               begin
2143                  Bitmap_Operand (Program, Index, Bitmap);
2144
2145                  if Do_Print then
2146                     Put ("[");
2147
2148                     while Current <= 255 loop
2149                        Current_Char := Character'Val (Current);
2150
2151                        --  First item in a range
2152
2153                        if Get_From_Class (Bitmap, Current_Char) then
2154                           Last := Current_Char;
2155
2156                           --  Search for the last item in the range
2157
2158                           loop
2159                              Current := Current + 1;
2160                              exit when Current > 255;
2161                              Current_Char := Character'Val (Current);
2162                              exit when
2163                                not Get_From_Class (Bitmap, Current_Char);
2164                           end loop;
2165
2166                           if not Is_Graphic (Last) then
2167                              Put (Last'Img);
2168                           else
2169                              Put (Last);
2170                           end if;
2171
2172                           if Character'Succ (Last) /= Current_Char then
2173                              Put ("\-" & Character'Pred (Current_Char));
2174                           end if;
2175
2176                        else
2177                           Current := Current + 1;
2178                        end if;
2179                     end loop;
2180
2181                     Put_Line ("]");
2182                  end if;
2183
2184                  Index := Index + Next_Pointer_Bytes + Bitmap'Length;
2185               end;
2186
2187            when EXACT | EXACTF =>
2188               Length := String_Length (Program, Index);
2189               if Do_Print then
2190                  Put (" (" & Image (Program_Size'Image (Length + 1))
2191                          & " chars) <"
2192                          & String (Program (String_Operand (Index)
2193                                              .. String_Operand (Index)
2194                                              + Length)));
2195                  Put_Line (">");
2196               end if;
2197
2198               Index := String_Operand (Index) + Length + 1;
2199
2200               --  Node operand
2201
2202            when BRANCH | STAR | PLUS =>
2203               if Do_Print then
2204                  New_Line;
2205               end if;
2206
2207               Index  := Index + Next_Pointer_Bytes;
2208               Dump_Until (Program, Index, Pointer'Min (Next, Till),
2209                           Local_Indent + 1, Do_Print);
2210
2211            when CURLY | CURLYX =>
2212               if Do_Print then
2213                  Put_Line
2214                    (" {"
2215                    & Image (Natural'Image
2216                       (Read_Natural (Program, Index + Next_Pointer_Bytes)))
2217                    & ","
2218                    & Image (Natural'Image (Read_Natural (Program, Index + 5)))
2219                    & "}");
2220               end if;
2221
2222               Index  := Index + 7;
2223               Dump_Until (Program, Index, Pointer'Min (Next, Till),
2224                           Local_Indent + 1, Do_Print);
2225
2226            when OPEN =>
2227               if Do_Print then
2228                  New_Line;
2229               end if;
2230
2231               Index := Index + 4;
2232               Local_Indent := Local_Indent + 1;
2233
2234            when CLOSE | REFF =>
2235               if Do_Print then
2236                  New_Line;
2237               end if;
2238
2239               Index := Index + 4;
2240
2241               if Op = CLOSE then
2242                  Local_Indent := Local_Indent - 1;
2243               end if;
2244
2245            when others =>
2246               Index := Index + Next_Pointer_Bytes;
2247
2248               if Do_Print then
2249                  New_Line;
2250               end if;
2251
2252               exit when Op = EOP;
2253         end case;
2254      end loop;
2255   end Dump_Until;
2256
2257   ----------
2258   -- Dump --
2259   ----------
2260
2261   procedure Dump (Self : Pattern_Matcher) is
2262      Program : Program_Data renames Self.Program;
2263      Index   : Pointer := Program'First;
2264
2265   --  Start of processing for Dump
2266
2267   begin
2268      Put_Line ("Must start with (Self.First) = "
2269                & Character'Image (Self.First));
2270
2271      if (Self.Flags and Case_Insensitive) /= 0 then
2272         Put_Line ("  Case_Insensitive mode");
2273      end if;
2274
2275      if (Self.Flags and Single_Line) /= 0 then
2276         Put_Line ("  Single_Line mode");
2277      end if;
2278
2279      if (Self.Flags and Multiple_Lines) /= 0 then
2280         Put_Line ("  Multiple_Lines mode");
2281      end if;
2282
2283      Dump_Until (Program, Index, Self.Program'Last + 1, 0);
2284   end Dump;
2285
2286   --------------------
2287   -- Get_From_Class --
2288   --------------------
2289
2290   function Get_From_Class
2291     (Bitmap : Character_Class;
2292      C      : Character) return Boolean
2293   is
2294      Value : constant Class_Byte := Character'Pos (C);
2295   begin
2296      return
2297        (Bitmap (Value / 8) and Bit_Conversion (Value mod 8)) /= 0;
2298   end Get_From_Class;
2299
2300   --------------
2301   -- Get_Next --
2302   --------------
2303
2304   function Get_Next (Program : Program_Data; IP : Pointer) return Pointer is
2305   begin
2306      return IP + Pointer (Read_Natural (Program, IP + 1));
2307   end Get_Next;
2308
2309   --------------
2310   -- Is_Alnum --
2311   --------------
2312
2313   function Is_Alnum (C : Character) return Boolean is
2314   begin
2315      return Is_Alphanumeric (C) or else C = '_';
2316   end Is_Alnum;
2317
2318   ------------------
2319   -- Is_Printable --
2320   ------------------
2321
2322   function Is_Printable (C : Character) return Boolean is
2323   begin
2324      --  Printable if space or graphic character or other whitespace
2325      --  Other white space includes (HT/LF/VT/FF/CR = codes 9-13)
2326
2327      return C in Character'Val (32) .. Character'Val (126)
2328        or else C in ASCII.HT .. ASCII.CR;
2329   end Is_Printable;
2330
2331   --------------------
2332   -- Is_White_Space --
2333   --------------------
2334
2335   function Is_White_Space (C : Character) return Boolean is
2336   begin
2337      --  Note: HT = 9, LF = 10, VT = 11, FF = 12, CR = 13
2338
2339      return C = ' ' or else C in ASCII.HT .. ASCII.CR;
2340   end Is_White_Space;
2341
2342   -----------
2343   -- Match --
2344   -----------
2345
2346   procedure Match
2347     (Self       : Pattern_Matcher;
2348      Data       : String;
2349      Matches    : out Match_Array;
2350      Data_First : Integer := -1;
2351      Data_Last  : Positive := Positive'Last)
2352   is
2353      Program : Program_Data renames Self.Program; -- Shorter notation
2354
2355      First_In_Data : constant Integer := Integer'Max (Data_First, Data'First);
2356      Last_In_Data  : constant Integer := Integer'Min (Data_Last, Data'Last);
2357
2358      --  Global work variables
2359
2360      Input_Pos : Natural;           -- String-input pointer
2361      BOL_Pos   : Natural;           -- Beginning of input, for ^ check
2362      Matched   : Boolean := False;  -- Until proven True
2363
2364      Matches_Full : Match_Array (0 .. Natural'Max (Self.Paren_Count,
2365                                                    Matches'Last));
2366      --  Stores the value of all the parenthesis pairs.
2367      --  We do not use directly Matches, so that we can also use back
2368      --  references (REFF) even if Matches is too small.
2369
2370      type Natural_Array is array (Match_Count range <>) of Natural;
2371      Matches_Tmp : Natural_Array (Matches_Full'Range);
2372      --  Save the opening position of parenthesis
2373
2374      Last_Paren  : Natural := 0;
2375      --  Last parenthesis seen
2376
2377      Greedy : Boolean := True;
2378      --  True if the next operator should be greedy
2379
2380      type Current_Curly_Record;
2381      type Current_Curly_Access is access all Current_Curly_Record;
2382      type Current_Curly_Record is record
2383         Paren_Floor : Natural;  --  How far back to strip parenthesis data
2384         Cur         : Integer;  --  How many instances of scan we've matched
2385         Min         : Natural;  --  Minimal number of scans to match
2386         Max         : Natural;  --  Maximal number of scans to match
2387         Greedy      : Boolean;  --  Whether to work our way up or down
2388         Scan        : Pointer;  --  The thing to match
2389         Next        : Pointer;  --  What has to match after it
2390         Lastloc     : Natural;  --  Where we started matching this scan
2391         Old_Cc      : Current_Curly_Access; --  Before we started this one
2392      end record;
2393      --  Data used to handle the curly operator and the plus and star
2394      --  operators for complex expressions.
2395
2396      Current_Curly : Current_Curly_Access := null;
2397      --  The curly currently being processed
2398
2399      -----------------------
2400      -- Local Subprograms --
2401      -----------------------
2402
2403      function Index (Start : Positive; C : Character) return Natural;
2404      --  Find character C in Data starting at Start and return position
2405
2406      function Repeat
2407        (IP  : Pointer;
2408         Max : Natural := Natural'Last) return Natural;
2409      --  Repeatedly match something simple, report how many
2410      --  It only matches on things of length 1.
2411      --  Starting from Input_Pos, it matches at most Max CURLY.
2412
2413      function Try (Pos : Positive) return Boolean;
2414      --  Try to match at specific point
2415
2416      function Match (IP : Pointer) return Boolean;
2417      --  This is the main matching routine. Conceptually the strategy
2418      --  is simple:  check to see whether the current node matches,
2419      --  call self recursively to see whether the rest matches,
2420      --  and then act accordingly.
2421      --
2422      --  In practice Match makes some effort to avoid recursion, in
2423      --  particular by going through "ordinary" nodes (that don't
2424      --  need to know whether the rest of the match failed) by
2425      --  using a loop instead of recursion.
2426      --  Why is the above comment part of the spec rather than body ???
2427
2428      function Match_Whilem return Boolean;
2429      --  Return True if a WHILEM matches the Current_Curly
2430
2431      function Recurse_Match (IP : Pointer; From : Natural) return Boolean;
2432      pragma Inline (Recurse_Match);
2433      --  Calls Match recursively. It saves and restores the parenthesis
2434      --  status and location in the input stream correctly, so that
2435      --  backtracking is possible
2436
2437      function Match_Simple_Operator
2438        (Op     : Opcode;
2439         Scan   : Pointer;
2440         Next   : Pointer;
2441         Greedy : Boolean) return Boolean;
2442      --  Return True it the simple operator (possibly non-greedy) matches
2443
2444      Dump_Indent : Integer := -1;
2445      procedure Dump_Current (Scan : Pointer; Prefix : Boolean := True);
2446      procedure Dump_Error (Msg : String);
2447      --  Debug: print the current context
2448
2449      pragma Inline (Index);
2450      pragma Inline (Repeat);
2451
2452      --  These are two complex functions, but used only once
2453
2454      pragma Inline (Match_Whilem);
2455      pragma Inline (Match_Simple_Operator);
2456
2457      -----------
2458      -- Index --
2459      -----------
2460
2461      function Index (Start : Positive; C : Character) return Natural is
2462      begin
2463         for J in Start .. Last_In_Data loop
2464            if Data (J) = C then
2465               return J;
2466            end if;
2467         end loop;
2468
2469         return 0;
2470      end Index;
2471
2472      -------------------
2473      -- Recurse_Match --
2474      -------------------
2475
2476      function Recurse_Match (IP : Pointer; From : Natural) return Boolean is
2477         L     : constant Natural := Last_Paren;
2478         Tmp_F : constant Match_Array :=
2479                   Matches_Full (From + 1 .. Matches_Full'Last);
2480         Start : constant Natural_Array :=
2481                   Matches_Tmp (From + 1 .. Matches_Tmp'Last);
2482         Input : constant Natural := Input_Pos;
2483
2484         Dump_Indent_Save : constant Integer := Dump_Indent;
2485
2486      begin
2487         if Match (IP) then
2488            return True;
2489         end if;
2490
2491         Last_Paren := L;
2492         Matches_Full (Tmp_F'Range) := Tmp_F;
2493         Matches_Tmp (Start'Range) := Start;
2494         Input_Pos := Input;
2495         Dump_Indent := Dump_Indent_Save;
2496         return False;
2497      end Recurse_Match;
2498
2499      ------------------
2500      -- Dump_Current --
2501      ------------------
2502
2503      procedure Dump_Current (Scan : Pointer; Prefix : Boolean := True) is
2504         Length : constant := 10;
2505         Pos    : constant String := Integer'Image (Input_Pos);
2506
2507      begin
2508         if Prefix then
2509            Put ((1 .. 5 - Pos'Length => ' '));
2510            Put (Pos & " <"
2511                 & Data (Input_Pos
2512                     .. Integer'Min (Last_In_Data, Input_Pos + Length - 1)));
2513            Put ((1 .. Length - 1 - Last_In_Data + Input_Pos => ' '));
2514            Put ("> |");
2515
2516         else
2517            Put ("                    ");
2518         end if;
2519
2520         Dump_Operation (Program, Scan, Indent => Dump_Indent);
2521      end Dump_Current;
2522
2523      ----------------
2524      -- Dump_Error --
2525      ----------------
2526
2527      procedure Dump_Error (Msg : String) is
2528      begin
2529         Put ("                   |     ");
2530         Put ((1 .. Dump_Indent * 2 => ' '));
2531         Put_Line (Msg);
2532      end Dump_Error;
2533
2534      -----------
2535      -- Match --
2536      -----------
2537
2538      function Match (IP : Pointer) return Boolean is
2539         Scan   : Pointer := IP;
2540         Next   : Pointer;
2541         Op     : Opcode;
2542         Result : Boolean;
2543
2544      begin
2545         Dump_Indent := Dump_Indent + 1;
2546
2547         State_Machine :
2548         loop
2549            pragma Assert (Scan /= 0);
2550
2551            --  Determine current opcode and count its usage in debug mode
2552
2553            Op := Opcode'Val (Character'Pos (Program (Scan)));
2554
2555            --  Calculate offset of next instruction. Second character is most
2556            --  significant in Program_Data.
2557
2558            Next := Get_Next (Program, Scan);
2559
2560            if Debug then
2561               Dump_Current (Scan);
2562            end if;
2563
2564            case Op is
2565               when EOP =>
2566                  Dump_Indent := Dump_Indent - 1;
2567                  return True;  --  Success
2568
2569               when BRANCH =>
2570                  if Program (Next) /= BRANCH then
2571                     Next := Operand (Scan); -- No choice, avoid recursion
2572
2573                  else
2574                     loop
2575                        if Recurse_Match (Operand (Scan), 0) then
2576                           Dump_Indent := Dump_Indent - 1;
2577                           return True;
2578                        end if;
2579
2580                        Scan := Get_Next (Program, Scan);
2581                        exit when Scan = 0 or else Program (Scan) /= BRANCH;
2582                     end loop;
2583
2584                     exit State_Machine;
2585                  end if;
2586
2587               when NOTHING =>
2588                  null;
2589
2590               when BOL =>
2591                  exit State_Machine when Input_Pos /= BOL_Pos
2592                    and then ((Self.Flags and Multiple_Lines) = 0
2593                               or else Data (Input_Pos - 1) /= ASCII.LF);
2594
2595               when MBOL =>
2596                  exit State_Machine when Input_Pos /= BOL_Pos
2597                    and then Data (Input_Pos - 1) /= ASCII.LF;
2598
2599               when SBOL =>
2600                  exit State_Machine when Input_Pos /= BOL_Pos;
2601
2602               when EOL =>
2603
2604                  --  A combination of MEOL and SEOL
2605
2606                  if (Self.Flags and Multiple_Lines) = 0 then
2607
2608                     --  Single line mode
2609
2610                     exit State_Machine when Input_Pos <= Data'Last;
2611
2612                  elsif Input_Pos <= Last_In_Data then
2613                     exit State_Machine when Data (Input_Pos) /= ASCII.LF;
2614                  else
2615                     exit State_Machine when Last_In_Data /= Data'Last;
2616                  end if;
2617
2618               when MEOL =>
2619                  if Input_Pos <= Last_In_Data then
2620                     exit State_Machine when Data (Input_Pos) /= ASCII.LF;
2621                  else
2622                     exit State_Machine when Last_In_Data /= Data'Last;
2623                  end if;
2624
2625               when SEOL =>
2626
2627                  --  If there is a character before Data'Last (even if
2628                  --  Last_In_Data stops before then), we can't have the
2629                  --  end of the line.
2630
2631                  exit State_Machine when Input_Pos <= Data'Last;
2632
2633               when BOUND | NBOUND =>
2634
2635                  --  Was last char in word ?
2636
2637                  declare
2638                     N  : Boolean := False;
2639                     Ln : Boolean := False;
2640
2641                  begin
2642                     if Input_Pos /= First_In_Data then
2643                        N := Is_Alnum (Data (Input_Pos - 1));
2644                     end if;
2645
2646                     Ln :=
2647                       (if Input_Pos > Last_In_Data
2648                        then False
2649                        else Is_Alnum (Data (Input_Pos)));
2650
2651                     if Op = BOUND then
2652                        if N = Ln then
2653                           exit State_Machine;
2654                        end if;
2655                     else
2656                        if N /= Ln then
2657                           exit State_Machine;
2658                        end if;
2659                     end if;
2660                  end;
2661
2662               when SPACE =>
2663                  exit State_Machine when Input_Pos > Last_In_Data
2664                    or else not Is_White_Space (Data (Input_Pos));
2665                  Input_Pos := Input_Pos + 1;
2666
2667               when NSPACE =>
2668                  exit State_Machine when Input_Pos > Last_In_Data
2669                    or else Is_White_Space (Data (Input_Pos));
2670                  Input_Pos := Input_Pos + 1;
2671
2672               when DIGIT =>
2673                  exit State_Machine when Input_Pos > Last_In_Data
2674                    or else not Is_Digit (Data (Input_Pos));
2675                  Input_Pos := Input_Pos + 1;
2676
2677               when NDIGIT =>
2678                  exit State_Machine when Input_Pos > Last_In_Data
2679                    or else Is_Digit (Data (Input_Pos));
2680                  Input_Pos := Input_Pos + 1;
2681
2682               when ALNUM =>
2683                  exit State_Machine when Input_Pos > Last_In_Data
2684                    or else not Is_Alnum (Data (Input_Pos));
2685                  Input_Pos := Input_Pos + 1;
2686
2687               when NALNUM =>
2688                  exit State_Machine when Input_Pos > Last_In_Data
2689                    or else Is_Alnum (Data (Input_Pos));
2690                  Input_Pos := Input_Pos + 1;
2691
2692               when ANY =>
2693                  exit State_Machine when Input_Pos > Last_In_Data
2694                    or else Data (Input_Pos) = ASCII.LF;
2695                  Input_Pos := Input_Pos + 1;
2696
2697               when SANY =>
2698                  exit State_Machine when Input_Pos > Last_In_Data;
2699                  Input_Pos := Input_Pos + 1;
2700
2701               when EXACT =>
2702                  declare
2703                     Opnd    : Pointer  := String_Operand (Scan);
2704                     Current : Positive := Input_Pos;
2705                     Last    : constant Pointer :=
2706                                 Opnd + String_Length (Program, Scan);
2707
2708                  begin
2709                     while Opnd <= Last loop
2710                        exit State_Machine when Current > Last_In_Data
2711                          or else Program (Opnd) /= Data (Current);
2712                        Current := Current + 1;
2713                        Opnd := Opnd + 1;
2714                     end loop;
2715
2716                     Input_Pos := Current;
2717                  end;
2718
2719               when EXACTF =>
2720                  declare
2721                     Opnd    : Pointer  := String_Operand (Scan);
2722                     Current : Positive := Input_Pos;
2723
2724                     Last : constant Pointer :=
2725                              Opnd + String_Length (Program, Scan);
2726
2727                  begin
2728                     while Opnd <= Last loop
2729                        exit State_Machine when Current > Last_In_Data
2730                          or else Program (Opnd) /= To_Lower (Data (Current));
2731                        Current := Current + 1;
2732                        Opnd := Opnd + 1;
2733                     end loop;
2734
2735                     Input_Pos := Current;
2736                  end;
2737
2738               when ANYOF =>
2739                  declare
2740                     Bitmap : Character_Class;
2741                  begin
2742                     Bitmap_Operand (Program, Scan, Bitmap);
2743                     exit State_Machine when Input_Pos > Last_In_Data
2744                       or else not Get_From_Class (Bitmap, Data (Input_Pos));
2745                     Input_Pos := Input_Pos + 1;
2746                  end;
2747
2748               when OPEN =>
2749                  declare
2750                     No : constant Natural :=
2751                            Character'Pos (Program (Operand (Scan)));
2752                  begin
2753                     Matches_Tmp (No) := Input_Pos;
2754                  end;
2755
2756               when CLOSE =>
2757                  declare
2758                     No : constant Natural :=
2759                            Character'Pos (Program (Operand (Scan)));
2760
2761                  begin
2762                     Matches_Full (No) := (Matches_Tmp (No), Input_Pos - 1);
2763
2764                     if Last_Paren < No then
2765                        Last_Paren := No;
2766                     end if;
2767                  end;
2768
2769               when REFF =>
2770                  declare
2771                     No : constant Natural :=
2772                            Character'Pos (Program (Operand (Scan)));
2773
2774                     Data_Pos : Natural;
2775
2776                  begin
2777                     --  If we haven't seen that parenthesis yet
2778
2779                     if Last_Paren < No then
2780                        Dump_Indent := Dump_Indent - 1;
2781
2782                        if Debug then
2783                           Dump_Error ("REFF: No match, backtracking");
2784                        end if;
2785
2786                        return False;
2787                     end if;
2788
2789                     Data_Pos := Matches_Full (No).First;
2790
2791                     while Data_Pos <= Matches_Full (No).Last loop
2792                        if Input_Pos > Last_In_Data
2793                          or else Data (Input_Pos) /= Data (Data_Pos)
2794                        then
2795                           Dump_Indent := Dump_Indent - 1;
2796
2797                           if Debug then
2798                              Dump_Error ("REFF: No match, backtracking");
2799                           end if;
2800
2801                           return False;
2802                        end if;
2803
2804                        Input_Pos := Input_Pos + 1;
2805                        Data_Pos := Data_Pos + 1;
2806                     end loop;
2807                  end;
2808
2809               when MINMOD =>
2810                  Greedy := False;
2811
2812               when STAR | PLUS | CURLY =>
2813                  declare
2814                     Greed : constant Boolean := Greedy;
2815                  begin
2816                     Greedy := True;
2817                     Result := Match_Simple_Operator (Op, Scan, Next, Greed);
2818                     Dump_Indent := Dump_Indent - 1;
2819                     return Result;
2820                  end;
2821
2822               when CURLYX =>
2823
2824                  --  Looking at something like:
2825
2826                  --    1: CURLYX {n,m}  (->4)
2827                  --    2:   code for complex thing  (->3)
2828                  --    3:   WHILEM (->0)
2829                  --    4: NOTHING
2830
2831                  declare
2832                     Min : constant Natural :=
2833                             Read_Natural (Program, Scan + Next_Pointer_Bytes);
2834                     Max : constant Natural :=
2835                             Read_Natural
2836                                (Program, Scan + Next_Pointer_Bytes + 2);
2837                     Cc  : aliased Current_Curly_Record;
2838
2839                     Has_Match : Boolean;
2840
2841                  begin
2842                     Cc := (Paren_Floor => Last_Paren,
2843                            Cur         => -1,
2844                            Min         => Min,
2845                            Max         => Max,
2846                            Greedy      => Greedy,
2847                            Scan        => Scan + 7,
2848                            Next        => Next,
2849                            Lastloc     => 0,
2850                            Old_Cc      => Current_Curly);
2851                     Greedy := True;
2852                     Current_Curly := Cc'Unchecked_Access;
2853
2854                     Has_Match := Match (Next - Next_Pointer_Bytes);
2855
2856                     --  Start on the WHILEM
2857
2858                     Current_Curly := Cc.Old_Cc;
2859                     Dump_Indent := Dump_Indent - 1;
2860
2861                     if not Has_Match then
2862                        if Debug then
2863                           Dump_Error ("CURLYX failed...");
2864                        end if;
2865                     end if;
2866
2867                     return Has_Match;
2868                  end;
2869
2870               when WHILEM =>
2871                  Result := Match_Whilem;
2872                  Dump_Indent := Dump_Indent - 1;
2873
2874                  if Debug and then not Result then
2875                     Dump_Error ("WHILEM: no match, backtracking");
2876                  end if;
2877
2878                  return Result;
2879            end case;
2880
2881            Scan := Next;
2882         end loop State_Machine;
2883
2884         if Debug then
2885            Dump_Error ("failed...");
2886            Dump_Indent := Dump_Indent - 1;
2887         end if;
2888
2889         --  If we get here, there is no match. For successful matches when EOP
2890         --  is the terminating point.
2891
2892         return False;
2893      end Match;
2894
2895      ---------------------------
2896      -- Match_Simple_Operator --
2897      ---------------------------
2898
2899      function Match_Simple_Operator
2900        (Op     : Opcode;
2901         Scan   : Pointer;
2902         Next   : Pointer;
2903         Greedy : Boolean) return Boolean
2904      is
2905         Next_Char       : Character := ASCII.NUL;
2906         Next_Char_Known : Boolean := False;
2907         No              : Integer;  --  Can be negative
2908         Min             : Natural;
2909         Max             : Natural := Natural'Last;
2910         Operand_Code    : Pointer;
2911         Old             : Natural;
2912         Last_Pos        : Natural;
2913         Save            : constant Natural := Input_Pos;
2914
2915      begin
2916         --  Lookahead to avoid useless match attempts when we know what
2917         --  character comes next.
2918
2919         if Program (Next) = EXACT then
2920            Next_Char := Program (String_Operand (Next));
2921            Next_Char_Known := True;
2922         end if;
2923
2924         --  Find the minimal and maximal values for the operator
2925
2926         case Op is
2927            when STAR =>
2928               Min := 0;
2929               Operand_Code := Operand (Scan);
2930
2931            when PLUS =>
2932               Min := 1;
2933               Operand_Code := Operand (Scan);
2934
2935            when others =>
2936               Min := Read_Natural (Program, Scan + Next_Pointer_Bytes);
2937               Max := Read_Natural (Program, Scan + Next_Pointer_Bytes + 2);
2938               Operand_Code := Scan + 7;
2939         end case;
2940
2941         if Debug then
2942            Dump_Current (Operand_Code, Prefix => False);
2943         end if;
2944
2945         --  Non greedy operators
2946
2947         if not Greedy then
2948
2949            --  Test we can repeat at least Min times
2950
2951            if Min /= 0 then
2952               No := Repeat (Operand_Code, Min);
2953
2954               if No < Min then
2955                  if Debug then
2956                     Dump_Error ("failed... matched" & No'Img & " times");
2957                  end if;
2958
2959                  return False;
2960               end if;
2961            end if;
2962
2963            Old := Input_Pos;
2964
2965            --  Find the place where 'next' could work
2966
2967            if Next_Char_Known then
2968
2969               --  Last position to check
2970
2971               if Max = Natural'Last then
2972                  Last_Pos := Last_In_Data;
2973               else
2974                  Last_Pos := Input_Pos + Max;
2975
2976                  if Last_Pos > Last_In_Data then
2977                     Last_Pos := Last_In_Data;
2978                  end if;
2979               end if;
2980
2981               --  Look for the first possible opportunity
2982
2983               if Debug then
2984                  Dump_Error ("Next_Char must be " & Next_Char);
2985               end if;
2986
2987               loop
2988                  --  Find the next possible position
2989
2990                  while Input_Pos <= Last_Pos
2991                    and then Data (Input_Pos) /= Next_Char
2992                  loop
2993                     Input_Pos := Input_Pos + 1;
2994                  end loop;
2995
2996                  if Input_Pos > Last_Pos then
2997                     return False;
2998                  end if;
2999
3000                  --  Check that we still match if we stop at the position we
3001                  --  just found.
3002
3003                  declare
3004                     Num : constant Natural := Input_Pos - Old;
3005
3006                  begin
3007                     Input_Pos := Old;
3008
3009                     if Debug then
3010                        Dump_Error ("Would we still match at that position?");
3011                     end if;
3012
3013                     if Repeat (Operand_Code, Num) < Num then
3014                        return False;
3015                     end if;
3016                  end;
3017
3018                  --  Input_Pos now points to the new position
3019
3020                  if Match (Get_Next (Program, Scan)) then
3021                     return True;
3022                  end if;
3023
3024                  Old := Input_Pos;
3025                  Input_Pos := Input_Pos + 1;
3026               end loop;
3027
3028            --  We do not know what the next character is
3029
3030            else
3031               while Max >= Min loop
3032                  if Debug then
3033                     Dump_Error ("Non-greedy repeat, N=" & Min'Img);
3034                     Dump_Error ("Do we still match Next if we stop here?");
3035                  end if;
3036
3037                  --  If the next character matches
3038
3039                  if Recurse_Match (Next, 1) then
3040                     return True;
3041                  end if;
3042
3043                  Input_Pos := Save + Min;
3044
3045                  --  Could not or did not match -- move forward
3046
3047                  if Repeat (Operand_Code, 1) /= 0 then
3048                     Min := Min + 1;
3049                  else
3050                     if Debug then
3051                        Dump_Error ("Non-greedy repeat failed...");
3052                     end if;
3053
3054                     return False;
3055                  end if;
3056               end loop;
3057            end if;
3058
3059            return False;
3060
3061         --  Greedy operators
3062
3063         else
3064            No := Repeat (Operand_Code, Max);
3065
3066            if Debug and then No < Min then
3067               Dump_Error ("failed... matched" & No'Img & " times");
3068            end if;
3069
3070            --  ??? Perl has some special code here in case the next
3071            --  instruction is of type EOL, since $ and \Z can match before
3072            --  *and* after newline at the end.
3073
3074            --  ??? Perl has some special code here in case (paren) is True
3075
3076            --  Else, if we don't have any parenthesis
3077
3078            while No >= Min loop
3079               if not Next_Char_Known
3080                 or else (Input_Pos <= Last_In_Data
3081                           and then Data (Input_Pos) = Next_Char)
3082               then
3083                  if Match (Next) then
3084                     return True;
3085                  end if;
3086               end if;
3087
3088               --  Could not or did not work, we back up
3089
3090               No := No - 1;
3091               Input_Pos := Save + No;
3092            end loop;
3093
3094            return False;
3095         end if;
3096      end Match_Simple_Operator;
3097
3098      ------------------
3099      -- Match_Whilem --
3100      ------------------
3101
3102      --  This is really hard to understand, because after we match what we
3103      --  are trying to match, we must make sure the rest of the REx is going
3104      --  to match for sure, and to do that we have to go back UP the parse
3105      --  tree by recursing ever deeper.  And if it fails, we have to reset
3106      --  our parent's current state that we can try again after backing off.
3107
3108      function Match_Whilem return Boolean is
3109         Cc : constant Current_Curly_Access := Current_Curly;
3110
3111         N  : constant Natural              := Cc.Cur + 1;
3112         Ln : Natural                       := 0;
3113
3114         Lastloc : constant Natural := Cc.Lastloc;
3115         --  Detection of 0-len
3116
3117      begin
3118         --  If degenerate scan matches "", assume scan done
3119
3120         if Input_Pos = Cc.Lastloc
3121           and then N >= Cc.Min
3122         then
3123            --  Temporarily restore the old context, and check that we
3124            --  match was comes after CURLYX.
3125
3126            Current_Curly := Cc.Old_Cc;
3127
3128            if Current_Curly /= null then
3129               Ln := Current_Curly.Cur;
3130            end if;
3131
3132            if Match (Cc.Next) then
3133               return True;
3134            end if;
3135
3136            if Current_Curly /= null then
3137               Current_Curly.Cur := Ln;
3138            end if;
3139
3140            Current_Curly := Cc;
3141            return False;
3142         end if;
3143
3144         --  First, just match a string of min scans
3145
3146         if N < Cc.Min then
3147            Cc.Cur := N;
3148            Cc.Lastloc := Input_Pos;
3149
3150            if Debug then
3151               Dump_Error
3152                 ("Tests that we match at least" & Cc.Min'Img & " N=" & N'Img);
3153            end if;
3154
3155            if Match (Cc.Scan) then
3156               return True;
3157            end if;
3158
3159            Cc.Cur := N - 1;
3160            Cc.Lastloc := Lastloc;
3161
3162            if Debug then
3163               Dump_Error ("failed...");
3164            end if;
3165
3166            return False;
3167         end if;
3168
3169         --  Prefer next over scan for minimal matching
3170
3171         if not Cc.Greedy then
3172            Current_Curly := Cc.Old_Cc;
3173
3174            if Current_Curly /= null then
3175               Ln := Current_Curly.Cur;
3176            end if;
3177
3178            if Recurse_Match (Cc.Next, Cc.Paren_Floor) then
3179               return True;
3180            end if;
3181
3182            if Current_Curly /= null then
3183               Current_Curly.Cur := Ln;
3184            end if;
3185
3186            Current_Curly := Cc;
3187
3188            --  Maximum greed exceeded ?
3189
3190            if N >= Cc.Max then
3191               if Debug then
3192                  Dump_Error ("failed...");
3193               end if;
3194               return False;
3195            end if;
3196
3197            --  Try scanning more and see if it helps
3198            Cc.Cur := N;
3199            Cc.Lastloc := Input_Pos;
3200
3201            if Debug then
3202               Dump_Error ("Next failed, what about Current?");
3203            end if;
3204
3205            if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3206               return True;
3207            end if;
3208
3209            Cc.Cur := N - 1;
3210            Cc.Lastloc := Lastloc;
3211            return False;
3212         end if;
3213
3214         --  Prefer scan over next for maximal matching
3215
3216         if N < Cc.Max then   --  more greed allowed ?
3217            Cc.Cur := N;
3218            Cc.Lastloc := Input_Pos;
3219
3220            if Debug then
3221               Dump_Error ("Recurse at current position");
3222            end if;
3223
3224            if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3225               return True;
3226            end if;
3227         end if;
3228
3229         --  Failed deeper matches of scan, so see if this one works
3230
3231         Current_Curly := Cc.Old_Cc;
3232
3233         if Current_Curly /= null then
3234            Ln := Current_Curly.Cur;
3235         end if;
3236
3237         if Debug then
3238            Dump_Error ("Failed matching for later positions");
3239         end if;
3240
3241         if Match (Cc.Next) then
3242            return True;
3243         end if;
3244
3245         if Current_Curly /= null then
3246            Current_Curly.Cur := Ln;
3247         end if;
3248
3249         Current_Curly := Cc;
3250         Cc.Cur := N - 1;
3251         Cc.Lastloc := Lastloc;
3252
3253         if Debug then
3254            Dump_Error ("failed...");
3255         end if;
3256
3257         return False;
3258      end Match_Whilem;
3259
3260      ------------
3261      -- Repeat --
3262      ------------
3263
3264      function Repeat
3265        (IP  : Pointer;
3266         Max : Natural := Natural'Last) return Natural
3267      is
3268         Scan   : Natural := Input_Pos;
3269         Last   : Natural;
3270         Op     : constant Opcode :=
3271           Opcode'Val (Character'Pos (Program (IP)));
3272         Count  : Natural;
3273         C      : Character;
3274         Bitmap : Character_Class;
3275
3276      begin
3277         if Max = Natural'Last or else Scan + Max - 1 > Last_In_Data then
3278            Last := Last_In_Data;
3279         else
3280            Last := Scan + Max - 1;
3281         end if;
3282
3283         case Op is
3284            when ANY =>
3285               while Scan <= Last
3286                 and then Data (Scan) /= ASCII.LF
3287               loop
3288                  Scan := Scan + 1;
3289               end loop;
3290
3291            when SANY =>
3292               Scan := Last + 1;
3293
3294            when EXACT =>
3295
3296               --  The string has only one character if Repeat was called
3297
3298               C := Program (String_Operand (IP));
3299               while Scan <= Last
3300                 and then C = Data (Scan)
3301               loop
3302                  Scan := Scan + 1;
3303               end loop;
3304
3305            when EXACTF =>
3306
3307               --  The string has only one character if Repeat was called
3308
3309               C := Program (String_Operand (IP));
3310               while Scan <= Last
3311                 and then To_Lower (C) = Data (Scan)
3312               loop
3313                  Scan := Scan + 1;
3314               end loop;
3315
3316            when ANYOF =>
3317               Bitmap_Operand (Program, IP, Bitmap);
3318
3319               while Scan <= Last
3320                 and then Get_From_Class (Bitmap, Data (Scan))
3321               loop
3322                  Scan := Scan + 1;
3323               end loop;
3324
3325            when ALNUM =>
3326               while Scan <= Last
3327                 and then Is_Alnum (Data (Scan))
3328               loop
3329                  Scan := Scan + 1;
3330               end loop;
3331
3332            when NALNUM =>
3333               while Scan <= Last
3334                 and then not Is_Alnum (Data (Scan))
3335               loop
3336                  Scan := Scan + 1;
3337               end loop;
3338
3339            when SPACE =>
3340               while Scan <= Last
3341                 and then Is_White_Space (Data (Scan))
3342               loop
3343                  Scan := Scan + 1;
3344               end loop;
3345
3346            when NSPACE =>
3347               while Scan <= Last
3348                 and then not Is_White_Space (Data (Scan))
3349               loop
3350                  Scan := Scan + 1;
3351               end loop;
3352
3353            when DIGIT  =>
3354               while Scan <= Last
3355                 and then Is_Digit (Data (Scan))
3356               loop
3357                  Scan := Scan + 1;
3358               end loop;
3359
3360            when NDIGIT  =>
3361               while Scan <= Last
3362                 and then not Is_Digit (Data (Scan))
3363               loop
3364                  Scan := Scan + 1;
3365               end loop;
3366
3367            when others =>
3368               raise Program_Error;
3369         end case;
3370
3371         Count := Scan - Input_Pos;
3372         Input_Pos := Scan;
3373         return Count;
3374      end Repeat;
3375
3376      ---------
3377      -- Try --
3378      ---------
3379
3380      function Try (Pos : Positive) return Boolean is
3381      begin
3382         Input_Pos  := Pos;
3383         Last_Paren := 0;
3384         Matches_Full := (others => No_Match);
3385
3386         if Match (Program_First) then
3387            Matches_Full (0) := (Pos, Input_Pos - 1);
3388            return True;
3389         end if;
3390
3391         return False;
3392      end Try;
3393
3394   --  Start of processing for Match
3395
3396   begin
3397      --  Do we have the regexp Never_Match?
3398
3399      if Self.Size = 0 then
3400         Matches := (others => No_Match);
3401         return;
3402      end if;
3403
3404      --  If there is a "must appear" string, look for it
3405
3406      if Self.Must_Have_Length > 0 then
3407         declare
3408            First      : constant Character := Program (Self.Must_Have);
3409            Must_First : constant Pointer := Self.Must_Have;
3410            Must_Last  : constant Pointer :=
3411                           Must_First + Pointer (Self.Must_Have_Length - 1);
3412            Next_Try   : Natural := Index (First_In_Data, First);
3413
3414         begin
3415            while Next_Try /= 0
3416              and then Data (Next_Try .. Next_Try + Self.Must_Have_Length - 1)
3417                          = String (Program (Must_First .. Must_Last))
3418            loop
3419               Next_Try := Index (Next_Try + 1, First);
3420            end loop;
3421
3422            if Next_Try = 0 then
3423               Matches := (others => No_Match);
3424               return;                  -- Not present
3425            end if;
3426         end;
3427      end if;
3428
3429      --  Mark beginning of line for ^
3430
3431      BOL_Pos := Data'First;
3432
3433      --  Simplest case first: an anchored match need be tried only once
3434
3435      if Self.Anchored and then (Self.Flags and Multiple_Lines) = 0 then
3436         Matched := Try (First_In_Data);
3437
3438      elsif Self.Anchored then
3439         declare
3440            Next_Try : Natural := First_In_Data;
3441         begin
3442            --  Test the first position in the buffer
3443            Matched := Try (Next_Try);
3444
3445            --  Else only test after newlines
3446
3447            if not Matched then
3448               while Next_Try <= Last_In_Data loop
3449                  while Next_Try <= Last_In_Data
3450                    and then Data (Next_Try) /= ASCII.LF
3451                  loop
3452                     Next_Try := Next_Try + 1;
3453                  end loop;
3454
3455                  Next_Try := Next_Try + 1;
3456
3457                  if Next_Try <= Last_In_Data then
3458                     Matched := Try (Next_Try);
3459                     exit when Matched;
3460                  end if;
3461               end loop;
3462            end if;
3463         end;
3464
3465      elsif Self.First /= ASCII.NUL then
3466         --  We know what char it must start with
3467
3468         declare
3469            Next_Try : Natural := Index (First_In_Data, Self.First);
3470
3471         begin
3472            while Next_Try /= 0 loop
3473               Matched := Try (Next_Try);
3474               exit when Matched;
3475               Next_Try := Index (Next_Try + 1, Self.First);
3476            end loop;
3477         end;
3478
3479      else
3480         --  Messy cases: try all locations (including for the empty string)
3481
3482         Matched := Try (First_In_Data);
3483
3484         if not Matched then
3485            for S in First_In_Data + 1 .. Last_In_Data loop
3486               Matched := Try (S);
3487               exit when Matched;
3488            end loop;
3489         end if;
3490      end if;
3491
3492      --  Matched has its value
3493
3494      for J in Last_Paren + 1 .. Matches'Last loop
3495         Matches_Full (J) := No_Match;
3496      end loop;
3497
3498      Matches := Matches_Full (Matches'Range);
3499   end Match;
3500
3501   -----------
3502   -- Match --
3503   -----------
3504
3505   function Match
3506     (Self       : Pattern_Matcher;
3507      Data       : String;
3508      Data_First : Integer := -1;
3509      Data_Last  : Positive := Positive'Last) return Natural
3510   is
3511      Matches : Match_Array (0 .. 0);
3512
3513   begin
3514      Match (Self, Data, Matches, Data_First, Data_Last);
3515      if Matches (0) = No_Match then
3516         return Data'First - 1;
3517      else
3518         return Matches (0).First;
3519      end if;
3520   end Match;
3521
3522   function Match
3523     (Self       : Pattern_Matcher;
3524      Data       : String;
3525      Data_First : Integer  := -1;
3526      Data_Last  : Positive := Positive'Last) return Boolean
3527   is
3528      Matches : Match_Array (0 .. 0);
3529
3530   begin
3531      Match (Self, Data, Matches, Data_First, Data_Last);
3532      return Matches (0).First >= Data'First;
3533   end Match;
3534
3535   procedure Match
3536     (Expression : String;
3537      Data       : String;
3538      Matches    : out Match_Array;
3539      Size       : Program_Size := Auto_Size;
3540      Data_First : Integer      := -1;
3541      Data_Last  : Positive     := Positive'Last)
3542   is
3543      PM            : Pattern_Matcher (Size);
3544      Finalize_Size : Program_Size;
3545      pragma Unreferenced (Finalize_Size);
3546   begin
3547      if Size = 0 then
3548         Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3549      else
3550         Compile (PM, Expression, Finalize_Size);
3551         Match (PM, Data, Matches, Data_First, Data_Last);
3552      end if;
3553   end Match;
3554
3555   -----------
3556   -- Match --
3557   -----------
3558
3559   function Match
3560     (Expression : String;
3561      Data       : String;
3562      Size       : Program_Size := Auto_Size;
3563      Data_First : Integer      := -1;
3564      Data_Last  : Positive     := Positive'Last) return Natural
3565   is
3566      PM         : Pattern_Matcher (Size);
3567      Final_Size : Program_Size;
3568      pragma Unreferenced (Final_Size);
3569   begin
3570      if Size = 0 then
3571         return Match (Compile (Expression), Data, Data_First, Data_Last);
3572      else
3573         Compile (PM, Expression, Final_Size);
3574         return Match (PM, Data, Data_First, Data_Last);
3575      end if;
3576   end Match;
3577
3578   -----------
3579   -- Match --
3580   -----------
3581
3582   function  Match
3583     (Expression : String;
3584      Data       : String;
3585      Size       : Program_Size := Auto_Size;
3586      Data_First : Integer      := -1;
3587      Data_Last  : Positive     := Positive'Last) return Boolean
3588   is
3589      Matches    : Match_Array (0 .. 0);
3590      PM         : Pattern_Matcher (Size);
3591      Final_Size : Program_Size;
3592      pragma Unreferenced (Final_Size);
3593   begin
3594      if Size = 0 then
3595         Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3596      else
3597         Compile (PM, Expression, Final_Size);
3598         Match (PM, Data, Matches, Data_First, Data_Last);
3599      end if;
3600
3601      return Matches (0).First >= Data'First;
3602   end Match;
3603
3604   -------------
3605   -- Operand --
3606   -------------
3607
3608   function Operand (P : Pointer) return Pointer is
3609   begin
3610      return P + Next_Pointer_Bytes;
3611   end Operand;
3612
3613   --------------
3614   -- Optimize --
3615   --------------
3616
3617   procedure Optimize (Self : in out Pattern_Matcher) is
3618      Scan    : Pointer;
3619      Program : Program_Data renames Self.Program;
3620
3621   begin
3622      --  Start with safe defaults (no optimization):
3623      --    *  No known first character of match
3624      --    *  Does not necessarily start at beginning of line
3625      --    *  No string known that has to appear in data
3626
3627      Self.First := ASCII.NUL;
3628      Self.Anchored := False;
3629      Self.Must_Have := Program'Last + 1;
3630      Self.Must_Have_Length := 0;
3631
3632      Scan := Program_First;  --  First instruction (can be anything)
3633
3634      if Program (Scan) = EXACT then
3635         Self.First := Program (String_Operand (Scan));
3636
3637      elsif Program (Scan) = BOL
3638        or else Program (Scan) = SBOL
3639        or else Program (Scan) = MBOL
3640      then
3641         Self.Anchored := True;
3642      end if;
3643   end Optimize;
3644
3645   -----------------
3646   -- Paren_Count --
3647   -----------------
3648
3649   function Paren_Count (Regexp : Pattern_Matcher) return Match_Count is
3650   begin
3651      return Regexp.Paren_Count;
3652   end Paren_Count;
3653
3654   -----------
3655   -- Quote --
3656   -----------
3657
3658   function Quote (Str : String) return String is
3659      S    : String (1 .. Str'Length * 2);
3660      Last : Natural := 0;
3661
3662   begin
3663      for J in Str'Range loop
3664         case Str (J) is
3665            when '^' | '$' | '|' | '*' | '+' | '?' | '{' |
3666                 '}' | '[' | ']' | '(' | ')' | '\' | '.' =>
3667
3668               S (Last + 1) := '\';
3669               S (Last + 2) := Str (J);
3670               Last := Last + 2;
3671
3672            when others =>
3673               S (Last + 1) := Str (J);
3674               Last := Last + 1;
3675         end case;
3676      end loop;
3677
3678      return S (1 .. Last);
3679   end Quote;
3680
3681   ------------------
3682   -- Read_Natural --
3683   ------------------
3684
3685   function Read_Natural
3686     (Program : Program_Data;
3687      IP      : Pointer) return Natural
3688   is
3689   begin
3690      return Character'Pos (Program (IP)) +
3691               256 * Character'Pos (Program (IP + 1));
3692   end Read_Natural;
3693
3694   -----------------
3695   -- Reset_Class --
3696   -----------------
3697
3698   procedure Reset_Class (Bitmap : out Character_Class) is
3699   begin
3700      Bitmap := (others => 0);
3701   end Reset_Class;
3702
3703   ------------------
3704   -- Set_In_Class --
3705   ------------------
3706
3707   procedure Set_In_Class
3708     (Bitmap : in out Character_Class;
3709      C      : Character)
3710   is
3711      Value : constant Class_Byte := Character'Pos (C);
3712   begin
3713      Bitmap (Value / 8) := Bitmap (Value / 8)
3714        or Bit_Conversion (Value mod 8);
3715   end Set_In_Class;
3716
3717   -------------------
3718   -- String_Length --
3719   -------------------
3720
3721   function String_Length
3722     (Program : Program_Data;
3723      P       : Pointer) return Program_Size
3724   is
3725   begin
3726      pragma Assert (Program (P) = EXACT or else Program (P) = EXACTF);
3727      return Character'Pos (Program (P + Next_Pointer_Bytes));
3728   end String_Length;
3729
3730   --------------------
3731   -- String_Operand --
3732   --------------------
3733
3734   function String_Operand (P : Pointer) return Pointer is
3735   begin
3736      return P + 4;
3737   end String_Operand;
3738
3739end System.Regpat;
3740