1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2    Copyright (C) 1992-2021 Free Software Foundation, Inc.
3    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    Under Section 7 of GPL version 3, you are granted additional
18    permissions described in the GCC Runtime Library Exception, version
19    3.1, as published by the Free Software Foundation.
20 
21    You should have received a copy of the GNU General Public License and
22    a copy of the GCC Runtime Library Exception along with this program;
23    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24    <http://www.gnu.org/licenses/>.  */
25 
26 /* Note that some other tm.h files include this one and then override
27    many of the definitions.  */
28 
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32 
33 /* 128-bit floating point precision values.  */
34 #ifndef RS6000_MODES_H
35 #include "config/rs6000/rs6000-modes.h"
36 #endif
37 
38 /* Definitions for the object file format.  These are set at
39    compile-time.  */
40 
41 #define OBJECT_XCOFF 1
42 #define OBJECT_ELF 2
43 #define OBJECT_MACHO 4
44 
45 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
46 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
47 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
48 
49 #ifndef TARGET_AIX
50 #define TARGET_AIX 0
51 #endif
52 
53 #ifndef TARGET_AIX_OS
54 #define TARGET_AIX_OS 0
55 #endif
56 
57 /* Turn off TOC support if pc-relative addressing is used.  */
58 #define TARGET_TOC             (TARGET_HAS_TOC && !TARGET_PCREL)
59 
60 /* On 32-bit systems without a TOC or pc-relative addressing, we need to use
61    ADDIS/ADDI to load up the address of a symbol.  */
62 #define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL)
63 
64 /* Control whether function entry points use a "dot" symbol when
65    ABI_AIX.  */
66 #define DOT_SYMBOLS 1
67 
68 /* Default string to use for cpu if not specified.  */
69 #ifndef TARGET_CPU_DEFAULT
70 #define TARGET_CPU_DEFAULT ((char *)0)
71 #endif
72 
73 /* If configured for PPC405, support PPC405CR Erratum77.  */
74 #ifdef CONFIG_PPC405CR
75 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
76 #else
77 #define PPC405_ERRATUM77 0
78 #endif
79 
80 #ifndef SUBTARGET_DRIVER_SELF_SPECS
81 # define SUBTARGET_DRIVER_SELF_SPECS ""
82 #endif
83 
84 /* Only for use in the testsuite: -mdejagnu-cpu= simply overrides -mcpu=.
85    With older versions of Dejagnu the command line arguments you set in
86    RUNTESTFLAGS override those set in the testcases; with this option,
87    the testcase will always win.  Ditto for -mdejagnu-tune=.  */
88 #define DRIVER_SELF_SPECS \
89   "%{mdejagnu-cpu=*: %<mcpu=* -mcpu=%*}", \
90   "%{mdejagnu-tune=*: %<mtune=* -mtune=%*}", \
91   "%{mdejagnu-*: %<mdejagnu-*}", \
92    SUBTARGET_DRIVER_SELF_SPECS
93 
94 #if CHECKING_P
95 #define ASM_OPT_ANY ""
96 #else
97 #define ASM_OPT_ANY " -many"
98 #endif
99 
100 /* Common ASM definitions used by ASM_SPEC among the various targets for
101    handling -mcpu=xxx switches.  There is a parallel list in driver-rs6000.c to
102    provide the default assembler options if the user uses -mcpu=native, so if
103    you make changes here, make them also there.  PR63177: Do not pass -mpower8
104    to the assembler if -mpower9-vector was also used.  */
105 #define ASM_CPU_SPEC \
106 "%{mcpu=native: %(asm_cpu_native); \
107   mcpu=power10: -mpower10; \
108   mcpu=power9: -mpower9; \
109   mcpu=power8|mcpu=powerpc64le: %{mpower9-vector: -mpower9;: -mpower8}; \
110   mcpu=power7: -mpower7; \
111   mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
112   mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
113   mcpu=power5+: -mpower5; \
114   mcpu=power5: -mpower5; \
115   mcpu=power4: -mpower4; \
116   mcpu=power3: -mppc64; \
117   mcpu=powerpc: -mppc; \
118   mcpu=powerpc64: -mppc64; \
119   mcpu=a2: -ma2; \
120   mcpu=cell: -mcell; \
121   mcpu=rs64: -mppc64; \
122   mcpu=401: -mppc; \
123   mcpu=403: -m403; \
124   mcpu=405: -m405; \
125   mcpu=405fp: -m405; \
126   mcpu=440: -m440; \
127   mcpu=440fp: -m440; \
128   mcpu=464: -m440; \
129   mcpu=464fp: -m440; \
130   mcpu=476: -m476; \
131   mcpu=476fp: -m476; \
132   mcpu=505: -mppc; \
133   mcpu=601: -m601; \
134   mcpu=602: -mppc; \
135   mcpu=603: -mppc; \
136   mcpu=603e: -mppc; \
137   mcpu=ec603e: -mppc; \
138   mcpu=604: -mppc; \
139   mcpu=604e: -mppc; \
140   mcpu=620: -mppc64; \
141   mcpu=630: -mppc64; \
142   mcpu=740: -mppc; \
143   mcpu=750: -mppc; \
144   mcpu=G3: -mppc; \
145   mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
146   mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
147   mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
148   mcpu=801: -mppc; \
149   mcpu=821: -mppc; \
150   mcpu=823: -mppc; \
151   mcpu=860: -mppc; \
152   mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
153   mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
154   mcpu=8540: -me500; \
155   mcpu=8548: -me500; \
156   mcpu=e300c2: -me300; \
157   mcpu=e300c3: -me300; \
158   mcpu=e500mc: -me500mc; \
159   mcpu=e500mc64: -me500mc64; \
160   mcpu=e5500: -me5500; \
161   mcpu=e6500: -me6500; \
162   mcpu=titan: -mtitan; \
163   !mcpu*: %{mpower9-vector: -mpower9; \
164 	    mpower8-vector|mcrypto|mdirect-move|mhtm: -mpower8; \
165 	    mvsx: -mpower7; \
166 	    mpowerpc64: -mppc64;: %(asm_default)}; \
167   :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \
168 %{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \
169 ASM_OPT_ANY
170 
171 #define CPP_DEFAULT_SPEC ""
172 
173 #define ASM_DEFAULT_SPEC ""
174 #define ASM_DEFAULT_EXTRA ""
175 
176 /* This macro defines names of additional specifications to put in the specs
177    that can be used in various specifications like CC1_SPEC.  Its definition
178    is an initializer with a subgrouping for each command option.
179 
180    Each subgrouping contains a string constant, that defines the
181    specification name, and a string constant that used by the GCC driver
182    program.
183 
184    Do not define this macro if it does not need to do anything.  */
185 
186 #define SUBTARGET_EXTRA_SPECS
187 
188 #define EXTRA_SPECS							\
189   { "cpp_default",		CPP_DEFAULT_SPEC },			\
190   { "asm_cpu",			ASM_CPU_SPEC },				\
191   { "asm_cpu_native",		ASM_CPU_NATIVE_SPEC },			\
192   { "asm_default",		ASM_DEFAULT_SPEC ASM_DEFAULT_EXTRA },	\
193   { "cc1_cpu",			CC1_CPU_SPEC },				\
194   SUBTARGET_EXTRA_SPECS
195 
196 /* -mcpu=native handling only makes sense with compiler running on
197    an PowerPC chip.  If changing this condition, also change
198    the condition in driver-rs6000.c.  */
199 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
200 /* In driver-rs6000.c.  */
201 extern const char *host_detect_local_cpu (int argc, const char **argv);
202 #define EXTRA_SPEC_FUNCTIONS \
203   { "local_cpu_detect", host_detect_local_cpu },
204 #define HAVE_LOCAL_CPU_DETECT
205 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
206 
207 #else
208 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
209 #endif
210 
211 #ifndef CC1_CPU_SPEC
212 #ifdef HAVE_LOCAL_CPU_DETECT
213 #define CC1_CPU_SPEC \
214 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
215  %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
216 #else
217 #define CC1_CPU_SPEC ""
218 #endif
219 #endif
220 
221 /* Architecture type.  */
222 
223 /* Define TARGET_MFCRF if the target assembler does not support the
224    optional field operand for mfcr.  */
225 
226 #ifndef HAVE_AS_MFCRF
227 #undef  TARGET_MFCRF
228 #define TARGET_MFCRF 0
229 #endif
230 
231 #ifndef TARGET_SECURE_PLT
232 #define TARGET_SECURE_PLT 0
233 #endif
234 
235 #ifndef TARGET_CMODEL
236 #define TARGET_CMODEL CMODEL_SMALL
237 #endif
238 
239 #define TARGET_32BIT		(! TARGET_64BIT)
240 
241 #ifndef HAVE_AS_TLS
242 #define HAVE_AS_TLS 0
243 #endif
244 
245 #ifndef HAVE_AS_PLTSEQ
246 #define HAVE_AS_PLTSEQ 0
247 #endif
248 
249 #ifndef TARGET_PLTSEQ
250 #define TARGET_PLTSEQ 0
251 #endif
252 
253 #ifndef TARGET_LINK_STACK
254 #define TARGET_LINK_STACK 0
255 #endif
256 
257 #ifndef SET_TARGET_LINK_STACK
258 #define SET_TARGET_LINK_STACK(X) do { } while (0)
259 #endif
260 
261 #ifndef TARGET_FLOAT128_ENABLE_TYPE
262 #define TARGET_FLOAT128_ENABLE_TYPE 0
263 #endif
264 
265 /* Return 1 for a symbol ref for a thread-local storage symbol.  */
266 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
267   (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0)
268 
269 #ifdef IN_LIBGCC2
270 /* For libgcc2 we make sure this is a compile time constant */
271 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
272 #undef TARGET_POWERPC64
273 #define TARGET_POWERPC64	1
274 #else
275 #undef TARGET_POWERPC64
276 #define TARGET_POWERPC64	0
277 #endif
278 #else
279     /* The option machinery will define this.  */
280 #endif
281 
282 #define TARGET_DEFAULT (MASK_MULTIPLE)
283 
284 /* Define generic processor types based upon current deployment.  */
285 #define PROCESSOR_COMMON    PROCESSOR_PPC601
286 #define PROCESSOR_POWERPC   PROCESSOR_PPC604
287 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
288 
289 /* Define the default processor.  This is overridden by other tm.h files.  */
290 #define PROCESSOR_DEFAULT   PROCESSOR_PPC603
291 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
292 
293 /* Specify the dialect of assembler to use.  Only new mnemonics are supported
294    starting with GCC 4.8, i.e. just one dialect, but for backwards
295    compatibility with older inline asm ASSEMBLER_DIALECT needs to be
296    defined.  */
297 #define ASSEMBLER_DIALECT 1
298 
299 /* Debug support */
300 #define MASK_DEBUG_STACK	0x01	/* debug stack applications */
301 #define	MASK_DEBUG_ARG		0x02	/* debug argument handling */
302 #define MASK_DEBUG_REG		0x04	/* debug register handling */
303 #define MASK_DEBUG_ADDR		0x08	/* debug memory addressing */
304 #define MASK_DEBUG_COST		0x10	/* debug rtx codes */
305 #define MASK_DEBUG_TARGET	0x20	/* debug target attribute/pragma */
306 #define MASK_DEBUG_BUILTIN	0x40	/* debug builtins */
307 #define MASK_DEBUG_ALL		(MASK_DEBUG_STACK \
308 				 | MASK_DEBUG_ARG \
309 				 | MASK_DEBUG_REG \
310 				 | MASK_DEBUG_ADDR \
311 				 | MASK_DEBUG_COST \
312 				 | MASK_DEBUG_TARGET \
313 				 | MASK_DEBUG_BUILTIN)
314 
315 #define	TARGET_DEBUG_STACK	(rs6000_debug & MASK_DEBUG_STACK)
316 #define	TARGET_DEBUG_ARG	(rs6000_debug & MASK_DEBUG_ARG)
317 #define TARGET_DEBUG_REG	(rs6000_debug & MASK_DEBUG_REG)
318 #define TARGET_DEBUG_ADDR	(rs6000_debug & MASK_DEBUG_ADDR)
319 #define TARGET_DEBUG_COST	(rs6000_debug & MASK_DEBUG_COST)
320 #define TARGET_DEBUG_TARGET	(rs6000_debug & MASK_DEBUG_TARGET)
321 #define TARGET_DEBUG_BUILTIN	(rs6000_debug & MASK_DEBUG_BUILTIN)
322 
323 /* Helper macros for TFmode.  Quad floating point (TFmode) can be either IBM
324    long double format that uses a pair of doubles, or IEEE 128-bit floating
325    point.  KFmode was added as a way to represent IEEE 128-bit floating point,
326    even if the default for long double is the IBM long double format.
327    Similarly IFmode is the IBM long double format even if the default is IEEE
328    128-bit.  Don't allow IFmode if -msoft-float.  */
329 #define FLOAT128_IEEE_P(MODE)						\
330   ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
331     && ((MODE) == TFmode || (MODE) == TCmode))				\
332    || ((MODE) == KFmode) || ((MODE) == KCmode))
333 
334 #define FLOAT128_IBM_P(MODE)						\
335   ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
336     && ((MODE) == TFmode || (MODE) == TCmode))				\
337    || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
338 
339 /* Helper macros to say whether a 128-bit floating point type can go in a
340    single vector register, or whether it needs paired scalar values.  */
341 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
342 
343 #define FLOAT128_2REG_P(MODE)						\
344   (FLOAT128_IBM_P (MODE)						\
345    || ((MODE) == TDmode)						\
346    || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
347 
348 /* Return true for floating point that does not use a vector register.  */
349 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE)				\
350   (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
351 
352 /* Describe the vector unit used for arithmetic operations.  */
353 extern enum rs6000_vector rs6000_vector_unit[];
354 
355 #define VECTOR_UNIT_NONE_P(MODE)			\
356   (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
357 
358 #define VECTOR_UNIT_VSX_P(MODE)				\
359   (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
360 
361 #define VECTOR_UNIT_P8_VECTOR_P(MODE)			\
362   (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
363 
364 #define VECTOR_UNIT_ALTIVEC_P(MODE)			\
365   (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
366 
367 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE)		\
368   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
369 	     (int)VECTOR_VSX,				\
370 	     (int)VECTOR_P8_VECTOR))
371 
372 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
373    altivec (VMX) or VSX vector instructions.  P8 vector support is upwards
374    compatible, so allow it as well, rather than changing all of the uses of the
375    macro.  */
376 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE)		\
377   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
378 	     (int)VECTOR_ALTIVEC,			\
379 	     (int)VECTOR_P8_VECTOR))
380 
381 /* Describe whether to use VSX loads or Altivec loads.  For now, just use the
382    same unit as the vector unit we are using, but we may want to migrate to
383    using VSX style loads even for types handled by altivec.  */
384 extern enum rs6000_vector rs6000_vector_mem[];
385 
386 #define VECTOR_MEM_NONE_P(MODE)				\
387   (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
388 
389 #define VECTOR_MEM_VSX_P(MODE)				\
390   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
391 
392 #define VECTOR_MEM_P8_VECTOR_P(MODE)			\
393   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
394 
395 #define VECTOR_MEM_ALTIVEC_P(MODE)			\
396   (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
397 
398 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE)		\
399   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
400 	     (int)VECTOR_VSX,				\
401 	     (int)VECTOR_P8_VECTOR))
402 
403 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE)		\
404   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
405 	     (int)VECTOR_ALTIVEC,			\
406 	     (int)VECTOR_P8_VECTOR))
407 
408 /* Return the alignment of a given vector type, which is set based on the
409    vector unit use.  VSX for instance can load 32 or 64 bit aligned words
410    without problems, while Altivec requires 128-bit aligned vectors.  */
411 extern int rs6000_vector_align[];
412 
413 #define VECTOR_ALIGN(MODE)						\
414   ((rs6000_vector_align[(MODE)] != 0)					\
415    ? rs6000_vector_align[(MODE)]					\
416    : (int)GET_MODE_BITSIZE ((MODE)))
417 
418 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
419    with scalar instructions.  */
420 #define VECTOR_ELEMENT_SCALAR_64BIT	((BYTES_BIG_ENDIAN) ? 0 : 1)
421 
422 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
423    with the ISA 3.0 MFVSRLD instructions.  */
424 #define VECTOR_ELEMENT_MFVSRLD_64BIT	((BYTES_BIG_ENDIAN) ? 1 : 0)
425 
426 /* Alignment options for fields in structures for sub-targets following
427    AIX-like ABI.
428    ALIGN_POWER word-aligns FP doubles (default AIX ABI).
429    ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
430 
431    Override the macro definitions when compiling libobjc to avoid undefined
432    reference to rs6000_alignment_flags due to library's use of GCC alignment
433    macros which use the macros below.  */
434 
435 #ifndef IN_TARGET_LIBS
436 #define MASK_ALIGN_POWER   0x00000000
437 #define MASK_ALIGN_NATURAL 0x00000001
438 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
439 #else
440 #define TARGET_ALIGN_NATURAL 0
441 #endif
442 
443 /* We use values 126..128 to pick the appropriate long double type (IFmode,
444    KFmode, TFmode).  */
445 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
446 #define TARGET_IEEEQUAD rs6000_ieeequad
447 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
448 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
449 
450 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
451    Enable 32-bit fcfid's on any of the switches for newer ISA machines.  */
452 #define TARGET_FCFID	(TARGET_POWERPC64				\
453 			 || TARGET_PPC_GPOPT	/* 970/power4 */	\
454 			 || TARGET_POPCNTB	/* ISA 2.02 */		\
455 			 || TARGET_CMPB		/* ISA 2.05 */		\
456 			 || TARGET_POPCNTD)	/* ISA 2.06 */
457 
458 #define TARGET_FCTIDZ	TARGET_FCFID
459 #define TARGET_STFIWX	TARGET_PPC_GFXOPT
460 #define TARGET_LFIWAX	TARGET_CMPB
461 #define TARGET_LFIWZX	TARGET_POPCNTD
462 #define TARGET_FCFIDS	TARGET_POPCNTD
463 #define TARGET_FCFIDU	TARGET_POPCNTD
464 #define TARGET_FCFIDUS	TARGET_POPCNTD
465 #define TARGET_FCTIDUZ	TARGET_POPCNTD
466 #define TARGET_FCTIWUZ	TARGET_POPCNTD
467 #define TARGET_CTZ	TARGET_MODULO
468 #define TARGET_EXTSWSLI	(TARGET_MODULO && TARGET_POWERPC64)
469 #define TARGET_MADDLD	TARGET_MODULO
470 
471 #define TARGET_XSCVDPSPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
472 #define TARGET_XSCVSPDPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
473 #define TARGET_VADDUQM		(TARGET_P8_VECTOR && TARGET_POWERPC64)
474 #define TARGET_DIRECT_MOVE_128	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
475 				 && TARGET_POWERPC64)
476 #define TARGET_VEXTRACTUB	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
477 				 && TARGET_POWERPC64)
478 
479 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI).  */
480 #define TARGET_NO_SF_SUBREG	TARGET_DIRECT_MOVE_64BIT
481 #define TARGET_ALLOW_SF_SUBREG	(!TARGET_DIRECT_MOVE_64BIT)
482 
483 /* This wants to be set for p8 and newer.  On p7, overlapping unaligned
484    loads are slow. */
485 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
486 
487 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
488    in power7, so conditionalize them on p8 features.  TImode syncs need quad
489    memory support.  */
490 #define TARGET_SYNC_HI_QI	(TARGET_QUAD_MEMORY			\
491 				 || TARGET_QUAD_MEMORY_ATOMIC		\
492 				 || TARGET_DIRECT_MOVE)
493 
494 #define TARGET_SYNC_TI		TARGET_QUAD_MEMORY_ATOMIC
495 
496 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
497    to allocate the SDmode stack slot to get the value into the proper location
498    in the register.  */
499 #define TARGET_NO_SDMODE_STACK	(TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
500 
501 /* ISA 3.0 has new min/max functions that don't need fast math that are being
502    phased in.  Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
503    answers if the arguments are not in the normal range.  */
504 #define TARGET_MINMAX	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT		\
505 			 && (TARGET_P9_MINMAX || !flag_trapping_math))
506 
507 /* In switching from using target_flags to using rs6000_isa_flags, the options
508    machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>.  For now map
509    OPTION_MASK_<xxx> back into MASK_<xxx>.  */
510 #define MASK_ALTIVEC			OPTION_MASK_ALTIVEC
511 #define MASK_CMPB			OPTION_MASK_CMPB
512 #define MASK_CRYPTO			OPTION_MASK_CRYPTO
513 #define MASK_DFP			OPTION_MASK_DFP
514 #define MASK_DIRECT_MOVE		OPTION_MASK_DIRECT_MOVE
515 #define MASK_DLMZB			OPTION_MASK_DLMZB
516 #define MASK_EABI			OPTION_MASK_EABI
517 #define MASK_FLOAT128_KEYWORD		OPTION_MASK_FLOAT128_KEYWORD
518 #define MASK_FLOAT128_HW		OPTION_MASK_FLOAT128_HW
519 #define MASK_FPRND			OPTION_MASK_FPRND
520 #define MASK_P8_FUSION			OPTION_MASK_P8_FUSION
521 #define MASK_HARD_FLOAT			OPTION_MASK_HARD_FLOAT
522 #define MASK_HTM			OPTION_MASK_HTM
523 #define MASK_ISEL			OPTION_MASK_ISEL
524 #define MASK_MFCRF			OPTION_MASK_MFCRF
525 #define MASK_MMA			OPTION_MASK_MMA
526 #define MASK_MULHW			OPTION_MASK_MULHW
527 #define MASK_MULTIPLE			OPTION_MASK_MULTIPLE
528 #define MASK_NO_UPDATE			OPTION_MASK_NO_UPDATE
529 #define MASK_P8_VECTOR			OPTION_MASK_P8_VECTOR
530 #define MASK_P9_VECTOR			OPTION_MASK_P9_VECTOR
531 #define MASK_P9_MISC			OPTION_MASK_P9_MISC
532 #define MASK_POPCNTB			OPTION_MASK_POPCNTB
533 #define MASK_POPCNTD			OPTION_MASK_POPCNTD
534 #define MASK_PPC_GFXOPT			OPTION_MASK_PPC_GFXOPT
535 #define MASK_PPC_GPOPT			OPTION_MASK_PPC_GPOPT
536 #define MASK_RECIP_PRECISION		OPTION_MASK_RECIP_PRECISION
537 #define MASK_SOFT_FLOAT			OPTION_MASK_SOFT_FLOAT
538 #define MASK_STRICT_ALIGN		OPTION_MASK_STRICT_ALIGN
539 #define MASK_UPDATE			OPTION_MASK_UPDATE
540 #define MASK_VSX			OPTION_MASK_VSX
541 #define MASK_POWER10			OPTION_MASK_POWER10
542 #define MASK_P10_FUSION			OPTION_MASK_P10_FUSION
543 
544 #ifndef IN_LIBGCC2
545 #define MASK_POWERPC64			OPTION_MASK_POWERPC64
546 #endif
547 
548 #ifdef TARGET_64BIT
549 #define MASK_64BIT			OPTION_MASK_64BIT
550 #endif
551 
552 #ifdef TARGET_LITTLE_ENDIAN
553 #define MASK_LITTLE_ENDIAN		OPTION_MASK_LITTLE_ENDIAN
554 #endif
555 
556 #ifdef TARGET_REGNAMES
557 #define MASK_REGNAMES			OPTION_MASK_REGNAMES
558 #endif
559 
560 #ifdef TARGET_PROTOTYPE
561 #define MASK_PROTOTYPE			OPTION_MASK_PROTOTYPE
562 #endif
563 
564 #ifdef TARGET_MODULO
565 #define RS6000_BTM_MODULO		OPTION_MASK_MODULO
566 #endif
567 
568 
569 /* For power systems, we want to enable Altivec and VSX builtins even if the
570    user did not use -maltivec or -mvsx to allow the builtins to be used inside
571    of #pragma GCC target or the target attribute to change the code level for a
572    given system.  */
573 
574 #define TARGET_EXTRA_BUILTINS	(TARGET_POWERPC64			 \
575 				 || TARGET_PPC_GPOPT /* 970/power4 */	 \
576 				 || TARGET_POPCNTB   /* ISA 2.02 */	 \
577 				 || TARGET_CMPB      /* ISA 2.05 */	 \
578 				 || TARGET_POPCNTD   /* ISA 2.06 */	 \
579 				 || TARGET_ALTIVEC			 \
580 				 || TARGET_VSX				 \
581 				 || TARGET_HARD_FLOAT)
582 
583 /* E500 cores only support plain "sync", not lwsync.  */
584 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
585 			  || rs6000_cpu == PROCESSOR_PPC8548)
586 
587 
588 /* Which machine supports the various reciprocal estimate instructions.  */
589 #define TARGET_FRES	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
590 
591 #define TARGET_FRE	(TARGET_HARD_FLOAT \
592 			 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
593 
594 #define TARGET_FRSQRTES	(TARGET_HARD_FLOAT && TARGET_POPCNTB \
595 			 && TARGET_PPC_GFXOPT)
596 
597 #define TARGET_FRSQRTE	(TARGET_HARD_FLOAT \
598 			 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
599 
600 /* Macro to say whether we can do optimizations where we need to do parts of
601    the calculation in 64-bit GPRs and then is transfered to the vector
602    registers.  */
603 #define TARGET_DIRECT_MOVE_64BIT	(TARGET_DIRECT_MOVE		\
604 					 && TARGET_P8_VECTOR		\
605 					 && TARGET_POWERPC64)
606 
607 /* Whether the various reciprocal divide/square root estimate instructions
608    exist, and whether we should automatically generate code for the instruction
609    by default.  */
610 #define RS6000_RECIP_MASK_HAVE_RE	0x1	/* have RE instruction.  */
611 #define RS6000_RECIP_MASK_AUTO_RE	0x2	/* generate RE by default.  */
612 #define RS6000_RECIP_MASK_HAVE_RSQRTE	0x4	/* have RSQRTE instruction.  */
613 #define RS6000_RECIP_MASK_AUTO_RSQRTE	0x8	/* gen. RSQRTE by default.  */
614 
615 extern unsigned char rs6000_recip_bits[];
616 
617 #define RS6000_RECIP_HAVE_RE_P(MODE) \
618   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
619 
620 #define RS6000_RECIP_AUTO_RE_P(MODE) \
621   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
622 
623 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
624   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
625 
626 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
627   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
628 
629 /* The default CPU for TARGET_OPTION_OVERRIDE.  */
630 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
631 
632 /* Target pragma.  */
633 #define REGISTER_TARGET_PRAGMAS() do {				\
634   c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
635   targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
636   targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
637   rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
638 } while (0)
639 
640 /* Target #defines.  */
641 #define TARGET_CPU_CPP_BUILTINS() \
642   rs6000_cpu_cpp_builtins (pfile)
643 
644 /* Target hooks for D language.  */
645 #define TARGET_D_CPU_VERSIONS rs6000_d_target_versions
646 #define TARGET_D_REGISTER_CPU_TARGET_INFO rs6000_d_register_target_info
647 
648 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
649    we're compiling for.  Some configurations may need to override it.  */
650 #define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
651   do						\
652     {						\
653       if (BYTES_BIG_ENDIAN)			\
654 	{					\
655 	  builtin_define ("__BIG_ENDIAN__");	\
656 	  builtin_define ("_BIG_ENDIAN");	\
657 	  builtin_assert ("machine=bigendian");	\
658 	}					\
659       else					\
660 	{					\
661 	  builtin_define ("__LITTLE_ENDIAN__");	\
662 	  builtin_define ("_LITTLE_ENDIAN");	\
663 	  builtin_assert ("machine=littleendian"); \
664 	}					\
665     }						\
666   while (0)
667 
668 /* Target machine storage layout.  */
669 
670 /* Define this macro if it is advisable to hold scalars in registers
671    in a wider mode than that declared by the program.  In such cases,
672    the value is constrained to be within the bounds of the declared
673    type, but kept valid in the wider mode.  The signedness of the
674    extension may differ from that of the type.  */
675 
676 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
677   if (GET_MODE_CLASS (MODE) == MODE_INT		\
678       && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
679     (MODE) = TARGET_32BIT ? SImode : DImode;
680 
681 /* Define this if most significant bit is lowest numbered
682    in instructions that operate on numbered bit-fields.  */
683 /* That is true on RS/6000.  */
684 #define BITS_BIG_ENDIAN 1
685 
686 /* Define this if most significant byte of a word is the lowest numbered.  */
687 /* That is true on RS/6000.  */
688 #define BYTES_BIG_ENDIAN 1
689 
690 /* Define this if most significant word of a multiword number is lowest
691    numbered.
692 
693    For RS/6000 we can decide arbitrarily since there are no machine
694    instructions for them.  Might as well be consistent with bits and bytes.  */
695 #define WORDS_BIG_ENDIAN 1
696 
697 /* This says that for the IBM long double the larger magnitude double
698    comes first.  It's really a two element double array, and arrays
699    don't index differently between little- and big-endian.  */
700 #define LONG_DOUBLE_LARGE_FIRST 1
701 
702 #define MAX_BITS_PER_WORD 64
703 
704 /* Width of a word, in units (bytes).  */
705 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
706 #ifdef IN_LIBGCC2
707 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
708 #else
709 #define MIN_UNITS_PER_WORD 4
710 #endif
711 #define UNITS_PER_FP_WORD 8
712 #define UNITS_PER_ALTIVEC_WORD 16
713 #define UNITS_PER_VSX_WORD 16
714 
715 /* Type used for ptrdiff_t, as a string used in a declaration.  */
716 #define PTRDIFF_TYPE "int"
717 
718 /* Type used for size_t, as a string used in a declaration.  */
719 #define SIZE_TYPE "long unsigned int"
720 
721 /* Type used for wchar_t, as a string used in a declaration.  */
722 #define WCHAR_TYPE "short unsigned int"
723 
724 /* Width of wchar_t in bits.  */
725 #define WCHAR_TYPE_SIZE 16
726 
727 /* A C expression for the size in bits of the type `short' on the
728    target machine.  If you don't define this, the default is half a
729    word.  (If this would be less than one storage unit, it is
730    rounded up to one unit.)  */
731 #define SHORT_TYPE_SIZE 16
732 
733 /* A C expression for the size in bits of the type `int' on the
734    target machine.  If you don't define this, the default is one
735    word.  */
736 #define INT_TYPE_SIZE 32
737 
738 /* A C expression for the size in bits of the type `long' on the
739    target machine.  If you don't define this, the default is one
740    word.  */
741 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
742 
743 /* A C expression for the size in bits of the type `long long' on the
744    target machine.  If you don't define this, the default is two
745    words.  */
746 #define LONG_LONG_TYPE_SIZE 64
747 
748 /* A C expression for the size in bits of the type `float' on the
749    target machine.  If you don't define this, the default is one
750    word.  */
751 #define FLOAT_TYPE_SIZE 32
752 
753 /* A C expression for the size in bits of the type `double' on the
754    target machine.  If you don't define this, the default is two
755    words.  */
756 #define DOUBLE_TYPE_SIZE 64
757 
758 /* A C expression for the size in bits of the type `long double' on the target
759    machine.  If you don't define this, the default is two words.  */
760 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
761 
762 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
763 #define WIDEST_HARDWARE_FP_SIZE 64
764 
765 /* Width in bits of a pointer.
766    See also the macro `Pmode' defined below.  */
767 extern unsigned rs6000_pointer_size;
768 #define POINTER_SIZE rs6000_pointer_size
769 
770 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
771 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
772 
773 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
774 #define STACK_BOUNDARY	\
775   ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
776     ? 64 : 128)
777 
778 /* Allocation boundary (in *bits*) for the code of a function.  */
779 #define FUNCTION_BOUNDARY 32
780 
781 /* No data type is required to be aligned rounder than this.  Warning, if
782    BIGGEST_ALIGNMENT is changed, then this may be an ABI break.  An example
783    of where this can break an ABI is in GLIBC's struct _Unwind_Exception.  */
784 #define BIGGEST_ALIGNMENT 128
785 
786 /* Alignment of field after `int : 0' in a structure.  */
787 #define EMPTY_FIELD_BOUNDARY 32
788 
789 /* Every structure's size must be a multiple of this.  */
790 #define STRUCTURE_SIZE_BOUNDARY 8
791 
792 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
793 #define PCC_BITFIELD_TYPE_MATTERS 1
794 
795 enum data_align { align_abi, align_opt, align_both };
796 
797 /* A C expression to compute the alignment for a variables in the
798    local store.  TYPE is the data type, and ALIGN is the alignment
799    that the object would ordinarily have.  */
800 #define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
801   rs6000_data_alignment (TYPE, ALIGN, align_both)
802 
803 /* Make arrays of chars word-aligned for the same reasons.  */
804 #define DATA_ALIGNMENT(TYPE, ALIGN) \
805   rs6000_data_alignment (TYPE, ALIGN, align_opt)
806 
807 /* Align vectors to 128 bits.  */
808 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
809   rs6000_data_alignment (TYPE, ALIGN, align_abi)
810 
811 /* Nonzero if move instructions will actually fail to work
812    when given unaligned data.  */
813 #define STRICT_ALIGNMENT 0
814 
815 /* Standard register usage.  */
816 
817 /* Number of actual hardware registers.
818    The hardware registers are assigned numbers for the compiler
819    from 0 to just below FIRST_PSEUDO_REGISTER.
820    All registers that the compiler knows about must be given numbers,
821    even those that are not normally considered general registers.
822 
823    RS/6000 has 32 fixed-point registers, 32 floating-point registers,
824    a count register, a link register, and 8 condition register fields,
825    which we view here as separate registers.  AltiVec adds 32 vector
826    registers and a VRsave register.
827 
828    In addition, the difference between the frame and argument pointers is
829    a function of the number of registers saved, so we need to have a
830    register for AP that will later be eliminated in favor of SP or FP.
831    This is a normal register, but it is fixed.
832 
833    We also create a pseudo register for float/int conversions, that will
834    really represent the memory location used.  It is represented here as
835    a register, in order to work around problems in allocating stack storage
836    in inline functions.
837 
838    Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
839    pointer, which is eventually eliminated in favor of SP or FP.  */
840 
841 #define FIRST_PSEUDO_REGISTER 111
842 
843 /* Use standard DWARF numbering for DWARF debugging information.  */
844 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
845 
846 /* Use gcc hard register numbering for eh_frame.  */
847 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
848 
849 /* Map register numbers held in the call frame info that gcc has
850    collected using DWARF_FRAME_REGNUM to those that should be output in
851    .debug_frame and .eh_frame.  */
852 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
853   rs6000_dbx_register_number ((REGNO), (FOR_EH) ? 2 : 1)
854 
855 /* 1 for registers that have pervasive standard uses
856    and are not available for the register allocator.
857 
858    On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
859    as a local register; for all other OS's r2 is the TOC pointer.
860 
861    On System V implementations, r13 is fixed and not available for use.  */
862 
863 #define FIXED_REGISTERS  \
864   {/* GPRs */					   \
865    0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
866    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
867    /* FPRs */					   \
868    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
869    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
870    /* VRs */					   \
871    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
872    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
873    /* lr ctr ca ap */				   \
874    0, 0, 1, 1,					   \
875    /* cr0..cr7 */				   \
876    0, 0, 0, 0, 0, 0, 0, 0,			   \
877    /* vrsave vscr sfp */			   \
878    1, 1, 1					   \
879 }
880 
881 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
882    the entire set of `FIXED_REGISTERS' be included.
883    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
884    This macro is optional.  If not specified, it defaults to the value
885    of `CALL_USED_REGISTERS'.  */
886 
887 #define CALL_REALLY_USED_REGISTERS  \
888   {/* GPRs */					   \
889    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
890    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
891    /* FPRs */					   \
892    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
893    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
894    /* VRs */					   \
895    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
896    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
897    /* lr ctr ca ap */				   \
898    1, 1, 1, 1,					   \
899    /* cr0..cr7 */				   \
900    1, 1, 0, 0, 0, 1, 1, 1,			   \
901    /* vrsave vscr sfp */			   \
902    0, 0, 0					   \
903 }
904 
905 #define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
906 
907 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
908 #define FIRST_SAVED_FP_REGNO	  (14+32)
909 #define FIRST_SAVED_GP_REGNO	  (FIXED_R13 ? 14 : 13)
910 
911 /* List the order in which to allocate registers.  Each register must be
912    listed once, even those in FIXED_REGISTERS.
913 
914    We allocate in the following order:
915 	fp0		(not saved or used for anything)
916 	fp13 - fp2	(not saved; incoming fp arg registers)
917 	fp1		(not saved; return value)
918 	fp31 - fp14	(saved; order given to save least number)
919 	cr7, cr5	(not saved or special)
920 	cr6		(not saved, but used for vector operations)
921 	cr1		(not saved, but used for FP operations)
922 	cr0		(not saved, but used for arithmetic operations)
923 	cr4, cr3, cr2	(saved)
924 	r9		(not saved; best for TImode)
925 	r10, r8-r4	(not saved; highest first for less conflict with params)
926 	r3		(not saved; return value register)
927 	r11		(not saved; later alloc to help shrink-wrap)
928 	r0		(not saved; cannot be base reg)
929 	r31 - r13	(saved; order given to save least number)
930 	r12		(not saved; if used for DImode or DFmode would use r13)
931 	ctr		(not saved; when we have the choice ctr is better)
932 	lr		(saved)
933 	r1, r2, ap, ca	(fixed)
934 	v0 - v1		(not saved or used for anything)
935 	v13 - v3	(not saved; incoming vector arg registers)
936 	v2		(not saved; incoming vector arg reg; return value)
937 	v19 - v14	(not saved or used for anything)
938 	v31 - v20	(saved; order given to save least number)
939 	vrsave, vscr	(fixed)
940 	sfp		(fixed)
941 */
942 
943 #if FIXED_R2 == 1
944 #define MAYBE_R2_AVAILABLE
945 #define MAYBE_R2_FIXED 2,
946 #else
947 #define MAYBE_R2_AVAILABLE 2,
948 #define MAYBE_R2_FIXED
949 #endif
950 
951 #if FIXED_R13 == 1
952 #define EARLY_R12 12,
953 #define LATE_R12
954 #else
955 #define EARLY_R12
956 #define LATE_R12 12,
957 #endif
958 
959 #define REG_ALLOC_ORDER						\
960   {32,								\
961    /* move fr13 (ie 45) later, so if we need TFmode, it does */	\
962    /* not use fr14 which is a saved register.  */		\
963    44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45,		\
964    33,								\
965    63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		\
966    50, 49, 48, 47, 46,						\
967    100, 107, 105, 106, 101, 104, 103, 102,			\
968    MAYBE_R2_AVAILABLE						\
969    9, 10, 8, 7, 6, 5, 4,					\
970    3, EARLY_R12 11, 0,						\
971    31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,		\
972    18, 17, 16, 15, 14, 13, LATE_R12				\
973    97, 96,							\
974    1, MAYBE_R2_FIXED 99, 98,					\
975    /* AltiVec registers.  */					\
976    64, 65,							\
977    77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67,			\
978    66,								\
979    83, 82, 81, 80, 79, 78,					\
980    95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84,		\
981    108, 109,							\
982    110								\
983 }
984 
985 /* True if register is floating-point.  */
986 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
987 
988 /* True if register is a condition register.  */
989 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
990 
991 /* True if register is a condition register, but not cr0.  */
992 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
993 
994 /* True if register is an integer register.  */
995 #define INT_REGNO_P(N) \
996   ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
997 
998 /* True if register is the CA register.  */
999 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1000 
1001 /* True if register is an AltiVec register.  */
1002 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1003 
1004 /* True if register is a VSX register.  */
1005 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1006 
1007 /* Alternate name for any vector register supporting floating point, no matter
1008    which instruction set(s) are available.  */
1009 #define VFLOAT_REGNO_P(N) \
1010   (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1011 
1012 /* Alternate name for any vector register supporting integer, no matter which
1013    instruction set(s) are available.  */
1014 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1015 
1016 /* Alternate name for any vector register supporting logical operations, no
1017    matter which instruction set(s) are available.  Allow GPRs as well as the
1018    vector registers.  */
1019 #define VLOGICAL_REGNO_P(N)						\
1020   (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N)				\
1021    || (TARGET_VSX && FP_REGNO_P (N)))					\
1022 
1023 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1024    enough space to account for vectors in FP regs.  However, TFmode/TDmode
1025    should not use VSX instructions to do a caller save. */
1026 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1027   ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO]			\
1028    ? (MODE)								\
1029    : TARGET_VSX								\
1030      && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE))	\
1031      && FP_REGNO_P (REGNO)						\
1032    ? V2DFmode								\
1033    : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO)			\
1034    ? DFmode								\
1035    : (MODE) == TDmode && FP_REGNO_P (REGNO)				\
1036    ? DImode								\
1037    : choose_hard_reg_mode ((REGNO), (NREGS), NULL))
1038 
1039 #define VSX_VECTOR_MODE(MODE)		\
1040 	 ((MODE) == V4SFmode		\
1041 	  || (MODE) == V2DFmode)	\
1042 
1043 /* Modes that are not vectors, but require vector alignment.  Treat these like
1044    vectors in terms of loads and stores.  */
1045 #define VECTOR_ALIGNMENT_P(MODE)					\
1046   (FLOAT128_VECTOR_P (MODE) || (MODE) == OOmode || (MODE) == XOmode)
1047 
1048 #define ALTIVEC_VECTOR_MODE(MODE)					\
1049   ((MODE) == V16QImode							\
1050    || (MODE) == V8HImode						\
1051    || (MODE) == V4SFmode						\
1052    || (MODE) == V4SImode						\
1053    || VECTOR_ALIGNMENT_P (MODE))
1054 
1055 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE)				\
1056   (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE)			\
1057    || (MODE) == V2DImode || (MODE) == V1TImode)
1058 
1059 /* Post-reload, we can't use any new AltiVec registers, as we already
1060    emitted the vrsave mask.  */
1061 
1062 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1063   (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1064 
1065 /* Specify the cost of a branch insn; roughly the number of extra insns that
1066    should be added to avoid a branch.
1067 
1068    Set this to 3 on the RS/6000 since that is roughly the average cost of an
1069    unscheduled conditional branch.  */
1070 
1071 #define BRANCH_COST(speed_p, predictable_p) 3
1072 
1073 /* Override BRANCH_COST heuristic which empirically produces worse
1074    performance for removing short circuiting from the logical ops.  */
1075 
1076 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1077 
1078 /* Specify the registers used for certain standard purposes.
1079    The values of these macros are register numbers.  */
1080 
1081 /* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1082 /* #define PC_REGNUM  */
1083 
1084 /* Register to use for pushing function arguments.  */
1085 #define STACK_POINTER_REGNUM 1
1086 
1087 /* Base register for access to local variables of the function.  */
1088 #define HARD_FRAME_POINTER_REGNUM 31
1089 
1090 /* Base register for access to local variables of the function.  */
1091 #define FRAME_POINTER_REGNUM 110
1092 
1093 /* Base register for access to arguments of the function.  */
1094 #define ARG_POINTER_REGNUM 99
1095 
1096 /* Place to put static chain when calling a function that requires it.  */
1097 #define STATIC_CHAIN_REGNUM 11
1098 
1099 /* Base register for access to thread local storage variables.  */
1100 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1101 
1102 
1103 /* Define the classes of registers for register constraints in the
1104    machine description.  Also define ranges of constants.
1105 
1106    One of the classes must always be named ALL_REGS and include all hard regs.
1107    If there is more than one class, another class must be named NO_REGS
1108    and contain no registers.
1109 
1110    The name GENERAL_REGS must be the name of a class (or an alias for
1111    another name such as ALL_REGS).  This is the class of registers
1112    that is allowed by "g" or "r" in a register constraint.
1113    Also, registers outside this class are allocated only when
1114    instructions express preferences for them.
1115 
1116    The classes must be numbered in nondecreasing order; that is,
1117    a larger-numbered class must never be contained completely
1118    in a smaller-numbered class.
1119 
1120    For any two classes, it is very desirable that there be another
1121    class that represents their union.  */
1122 
1123 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1124    condition registers, plus three special registers, CTR, and the link
1125    register.  AltiVec adds a vector register class.  VSX registers overlap the
1126    FPR registers and the Altivec registers.
1127 
1128    However, r0 is special in that it cannot be used as a base register.
1129    So make a class for registers valid as base registers.
1130 
1131    Also, cr0 is the only condition code register that can be used in
1132    arithmetic insns, so make a separate class for it.  */
1133 
1134 enum reg_class
1135 {
1136   NO_REGS,
1137   BASE_REGS,
1138   GENERAL_REGS,
1139   FLOAT_REGS,
1140   ALTIVEC_REGS,
1141   VSX_REGS,
1142   VRSAVE_REGS,
1143   VSCR_REGS,
1144   GEN_OR_FLOAT_REGS,
1145   GEN_OR_VSX_REGS,
1146   LINK_REGS,
1147   CTR_REGS,
1148   LINK_OR_CTR_REGS,
1149   SPECIAL_REGS,
1150   SPEC_OR_GEN_REGS,
1151   CR0_REGS,
1152   CR_REGS,
1153   NON_FLOAT_REGS,
1154   CA_REGS,
1155   ALL_REGS,
1156   LIM_REG_CLASSES
1157 };
1158 
1159 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1160 
1161 /* Give names of register classes as strings for dump file.  */
1162 
1163 #define REG_CLASS_NAMES							\
1164 {									\
1165   "NO_REGS",								\
1166   "BASE_REGS",								\
1167   "GENERAL_REGS",							\
1168   "FLOAT_REGS",								\
1169   "ALTIVEC_REGS",							\
1170   "VSX_REGS",								\
1171   "VRSAVE_REGS",							\
1172   "VSCR_REGS",								\
1173   "GEN_OR_FLOAT_REGS",							\
1174   "GEN_OR_VSX_REGS",							\
1175   "LINK_REGS",								\
1176   "CTR_REGS",								\
1177   "LINK_OR_CTR_REGS",							\
1178   "SPECIAL_REGS",							\
1179   "SPEC_OR_GEN_REGS",							\
1180   "CR0_REGS",								\
1181   "CR_REGS",								\
1182   "NON_FLOAT_REGS",							\
1183   "CA_REGS",								\
1184   "ALL_REGS"								\
1185 }
1186 
1187 /* Define which registers fit in which classes.
1188    This is an initializer for a vector of HARD_REG_SET
1189    of length N_REG_CLASSES.  */
1190 
1191 #define REG_CLASS_CONTENTS						\
1192 {									\
1193   /* NO_REGS.  */							\
1194   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 },			\
1195   /* BASE_REGS.  */							\
1196   { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 },			\
1197   /* GENERAL_REGS.  */							\
1198   { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 },			\
1199   /* FLOAT_REGS.  */							\
1200   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 },			\
1201   /* ALTIVEC_REGS.  */							\
1202   { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 },			\
1203   /* VSX_REGS.  */							\
1204   { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },			\
1205   /* VRSAVE_REGS.  */							\
1206   { 0x00000000, 0x00000000, 0x00000000, 0x00001000 },			\
1207   /* VSCR_REGS.  */							\
1208   { 0x00000000, 0x00000000, 0x00000000, 0x00002000 },			\
1209   /* GEN_OR_FLOAT_REGS.  */						\
1210   { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 },			\
1211   /* GEN_OR_VSX_REGS.  */						\
1212   { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 },			\
1213   /* LINK_REGS.  */							\
1214   { 0x00000000, 0x00000000, 0x00000000, 0x00000001 },			\
1215   /* CTR_REGS.  */							\
1216   { 0x00000000, 0x00000000, 0x00000000, 0x00000002 },			\
1217   /* LINK_OR_CTR_REGS.  */						\
1218   { 0x00000000, 0x00000000, 0x00000000, 0x00000003 },			\
1219   /* SPECIAL_REGS.  */							\
1220   { 0x00000000, 0x00000000, 0x00000000, 0x00001003 },			\
1221   /* SPEC_OR_GEN_REGS.  */						\
1222   { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b },			\
1223   /* CR0_REGS.  */							\
1224   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 },			\
1225   /* CR_REGS.  */							\
1226   { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 },			\
1227   /* NON_FLOAT_REGS.  */						\
1228   { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb },			\
1229   /* CA_REGS.  */							\
1230   { 0x00000000, 0x00000000, 0x00000000, 0x00000004 },			\
1231   /* ALL_REGS.  */							\
1232   { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff }			\
1233 }
1234 
1235 /* The same information, inverted:
1236    Return the class number of the smallest class containing
1237    reg number REGNO.  This could be a conditional expression
1238    or could index an array.  */
1239 
1240 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1241 
1242 #define REGNO_REG_CLASS(REGNO) 						\
1243   (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1244    rs6000_regno_regclass[(REGNO)])
1245 
1246 /* Register classes for various constraints that are based on the target
1247    switches.  */
1248 enum r6000_reg_class_enum {
1249   RS6000_CONSTRAINT_d,		/* fpr registers for double values */
1250   RS6000_CONSTRAINT_f,		/* fpr registers for single values */
1251   RS6000_CONSTRAINT_v,		/* Altivec registers */
1252   RS6000_CONSTRAINT_wa,		/* Any VSX register */
1253   RS6000_CONSTRAINT_we,		/* VSX register if ISA 3.0 vector. */
1254   RS6000_CONSTRAINT_wr,		/* GPR register if 64-bit  */
1255   RS6000_CONSTRAINT_wx,		/* FPR register for STFIWX */
1256   RS6000_CONSTRAINT_wA,		/* BASE_REGS if 64-bit.  */
1257   RS6000_CONSTRAINT_MAX
1258 };
1259 
1260 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1261 
1262 /* The class value for index registers, and the one for base regs.  */
1263 #define INDEX_REG_CLASS GENERAL_REGS
1264 #define BASE_REG_CLASS BASE_REGS
1265 
1266 /* Return whether a given register class can hold VSX objects.  */
1267 #define VSX_REG_CLASS_P(CLASS)			\
1268   ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1269 
1270 /* Return whether a given register class targets general purpose registers.  */
1271 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1272 
1273 /* Given an rtx X being reloaded into a reg required to be
1274    in class CLASS, return the class of reg to actually use.
1275    In general this is just CLASS; but on some machines
1276    in some cases it is preferable to use a more restrictive class.
1277 
1278    On the RS/6000, we have to return NO_REGS when we want to reload a
1279    floating-point CONST_DOUBLE to force it to be copied to memory.
1280 
1281    We also don't want to reload integer values into floating-point
1282    registers if we can at all help it.  In fact, this can
1283    cause reload to die, if it tries to generate a reload of CTR
1284    into a FP register and discovers it doesn't have the memory location
1285    required.
1286 
1287    ??? Would it be a good idea to have reload do the converse, that is
1288    try to reload floating modes into FP registers if possible?
1289  */
1290 
1291 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1292   rs6000_preferred_reload_class_ptr (X, CLASS)
1293 
1294 /* Return the register class of a scratch register needed to copy IN into
1295    or out of a register in CLASS in MODE.  If it can be done directly,
1296    NO_REGS is returned.  */
1297 
1298 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1299   rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1300 
1301 /* Return the maximum number of consecutive registers
1302    needed to represent mode MODE in a register of class CLASS.
1303 
1304    On RS/6000, this is the size of MODE in words, except in the FP regs, where
1305    a single reg is enough for two words, unless we have VSX, where the FP
1306    registers can hold 128 bits.  */
1307 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1308 
1309 /* Stack layout; function entry, exit and calling.  */
1310 
1311 /* Define this if pushing a word on the stack
1312    makes the stack pointer a smaller address.  */
1313 #define STACK_GROWS_DOWNWARD 1
1314 
1315 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1316 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1317 
1318 /* Define this to nonzero if the nominal address of the stack frame
1319    is at the high-address end of the local variables;
1320    that is, each additional local variable allocated
1321    goes at a more negative offset in the frame.
1322 
1323    On the RS/6000, we grow upwards, from the area after the outgoing
1324    arguments.  */
1325 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0			\
1326 			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1327 
1328 /* Size of the fixed area on the stack */
1329 #define RS6000_SAVE_AREA \
1330   ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24)	\
1331    << (TARGET_64BIT ? 1 : 0))
1332 
1333 /* Stack offset for toc save slot.  */
1334 #define RS6000_TOC_SAVE_SLOT \
1335   ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1336 
1337 /* Align an address */
1338 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1339 
1340 /* Offset within stack frame to start allocating local variables at.
1341    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1342    first local allocated.  Otherwise, it is the offset to the BEGINNING
1343    of the first local allocated.
1344 
1345    On the RS/6000, the frame pointer is the same as the stack pointer,
1346    except for dynamic allocations.  So we start after the fixed area and
1347    outgoing parameter area.
1348 
1349    If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1350    space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1351    sizes of the fixed area and the parameter area must be a multiple of
1352    STACK_BOUNDARY.  */
1353 
1354 #define RS6000_STARTING_FRAME_OFFSET					\
1355   (cfun->calls_alloca							\
1356    ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA,	\
1357 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 ))		\
1358    : (RS6000_ALIGN (crtl->outgoing_args_size,				\
1359 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)		\
1360       + RS6000_SAVE_AREA))
1361 
1362 /* Offset from the stack pointer register to an item dynamically
1363    allocated on the stack, e.g., by `alloca'.
1364 
1365    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1366    length of the outgoing arguments.  The default is correct for most
1367    machines.  See `function.c' for details.
1368 
1369    This value must be a multiple of STACK_BOUNDARY (hard coded in
1370    `emit-rtl.c').  */
1371 #define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1372   RS6000_ALIGN (crtl->outgoing_args_size.to_constant ()			\
1373 		+ STACK_POINTER_OFFSET,					\
1374 		(TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1375 
1376 /* If we generate an insn to push BYTES bytes,
1377    this says how many the stack pointer really advances by.
1378    On RS/6000, don't define this because there are no push insns.  */
1379 /*  #define PUSH_ROUNDING(BYTES) */
1380 
1381 /* Offset of first parameter from the argument pointer register value.
1382    On the RS/6000, we define the argument pointer to the start of the fixed
1383    area.  */
1384 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1385 
1386 /* Offset from the argument pointer register value to the top of
1387    stack.  This is different from FIRST_PARM_OFFSET because of the
1388    register save area.  */
1389 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1390 
1391 /* Define this if stack space is still allocated for a parameter passed
1392    in a register.  The value is the number of bytes allocated to this
1393    area.  */
1394 #define REG_PARM_STACK_SPACE(FNDECL) \
1395   rs6000_reg_parm_stack_space ((FNDECL), false)
1396 
1397 /* Define this macro if space guaranteed when compiling a function body
1398    is different to space required when making a call, a situation that
1399    can arise with K&R style function definitions.  */
1400 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1401   rs6000_reg_parm_stack_space ((FNDECL), true)
1402 
1403 /* Define this if the above stack space is to be considered part of the
1404    space allocated by the caller.  */
1405 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1406 
1407 /* This is the difference between the logical top of stack and the actual sp.
1408 
1409    For the RS/6000, sp points past the fixed area.  */
1410 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1411 
1412 /* Define this if the maximum size of all the outgoing args is to be
1413    accumulated and pushed during the prologue.  The amount can be
1414    found in the variable crtl->outgoing_args_size.  */
1415 #define ACCUMULATE_OUTGOING_ARGS 1
1416 
1417 /* Define how to find the value returned by a library function
1418    assuming the value has mode MODE.  */
1419 
1420 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1421 
1422 /* DRAFT_V4_STRUCT_RET defaults off.  */
1423 #define DRAFT_V4_STRUCT_RET 0
1424 
1425 /* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1426 #define DEFAULT_PCC_STRUCT_RETURN 0
1427 
1428 /* Mode of stack savearea.
1429    FUNCTION is VOIDmode because calling convention maintains SP.
1430    BLOCK needs Pmode for SP.
1431    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1432 #define STACK_SAVEAREA_MODE(LEVEL)	\
1433   (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1434   : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1435 
1436 /* Minimum and maximum general purpose registers used to hold arguments.  */
1437 #define GP_ARG_MIN_REG 3
1438 #define GP_ARG_MAX_REG 10
1439 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1440 
1441 /* Minimum and maximum floating point registers used to hold arguments.  */
1442 #define FP_ARG_MIN_REG 33
1443 #define	FP_ARG_AIX_MAX_REG 45
1444 #define	FP_ARG_V4_MAX_REG  40
1445 #define	FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4				\
1446 			? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1447 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1448 
1449 /* Minimum and maximum AltiVec registers used to hold arguments.  */
1450 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1451 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1452 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1453 
1454 /* Maximum number of registers per ELFv2 homogeneous aggregate argument.  */
1455 #define AGGR_ARG_NUM_REG 8
1456 
1457 /* Return registers */
1458 #define GP_ARG_RETURN GP_ARG_MIN_REG
1459 #define FP_ARG_RETURN FP_ARG_MIN_REG
1460 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1461 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN	\
1462 			   : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1463 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2		\
1464 				? (ALTIVEC_ARG_RETURN			\
1465 				   + (TARGET_FLOAT128_TYPE ? 1 : 0))	\
1466 			        : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1467 
1468 /* Flags for the call/call_value rtl operations set up by function_arg */
1469 #define CALL_NORMAL		0x00000000	/* no special processing */
1470 /* Bits in 0x00000001 are unused.  */
1471 #define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1472 #define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1473 #define CALL_LONG		0x00000008	/* always call indirect */
1474 #define CALL_LIBCALL		0x00000010	/* libcall */
1475 
1476 /* Identify PLT sequence for rs6000_pltseq_template.  */
1477 enum rs6000_pltseq_enum {
1478   RS6000_PLTSEQ_TOCSAVE,
1479   RS6000_PLTSEQ_PLT16_HA,
1480   RS6000_PLTSEQ_PLT16_LO,
1481   RS6000_PLTSEQ_MTCTR,
1482   RS6000_PLTSEQ_PLT_PCREL34
1483 };
1484 
1485 #define IS_V4_FP_ARGS(OP) \
1486   ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0)
1487 
1488 /* We don't have prologue and epilogue functions to save/restore
1489    everything for most ABIs.  */
1490 #define WORLD_SAVE_P(INFO) 0
1491 
1492 /* 1 if N is a possible register number for a function value
1493    as seen by the caller.
1494 
1495    On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1496 #define FUNCTION_VALUE_REGNO_P(N)					\
1497   ((N) == GP_ARG_RETURN							\
1498    || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN)			\
1499        && TARGET_HARD_FLOAT)						\
1500    || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN)	\
1501        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1502 
1503 /* 1 if N is a possible register number for function argument passing.
1504    On RS/6000, these are r3-r10 and fp1-fp13.
1505    On AltiVec, v2 - v13 are used for passing vectors.  */
1506 #define FUNCTION_ARG_REGNO_P(N)						\
1507   (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG)			\
1508    || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG)		\
1509        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1510    || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG)			\
1511        && TARGET_HARD_FLOAT))
1512 
1513 /* Define a data type for recording info about an argument list
1514    during the scan of that argument list.  This data type should
1515    hold all necessary information about the function itself
1516    and about the args processed so far, enough to enable macros
1517    such as FUNCTION_ARG to determine where the next arg should go.
1518 
1519    On the RS/6000, this is a structure.  The first element is the number of
1520    total argument words, the second is used to store the next
1521    floating-point register number, and the third says how many more args we
1522    have prototype types for.
1523 
1524    For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1525    the next available GP register, `fregno' is the next available FP
1526    register, and `words' is the number of words used on the stack.
1527 
1528    The varargs/stdarg support requires that this structure's size
1529    be a multiple of sizeof(int).  */
1530 
1531 typedef struct rs6000_args
1532 {
1533   int words;			/* # words used for passing GP registers */
1534   int fregno;			/* next available FP register */
1535   int vregno;			/* next available AltiVec register */
1536   int nargs_prototype;		/* # args left in the current prototype */
1537   int prototype;		/* Whether a prototype was defined */
1538   int stdarg;			/* Whether function is a stdarg function.  */
1539   int call_cookie;		/* Do special things for this call */
1540   int sysv_gregno;		/* next available GP register */
1541   int intoffset;		/* running offset in struct (darwin64) */
1542   int use_stack;		/* any part of struct on stack (darwin64) */
1543   int floats_in_gpr;		/* count of SFmode floats taking up
1544 				   GPR space (darwin64) */
1545   int named;			/* false for varargs params */
1546   int escapes;			/* if function visible outside tu */
1547   int libcall;			/* If this is a compiler generated call.  */
1548 } CUMULATIVE_ARGS;
1549 
1550 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1551    for a call to a function whose data type is FNTYPE.
1552    For a library call, FNTYPE is 0.  */
1553 
1554 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1555   init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1556 			N_NAMED_ARGS, FNDECL, VOIDmode)
1557 
1558 /* Similar, but when scanning the definition of a procedure.  We always
1559    set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1560 
1561 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1562   init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1563 			1000, current_function_decl, VOIDmode)
1564 
1565 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1566 
1567 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1568   init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1569 			0, NULL_TREE, MODE)
1570 
1571 #define PAD_VARARGS_DOWN \
1572   (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1573 
1574 /* Output assembler code to FILE to increment profiler label # LABELNO
1575    for profiling a function entry.  */
1576 
1577 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1578   output_function_profiler ((FILE), (LABELNO));
1579 
1580 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1581    the stack pointer does not matter. No definition is equivalent to
1582    always zero.
1583 
1584    On the RS/6000, this is nonzero because we can restore the stack from
1585    its backpointer, which we maintain.  */
1586 #define EXIT_IGNORE_STACK	1
1587 
1588 /* Define this macro as a C expression that is nonzero for registers
1589    that are used by the epilogue or the return' pattern.  The stack
1590    and frame pointer registers are already be assumed to be used as
1591    needed.  */
1592 
1593 #define	EPILOGUE_USES(REGNO)					\
1594   ((reload_completed && (REGNO) == LR_REGNO)			\
1595    || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1596    || (crtl->calls_eh_return					\
1597        && TARGET_AIX						\
1598        && (REGNO) == 2))
1599 
1600 
1601 /* Length in units of the trampoline for entering a nested function.  */
1602 
1603 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1604 
1605 /* Definitions for __builtin_return_address and __builtin_frame_address.
1606    __builtin_return_address (0) should give link register (LR_REGNO), enable
1607    this.  */
1608 /* This should be uncommented, so that the link register is used, but
1609    currently this would result in unmatched insns and spilling fixed
1610    registers so we'll leave it for another day.  When these problems are
1611    taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1612    (mrs) */
1613 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1614 
1615 /* Number of bytes into the frame return addresses can be found.  See
1616    rs6000_stack_info in rs6000.c for more information on how the different
1617    abi's store the return address.  */
1618 #define RETURN_ADDRESS_OFFSET \
1619   ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1620 
1621 /* The current return address is in the link register.  The return address
1622    of anything farther back is accessed normally at an offset of 8 from the
1623    frame pointer.  */
1624 #define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1625   (rs6000_return_addr (COUNT, FRAME))
1626 
1627 
1628 /* Definitions for register eliminations.
1629 
1630    We have two registers that can be eliminated on the RS/6000.  First, the
1631    frame pointer register can often be eliminated in favor of the stack
1632    pointer register.  Secondly, the argument pointer register can always be
1633    eliminated; it is replaced with either the stack or frame pointer.
1634 
1635    In addition, we use the elimination mechanism to see if r30 is needed
1636    Initially we assume that it isn't.  If it is, we spill it.  This is done
1637    by making it an eliminable register.  We replace it with itself so that
1638    if it isn't needed, then existing uses won't be modified.  */
1639 
1640 /* This is an array of structures.  Each structure initializes one pair
1641    of eliminable registers.  The "from" register number is given first,
1642    followed by "to".  Eliminations of the same "from" register are listed
1643    in order of preference.  */
1644 #define ELIMINABLE_REGS					\
1645 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1646  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1647  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1648  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1649  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1650  { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1651 
1652 /* Define the offset between two registers, one to be eliminated, and the other
1653    its replacement, at the start of a routine.  */
1654 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1655   ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1656 
1657 /* Addressing modes, and classification of registers for them.  */
1658 
1659 #define HAVE_PRE_DECREMENT 1
1660 #define HAVE_PRE_INCREMENT 1
1661 #define HAVE_PRE_MODIFY_DISP 1
1662 #define HAVE_PRE_MODIFY_REG 1
1663 
1664 /* Macros to check register numbers against specific register classes.  */
1665 
1666 /* These assume that REGNO is a hard or pseudo reg number.
1667    They give nonzero only if REGNO is a hard reg of the suitable class
1668    or a pseudo reg currently allocated to a suitable hard reg.
1669    Since they use reg_renumber, they are safe only once reg_renumber
1670    has been allocated, which happens in reginfo.c during register
1671    allocation.  */
1672 
1673 #define REGNO_OK_FOR_INDEX_P(REGNO)				\
1674 (HARD_REGISTER_NUM_P (REGNO)					\
1675  ? (REGNO) <= 31						\
1676    || (REGNO) == ARG_POINTER_REGNUM				\
1677    || (REGNO) == FRAME_POINTER_REGNUM				\
1678  : (reg_renumber[REGNO] >= 0					\
1679     && (reg_renumber[REGNO] <= 31				\
1680 	|| reg_renumber[REGNO] == ARG_POINTER_REGNUM		\
1681 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1682 
1683 #define REGNO_OK_FOR_BASE_P(REGNO)				\
1684 (HARD_REGISTER_NUM_P (REGNO)					\
1685  ? ((REGNO) > 0 && (REGNO) <= 31)				\
1686    || (REGNO) == ARG_POINTER_REGNUM				\
1687    || (REGNO) == FRAME_POINTER_REGNUM				\
1688  : (reg_renumber[REGNO] > 0					\
1689     && (reg_renumber[REGNO] <= 31				\
1690 	|| reg_renumber[REGNO] == ARG_POINTER_REGNUM		\
1691 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1692 
1693 /* Nonzero if X is a hard reg that can be used as an index
1694    or if it is a pseudo reg in the non-strict case.  */
1695 #define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1696   ((!(STRICT) && !HARD_REGISTER_P (X))				\
1697    || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1698 
1699 /* Nonzero if X is a hard reg that can be used as a base reg
1700    or if it is a pseudo reg in the non-strict case.  */
1701 #define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1702   ((!(STRICT) && !HARD_REGISTER_P (X))				\
1703    || REGNO_OK_FOR_BASE_P (REGNO (X)))
1704 
1705 
1706 /* Maximum number of registers that can appear in a valid memory address.  */
1707 
1708 #define MAX_REGS_PER_ADDRESS 2
1709 
1710 /* Recognize any constant value that is a valid address.  */
1711 
1712 #define CONSTANT_ADDRESS_P(X)   \
1713   (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X)			\
1714    || CONST_INT_P (X) || GET_CODE (X) == CONST				\
1715    || GET_CODE (X) == HIGH)
1716 
1717 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1718 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))	\
1719 				    && EASY_VECTOR_15((n) >> 1) \
1720 				    && ((n) & 1) == 0)
1721 
1722 #define EASY_VECTOR_MSB(n,mode)						\
1723   ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) ==		\
1724    ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1725 
1726 
1727 #define FIND_BASE_TERM rs6000_find_base_term
1728 
1729 /* The register number of the register used to address a table of
1730    static data addresses in memory.  In some cases this register is
1731    defined by a processor's "application binary interface" (ABI).
1732    When this macro is defined, RTL is generated for this register
1733    once, as with the stack pointer and frame pointer registers.  If
1734    this macro is not defined, it is up to the machine-dependent files
1735    to allocate such a register (if necessary).  */
1736 
1737 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1738 #define PIC_OFFSET_TABLE_REGNUM \
1739   (TARGET_TOC ? TOC_REGISTER			\
1740    : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM	\
1741    : INVALID_REGNUM)
1742 
1743 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1744 
1745 /* Define this macro if the register defined by
1746    `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1747    this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1748 
1749 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1750 
1751 /* A C expression that is nonzero if X is a legitimate immediate
1752    operand on the target machine when generating position independent
1753    code.  You can assume that X satisfies `CONSTANT_P', so you need
1754    not check this.  You can also assume FLAG_PIC is true, so you need
1755    not check it either.  You need not define this macro if all
1756    constants (including `SYMBOL_REF') can be immediate operands when
1757    generating position independent code.  */
1758 
1759 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1760 
1761 /* Define as C expression which evaluates to nonzero if the tablejump
1762    instruction expects the table to contain offsets from the address of the
1763    table.
1764    Do not define this if the table should contain absolute addresses.  */
1765 #define CASE_VECTOR_PC_RELATIVE rs6000_relative_jumptables
1766 
1767 /* Specify the machine mode that this machine uses
1768    for the index in the tablejump instruction.  */
1769 #define CASE_VECTOR_MODE (rs6000_relative_jumptables ? SImode : Pmode)
1770 
1771 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1772 #define DEFAULT_SIGNED_CHAR 0
1773 
1774 /* An integer expression for the size in bits of the largest integer machine
1775    mode that should actually be used.  */
1776 
1777 /* Allow pairs of registers to be used, which is the intent of the default.  */
1778 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1779 
1780 /* Max number of bytes we can move from memory to memory
1781    in one reasonably fast instruction.  */
1782 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1783 #define MAX_MOVE_MAX 8
1784 
1785 /* Nonzero if access to memory by bytes is no faster than for words.
1786    Also nonzero if doing byte operations (specifically shifts) in registers
1787    is undesirable.  */
1788 #define SLOW_BYTE_ACCESS 1
1789 
1790 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1791    will either zero-extend or sign-extend.  The value of this macro should
1792    be the code that says which one of the two operations is implicitly
1793    done, UNKNOWN if none.  */
1794 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1795 
1796 /* Define if loading short immediate values into registers sign extends.  */
1797 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1798 
1799 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1800 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1801   ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1802 
1803 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1804    zero.  The hardware instructions added in Power9 and the sequences using
1805    popcount return 32 or 64.  */
1806 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)				\
1807   (TARGET_CTZ || TARGET_POPCNTD						\
1808    ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2)				\
1809    : ((VALUE) = -1, 2))
1810 
1811 /* Specify the machine mode that pointers have.
1812    After generation of rtl, the compiler makes no further distinction
1813    between pointers and any other objects of this machine mode.  */
1814 extern scalar_int_mode rs6000_pmode;
1815 #define Pmode rs6000_pmode
1816 
1817 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
1818 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1819 
1820 /* Mode of a function address in a call instruction (for indexing purposes).
1821    Doesn't matter on RS/6000.  */
1822 #define FUNCTION_MODE SImode
1823 
1824 /* Define this if addresses of constant functions
1825    shouldn't be put through pseudo regs where they can be cse'd.
1826    Desirable on machines where ordinary constants are expensive
1827    but a CALL with constant address is cheap.  */
1828 #define NO_FUNCTION_CSE 1
1829 
1830 /* Define this to be nonzero if shift instructions ignore all but the low-order
1831    few bits.
1832 
1833    The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1834    have been dropped from the PowerPC architecture.  */
1835 #define SHIFT_COUNT_TRUNCATED 0
1836 
1837 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
1838    should be adjusted to reflect any required changes.  This macro is used when
1839    there is some systematic length adjustment required that would be difficult
1840    to express in the length attribute.
1841 
1842    In the PowerPC, we use this to adjust the length of an instruction if one or
1843    more prefixed instructions are generated, using the attribute
1844    num_prefixed_insns.  A prefixed instruction is 8 bytes instead of 4, but the
1845    hardware requires that a prefied instruciton does not cross a 64-byte
1846    boundary.  This means the compiler has to assume the length of the first
1847    prefixed instruction is 12 bytes instead of 8 bytes.  Since the length is
1848    already set for the non-prefixed instruction, we just need to udpate for the
1849    difference.  */
1850 
1851 #define ADJUST_INSN_LENGTH(INSN,LENGTH)					\
1852   (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH))
1853 
1854 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1855    COMPARE, return the mode to be used for the comparison.  For
1856    floating-point, CCFPmode should be used.  CCUNSmode should be used
1857    for unsigned comparisons.  CCEQmode should be used when we are
1858    doing an inequality comparison on the result of a
1859    comparison.  CCmode should be used in all other cases.  */
1860 
1861 #define SELECT_CC_MODE(OP,X,Y) \
1862   (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode	\
1863    : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1864    : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)			  \
1865       ? CCEQmode : CCmode))
1866 
1867 /* Can the condition code MODE be safely reversed?  This is safe in
1868    all cases on this port, because at present it doesn't use the
1869    trapping FP comparisons (fcmpo).  */
1870 #define REVERSIBLE_CC_MODE(MODE) 1
1871 
1872 /* Given a condition code and a mode, return the inverse condition.  */
1873 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1874 
1875 
1876 /* Target cpu costs.  */
1877 
1878 struct processor_costs {
1879   const int mulsi;	  /* cost of SImode multiplication.  */
1880   const int mulsi_const;  /* cost of SImode multiplication by constant.  */
1881   const int mulsi_const9; /* cost of SImode mult by short constant.  */
1882   const int muldi;	  /* cost of DImode multiplication.  */
1883   const int divsi;	  /* cost of SImode division.  */
1884   const int divdi;	  /* cost of DImode division.  */
1885   const int fp;		  /* cost of simple SFmode and DFmode insns.  */
1886   const int dmul;	  /* cost of DFmode multiplication (and fmadd).  */
1887   const int sdiv;	  /* cost of SFmode division (fdivs).  */
1888   const int ddiv;	  /* cost of DFmode division (fdiv).  */
1889   const int cache_line_size;    /* cache line size in bytes. */
1890   const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
1891   const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
1892   const int simultaneous_prefetches; /* number of parallel prefetch
1893 					operations.  */
1894   const int sfdf_convert;	/* cost of SF->DF conversion.  */
1895 };
1896 
1897 extern const struct processor_costs *rs6000_cost;
1898 
1899 /* Control the assembler format that we output.  */
1900 
1901 /* A C string constant describing how to begin a comment in the target
1902    assembler language.  The compiler assumes that the comment will end at
1903    the end of the line.  */
1904 #define ASM_COMMENT_START " #"
1905 
1906 /* Flag to say the TOC is initialized */
1907 extern int toc_initialized;
1908 
1909 /* Macro to output a special constant pool entry.  Go to WIN if we output
1910    it.  Otherwise, it is written the usual way.
1911 
1912    On the RS/6000, toc entries are handled this way.  */
1913 
1914 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1915 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
1916     {									  \
1917       output_toc (FILE, X, LABELNO, MODE);				  \
1918       goto WIN;								  \
1919     }									  \
1920 }
1921 
1922 #ifdef HAVE_GAS_WEAK
1923 #define RS6000_WEAK 1
1924 #else
1925 #define RS6000_WEAK 0
1926 #endif
1927 
1928 #if RS6000_WEAK
1929 /* Used in lieu of ASM_WEAKEN_LABEL.  */
1930 #define        ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1931   rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1932 #endif
1933 
1934 #if HAVE_GAS_WEAKREF
1935 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)			\
1936   do									\
1937     {									\
1938       fputs ("\t.weakref\t", (FILE));					\
1939       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
1940       fputs (", ", (FILE));						\
1941       RS6000_OUTPUT_BASENAME ((FILE), (VALUE));				\
1942       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
1943 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1944 	{								\
1945 	  fputs ("\n\t.weakref\t.", (FILE));				\
1946 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
1947 	  fputs (", .", (FILE));					\
1948 	  RS6000_OUTPUT_BASENAME ((FILE), (VALUE));			\
1949 	}								\
1950       fputc ('\n', (FILE));						\
1951     } while (0)
1952 #endif
1953 
1954 /* This implements the `alias' attribute.  */
1955 #undef	ASM_OUTPUT_DEF_FROM_DECLS
1956 #define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
1957   do									\
1958     {									\
1959       const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
1960       const char *name = IDENTIFIER_POINTER (TARGET);			\
1961       if (TREE_CODE (DECL) == FUNCTION_DECL				\
1962 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1963 	{								\
1964 	  if (TREE_PUBLIC (DECL))					\
1965 	    {								\
1966 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1967 		{							\
1968 		  fputs ("\t.globl\t.", FILE);				\
1969 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1970 		  putc ('\n', FILE);					\
1971 		}							\
1972 	    }								\
1973 	  else if (TARGET_XCOFF)					\
1974 	    {								\
1975 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1976 		{							\
1977 		  fputs ("\t.lglobl\t.", FILE);				\
1978 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1979 		  putc ('\n', FILE);					\
1980 		  fputs ("\t.lglobl\t", FILE);				\
1981 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1982 		  putc ('\n', FILE);					\
1983 		}							\
1984 	    }								\
1985 	  fputs ("\t.set\t.", FILE);					\
1986 	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
1987 	  fputs (",.", FILE);						\
1988 	  RS6000_OUTPUT_BASENAME (FILE, name);				\
1989 	  fputc ('\n', FILE);						\
1990 	}								\
1991       ASM_OUTPUT_DEF (FILE, alias, name);				\
1992     }									\
1993    while (0)
1994 
1995 #define TARGET_ASM_FILE_START rs6000_file_start
1996 
1997 /* Output to assembler file text saying following lines
1998    may contain character constants, extra white space, comments, etc.  */
1999 
2000 #define ASM_APP_ON ""
2001 
2002 /* Output to assembler file text saying following lines
2003    no longer contain unusual constructs.  */
2004 
2005 #define ASM_APP_OFF ""
2006 
2007 /* How to refer to registers in assembler output.
2008    This sequence is indexed by compiler's hard-register-number (see above).  */
2009 
2010 extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2011 
2012 #define REGISTER_NAMES							\
2013 {									\
2014   &rs6000_reg_names[ 0][0],	/* r0   */				\
2015   &rs6000_reg_names[ 1][0],	/* r1	*/				\
2016   &rs6000_reg_names[ 2][0],	/* r2	*/				\
2017   &rs6000_reg_names[ 3][0],	/* r3	*/				\
2018   &rs6000_reg_names[ 4][0],	/* r4	*/				\
2019   &rs6000_reg_names[ 5][0],	/* r5	*/				\
2020   &rs6000_reg_names[ 6][0],	/* r6	*/				\
2021   &rs6000_reg_names[ 7][0],	/* r7	*/				\
2022   &rs6000_reg_names[ 8][0],	/* r8	*/				\
2023   &rs6000_reg_names[ 9][0],	/* r9	*/				\
2024   &rs6000_reg_names[10][0],	/* r10  */				\
2025   &rs6000_reg_names[11][0],	/* r11  */				\
2026   &rs6000_reg_names[12][0],	/* r12  */				\
2027   &rs6000_reg_names[13][0],	/* r13  */				\
2028   &rs6000_reg_names[14][0],	/* r14  */				\
2029   &rs6000_reg_names[15][0],	/* r15  */				\
2030   &rs6000_reg_names[16][0],	/* r16  */				\
2031   &rs6000_reg_names[17][0],	/* r17  */				\
2032   &rs6000_reg_names[18][0],	/* r18  */				\
2033   &rs6000_reg_names[19][0],	/* r19  */				\
2034   &rs6000_reg_names[20][0],	/* r20  */				\
2035   &rs6000_reg_names[21][0],	/* r21  */				\
2036   &rs6000_reg_names[22][0],	/* r22  */				\
2037   &rs6000_reg_names[23][0],	/* r23  */				\
2038   &rs6000_reg_names[24][0],	/* r24  */				\
2039   &rs6000_reg_names[25][0],	/* r25  */				\
2040   &rs6000_reg_names[26][0],	/* r26  */				\
2041   &rs6000_reg_names[27][0],	/* r27  */				\
2042   &rs6000_reg_names[28][0],	/* r28  */				\
2043   &rs6000_reg_names[29][0],	/* r29  */				\
2044   &rs6000_reg_names[30][0],	/* r30  */				\
2045   &rs6000_reg_names[31][0],	/* r31  */				\
2046 									\
2047   &rs6000_reg_names[32][0],	/* fr0  */				\
2048   &rs6000_reg_names[33][0],	/* fr1  */				\
2049   &rs6000_reg_names[34][0],	/* fr2  */				\
2050   &rs6000_reg_names[35][0],	/* fr3  */				\
2051   &rs6000_reg_names[36][0],	/* fr4  */				\
2052   &rs6000_reg_names[37][0],	/* fr5  */				\
2053   &rs6000_reg_names[38][0],	/* fr6  */				\
2054   &rs6000_reg_names[39][0],	/* fr7  */				\
2055   &rs6000_reg_names[40][0],	/* fr8  */				\
2056   &rs6000_reg_names[41][0],	/* fr9  */				\
2057   &rs6000_reg_names[42][0],	/* fr10 */				\
2058   &rs6000_reg_names[43][0],	/* fr11 */				\
2059   &rs6000_reg_names[44][0],	/* fr12 */				\
2060   &rs6000_reg_names[45][0],	/* fr13 */				\
2061   &rs6000_reg_names[46][0],	/* fr14 */				\
2062   &rs6000_reg_names[47][0],	/* fr15 */				\
2063   &rs6000_reg_names[48][0],	/* fr16 */				\
2064   &rs6000_reg_names[49][0],	/* fr17 */				\
2065   &rs6000_reg_names[50][0],	/* fr18 */				\
2066   &rs6000_reg_names[51][0],	/* fr19 */				\
2067   &rs6000_reg_names[52][0],	/* fr20 */				\
2068   &rs6000_reg_names[53][0],	/* fr21 */				\
2069   &rs6000_reg_names[54][0],	/* fr22 */				\
2070   &rs6000_reg_names[55][0],	/* fr23 */				\
2071   &rs6000_reg_names[56][0],	/* fr24 */				\
2072   &rs6000_reg_names[57][0],	/* fr25 */				\
2073   &rs6000_reg_names[58][0],	/* fr26 */				\
2074   &rs6000_reg_names[59][0],	/* fr27 */				\
2075   &rs6000_reg_names[60][0],	/* fr28 */				\
2076   &rs6000_reg_names[61][0],	/* fr29 */				\
2077   &rs6000_reg_names[62][0],	/* fr30 */				\
2078   &rs6000_reg_names[63][0],	/* fr31 */				\
2079 									\
2080   &rs6000_reg_names[64][0],	/* vr0  */				\
2081   &rs6000_reg_names[65][0],	/* vr1  */				\
2082   &rs6000_reg_names[66][0],	/* vr2  */				\
2083   &rs6000_reg_names[67][0],	/* vr3  */				\
2084   &rs6000_reg_names[68][0],	/* vr4  */				\
2085   &rs6000_reg_names[69][0],	/* vr5  */				\
2086   &rs6000_reg_names[70][0],	/* vr6  */				\
2087   &rs6000_reg_names[71][0],	/* vr7  */				\
2088   &rs6000_reg_names[72][0],	/* vr8  */				\
2089   &rs6000_reg_names[73][0],	/* vr9  */				\
2090   &rs6000_reg_names[74][0],	/* vr10 */				\
2091   &rs6000_reg_names[75][0],	/* vr11 */				\
2092   &rs6000_reg_names[76][0],	/* vr12 */				\
2093   &rs6000_reg_names[77][0],	/* vr13 */				\
2094   &rs6000_reg_names[78][0],	/* vr14 */				\
2095   &rs6000_reg_names[79][0],	/* vr15 */				\
2096   &rs6000_reg_names[80][0],	/* vr16 */				\
2097   &rs6000_reg_names[81][0],	/* vr17 */				\
2098   &rs6000_reg_names[82][0],	/* vr18 */				\
2099   &rs6000_reg_names[83][0],	/* vr19 */				\
2100   &rs6000_reg_names[84][0],	/* vr20 */				\
2101   &rs6000_reg_names[85][0],	/* vr21 */				\
2102   &rs6000_reg_names[86][0],	/* vr22 */				\
2103   &rs6000_reg_names[87][0],	/* vr23 */				\
2104   &rs6000_reg_names[88][0],	/* vr24 */				\
2105   &rs6000_reg_names[89][0],	/* vr25 */				\
2106   &rs6000_reg_names[90][0],	/* vr26 */				\
2107   &rs6000_reg_names[91][0],	/* vr27 */				\
2108   &rs6000_reg_names[92][0],	/* vr28 */				\
2109   &rs6000_reg_names[93][0],	/* vr29 */				\
2110   &rs6000_reg_names[94][0],	/* vr30 */				\
2111   &rs6000_reg_names[95][0],	/* vr31 */				\
2112 									\
2113   &rs6000_reg_names[96][0],	/* lr   */				\
2114   &rs6000_reg_names[97][0],	/* ctr  */				\
2115   &rs6000_reg_names[98][0],	/* ca  */				\
2116   &rs6000_reg_names[99][0],	/* ap   */				\
2117 									\
2118   &rs6000_reg_names[100][0],	/* cr0  */				\
2119   &rs6000_reg_names[101][0],	/* cr1  */				\
2120   &rs6000_reg_names[102][0],	/* cr2  */				\
2121   &rs6000_reg_names[103][0],	/* cr3  */				\
2122   &rs6000_reg_names[104][0],	/* cr4  */				\
2123   &rs6000_reg_names[105][0],	/* cr5  */				\
2124   &rs6000_reg_names[106][0],	/* cr6  */				\
2125   &rs6000_reg_names[107][0],	/* cr7  */				\
2126 									\
2127   &rs6000_reg_names[108][0],	/* vrsave  */				\
2128   &rs6000_reg_names[109][0],	/* vscr  */				\
2129 									\
2130   &rs6000_reg_names[110][0]	/* sfp  */				\
2131 }
2132 
2133 /* Table of additional register names to use in user input.  */
2134 
2135 #define ADDITIONAL_REGISTER_NAMES \
2136  {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2137   {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2138   {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2139   {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2140   {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2141   {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2142   {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2143   {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2144   {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2145   {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2146   {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2147   {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2148   {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2149   {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2150   {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2151   {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2152   {"v0",   64}, {"v1",   65}, {"v2",   66}, {"v3",   67},	\
2153   {"v4",   68}, {"v5",   69}, {"v6",   70}, {"v7",   71},	\
2154   {"v8",   72}, {"v9",   73}, {"v10",  74}, {"v11",  75},	\
2155   {"v12",  76}, {"v13",  77}, {"v14",  78}, {"v15",  79},	\
2156   {"v16",  80}, {"v17",  81}, {"v18",  82}, {"v19",  83},	\
2157   {"v20",  84}, {"v21",  85}, {"v22",  86}, {"v23",  87},	\
2158   {"v24",  88}, {"v25",  89}, {"v26",  90}, {"v27",  91},	\
2159   {"v28",  92}, {"v29",  93}, {"v30",  94}, {"v31",  95},	\
2160   {"vrsave", 108}, {"vscr", 109},				\
2161   /* no additional names for: lr, ctr, ap */			\
2162   {"cr0",  100},{"cr1",  101},{"cr2",  102},{"cr3",  103},	\
2163   {"cr4",  104},{"cr5",  105},{"cr6",  106},{"cr7",  107},	\
2164   {"cc",   100},{"sp",    1}, {"toc",   2},			\
2165   /* CA is only part of XER, but we do not model the other parts (yet).  */ \
2166   {"xer",  98},							\
2167   /* VSX registers overlaid on top of FR, Altivec registers */	\
2168   {"vs0",  32}, {"vs1",  33}, {"vs2",  34}, {"vs3",  35},	\
2169   {"vs4",  36}, {"vs5",  37}, {"vs6",  38}, {"vs7",  39},	\
2170   {"vs8",  40}, {"vs9",  41}, {"vs10", 42}, {"vs11", 43},	\
2171   {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47},	\
2172   {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51},	\
2173   {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55},	\
2174   {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59},	\
2175   {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63},	\
2176   {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67},	\
2177   {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71},	\
2178   {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75},	\
2179   {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79},	\
2180   {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83},	\
2181   {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87},	\
2182   {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91},	\
2183   {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95},	\
2184 }
2185 
2186 /* This is how to output an element of a case-vector that is relative.  */
2187 
2188 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2189   do { char buf[100];					\
2190        fputs ("\t.long ", FILE);			\
2191        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2192        assemble_name (FILE, buf);			\
2193        putc ('-', FILE);				\
2194        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2195        assemble_name (FILE, buf);			\
2196        putc ('\n', FILE);				\
2197      } while (0)
2198 
2199 /* This is how to output an element of a case-vector
2200    that is non-relative.  */
2201 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2202   rs6000_output_addr_vec_elt ((FILE), (VALUE))
2203 
2204 /* This is how to output an assembler line
2205    that says to advance the location counter
2206    to a multiple of 2**LOG bytes.  */
2207 
2208 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2209   if ((LOG) != 0)			\
2210     fprintf (FILE, "\t.align %d\n", (LOG))
2211 
2212 /* How to align the given loop. */
2213 #define LOOP_ALIGN(LABEL)  rs6000_loop_align(LABEL)
2214 
2215 /* Alignment guaranteed by __builtin_malloc.  */
2216 /* FIXME:  128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2217    However, specifying the stronger guarantee currently leads to
2218    a regression in SPEC CPU2006 437.leslie3d.  The stronger
2219    guarantee should be implemented here once that's fixed.  */
2220 #define MALLOC_ABI_ALIGNMENT (64)
2221 
2222 /* Pick up the return address upon entry to a procedure. Used for
2223    dwarf2 unwind information.  This also enables the table driven
2224    mechanism.  */
2225 
2226 #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LR_REGNO)
2227 #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LR_REGNO)
2228 
2229 /* Describe how we implement __builtin_eh_return.  */
2230 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2231 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2232 
2233 /* Print operand X (an rtx) in assembler syntax to file FILE.
2234    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2235    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2236 
2237 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2238 
2239 /* Define which CODE values are valid.  */
2240 
2241 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)  ((CODE) == '&')
2242 
2243 /* Print a memory address as an operand to reference that memory location.  */
2244 
2245 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2246 
2247 /* For switching between functions with different target attributes.  */
2248 #define SWITCHABLE_TARGET 1
2249 
2250 /* uncomment for disabling the corresponding default options */
2251 /* #define  MACHINE_no_sched_interblock */
2252 /* #define  MACHINE_no_sched_speculative */
2253 /* #define  MACHINE_no_sched_speculative_load */
2254 
2255 /* General flags.  */
2256 extern int frame_pointer_needed;
2257 
2258 /* Classification of the builtin functions as to which switches enable the
2259    builtin, and what attributes it should have.  We used to use the target
2260    flags macros, but we've run out of bits, so we now map the options into new
2261    settings used here.  */
2262 
2263 /* Builtin operand count.  */
2264 #define RS6000_BTC_UNARY	0x00000001	/* normal unary function.  */
2265 #define RS6000_BTC_BINARY	0x00000002	/* normal binary function.  */
2266 #define RS6000_BTC_TERNARY	0x00000003	/* normal ternary function.  */
2267 #define RS6000_BTC_QUATERNARY	0x00000004	/* normal quaternary
2268 						   function. */
2269 #define RS6000_BTC_QUINARY	0x00000005	/* normal quinary function.  */
2270 #define RS6000_BTC_SENARY	0x00000006	/* normal senary function.  */
2271 #define RS6000_BTC_OPND_MASK	0x00000007	/* Mask to isolate operands. */
2272 
2273 /* Builtin attributes.  */
2274 #define RS6000_BTC_SPECIAL	0x00000000	/* Special function.  */
2275 #define RS6000_BTC_PREDICATE	0x00000008	/* predicate function.  */
2276 #define RS6000_BTC_ABS		0x00000010	/* Altivec/VSX ABS
2277 						   function.  */
2278 #define RS6000_BTC_DST		0x00000020	/* Altivec DST function.  */
2279 
2280 #define RS6000_BTC_TYPE_MASK	0x0000003f	/* Mask to isolate types */
2281 
2282 #define RS6000_BTC_MISC		0x00000000	/* No special attributes.  */
2283 #define RS6000_BTC_CONST	0x00000100	/* Neither uses, nor
2284 						   modifies global state.  */
2285 #define RS6000_BTC_PURE		0x00000200	/* reads global
2286 						   state/mem and does
2287 						   not modify global state.  */
2288 #define RS6000_BTC_FP		0x00000400	/* depends on rounding mode.  */
2289 #define RS6000_BTC_QUAD		0x00000800	/* Uses a register quad.  */
2290 #define RS6000_BTC_PAIR		0x00001000	/* Uses a register pair.  */
2291 #define RS6000_BTC_QUADPAIR	0x00001800	/* Uses a quad and a pair.  */
2292 #define RS6000_BTC_ATTR_MASK	0x00001f00	/* Mask of the attributes.  */
2293 
2294 /* Miscellaneous information.  */
2295 #define RS6000_BTC_SPR		0x01000000	/* function references SPRs.  */
2296 #define RS6000_BTC_VOID		0x02000000	/* function has no return value.  */
2297 #define RS6000_BTC_CR		0x04000000	/* function references a CR.  */
2298 #define RS6000_BTC_OVERLOADED	0x08000000	/* function is overloaded.  */
2299 #define RS6000_BTC_GIMPLE	0x10000000	/* function should be expanded
2300 						   into gimple.  */
2301 #define RS6000_BTC_MISC_MASK	0x1f000000	/* Mask of the misc info.  */
2302 
2303 /* Convenience macros to document the instruction type.  */
2304 #define RS6000_BTC_MEM		RS6000_BTC_MISC	/* load/store touches mem.  */
2305 #define RS6000_BTC_SAT		RS6000_BTC_MISC	/* saturate sets VSCR.  */
2306 
2307 /* Builtin targets.  For now, we reuse the masks for those options that are in
2308    target flags, and pick a random bit for ldbl128, which isn't in
2309    target_flags.  */
2310 #define RS6000_BTM_ALWAYS	0		/* Always enabled.  */
2311 #define RS6000_BTM_ALTIVEC	MASK_ALTIVEC	/* VMX/altivec vectors.  */
2312 #define RS6000_BTM_CMPB		MASK_CMPB	/* ISA 2.05: compare bytes.  */
2313 #define RS6000_BTM_VSX		MASK_VSX	/* VSX (vector/scalar).  */
2314 #define RS6000_BTM_P8_VECTOR	MASK_P8_VECTOR	/* ISA 2.07 vector.  */
2315 #define RS6000_BTM_P9_VECTOR	MASK_P9_VECTOR	/* ISA 3.0 vector.  */
2316 #define RS6000_BTM_P9_MISC	MASK_P9_MISC	/* ISA 3.0 misc. non-vector */
2317 #define RS6000_BTM_CRYPTO	MASK_CRYPTO	/* crypto funcs.  */
2318 #define RS6000_BTM_HTM		MASK_HTM	/* hardware TM funcs.  */
2319 #define RS6000_BTM_FRE		MASK_POPCNTB	/* FRE instruction.  */
2320 #define RS6000_BTM_FRES		MASK_PPC_GFXOPT	/* FRES instruction.  */
2321 #define RS6000_BTM_FRSQRTE	MASK_PPC_GFXOPT	/* FRSQRTE instruction.  */
2322 #define RS6000_BTM_FRSQRTES	MASK_POPCNTB	/* FRSQRTES instruction.  */
2323 #define RS6000_BTM_POPCNTD	MASK_POPCNTD	/* Target supports ISA 2.06.  */
2324 #define RS6000_BTM_CELL		MASK_FPRND	/* Target is cell powerpc.  */
2325 #define RS6000_BTM_DFP		MASK_DFP	/* Decimal floating point.  */
2326 #define RS6000_BTM_HARD_FLOAT	MASK_SOFT_FLOAT	/* Hardware floating point.  */
2327 #define RS6000_BTM_LDBL128	MASK_MULTIPLE	/* 128-bit long double.  */
2328 #define RS6000_BTM_64BIT	MASK_64BIT	/* 64-bit addressing.  */
2329 #define RS6000_BTM_POWERPC64	MASK_POWERPC64	/* 64-bit registers.  */
2330 #define RS6000_BTM_FLOAT128	MASK_FLOAT128_KEYWORD /* IEEE 128-bit float.  */
2331 #define RS6000_BTM_FLOAT128_HW	MASK_FLOAT128_HW /* IEEE 128-bit float h/w.  */
2332 #define RS6000_BTM_MMA		MASK_MMA	/* ISA 3.1 MMA.  */
2333 #define RS6000_BTM_P10		MASK_POWER10
2334 
2335 #define RS6000_BTM_COMMON	(RS6000_BTM_ALTIVEC			\
2336 				 | RS6000_BTM_VSX			\
2337 				 | RS6000_BTM_P8_VECTOR			\
2338 				 | RS6000_BTM_P9_VECTOR			\
2339 				 | RS6000_BTM_P9_MISC			\
2340 				 | RS6000_BTM_MODULO                    \
2341 				 | RS6000_BTM_CRYPTO			\
2342 				 | RS6000_BTM_FRE			\
2343 				 | RS6000_BTM_FRES			\
2344 				 | RS6000_BTM_FRSQRTE			\
2345 				 | RS6000_BTM_FRSQRTES			\
2346 				 | RS6000_BTM_HTM			\
2347 				 | RS6000_BTM_POPCNTD			\
2348 				 | RS6000_BTM_CELL			\
2349 				 | RS6000_BTM_DFP			\
2350 				 | RS6000_BTM_HARD_FLOAT		\
2351 				 | RS6000_BTM_LDBL128			\
2352 				 | RS6000_BTM_POWERPC64			\
2353 				 | RS6000_BTM_FLOAT128			\
2354 				 | RS6000_BTM_FLOAT128_HW		\
2355 				 | RS6000_BTM_MMA			\
2356 				 | RS6000_BTM_P10)
2357 
2358 /* Define builtin enum index.  */
2359 
2360 #undef RS6000_BUILTIN_0
2361 #undef RS6000_BUILTIN_1
2362 #undef RS6000_BUILTIN_2
2363 #undef RS6000_BUILTIN_3
2364 #undef RS6000_BUILTIN_4
2365 #undef RS6000_BUILTIN_A
2366 #undef RS6000_BUILTIN_D
2367 #undef RS6000_BUILTIN_H
2368 #undef RS6000_BUILTIN_M
2369 #undef RS6000_BUILTIN_P
2370 #undef RS6000_BUILTIN_X
2371 
2372 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2373 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2374 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2375 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2376 #define RS6000_BUILTIN_4(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2377 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2378 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2379 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2380 #define RS6000_BUILTIN_M(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2381 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2382 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2383 
2384 enum rs6000_builtins
2385 {
2386 #include "rs6000-builtin.def"
2387 
2388   RS6000_BUILTIN_COUNT
2389 };
2390 
2391 #undef RS6000_BUILTIN_0
2392 #undef RS6000_BUILTIN_1
2393 #undef RS6000_BUILTIN_2
2394 #undef RS6000_BUILTIN_3
2395 #undef RS6000_BUILTIN_4
2396 #undef RS6000_BUILTIN_A
2397 #undef RS6000_BUILTIN_D
2398 #undef RS6000_BUILTIN_H
2399 #undef RS6000_BUILTIN_M
2400 #undef RS6000_BUILTIN_P
2401 #undef RS6000_BUILTIN_X
2402 
2403 /* Mappings for overloaded builtins.  */
2404 struct altivec_builtin_types
2405 {
2406   enum rs6000_builtins code;
2407   enum rs6000_builtins overloaded_code;
2408   signed char ret_type;
2409   signed char op1;
2410   signed char op2;
2411   signed char op3;
2412 };
2413 extern const struct altivec_builtin_types altivec_overloaded_builtins[];
2414 
2415 enum rs6000_builtin_type_index
2416 {
2417   RS6000_BTI_NOT_OPAQUE,
2418   RS6000_BTI_opaque_V4SI,
2419   RS6000_BTI_V16QI,              /* __vector signed char */
2420   RS6000_BTI_V1TI,
2421   RS6000_BTI_V2DI,
2422   RS6000_BTI_V2DF,
2423   RS6000_BTI_V4HI,
2424   RS6000_BTI_V4SI,
2425   RS6000_BTI_V4SF,
2426   RS6000_BTI_V8HI,
2427   RS6000_BTI_unsigned_V16QI,     /* __vector unsigned char */
2428   RS6000_BTI_unsigned_V1TI,
2429   RS6000_BTI_unsigned_V8HI,
2430   RS6000_BTI_unsigned_V4SI,
2431   RS6000_BTI_unsigned_V2DI,
2432   RS6000_BTI_bool_char,          /* __bool char */
2433   RS6000_BTI_bool_short,         /* __bool short */
2434   RS6000_BTI_bool_int,           /* __bool int */
2435   RS6000_BTI_bool_long_long,     /* __bool long long */
2436   RS6000_BTI_pixel,              /* __pixel (16 bits arranged as 4
2437 				    channels of 1, 5, 5, and 5 bits
2438 				    respectively as packed with the
2439 				    vpkpx insn.  __pixel is only
2440 				    meaningful as a vector type.
2441 				    There is no corresponding scalar
2442 				    __pixel data type.)  */
2443   RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2444   RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2445   RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2446   RS6000_BTI_bool_V2DI,          /* __vector __bool long */
2447   RS6000_BTI_bool_V1TI,          /* __vector __bool 128-bit */
2448   RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2449   RS6000_BTI_long,	         /* long_integer_type_node */
2450   RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2451   RS6000_BTI_long_long,	         /* long_long_integer_type_node */
2452   RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2453   RS6000_BTI_INTQI,	         /* (signed) intQI_type_node */
2454   RS6000_BTI_UINTQI,		 /* unsigned_intQI_type_node */
2455   RS6000_BTI_INTHI,	         /* intHI_type_node */
2456   RS6000_BTI_UINTHI,		 /* unsigned_intHI_type_node */
2457   RS6000_BTI_INTSI,		 /* intSI_type_node (signed) */
2458   RS6000_BTI_UINTSI,		 /* unsigned_intSI_type_node */
2459   RS6000_BTI_INTDI,		 /* intDI_type_node */
2460   RS6000_BTI_UINTDI,		 /* unsigned_intDI_type_node */
2461   RS6000_BTI_INTTI,		 /* intTI_type_node */
2462   RS6000_BTI_UINTTI,		 /* unsigned_intTI_type_node */
2463   RS6000_BTI_float,	         /* float_type_node */
2464   RS6000_BTI_double,	         /* double_type_node */
2465   RS6000_BTI_long_double,        /* long_double_type_node */
2466   RS6000_BTI_dfloat64,		 /* dfloat64_type_node */
2467   RS6000_BTI_dfloat128,		 /* dfloat128_type_node */
2468   RS6000_BTI_void,	         /* void_type_node */
2469   RS6000_BTI_ieee128_float,	 /* ieee 128-bit floating point */
2470   RS6000_BTI_ibm128_float,	 /* IBM 128-bit floating point */
2471   RS6000_BTI_const_str,		 /* pointer to const char * */
2472   RS6000_BTI_vector_pair,	 /* unsigned 256-bit types (vector pair).  */
2473   RS6000_BTI_vector_quad,	 /* unsigned 512-bit types (vector quad).  */
2474   RS6000_BTI_MAX
2475 };
2476 
2477 
2478 #define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2479 #define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2480 #define V1TI_type_node                (rs6000_builtin_types[RS6000_BTI_V1TI])
2481 #define V2DI_type_node                (rs6000_builtin_types[RS6000_BTI_V2DI])
2482 #define V2DF_type_node                (rs6000_builtin_types[RS6000_BTI_V2DF])
2483 #define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2484 #define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2485 #define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2486 #define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2487 #define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2488 #define unsigned_V1TI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2489 #define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2490 #define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2491 #define unsigned_V2DI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2492 #define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2493 #define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2494 #define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2495 #define bool_long_long_type_node      (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2496 #define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2497 #define bool_V16QI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2498 #define bool_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2499 #define bool_V4SI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2500 #define bool_V2DI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2501 #define bool_V1TI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V1TI])
2502 #define pixel_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2503 
2504 #define long_long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long_long])
2505 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2506 #define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2507 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2508 #define intQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTQI])
2509 #define uintQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTQI])
2510 #define intHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTHI])
2511 #define uintHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTHI])
2512 #define intSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTSI])
2513 #define uintSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTSI])
2514 #define intDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTDI])
2515 #define uintDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTDI])
2516 #define intTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTTI])
2517 #define uintTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTTI])
2518 #define float_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_float])
2519 #define double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_double])
2520 #define long_double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_long_double])
2521 #define dfloat64_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat64])
2522 #define dfloat128_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat128])
2523 #define void_type_internal_node		 (rs6000_builtin_types[RS6000_BTI_void])
2524 #define ieee128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2525 #define ibm128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2526 #define const_str_type_node		 (rs6000_builtin_types[RS6000_BTI_const_str])
2527 #define vector_pair_type_node		 (rs6000_builtin_types[RS6000_BTI_vector_pair])
2528 #define vector_quad_type_node		 (rs6000_builtin_types[RS6000_BTI_vector_quad])
2529 
2530 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2531 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2532 
2533 #ifndef USED_FOR_TARGET
2534 extern GTY(()) tree builtin_mode_to_type[MAX_MACHINE_MODE][2];
2535 extern GTY(()) tree altivec_builtin_mask_for_load;
2536 extern GTY(()) section *toc_section;
2537 
2538 /* A C structure for machine-specific, per-function data.
2539    This is added to the cfun structure.  */
2540 typedef struct GTY(()) machine_function
2541 {
2542   /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
2543   int ra_needs_full_frame;
2544   /* Flags if __builtin_return_address (0) was used.  */
2545   int ra_need_lr;
2546   /* Cache lr_save_p after expansion of builtin_eh_return.  */
2547   int lr_save_state;
2548   /* Whether we need to save the TOC to the reserved stack location in the
2549      function prologue.  */
2550   bool save_toc_in_prologue;
2551   /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
2552      varargs save area.  */
2553   HOST_WIDE_INT varargs_save_offset;
2554   /* Alternative internal arg pointer for -fsplit-stack.  */
2555   rtx split_stack_arg_pointer;
2556   bool split_stack_argp_used;
2557   /* Flag if r2 setup is needed with ELFv2 ABI.  */
2558   bool r2_setup_needed;
2559   /* The number of components we use for separate shrink-wrapping.  */
2560   int n_components;
2561   /* The components already handled by separate shrink-wrapping, which should
2562      not be considered by the prologue and epilogue.  */
2563   bool gpr_is_wrapped_separately[32];
2564   bool fpr_is_wrapped_separately[32];
2565   bool lr_is_wrapped_separately;
2566   bool toc_is_wrapped_separately;
2567   bool mma_return_type_error;
2568 } machine_function;
2569 #endif
2570 
2571 
2572 #define TARGET_SUPPORTS_WIDE_INT 1
2573 
2574 #if (GCC_VERSION >= 3000)
2575 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2576 #endif
2577 
2578 /* Whether a given VALUE is a valid 16 or 34-bit signed integer.  */
2579 #define SIGNED_INTEGER_NBIT_P(VALUE, N)					\
2580   IN_RANGE ((VALUE),							\
2581 	    -(HOST_WIDE_INT_1 << ((N)-1)),				\
2582 	    (HOST_WIDE_INT_1 << ((N)-1)) - 1)
2583 
2584 #define SIGNED_INTEGER_16BIT_P(VALUE)	SIGNED_INTEGER_NBIT_P (VALUE, 16)
2585 #define SIGNED_INTEGER_34BIT_P(VALUE)	SIGNED_INTEGER_NBIT_P (VALUE, 34)
2586 
2587 /* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra
2588    argument that gives a length to validate a range of addresses, to allow for
2589    splitting insns into several insns, each of which has an offsettable
2590    address.  */
2591 #define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA)			\
2592   IN_RANGE ((VALUE),							\
2593 	    -(HOST_WIDE_INT_1 << 15),					\
2594 	    (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA))
2595 
2596 #define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA)			\
2597   IN_RANGE ((VALUE),							\
2598 	    -(HOST_WIDE_INT_1 << 33),					\
2599 	    (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA))
2600 
2601 /* Define this if some processing needs to be done before outputting the
2602    assembler code.  On the PowerPC, we remember if the current insn is a normal
2603    prefixed insn where we need to emit a 'p' before the insn.  */
2604 #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS)			\
2605 do									\
2606   {									\
2607     if (TARGET_PREFIXED)						\
2608       rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS);		\
2609   }									\
2610 while (0)
2611 
2612 /* Do anything special before emitting an opcode.  We use it to emit a 'p' for
2613    prefixed insns that is set in FINAL_PRESCAN_INSN.  */
2614 #define ASM_OUTPUT_OPCODE(STREAM, OPCODE)				\
2615   do									\
2616     {									\
2617      if (TARGET_PREFIXED)						\
2618        rs6000_asm_output_opcode (STREAM);				\
2619     }									\
2620   while (0)
2621