1 /* Convert RTL to assembler code and output it, for GNU compiler.
2    Copyright (C) 1987-2021 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This is the final pass of the compiler.
21    It looks at the rtl code for a function and outputs assembler code.
22 
23    Call `final_start_function' to output the assembler code for function entry,
24    `final' to output assembler code for some RTL code,
25    `final_end_function' to output assembler code for function exit.
26    If a function is compiled in several pieces, each piece is
27    output separately with `final'.
28 
29    Some optimizations are also done at this level.
30    Move instructions that were made unnecessary by good register allocation
31    are detected and omitted from the output.  (Though most of these
32    are removed by the last jump pass.)
33 
34    Instructions to set the condition codes are omitted when it can be
35    seen that the condition codes already had the desired values.
36 
37    In some cases it is sufficient if the inherited condition codes
38    have related values, but this may require the following insn
39    (the one that tests the condition codes) to be modified.
40 
41    The code for the function prologue and epilogue are generated
42    directly in assembler by the target functions function_prologue and
43    function_epilogue.  Those instructions never exist as rtl.  */
44 
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "stringpool.h"
79 #include "attribs.h"
80 #include "asan.h"
81 #include "rtl-iter.h"
82 #include "print-rtl.h"
83 #include "function-abi.h"
84 #include "common/common-target.h"
85 
86 #ifdef XCOFF_DEBUGGING_INFO
87 #include "xcoffout.h"		/* Needed for external data declarations.  */
88 #endif
89 
90 #include "dwarf2out.h"
91 
92 #ifdef DBX_DEBUGGING_INFO
93 #include "dbxout.h"
94 #endif
95 
96 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
97    So define a null default for it to save conditionalization later.  */
98 #ifndef CC_STATUS_INIT
99 #define CC_STATUS_INIT
100 #endif
101 
102 /* Is the given character a logical line separator for the assembler?  */
103 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
104 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
105 #endif
106 
107 #ifndef JUMP_TABLES_IN_TEXT_SECTION
108 #define JUMP_TABLES_IN_TEXT_SECTION 0
109 #endif
110 
111 /* Bitflags used by final_scan_insn.  */
112 #define SEEN_NOTE	1
113 #define SEEN_EMITTED	2
114 #define SEEN_NEXT_VIEW	4
115 
116 /* Last insn processed by final_scan_insn.  */
117 static rtx_insn *debug_insn;
118 rtx_insn *current_output_insn;
119 
120 /* Line number of last NOTE.  */
121 static int last_linenum;
122 
123 /* Column number of last NOTE.  */
124 static int last_columnnum;
125 
126 /* Discriminator written to assembly.  */
127 static int last_discriminator;
128 
129 /* Discriminator to be written to assembly for current instruction.
130    Note: actual usage depends on loc_discriminator_kind setting.  */
131 static int discriminator;
132 static inline int compute_discriminator (location_t loc);
133 
134 /* Discriminator identifying current basic block among others sharing
135    the same locus.  */
136 static int bb_discriminator;
137 
138 /* Basic block discriminator for previous instruction.  */
139 static int last_bb_discriminator;
140 
141 /* Highest line number in current block.  */
142 static int high_block_linenum;
143 
144 /* Likewise for function.  */
145 static int high_function_linenum;
146 
147 /* Filename of last NOTE.  */
148 static const char *last_filename;
149 
150 /* Override filename, line and column number.  */
151 static const char *override_filename;
152 static int override_linenum;
153 static int override_columnnum;
154 static int override_discriminator;
155 
156 /* Whether to force emission of a line note before the next insn.  */
157 static bool force_source_line = false;
158 
159 extern const int length_unit_log; /* This is defined in insn-attrtab.c.  */
160 
161 /* Nonzero while outputting an `asm' with operands.
162    This means that inconsistencies are the user's fault, so don't die.
163    The precise value is the insn being output, to pass to error_for_asm.  */
164 const rtx_insn *this_is_asm_operands;
165 
166 /* Number of operands of this insn, for an `asm' with operands.  */
167 static unsigned int insn_noperands;
168 
169 /* Compare optimization flag.  */
170 
171 static rtx last_ignored_compare = 0;
172 
173 /* Assign a unique number to each insn that is output.
174    This can be used to generate unique local labels.  */
175 
176 static int insn_counter = 0;
177 
178 /* This variable contains machine-dependent flags (defined in tm.h)
179    set and examined by output routines
180    that describe how to interpret the condition codes properly.  */
181 
182 CC_STATUS cc_status;
183 
184 /* During output of an insn, this contains a copy of cc_status
185    from before the insn.  */
186 
187 CC_STATUS cc_prev_status;
188 
189 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen.  */
190 
191 static int block_depth;
192 
193 /* Nonzero if have enabled APP processing of our assembler output.  */
194 
195 static int app_on;
196 
197 /* If we are outputting an insn sequence, this contains the sequence rtx.
198    Zero otherwise.  */
199 
200 rtx_sequence *final_sequence;
201 
202 #ifdef ASSEMBLER_DIALECT
203 
204 /* Number of the assembler dialect to use, starting at 0.  */
205 static int dialect_number;
206 #endif
207 
208 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern.  */
209 rtx current_insn_predicate;
210 
211 /* True if printing into -fdump-final-insns= dump.  */
212 bool final_insns_dump_p;
213 
214 /* True if profile_function should be called, but hasn't been called yet.  */
215 static bool need_profile_function;
216 
217 static int asm_insn_count (rtx);
218 static void profile_function (FILE *);
219 static void profile_after_prologue (FILE *);
220 static bool notice_source_line (rtx_insn *, bool *);
221 static rtx walk_alter_subreg (rtx *, bool *);
222 static void output_asm_name (void);
223 static void output_alternate_entry_point (FILE *, rtx_insn *);
224 static tree get_mem_expr_from_op (rtx, int *);
225 static void output_asm_operand_names (rtx *, int *, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx_insn *);
228 #endif
229 #if HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 static int align_fuzz (rtx, rtx, int, unsigned);
233 static void collect_fn_hard_reg_usage (void);
234 
235 /* Initialize data in final at the beginning of a compilation.  */
236 
237 void
init_final(const char * filename ATTRIBUTE_UNUSED)238 init_final (const char *filename ATTRIBUTE_UNUSED)
239 {
240   app_on = 0;
241   final_sequence = 0;
242 
243 #ifdef ASSEMBLER_DIALECT
244   dialect_number = ASSEMBLER_DIALECT;
245 #endif
246 }
247 
248 /* Default target function prologue and epilogue assembler output.
249 
250    If not overridden for epilogue code, then the function body itself
251    contains return instructions wherever needed.  */
252 void
default_function_pro_epilogue(FILE *)253 default_function_pro_epilogue (FILE *)
254 {
255 }
256 
257 void
default_function_switched_text_sections(FILE * file ATTRIBUTE_UNUSED,tree decl ATTRIBUTE_UNUSED,bool new_is_cold ATTRIBUTE_UNUSED)258 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
259 					 tree decl ATTRIBUTE_UNUSED,
260 					 bool new_is_cold ATTRIBUTE_UNUSED)
261 {
262 }
263 
264 /* Default target hook that outputs nothing to a stream.  */
265 void
no_asm_to_stream(FILE * file ATTRIBUTE_UNUSED)266 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
267 {
268 }
269 
270 /* Enable APP processing of subsequent output.
271    Used before the output from an `asm' statement.  */
272 
273 void
app_enable(void)274 app_enable (void)
275 {
276   if (! app_on)
277     {
278       fputs (ASM_APP_ON, asm_out_file);
279       app_on = 1;
280     }
281 }
282 
283 /* Disable APP processing of subsequent output.
284    Called from varasm.c before most kinds of output.  */
285 
286 void
app_disable(void)287 app_disable (void)
288 {
289   if (app_on)
290     {
291       fputs (ASM_APP_OFF, asm_out_file);
292       app_on = 0;
293     }
294 }
295 
296 /* Return the number of slots filled in the current
297    delayed branch sequence (we don't count the insn needing the
298    delay slot).   Zero if not in a delayed branch sequence.  */
299 
300 int
dbr_sequence_length(void)301 dbr_sequence_length (void)
302 {
303   if (final_sequence != 0)
304     return XVECLEN (final_sequence, 0) - 1;
305   else
306     return 0;
307 }
308 
309 /* The next two pages contain routines used to compute the length of an insn
310    and to shorten branches.  */
311 
312 /* Arrays for insn lengths, and addresses.  The latter is referenced by
313    `insn_current_length'.  */
314 
315 static int *insn_lengths;
316 
317 vec<int> insn_addresses_;
318 
319 /* Max uid for which the above arrays are valid.  */
320 static int insn_lengths_max_uid;
321 
322 /* Address of insn being processed.  Used by `insn_current_length'.  */
323 int insn_current_address;
324 
325 /* Address of insn being processed in previous iteration.  */
326 int insn_last_address;
327 
328 /* known invariant alignment of insn being processed.  */
329 int insn_current_align;
330 
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332    gives the next following alignment insn that increases the known
333    alignment, or NULL_RTX if there is no such insn.
334    For any alignment obtained this way, we can again index uid_align with
335    its uid to obtain the next following align that in turn increases the
336    alignment, till we reach NULL_RTX; the sequence obtained this way
337    for each insn we'll call the alignment chain of this insn in the following
338    comments.  */
339 
340 static rtx *uid_align;
341 static int *uid_shuid;
342 static vec<align_flags> label_align;
343 
344 /* Indicate that branch shortening hasn't yet been done.  */
345 
346 void
init_insn_lengths(void)347 init_insn_lengths (void)
348 {
349   if (uid_shuid)
350     {
351       free (uid_shuid);
352       uid_shuid = 0;
353     }
354   if (insn_lengths)
355     {
356       free (insn_lengths);
357       insn_lengths = 0;
358       insn_lengths_max_uid = 0;
359     }
360   if (HAVE_ATTR_length)
361     INSN_ADDRESSES_FREE ();
362   if (uid_align)
363     {
364       free (uid_align);
365       uid_align = 0;
366     }
367 }
368 
369 /* Obtain the current length of an insn.  If branch shortening has been done,
370    get its actual length.  Otherwise, use FALLBACK_FN to calculate the
371    length.  */
372 static int
get_attr_length_1(rtx_insn * insn,int (* fallback_fn)(rtx_insn *))373 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
374 {
375   rtx body;
376   int i;
377   int length = 0;
378 
379   if (!HAVE_ATTR_length)
380     return 0;
381 
382   if (insn_lengths_max_uid > INSN_UID (insn))
383     return insn_lengths[INSN_UID (insn)];
384   else
385     switch (GET_CODE (insn))
386       {
387       case NOTE:
388       case BARRIER:
389       case CODE_LABEL:
390       case DEBUG_INSN:
391 	return 0;
392 
393       case CALL_INSN:
394       case JUMP_INSN:
395 	length = fallback_fn (insn);
396 	break;
397 
398       case INSN:
399 	body = PATTERN (insn);
400 	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
401 	  return 0;
402 
403 	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
404 	  length = asm_insn_count (body) * fallback_fn (insn);
405 	else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
406 	  for (i = 0; i < seq->len (); i++)
407 	    length += get_attr_length_1 (seq->insn (i), fallback_fn);
408 	else
409 	  length = fallback_fn (insn);
410 	break;
411 
412       default:
413 	break;
414       }
415 
416 #ifdef ADJUST_INSN_LENGTH
417   ADJUST_INSN_LENGTH (insn, length);
418 #endif
419   return length;
420 }
421 
422 /* Obtain the current length of an insn.  If branch shortening has been done,
423    get its actual length.  Otherwise, get its maximum length.  */
424 int
get_attr_length(rtx_insn * insn)425 get_attr_length (rtx_insn *insn)
426 {
427   return get_attr_length_1 (insn, insn_default_length);
428 }
429 
430 /* Obtain the current length of an insn.  If branch shortening has been done,
431    get its actual length.  Otherwise, get its minimum length.  */
432 int
get_attr_min_length(rtx_insn * insn)433 get_attr_min_length (rtx_insn *insn)
434 {
435   return get_attr_length_1 (insn, insn_min_length);
436 }
437 
438 /* Code to handle alignment inside shorten_branches.  */
439 
440 /* Here is an explanation how the algorithm in align_fuzz can give
441    proper results:
442 
443    Call a sequence of instructions beginning with alignment point X
444    and continuing until the next alignment point `block X'.  When `X'
445    is used in an expression, it means the alignment value of the
446    alignment point.
447 
448    Call the distance between the start of the first insn of block X, and
449    the end of the last insn of block X `IX', for the `inner size of X'.
450    This is clearly the sum of the instruction lengths.
451 
452    Likewise with the next alignment-delimited block following X, which we
453    shall call block Y.
454 
455    Call the distance between the start of the first insn of block X, and
456    the start of the first insn of block Y `OX', for the `outer size of X'.
457 
458    The estimated padding is then OX - IX.
459 
460    OX can be safely estimated as
461 
462            if (X >= Y)
463                    OX = round_up(IX, Y)
464            else
465                    OX = round_up(IX, X) + Y - X
466 
467    Clearly est(IX) >= real(IX), because that only depends on the
468    instruction lengths, and those being overestimated is a given.
469 
470    Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
471    we needn't worry about that when thinking about OX.
472 
473    When X >= Y, the alignment provided by Y adds no uncertainty factor
474    for branch ranges starting before X, so we can just round what we have.
475    But when X < Y, we don't know anything about the, so to speak,
476    `middle bits', so we have to assume the worst when aligning up from an
477    address mod X to one mod Y, which is Y - X.  */
478 
479 #ifndef LABEL_ALIGN
480 #define LABEL_ALIGN(LABEL) align_labels
481 #endif
482 
483 #ifndef LOOP_ALIGN
484 #define LOOP_ALIGN(LABEL) align_loops
485 #endif
486 
487 #ifndef LABEL_ALIGN_AFTER_BARRIER
488 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
489 #endif
490 
491 #ifndef JUMP_ALIGN
492 #define JUMP_ALIGN(LABEL) align_jumps
493 #endif
494 
495 #ifndef ADDR_VEC_ALIGN
496 static int
final_addr_vec_align(rtx_jump_table_data * addr_vec)497 final_addr_vec_align (rtx_jump_table_data *addr_vec)
498 {
499   int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
500 
501   if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
502     align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
503   return exact_log2 (align);
504 
505 }
506 
507 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
508 #endif
509 
510 #ifndef INSN_LENGTH_ALIGNMENT
511 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
512 #endif
513 
514 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
515 
516 static int min_labelno, max_labelno;
517 
518 #define LABEL_TO_ALIGNMENT(LABEL) \
519   (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno])
520 
521 /* For the benefit of port specific code do this also as a function.  */
522 
523 align_flags
label_to_alignment(rtx label)524 label_to_alignment (rtx label)
525 {
526   if (CODE_LABEL_NUMBER (label) <= max_labelno)
527     return LABEL_TO_ALIGNMENT (label);
528   return align_flags ();
529 }
530 
531 /* The differences in addresses
532    between a branch and its target might grow or shrink depending on
533    the alignment the start insn of the range (the branch for a forward
534    branch or the label for a backward branch) starts out on; if these
535    differences are used naively, they can even oscillate infinitely.
536    We therefore want to compute a 'worst case' address difference that
537    is independent of the alignment the start insn of the range end
538    up on, and that is at least as large as the actual difference.
539    The function align_fuzz calculates the amount we have to add to the
540    naively computed difference, by traversing the part of the alignment
541    chain of the start insn of the range that is in front of the end insn
542    of the range, and considering for each alignment the maximum amount
543    that it might contribute to a size increase.
544 
545    For casesi tables, we also want to know worst case minimum amounts of
546    address difference, in case a machine description wants to introduce
547    some common offset that is added to all offsets in a table.
548    For this purpose, align_fuzz with a growth argument of 0 computes the
549    appropriate adjustment.  */
550 
551 /* Compute the maximum delta by which the difference of the addresses of
552    START and END might grow / shrink due to a different address for start
553    which changes the size of alignment insns between START and END.
554    KNOWN_ALIGN_LOG is the alignment known for START.
555    GROWTH should be ~0 if the objective is to compute potential code size
556    increase, and 0 if the objective is to compute potential shrink.
557    The return value is undefined for any other value of GROWTH.  */
558 
559 static int
align_fuzz(rtx start,rtx end,int known_align_log,unsigned int growth)560 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
561 {
562   int uid = INSN_UID (start);
563   rtx align_label;
564   int known_align = 1 << known_align_log;
565   int end_shuid = INSN_SHUID (end);
566   int fuzz = 0;
567 
568   for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
569     {
570       int align_addr, new_align;
571 
572       uid = INSN_UID (align_label);
573       align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
574       if (uid_shuid[uid] > end_shuid)
575 	break;
576       align_flags alignment = LABEL_TO_ALIGNMENT (align_label);
577       new_align = 1 << alignment.levels[0].log;
578       if (new_align < known_align)
579 	continue;
580       fuzz += (-align_addr ^ growth) & (new_align - known_align);
581       known_align = new_align;
582     }
583   return fuzz;
584 }
585 
586 /* Compute a worst-case reference address of a branch so that it
587    can be safely used in the presence of aligned labels.  Since the
588    size of the branch itself is unknown, the size of the branch is
589    not included in the range.  I.e. for a forward branch, the reference
590    address is the end address of the branch as known from the previous
591    branch shortening pass, minus a value to account for possible size
592    increase due to alignment.  For a backward branch, it is the start
593    address of the branch as known from the current pass, plus a value
594    to account for possible size increase due to alignment.
595    NB.: Therefore, the maximum offset allowed for backward branches needs
596    to exclude the branch size.  */
597 
598 int
insn_current_reference_address(rtx_insn * branch)599 insn_current_reference_address (rtx_insn *branch)
600 {
601   rtx dest;
602   int seq_uid;
603 
604   if (! INSN_ADDRESSES_SET_P ())
605     return 0;
606 
607   rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
608   seq_uid = INSN_UID (seq);
609   if (!jump_to_label_p (branch))
610     /* This can happen for example on the PA; the objective is to know the
611        offset to address something in front of the start of the function.
612        Thus, we can treat it like a backward branch.
613        We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
614        any alignment we'd encounter, so we skip the call to align_fuzz.  */
615     return insn_current_address;
616   dest = JUMP_LABEL (branch);
617 
618   /* BRANCH has no proper alignment chain set, so use SEQ.
619      BRANCH also has no INSN_SHUID.  */
620   if (INSN_SHUID (seq) < INSN_SHUID (dest))
621     {
622       /* Forward branch.  */
623       return (insn_last_address + insn_lengths[seq_uid]
624 	      - align_fuzz (seq, dest, length_unit_log, ~0));
625     }
626   else
627     {
628       /* Backward branch.  */
629       return (insn_current_address
630 	      + align_fuzz (dest, seq, length_unit_log, ~0));
631     }
632 }
633 
634 /* Compute branch alignments based on CFG profile.  */
635 
636 unsigned int
compute_alignments(void)637 compute_alignments (void)
638 {
639   basic_block bb;
640   align_flags max_alignment;
641 
642   label_align.truncate (0);
643 
644   max_labelno = max_label_num ();
645   min_labelno = get_first_label_num ();
646   label_align.safe_grow_cleared (max_labelno - min_labelno + 1, true);
647 
648   /* If not optimizing or optimizing for size, don't assign any alignments.  */
649   if (! optimize || optimize_function_for_size_p (cfun))
650     return 0;
651 
652   if (dump_file)
653     {
654       dump_reg_info (dump_file);
655       dump_flow_info (dump_file, TDF_DETAILS);
656       flow_loops_dump (dump_file, NULL, 1);
657     }
658   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
659   profile_count count_threshold = cfun->cfg->count_max.apply_scale
660 		 (1, param_align_threshold);
661 
662   if (dump_file)
663     {
664       fprintf (dump_file, "count_max: ");
665       cfun->cfg->count_max.dump (dump_file);
666       fprintf (dump_file, "\n");
667     }
668   FOR_EACH_BB_FN (bb, cfun)
669     {
670       rtx_insn *label = BB_HEAD (bb);
671       bool has_fallthru = 0;
672       edge e;
673       edge_iterator ei;
674 
675       if (!LABEL_P (label)
676 	  || optimize_bb_for_size_p (bb))
677 	{
678 	  if (dump_file)
679 	    fprintf (dump_file,
680 		     "BB %4i loop %2i loop_depth %2i skipped.\n",
681 		     bb->index,
682 		     bb->loop_father->num,
683 		     bb_loop_depth (bb));
684 	  continue;
685 	}
686       max_alignment = LABEL_ALIGN (label);
687       profile_count fallthru_count = profile_count::zero ();
688       profile_count branch_count = profile_count::zero ();
689 
690       FOR_EACH_EDGE (e, ei, bb->preds)
691 	{
692 	  if (e->flags & EDGE_FALLTHRU)
693 	    has_fallthru = 1, fallthru_count += e->count ();
694 	  else
695 	    branch_count += e->count ();
696 	}
697       if (dump_file)
698 	{
699 	  fprintf (dump_file, "BB %4i loop %2i loop_depth"
700 		   " %2i fall ",
701 		   bb->index, bb->loop_father->num,
702 		   bb_loop_depth (bb));
703 	  fallthru_count.dump (dump_file);
704 	  fprintf (dump_file, " branch ");
705 	  branch_count.dump (dump_file);
706 	  if (!bb->loop_father->inner && bb->loop_father->num)
707 	    fprintf (dump_file, " inner_loop");
708 	  if (bb->loop_father->header == bb)
709 	    fprintf (dump_file, " loop_header");
710 	  fprintf (dump_file, "\n");
711 	}
712       if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
713 	continue;
714 
715       /* There are two purposes to align block with no fallthru incoming edge:
716 	 1) to avoid fetch stalls when branch destination is near cache boundary
717 	 2) to improve cache efficiency in case the previous block is not executed
718 	    (so it does not need to be in the cache).
719 
720 	 We to catch first case, we align frequently executed blocks.
721 	 To catch the second, we align blocks that are executed more frequently
722 	 than the predecessor and the predecessor is likely to not be executed
723 	 when function is called.  */
724 
725       if (!has_fallthru
726 	  && (branch_count > count_threshold
727 	      || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
728 		  && (bb->prev_bb->count
729 		      <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
730 			   ->count.apply_scale (1, 2)))))
731 	{
732 	  align_flags alignment = JUMP_ALIGN (label);
733 	  if (dump_file)
734 	    fprintf (dump_file, "  jump alignment added.\n");
735 	  max_alignment = align_flags::max (max_alignment, alignment);
736 	}
737       /* In case block is frequent and reached mostly by non-fallthru edge,
738 	 align it.  It is most likely a first block of loop.  */
739       if (has_fallthru
740 	  && !(single_succ_p (bb)
741 	       && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
742 	  && optimize_bb_for_speed_p (bb)
743 	  && branch_count + fallthru_count > count_threshold
744 	  && (branch_count
745 	      > fallthru_count.apply_scale
746 		    (param_align_loop_iterations, 1)))
747 	{
748 	  align_flags alignment = LOOP_ALIGN (label);
749 	  if (dump_file)
750 	    fprintf (dump_file, "  internal loop alignment added.\n");
751 	  max_alignment = align_flags::max (max_alignment, alignment);
752 	}
753       LABEL_TO_ALIGNMENT (label) = max_alignment;
754     }
755 
756   loop_optimizer_finalize ();
757   free_dominance_info (CDI_DOMINATORS);
758   return 0;
759 }
760 
761 /* Grow the LABEL_ALIGN array after new labels are created.  */
762 
763 static void
grow_label_align(void)764 grow_label_align (void)
765 {
766   int old = max_labelno;
767   int n_labels;
768   int n_old_labels;
769 
770   max_labelno = max_label_num ();
771 
772   n_labels = max_labelno - min_labelno + 1;
773   n_old_labels = old - min_labelno + 1;
774 
775   label_align.safe_grow_cleared (n_labels, true);
776 
777   /* Range of labels grows monotonically in the function.  Failing here
778      means that the initialization of array got lost.  */
779   gcc_assert (n_old_labels <= n_labels);
780 }
781 
782 /* Update the already computed alignment information.  LABEL_PAIRS is a vector
783    made up of pairs of labels for which the alignment information of the first
784    element will be copied from that of the second element.  */
785 
786 void
update_alignments(vec<rtx> & label_pairs)787 update_alignments (vec<rtx> &label_pairs)
788 {
789   unsigned int i = 0;
790   rtx iter, label = NULL_RTX;
791 
792   if (max_labelno != max_label_num ())
793     grow_label_align ();
794 
795   FOR_EACH_VEC_ELT (label_pairs, i, iter)
796     if (i & 1)
797       LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
798     else
799       label = iter;
800 }
801 
802 namespace {
803 
804 const pass_data pass_data_compute_alignments =
805 {
806   RTL_PASS, /* type */
807   "alignments", /* name */
808   OPTGROUP_NONE, /* optinfo_flags */
809   TV_NONE, /* tv_id */
810   0, /* properties_required */
811   0, /* properties_provided */
812   0, /* properties_destroyed */
813   0, /* todo_flags_start */
814   0, /* todo_flags_finish */
815 };
816 
817 class pass_compute_alignments : public rtl_opt_pass
818 {
819 public:
pass_compute_alignments(gcc::context * ctxt)820   pass_compute_alignments (gcc::context *ctxt)
821     : rtl_opt_pass (pass_data_compute_alignments, ctxt)
822   {}
823 
824   /* opt_pass methods: */
execute(function *)825   virtual unsigned int execute (function *) { return compute_alignments (); }
826 
827 }; // class pass_compute_alignments
828 
829 } // anon namespace
830 
831 rtl_opt_pass *
make_pass_compute_alignments(gcc::context * ctxt)832 make_pass_compute_alignments (gcc::context *ctxt)
833 {
834   return new pass_compute_alignments (ctxt);
835 }
836 
837 
838 /* Make a pass over all insns and compute their actual lengths by shortening
839    any branches of variable length if possible.  */
840 
841 /* shorten_branches might be called multiple times:  for example, the SH
842    port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
843    In order to do this, it needs proper length information, which it obtains
844    by calling shorten_branches.  This cannot be collapsed with
845    shorten_branches itself into a single pass unless we also want to integrate
846    reorg.c, since the branch splitting exposes new instructions with delay
847    slots.  */
848 
849 void
shorten_branches(rtx_insn * first)850 shorten_branches (rtx_insn *first)
851 {
852   rtx_insn *insn;
853   int max_uid;
854   int i;
855   rtx_insn *seq;
856   int something_changed = 1;
857   char *varying_length;
858   rtx body;
859   int uid;
860   rtx align_tab[MAX_CODE_ALIGN + 1];
861 
862   /* Compute maximum UID and allocate label_align / uid_shuid.  */
863   max_uid = get_max_uid ();
864 
865   /* Free uid_shuid before reallocating it.  */
866   free (uid_shuid);
867 
868   uid_shuid = XNEWVEC (int, max_uid);
869 
870   if (max_labelno != max_label_num ())
871     grow_label_align ();
872 
873   /* Initialize label_align and set up uid_shuid to be strictly
874      monotonically rising with insn order.  */
875   /* We use alignment here to keep track of the maximum alignment we want to
876      impose on the next CODE_LABEL (or the current one if we are processing
877      the CODE_LABEL itself).  */
878 
879   align_flags max_alignment;
880 
881   for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
882     {
883       INSN_SHUID (insn) = i++;
884       if (INSN_P (insn))
885 	continue;
886 
887       if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
888 	{
889 	  /* Merge in alignments computed by compute_alignments.  */
890 	  align_flags alignment = LABEL_TO_ALIGNMENT (label);
891 	  max_alignment = align_flags::max (max_alignment, alignment);
892 
893 	  rtx_jump_table_data *table = jump_table_for_label (label);
894 	  if (!table)
895 	    {
896 	      align_flags alignment = LABEL_ALIGN (label);
897 	      max_alignment = align_flags::max (max_alignment, alignment);
898 	    }
899 	  /* ADDR_VECs only take room if read-only data goes into the text
900 	     section.  */
901 	  if ((JUMP_TABLES_IN_TEXT_SECTION
902 	       || readonly_data_section == text_section)
903 	      && table)
904 	    {
905 	      align_flags alignment = align_flags (ADDR_VEC_ALIGN (table));
906 	      max_alignment = align_flags::max (max_alignment, alignment);
907 	    }
908 	  LABEL_TO_ALIGNMENT (label) = max_alignment;
909 	  max_alignment = align_flags ();
910 	}
911       else if (BARRIER_P (insn))
912 	{
913 	  rtx_insn *label;
914 
915 	  for (label = insn; label && ! INSN_P (label);
916 	       label = NEXT_INSN (label))
917 	    if (LABEL_P (label))
918 	      {
919 		align_flags alignment
920 		  = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn));
921 		max_alignment = align_flags::max (max_alignment, alignment);
922 		break;
923 	      }
924 	}
925     }
926   if (!HAVE_ATTR_length)
927     return;
928 
929   /* Allocate the rest of the arrays.  */
930   insn_lengths = XNEWVEC (int, max_uid);
931   insn_lengths_max_uid = max_uid;
932   /* Syntax errors can lead to labels being outside of the main insn stream.
933      Initialize insn_addresses, so that we get reproducible results.  */
934   INSN_ADDRESSES_ALLOC (max_uid);
935 
936   varying_length = XCNEWVEC (char, max_uid);
937 
938   /* Initialize uid_align.  We scan instructions
939      from end to start, and keep in align_tab[n] the last seen insn
940      that does an alignment of at least n+1, i.e. the successor
941      in the alignment chain for an insn that does / has a known
942      alignment of n.  */
943   uid_align = XCNEWVEC (rtx, max_uid);
944 
945   for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
946     align_tab[i] = NULL_RTX;
947   seq = get_last_insn ();
948   for (; seq; seq = PREV_INSN (seq))
949     {
950       int uid = INSN_UID (seq);
951       int log;
952       log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0);
953       uid_align[uid] = align_tab[0];
954       if (log)
955 	{
956 	  /* Found an alignment label.  */
957 	  gcc_checking_assert (log < MAX_CODE_ALIGN + 1);
958 	  uid_align[uid] = align_tab[log];
959 	  for (i = log - 1; i >= 0; i--)
960 	    align_tab[i] = seq;
961 	}
962     }
963 
964   /* When optimizing, we start assuming minimum length, and keep increasing
965      lengths as we find the need for this, till nothing changes.
966      When not optimizing, we start assuming maximum lengths, and
967      do a single pass to update the lengths.  */
968   bool increasing = optimize != 0;
969 
970 #ifdef CASE_VECTOR_SHORTEN_MODE
971   if (optimize)
972     {
973       /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
974          label fields.  */
975 
976       int min_shuid = INSN_SHUID (get_insns ()) - 1;
977       int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
978       int rel;
979 
980       for (insn = first; insn != 0; insn = NEXT_INSN (insn))
981 	{
982 	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
983 	  int len, i, min, max, insn_shuid;
984 	  int min_align;
985 	  addr_diff_vec_flags flags;
986 
987 	  if (! JUMP_TABLE_DATA_P (insn)
988 	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
989 	    continue;
990 	  pat = PATTERN (insn);
991 	  len = XVECLEN (pat, 1);
992 	  gcc_assert (len > 0);
993 	  min_align = MAX_CODE_ALIGN;
994 	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
995 	    {
996 	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
997 	      int shuid = INSN_SHUID (lab);
998 	      if (shuid < min)
999 		{
1000 		  min = shuid;
1001 		  min_lab = lab;
1002 		}
1003 	      if (shuid > max)
1004 		{
1005 		  max = shuid;
1006 		  max_lab = lab;
1007 		}
1008 
1009 	      int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log;
1010 	      if (min_align > label_alignment)
1011 		min_align = label_alignment;
1012 	    }
1013 	  XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1014 	  XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1015 	  insn_shuid = INSN_SHUID (insn);
1016 	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1017 	  memset (&flags, 0, sizeof (flags));
1018 	  flags.min_align = min_align;
1019 	  flags.base_after_vec = rel > insn_shuid;
1020 	  flags.min_after_vec  = min > insn_shuid;
1021 	  flags.max_after_vec  = max > insn_shuid;
1022 	  flags.min_after_base = min > rel;
1023 	  flags.max_after_base = max > rel;
1024 	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1025 
1026 	  if (increasing)
1027 	    PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1028 	}
1029     }
1030 #endif /* CASE_VECTOR_SHORTEN_MODE */
1031 
1032   /* Compute initial lengths, addresses, and varying flags for each insn.  */
1033   int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1034 
1035   for (insn_current_address = 0, insn = first;
1036        insn != 0;
1037        insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1038     {
1039       uid = INSN_UID (insn);
1040 
1041       insn_lengths[uid] = 0;
1042 
1043       if (LABEL_P (insn))
1044 	{
1045 	  int log = LABEL_TO_ALIGNMENT (insn).levels[0].log;
1046 	  if (log)
1047 	    {
1048 	      int align = 1 << log;
1049 	      int new_address = (insn_current_address + align - 1) & -align;
1050 	      insn_lengths[uid] = new_address - insn_current_address;
1051 	    }
1052 	}
1053 
1054       INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1055 
1056       if (NOTE_P (insn) || BARRIER_P (insn)
1057 	  || LABEL_P (insn) || DEBUG_INSN_P (insn))
1058 	continue;
1059       if (insn->deleted ())
1060 	continue;
1061 
1062       body = PATTERN (insn);
1063       if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1064 	{
1065 	  /* This only takes room if read-only data goes into the text
1066 	     section.  */
1067 	  if (JUMP_TABLES_IN_TEXT_SECTION
1068 	      || readonly_data_section == text_section)
1069 	    insn_lengths[uid] = (XVECLEN (body,
1070 					  GET_CODE (body) == ADDR_DIFF_VEC)
1071 				 * GET_MODE_SIZE (table->get_data_mode ()));
1072 	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
1073 	}
1074       else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1075 	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1076       else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1077 	{
1078 	  int i;
1079 	  int const_delay_slots;
1080 	  if (DELAY_SLOTS)
1081 	    const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1082 	  else
1083 	    const_delay_slots = 0;
1084 
1085 	  int (*inner_length_fun) (rtx_insn *)
1086 	    = const_delay_slots ? length_fun : insn_default_length;
1087 	  /* Inside a delay slot sequence, we do not do any branch shortening
1088 	     if the shortening could change the number of delay slots
1089 	     of the branch.  */
1090 	  for (i = 0; i < body_seq->len (); i++)
1091 	    {
1092 	      rtx_insn *inner_insn = body_seq->insn (i);
1093 	      int inner_uid = INSN_UID (inner_insn);
1094 	      int inner_length;
1095 
1096 	      if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1097 		  || asm_noperands (PATTERN (inner_insn)) >= 0)
1098 		inner_length = (asm_insn_count (PATTERN (inner_insn))
1099 				* insn_default_length (inner_insn));
1100 	      else
1101 		inner_length = inner_length_fun (inner_insn);
1102 
1103 	      insn_lengths[inner_uid] = inner_length;
1104 	      if (const_delay_slots)
1105 		{
1106 		  if ((varying_length[inner_uid]
1107 		       = insn_variable_length_p (inner_insn)) != 0)
1108 		    varying_length[uid] = 1;
1109 		  INSN_ADDRESSES (inner_uid) = (insn_current_address
1110 						+ insn_lengths[uid]);
1111 		}
1112 	      else
1113 		varying_length[inner_uid] = 0;
1114 	      insn_lengths[uid] += inner_length;
1115 	    }
1116 	}
1117       else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1118 	{
1119 	  insn_lengths[uid] = length_fun (insn);
1120 	  varying_length[uid] = insn_variable_length_p (insn);
1121 	}
1122 
1123       /* If needed, do any adjustment.  */
1124 #ifdef ADJUST_INSN_LENGTH
1125       ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1126       if (insn_lengths[uid] < 0)
1127 	fatal_insn ("negative insn length", insn);
1128 #endif
1129     }
1130 
1131   /* Now loop over all the insns finding varying length insns.  For each,
1132      get the current insn length.  If it has changed, reflect the change.
1133      When nothing changes for a full pass, we are done.  */
1134 
1135   while (something_changed)
1136     {
1137       something_changed = 0;
1138       insn_current_align = MAX_CODE_ALIGN - 1;
1139       for (insn_current_address = 0, insn = first;
1140 	   insn != 0;
1141 	   insn = NEXT_INSN (insn))
1142 	{
1143 	  int new_length;
1144 #ifdef ADJUST_INSN_LENGTH
1145 	  int tmp_length;
1146 #endif
1147 	  int length_align;
1148 
1149 	  uid = INSN_UID (insn);
1150 
1151 	  if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1152 	    {
1153 	      int log = LABEL_TO_ALIGNMENT (label).levels[0].log;
1154 
1155 #ifdef CASE_VECTOR_SHORTEN_MODE
1156 	      /* If the mode of a following jump table was changed, we
1157 		 may need to update the alignment of this label.  */
1158 
1159 	      if (JUMP_TABLES_IN_TEXT_SECTION
1160 		  || readonly_data_section == text_section)
1161 		{
1162 		  rtx_jump_table_data *table = jump_table_for_label (label);
1163 		  if (table)
1164 		    {
1165 		      int newlog = ADDR_VEC_ALIGN (table);
1166 		      if (newlog != log)
1167 			{
1168 			  log = newlog;
1169 			  LABEL_TO_ALIGNMENT (insn) = log;
1170 			  something_changed = 1;
1171 			}
1172 		    }
1173 		}
1174 #endif
1175 
1176 	      if (log > insn_current_align)
1177 		{
1178 		  int align = 1 << log;
1179 		  int new_address= (insn_current_address + align - 1) & -align;
1180 		  insn_lengths[uid] = new_address - insn_current_address;
1181 		  insn_current_align = log;
1182 		  insn_current_address = new_address;
1183 		}
1184 	      else
1185 		insn_lengths[uid] = 0;
1186 	      INSN_ADDRESSES (uid) = insn_current_address;
1187 	      continue;
1188 	    }
1189 
1190 	  length_align = INSN_LENGTH_ALIGNMENT (insn);
1191 	  if (length_align < insn_current_align)
1192 	    insn_current_align = length_align;
1193 
1194 	  insn_last_address = INSN_ADDRESSES (uid);
1195 	  INSN_ADDRESSES (uid) = insn_current_address;
1196 
1197 #ifdef CASE_VECTOR_SHORTEN_MODE
1198 	  if (optimize
1199 	      && JUMP_TABLE_DATA_P (insn)
1200 	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1201 	    {
1202 	      rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1203 	      rtx body = PATTERN (insn);
1204 	      int old_length = insn_lengths[uid];
1205 	      rtx_insn *rel_lab =
1206 		safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1207 	      rtx min_lab = XEXP (XEXP (body, 2), 0);
1208 	      rtx max_lab = XEXP (XEXP (body, 3), 0);
1209 	      int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1210 	      int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1211 	      int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1212 	      rtx_insn *prev;
1213 	      int rel_align = 0;
1214 	      addr_diff_vec_flags flags;
1215 	      scalar_int_mode vec_mode;
1216 
1217 	      /* Avoid automatic aggregate initialization.  */
1218 	      flags = ADDR_DIFF_VEC_FLAGS (body);
1219 
1220 	      /* Try to find a known alignment for rel_lab.  */
1221 	      for (prev = rel_lab;
1222 		   prev
1223 		   && ! insn_lengths[INSN_UID (prev)]
1224 		   && ! (varying_length[INSN_UID (prev)] & 1);
1225 		   prev = PREV_INSN (prev))
1226 		if (varying_length[INSN_UID (prev)] & 2)
1227 		  {
1228 		    rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log;
1229 		    break;
1230 		  }
1231 
1232 	      /* See the comment on addr_diff_vec_flags in rtl.h for the
1233 		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
1234 	      /* Anything after INSN has still addresses from the last
1235 		 pass; adjust these so that they reflect our current
1236 		 estimate for this pass.  */
1237 	      if (flags.base_after_vec)
1238 		rel_addr += insn_current_address - insn_last_address;
1239 	      if (flags.min_after_vec)
1240 		min_addr += insn_current_address - insn_last_address;
1241 	      if (flags.max_after_vec)
1242 		max_addr += insn_current_address - insn_last_address;
1243 	      /* We want to know the worst case, i.e. lowest possible value
1244 		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
1245 		 its offset is positive, and we have to be wary of code shrink;
1246 		 otherwise, it is negative, and we have to be vary of code
1247 		 size increase.  */
1248 	      if (flags.min_after_base)
1249 		{
1250 		  /* If INSN is between REL_LAB and MIN_LAB, the size
1251 		     changes we are about to make can change the alignment
1252 		     within the observed offset, therefore we have to break
1253 		     it up into two parts that are independent.  */
1254 		  if (! flags.base_after_vec && flags.min_after_vec)
1255 		    {
1256 		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1257 		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
1258 		    }
1259 		  else
1260 		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1261 		}
1262 	      else
1263 		{
1264 		  if (flags.base_after_vec && ! flags.min_after_vec)
1265 		    {
1266 		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1267 		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1268 		    }
1269 		  else
1270 		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1271 		}
1272 	      /* Likewise, determine the highest lowest possible value
1273 		 for the offset of MAX_LAB.  */
1274 	      if (flags.max_after_base)
1275 		{
1276 		  if (! flags.base_after_vec && flags.max_after_vec)
1277 		    {
1278 		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1279 		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
1280 		    }
1281 		  else
1282 		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1283 		}
1284 	      else
1285 		{
1286 		  if (flags.base_after_vec && ! flags.max_after_vec)
1287 		    {
1288 		      max_addr += align_fuzz (max_lab, insn, 0, 0);
1289 		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
1290 		    }
1291 		  else
1292 		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1293 		}
1294 	      vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1295 						   max_addr - rel_addr, body);
1296 	      if (!increasing
1297 		  || (GET_MODE_SIZE (vec_mode)
1298 		      >= GET_MODE_SIZE (table->get_data_mode ())))
1299 		PUT_MODE (body, vec_mode);
1300 	      if (JUMP_TABLES_IN_TEXT_SECTION
1301 		  || readonly_data_section == text_section)
1302 		{
1303 		  insn_lengths[uid]
1304 		    = (XVECLEN (body, 1)
1305 		       * GET_MODE_SIZE (table->get_data_mode ()));
1306 		  insn_current_address += insn_lengths[uid];
1307 		  if (insn_lengths[uid] != old_length)
1308 		    something_changed = 1;
1309 		}
1310 
1311 	      continue;
1312 	    }
1313 #endif /* CASE_VECTOR_SHORTEN_MODE */
1314 
1315 	  if (! (varying_length[uid]))
1316 	    {
1317 	      if (NONJUMP_INSN_P (insn)
1318 		  && GET_CODE (PATTERN (insn)) == SEQUENCE)
1319 		{
1320 		  int i;
1321 
1322 		  body = PATTERN (insn);
1323 		  for (i = 0; i < XVECLEN (body, 0); i++)
1324 		    {
1325 		      rtx inner_insn = XVECEXP (body, 0, i);
1326 		      int inner_uid = INSN_UID (inner_insn);
1327 
1328 		      INSN_ADDRESSES (inner_uid) = insn_current_address;
1329 
1330 		      insn_current_address += insn_lengths[inner_uid];
1331 		    }
1332 		}
1333 	      else
1334 		insn_current_address += insn_lengths[uid];
1335 
1336 	      continue;
1337 	    }
1338 
1339 	  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1340 	    {
1341 	      rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1342 	      int i;
1343 
1344 	      body = PATTERN (insn);
1345 	      new_length = 0;
1346 	      for (i = 0; i < seqn->len (); i++)
1347 		{
1348 		  rtx_insn *inner_insn = seqn->insn (i);
1349 		  int inner_uid = INSN_UID (inner_insn);
1350 		  int inner_length;
1351 
1352 		  INSN_ADDRESSES (inner_uid) = insn_current_address;
1353 
1354 		  /* insn_current_length returns 0 for insns with a
1355 		     non-varying length.  */
1356 		  if (! varying_length[inner_uid])
1357 		    inner_length = insn_lengths[inner_uid];
1358 		  else
1359 		    inner_length = insn_current_length (inner_insn);
1360 
1361 		  if (inner_length != insn_lengths[inner_uid])
1362 		    {
1363 		      if (!increasing || inner_length > insn_lengths[inner_uid])
1364 			{
1365 			  insn_lengths[inner_uid] = inner_length;
1366 			  something_changed = 1;
1367 			}
1368 		      else
1369 			inner_length = insn_lengths[inner_uid];
1370 		    }
1371 		  insn_current_address += inner_length;
1372 		  new_length += inner_length;
1373 		}
1374 	    }
1375 	  else
1376 	    {
1377 	      new_length = insn_current_length (insn);
1378 	      insn_current_address += new_length;
1379 	    }
1380 
1381 #ifdef ADJUST_INSN_LENGTH
1382 	  /* If needed, do any adjustment.  */
1383 	  tmp_length = new_length;
1384 	  ADJUST_INSN_LENGTH (insn, new_length);
1385 	  insn_current_address += (new_length - tmp_length);
1386 #endif
1387 
1388 	  if (new_length != insn_lengths[uid]
1389 	      && (!increasing || new_length > insn_lengths[uid]))
1390 	    {
1391 	      insn_lengths[uid] = new_length;
1392 	      something_changed = 1;
1393 	    }
1394 	  else
1395 	    insn_current_address += insn_lengths[uid] - new_length;
1396 	}
1397       /* For a non-optimizing compile, do only a single pass.  */
1398       if (!increasing)
1399 	break;
1400     }
1401   crtl->max_insn_address = insn_current_address;
1402   free (varying_length);
1403 }
1404 
1405 /* Given the body of an INSN known to be generated by an ASM statement, return
1406    the number of machine instructions likely to be generated for this insn.
1407    This is used to compute its length.  */
1408 
1409 static int
asm_insn_count(rtx body)1410 asm_insn_count (rtx body)
1411 {
1412   const char *templ;
1413 
1414   if (GET_CODE (body) == ASM_INPUT)
1415     templ = XSTR (body, 0);
1416   else
1417     templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1418 
1419   return asm_str_count (templ);
1420 }
1421 
1422 /* Return the number of machine instructions likely to be generated for the
1423    inline-asm template. */
1424 int
asm_str_count(const char * templ)1425 asm_str_count (const char *templ)
1426 {
1427   int count = 1;
1428 
1429   if (!*templ)
1430     return 0;
1431 
1432   for (; *templ; templ++)
1433     if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1434 	|| *templ == '\n')
1435       count++;
1436 
1437   return count;
1438 }
1439 
1440 /* Return true if DWARF2 debug info can be emitted for DECL.  */
1441 
1442 static bool
dwarf2_debug_info_emitted_p(tree decl)1443 dwarf2_debug_info_emitted_p (tree decl)
1444 {
1445   if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1446     return false;
1447 
1448   if (DECL_IGNORED_P (decl))
1449     return false;
1450 
1451   return true;
1452 }
1453 
1454 /* Return scope resulting from combination of S1 and S2.  */
1455 static tree
choose_inner_scope(tree s1,tree s2)1456 choose_inner_scope (tree s1, tree s2)
1457 {
1458    if (!s1)
1459      return s2;
1460    if (!s2)
1461      return s1;
1462    if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1463      return s1;
1464    return s2;
1465 }
1466 
1467 /* Emit lexical block notes needed to change scope from S1 to S2.  */
1468 
1469 static void
change_scope(rtx_insn * orig_insn,tree s1,tree s2)1470 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1471 {
1472   rtx_insn *insn = orig_insn;
1473   tree com = NULL_TREE;
1474   tree ts1 = s1, ts2 = s2;
1475   tree s;
1476 
1477   while (ts1 != ts2)
1478     {
1479       gcc_assert (ts1 && ts2);
1480       if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1481 	ts1 = BLOCK_SUPERCONTEXT (ts1);
1482       else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1483 	ts2 = BLOCK_SUPERCONTEXT (ts2);
1484       else
1485 	{
1486 	  ts1 = BLOCK_SUPERCONTEXT (ts1);
1487 	  ts2 = BLOCK_SUPERCONTEXT (ts2);
1488 	}
1489     }
1490   com = ts1;
1491 
1492   /* Close scopes.  */
1493   s = s1;
1494   while (s != com)
1495     {
1496       rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1497       NOTE_BLOCK (note) = s;
1498       s = BLOCK_SUPERCONTEXT (s);
1499     }
1500 
1501   /* Open scopes.  */
1502   s = s2;
1503   while (s != com)
1504     {
1505       insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1506       NOTE_BLOCK (insn) = s;
1507       s = BLOCK_SUPERCONTEXT (s);
1508     }
1509 }
1510 
1511 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1512    on the scope tree and the newly reordered instructions.  */
1513 
1514 static void
reemit_insn_block_notes(void)1515 reemit_insn_block_notes (void)
1516 {
1517   tree cur_block = DECL_INITIAL (cfun->decl);
1518   rtx_insn *insn;
1519 
1520   insn = get_insns ();
1521   for (; insn; insn = NEXT_INSN (insn))
1522     {
1523       tree this_block;
1524 
1525       /* Prevent lexical blocks from straddling section boundaries.  */
1526       if (NOTE_P (insn))
1527 	switch (NOTE_KIND (insn))
1528 	  {
1529 	  case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1530 	    {
1531 	      for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1532 		   s = BLOCK_SUPERCONTEXT (s))
1533 		{
1534 		  rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1535 		  NOTE_BLOCK (note) = s;
1536 		  note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1537 		  NOTE_BLOCK (note) = s;
1538 		}
1539 	    }
1540 	    break;
1541 
1542 	  case NOTE_INSN_BEGIN_STMT:
1543 	  case NOTE_INSN_INLINE_ENTRY:
1544 	    this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1545 	    goto set_cur_block_to_this_block;
1546 
1547 	  default:
1548 	    continue;
1549 	}
1550 
1551       if (!active_insn_p (insn))
1552         continue;
1553 
1554       /* Avoid putting scope notes between jump table and its label.  */
1555       if (JUMP_TABLE_DATA_P (insn))
1556 	continue;
1557 
1558       this_block = insn_scope (insn);
1559       /* For sequences compute scope resulting from merging all scopes
1560 	 of instructions nested inside.  */
1561       if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1562 	{
1563 	  int i;
1564 
1565 	  this_block = NULL;
1566 	  for (i = 0; i < body->len (); i++)
1567 	    this_block = choose_inner_scope (this_block,
1568 					     insn_scope (body->insn (i)));
1569 	}
1570     set_cur_block_to_this_block:
1571       if (! this_block)
1572 	{
1573 	  if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1574 	    continue;
1575 	  else
1576 	    this_block = DECL_INITIAL (cfun->decl);
1577 	}
1578 
1579       if (this_block != cur_block)
1580 	{
1581 	  change_scope (insn, cur_block, this_block);
1582 	  cur_block = this_block;
1583 	}
1584     }
1585 
1586   /* change_scope emits before the insn, not after.  */
1587   rtx_note *note = emit_note (NOTE_INSN_DELETED);
1588   change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1589   delete_insn (note);
1590 
1591   reorder_blocks ();
1592 }
1593 
1594 static const char *some_local_dynamic_name;
1595 
1596 /* Locate some local-dynamic symbol still in use by this function
1597    so that we can print its name in local-dynamic base patterns.
1598    Return null if there are no local-dynamic references.  */
1599 
1600 const char *
get_some_local_dynamic_name()1601 get_some_local_dynamic_name ()
1602 {
1603   subrtx_iterator::array_type array;
1604   rtx_insn *insn;
1605 
1606   if (some_local_dynamic_name)
1607     return some_local_dynamic_name;
1608 
1609   for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1610     if (NONDEBUG_INSN_P (insn))
1611       FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1612 	{
1613 	  const_rtx x = *iter;
1614 	  if (GET_CODE (x) == SYMBOL_REF)
1615 	    {
1616 	      if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1617 		return some_local_dynamic_name = XSTR (x, 0);
1618 	      if (CONSTANT_POOL_ADDRESS_P (x))
1619 		iter.substitute (get_pool_constant (x));
1620 	    }
1621 	}
1622 
1623   return 0;
1624 }
1625 
1626 /* Arrange for us to emit a source location note before any further
1627    real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1628    *SEEN, as long as we are keeping track of location views.  The bit
1629    indicates we have referenced the next view at the current PC, so we
1630    have to emit it.  This should be called next to the var_location
1631    debug hook.  */
1632 
1633 static inline void
set_next_view_needed(int * seen)1634 set_next_view_needed (int *seen)
1635 {
1636   if (debug_variable_location_views)
1637     *seen |= SEEN_NEXT_VIEW;
1638 }
1639 
1640 /* Clear the flag in *SEEN indicating we need to emit the next view.
1641    This should be called next to the source_line debug hook.  */
1642 
1643 static inline void
clear_next_view_needed(int * seen)1644 clear_next_view_needed (int *seen)
1645 {
1646   *seen &= ~SEEN_NEXT_VIEW;
1647 }
1648 
1649 /* Test whether we have a pending request to emit the next view in
1650    *SEEN, and emit it if needed, clearing the request bit.  */
1651 
1652 static inline void
maybe_output_next_view(int * seen)1653 maybe_output_next_view (int *seen)
1654 {
1655   if ((*seen & SEEN_NEXT_VIEW) != 0)
1656     {
1657       clear_next_view_needed (seen);
1658       (*debug_hooks->source_line) (last_linenum, last_columnnum,
1659 				   last_filename, last_discriminator,
1660 				   false);
1661     }
1662 }
1663 
1664 /* We want to emit param bindings (before the first begin_stmt) in the
1665    initial view, if we are emitting views.  To that end, we may
1666    consume initial notes in the function, processing them in
1667    final_start_function, before signaling the beginning of the
1668    prologue, rather than in final.
1669 
1670    We don't test whether the DECLs are PARM_DECLs: the assumption is
1671    that there will be a NOTE_INSN_BEGIN_STMT marker before any
1672    non-parameter NOTE_INSN_VAR_LOCATION.  It's ok if the marker is not
1673    there, we'll just have more variable locations bound in the initial
1674    view, which is consistent with their being bound without any code
1675    that would give them a value.  */
1676 
1677 static inline bool
in_initial_view_p(rtx_insn * insn)1678 in_initial_view_p (rtx_insn *insn)
1679 {
1680   return (!DECL_IGNORED_P (current_function_decl)
1681 	  && debug_variable_location_views
1682 	  && insn && GET_CODE (insn) == NOTE
1683 	  && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1684 	      || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1685 }
1686 
1687 /* Output assembler code for the start of a function,
1688    and initialize some of the variables in this file
1689    for the new function.  The label for the function and associated
1690    assembler pseudo-ops have already been output in `assemble_start_function'.
1691 
1692    FIRST is the first insn of the rtl for the function being compiled.
1693    FILE is the file to write assembler code to.
1694    SEEN should be initially set to zero, and it may be updated to
1695    indicate we have references to the next location view, that would
1696    require us to emit it at the current PC.
1697    OPTIMIZE_P is nonzero if we should eliminate redundant
1698      test and compare insns.  */
1699 
1700 static void
final_start_function_1(rtx_insn ** firstp,FILE * file,int * seen,int optimize_p ATTRIBUTE_UNUSED)1701 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1702 			int optimize_p ATTRIBUTE_UNUSED)
1703 {
1704   block_depth = 0;
1705 
1706   this_is_asm_operands = 0;
1707 
1708   need_profile_function = false;
1709 
1710   last_filename = LOCATION_FILE (prologue_location);
1711   last_linenum = LOCATION_LINE (prologue_location);
1712   last_columnnum = LOCATION_COLUMN (prologue_location);
1713   last_discriminator = discriminator = 0;
1714   last_bb_discriminator = bb_discriminator = 0;
1715   force_source_line = false;
1716 
1717   high_block_linenum = high_function_linenum = last_linenum;
1718 
1719   if (flag_sanitize & SANITIZE_ADDRESS)
1720     asan_function_start ();
1721 
1722   rtx_insn *first = *firstp;
1723   if (in_initial_view_p (first))
1724     {
1725       do
1726 	{
1727 	  final_scan_insn (first, file, 0, 0, seen);
1728 	  first = NEXT_INSN (first);
1729 	}
1730       while (in_initial_view_p (first));
1731       *firstp = first;
1732     }
1733 
1734   if (!DECL_IGNORED_P (current_function_decl))
1735     debug_hooks->begin_prologue (last_linenum, last_columnnum,
1736 				 last_filename);
1737 
1738   if (!dwarf2_debug_info_emitted_p (current_function_decl))
1739     dwarf2out_begin_prologue (0, 0, NULL);
1740 
1741 #ifdef LEAF_REG_REMAP
1742   if (crtl->uses_only_leaf_regs)
1743     leaf_renumber_regs (first);
1744 #endif
1745 
1746   /* The Sun386i and perhaps other machines don't work right
1747      if the profiling code comes after the prologue.  */
1748   if (targetm.profile_before_prologue () && crtl->profile)
1749     {
1750       if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1751 	  && targetm.have_prologue ())
1752 	{
1753 	  rtx_insn *insn;
1754 	  for (insn = first; insn; insn = NEXT_INSN (insn))
1755 	    if (!NOTE_P (insn))
1756 	      {
1757 		insn = NULL;
1758 		break;
1759 	      }
1760 	    else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1761 		     || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1762 	      break;
1763 	    else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1764 		     || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1765 	      continue;
1766 	    else
1767 	      {
1768 		insn = NULL;
1769 		break;
1770 	      }
1771 
1772 	  if (insn)
1773 	    need_profile_function = true;
1774 	  else
1775 	    profile_function (file);
1776 	}
1777       else
1778 	profile_function (file);
1779     }
1780 
1781   /* If debugging, assign block numbers to all of the blocks in this
1782      function.  */
1783   if (write_symbols)
1784     {
1785       reemit_insn_block_notes ();
1786       number_blocks (current_function_decl);
1787       /* We never actually put out begin/end notes for the top-level
1788 	 block in the function.  But, conceptually, that block is
1789 	 always needed.  */
1790       TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1791     }
1792 
1793   unsigned HOST_WIDE_INT min_frame_size
1794     = constant_lower_bound (get_frame_size ());
1795   if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size)
1796     {
1797       /* Issue a warning */
1798       warning (OPT_Wframe_larger_than_,
1799 	       "the frame size of %wu bytes is larger than %wu bytes",
1800 	       min_frame_size, warn_frame_larger_than_size);
1801     }
1802 
1803   /* First output the function prologue: code to set up the stack frame.  */
1804   targetm.asm_out.function_prologue (file);
1805 
1806   /* If the machine represents the prologue as RTL, the profiling code must
1807      be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
1808   if (! targetm.have_prologue ())
1809     profile_after_prologue (file);
1810 }
1811 
1812 /* This is an exported final_start_function_1, callable without SEEN.  */
1813 
1814 void
final_start_function(rtx_insn * first,FILE * file,int optimize_p ATTRIBUTE_UNUSED)1815 final_start_function (rtx_insn *first, FILE *file,
1816 		      int optimize_p ATTRIBUTE_UNUSED)
1817 {
1818   int seen = 0;
1819   final_start_function_1 (&first, file, &seen, optimize_p);
1820   gcc_assert (seen == 0);
1821 }
1822 
1823 static void
profile_after_prologue(FILE * file ATTRIBUTE_UNUSED)1824 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1825 {
1826   if (!targetm.profile_before_prologue () && crtl->profile)
1827     profile_function (file);
1828 }
1829 
1830 static void
profile_function(FILE * file ATTRIBUTE_UNUSED)1831 profile_function (FILE *file ATTRIBUTE_UNUSED)
1832 {
1833 #ifndef NO_PROFILE_COUNTERS
1834 # define NO_PROFILE_COUNTERS	0
1835 #endif
1836 #ifdef ASM_OUTPUT_REG_PUSH
1837   rtx sval = NULL, chain = NULL;
1838 
1839   if (cfun->returns_struct)
1840     sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1841 					   true);
1842   if (cfun->static_chain_decl)
1843     chain = targetm.calls.static_chain (current_function_decl, true);
1844 #endif /* ASM_OUTPUT_REG_PUSH */
1845 
1846   if (! NO_PROFILE_COUNTERS)
1847     {
1848       int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1849       switch_to_section (data_section);
1850       ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1851       targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1852       assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1853     }
1854 
1855   switch_to_section (current_function_section ());
1856 
1857 #ifdef ASM_OUTPUT_REG_PUSH
1858   if (sval && REG_P (sval))
1859     ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1860   if (chain && REG_P (chain))
1861     ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1862 #endif
1863 
1864   FUNCTION_PROFILER (file, current_function_funcdef_no);
1865 
1866 #ifdef ASM_OUTPUT_REG_PUSH
1867   if (chain && REG_P (chain))
1868     ASM_OUTPUT_REG_POP (file, REGNO (chain));
1869   if (sval && REG_P (sval))
1870     ASM_OUTPUT_REG_POP (file, REGNO (sval));
1871 #endif
1872 }
1873 
1874 /* Output assembler code for the end of a function.
1875    For clarity, args are same as those of `final_start_function'
1876    even though not all of them are needed.  */
1877 
1878 void
final_end_function(void)1879 final_end_function (void)
1880 {
1881   app_disable ();
1882 
1883   if (!DECL_IGNORED_P (current_function_decl))
1884     debug_hooks->end_function (high_function_linenum);
1885 
1886   /* Finally, output the function epilogue:
1887      code to restore the stack frame and return to the caller.  */
1888   targetm.asm_out.function_epilogue (asm_out_file);
1889 
1890   /* And debug output.  */
1891   if (!DECL_IGNORED_P (current_function_decl))
1892     debug_hooks->end_epilogue (last_linenum, last_filename);
1893 
1894   if (!dwarf2_debug_info_emitted_p (current_function_decl)
1895       && dwarf2out_do_frame ())
1896     dwarf2out_end_epilogue (last_linenum, last_filename);
1897 
1898   some_local_dynamic_name = 0;
1899 }
1900 
1901 
1902 /* Dumper helper for basic block information. FILE is the assembly
1903    output file, and INSN is the instruction being emitted.  */
1904 
1905 static void
dump_basic_block_info(FILE * file,rtx_insn * insn,basic_block * start_to_bb,basic_block * end_to_bb,int bb_map_size,int * bb_seqn)1906 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1907                        basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1908 {
1909   basic_block bb;
1910 
1911   if (!flag_debug_asm)
1912     return;
1913 
1914   if (INSN_UID (insn) < bb_map_size
1915       && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1916     {
1917       edge e;
1918       edge_iterator ei;
1919 
1920       fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1921       if (bb->count.initialized_p ())
1922 	{
1923           fprintf (file, ", count:");
1924 	  bb->count.dump (file);
1925 	}
1926       fprintf (file, " seq:%d", (*bb_seqn)++);
1927       fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1928       FOR_EACH_EDGE (e, ei, bb->preds)
1929         {
1930           dump_edge_info (file, e, TDF_DETAILS, 0);
1931         }
1932       fprintf (file, "\n");
1933     }
1934   if (INSN_UID (insn) < bb_map_size
1935       && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1936     {
1937       edge e;
1938       edge_iterator ei;
1939 
1940       fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1941       FOR_EACH_EDGE (e, ei, bb->succs)
1942        {
1943          dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1944        }
1945       fprintf (file, "\n");
1946     }
1947 }
1948 
1949 /* Output assembler code for some insns: all or part of a function.
1950    For description of args, see `final_start_function', above.  */
1951 
1952 static void
final_1(rtx_insn * first,FILE * file,int seen,int optimize_p)1953 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
1954 {
1955   rtx_insn *insn, *next;
1956 
1957   /* Used for -dA dump.  */
1958   basic_block *start_to_bb = NULL;
1959   basic_block *end_to_bb = NULL;
1960   int bb_map_size = 0;
1961   int bb_seqn = 0;
1962 
1963   last_ignored_compare = 0;
1964 
1965   if (HAVE_cc0)
1966     for (insn = first; insn; insn = NEXT_INSN (insn))
1967       {
1968 	/* If CC tracking across branches is enabled, record the insn which
1969 	   jumps to each branch only reached from one place.  */
1970 	if (optimize_p && JUMP_P (insn))
1971 	  {
1972 	    rtx lab = JUMP_LABEL (insn);
1973 	    if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1974 	      {
1975 		LABEL_REFS (lab) = insn;
1976 	      }
1977 	  }
1978       }
1979 
1980   init_recog ();
1981 
1982   CC_STATUS_INIT;
1983 
1984   if (flag_debug_asm)
1985     {
1986       basic_block bb;
1987 
1988       bb_map_size = get_max_uid () + 1;
1989       start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1990       end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1991 
1992       /* There is no cfg for a thunk.  */
1993       if (!cfun->is_thunk)
1994 	FOR_EACH_BB_REVERSE_FN (bb, cfun)
1995 	  {
1996 	    start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
1997 	    end_to_bb[INSN_UID (BB_END (bb))] = bb;
1998 	  }
1999     }
2000 
2001   /* Output the insns.  */
2002   for (insn = first; insn;)
2003     {
2004       if (HAVE_ATTR_length)
2005 	{
2006 	  if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2007 	    {
2008 	      /* This can be triggered by bugs elsewhere in the compiler if
2009 		 new insns are created after init_insn_lengths is called.  */
2010 	      gcc_assert (NOTE_P (insn));
2011 	      insn_current_address = -1;
2012 	    }
2013 	  else
2014 	    insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2015 	  /* final can be seen as an iteration of shorten_branches that
2016 	     does nothing (since a fixed point has already been reached).  */
2017 	  insn_last_address = insn_current_address;
2018 	}
2019 
2020       dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2021                              bb_map_size, &bb_seqn);
2022       insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2023     }
2024 
2025   maybe_output_next_view (&seen);
2026 
2027   if (flag_debug_asm)
2028     {
2029       free (start_to_bb);
2030       free (end_to_bb);
2031     }
2032 
2033   /* Remove CFI notes, to avoid compare-debug failures.  */
2034   for (insn = first; insn; insn = next)
2035     {
2036       next = NEXT_INSN (insn);
2037       if (NOTE_P (insn)
2038 	  && (NOTE_KIND (insn) == NOTE_INSN_CFI
2039 	      || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2040 	delete_insn (insn);
2041     }
2042 }
2043 
2044 /* This is an exported final_1, callable without SEEN.  */
2045 
2046 void
final(rtx_insn * first,FILE * file,int optimize_p)2047 final (rtx_insn *first, FILE *file, int optimize_p)
2048 {
2049   /* Those that use the internal final_start_function_1/final_1 API
2050      skip initial debug bind notes in final_start_function_1, and pass
2051      the modified FIRST to final_1.  But those that use the public
2052      final_start_function/final APIs, final_start_function can't move
2053      FIRST because it's not passed by reference, so if they were
2054      skipped there, skip them again here.  */
2055   while (in_initial_view_p (first))
2056     first = NEXT_INSN (first);
2057 
2058   final_1 (first, file, 0, optimize_p);
2059 }
2060 
2061 const char *
get_insn_template(int code,rtx_insn * insn)2062 get_insn_template (int code, rtx_insn *insn)
2063 {
2064   switch (insn_data[code].output_format)
2065     {
2066     case INSN_OUTPUT_FORMAT_SINGLE:
2067       return insn_data[code].output.single;
2068     case INSN_OUTPUT_FORMAT_MULTI:
2069       return insn_data[code].output.multi[which_alternative];
2070     case INSN_OUTPUT_FORMAT_FUNCTION:
2071       gcc_assert (insn);
2072       return (*insn_data[code].output.function) (recog_data.operand, insn);
2073 
2074     default:
2075       gcc_unreachable ();
2076     }
2077 }
2078 
2079 /* Emit the appropriate declaration for an alternate-entry-point
2080    symbol represented by INSN, to FILE.  INSN is a CODE_LABEL with
2081    LABEL_KIND != LABEL_NORMAL.
2082 
2083    The case fall-through in this function is intentional.  */
2084 static void
output_alternate_entry_point(FILE * file,rtx_insn * insn)2085 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2086 {
2087   const char *name = LABEL_NAME (insn);
2088 
2089   switch (LABEL_KIND (insn))
2090     {
2091     case LABEL_WEAK_ENTRY:
2092 #ifdef ASM_WEAKEN_LABEL
2093       ASM_WEAKEN_LABEL (file, name);
2094       gcc_fallthrough ();
2095 #endif
2096     case LABEL_GLOBAL_ENTRY:
2097       targetm.asm_out.globalize_label (file, name);
2098       gcc_fallthrough ();
2099     case LABEL_STATIC_ENTRY:
2100 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2101       ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2102 #endif
2103       ASM_OUTPUT_LABEL (file, name);
2104       break;
2105 
2106     case LABEL_NORMAL:
2107     default:
2108       gcc_unreachable ();
2109     }
2110 }
2111 
2112 /* Given a CALL_INSN, find and return the nested CALL. */
2113 static rtx
call_from_call_insn(rtx_call_insn * insn)2114 call_from_call_insn (rtx_call_insn *insn)
2115 {
2116   rtx x;
2117   gcc_assert (CALL_P (insn));
2118   x = PATTERN (insn);
2119 
2120   while (GET_CODE (x) != CALL)
2121     {
2122       switch (GET_CODE (x))
2123 	{
2124 	default:
2125 	  gcc_unreachable ();
2126 	case COND_EXEC:
2127 	  x = COND_EXEC_CODE (x);
2128 	  break;
2129 	case PARALLEL:
2130 	  x = XVECEXP (x, 0, 0);
2131 	  break;
2132 	case SET:
2133 	  x = XEXP (x, 1);
2134 	  break;
2135 	}
2136     }
2137   return x;
2138 }
2139 
2140 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2141    corresponding source line, if available.  */
2142 
2143 static void
asm_show_source(const char * filename,int linenum)2144 asm_show_source (const char *filename, int linenum)
2145 {
2146   if (!filename)
2147     return;
2148 
2149   char_span line = location_get_source_line (filename, linenum);
2150   if (!line)
2151     return;
2152 
2153   fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2154   /* "line" is not 0-terminated, so we must use its length.  */
2155   fwrite (line.get_buffer (), 1, line.length (), asm_out_file);
2156   fputc ('\n', asm_out_file);
2157 }
2158 
2159 /* Judge if an absolute jump table is relocatable.  */
2160 
2161 bool
jumptable_relocatable(void)2162 jumptable_relocatable (void)
2163 {
2164   bool relocatable = false;
2165 
2166   if (!CASE_VECTOR_PC_RELATIVE
2167       && !targetm.asm_out.generate_pic_addr_diff_vec ()
2168       && targetm_common.have_named_sections)
2169      relocatable = targetm.asm_out.reloc_rw_mask ();
2170 
2171   return relocatable;
2172 }
2173 
2174 /* The final scan for one insn, INSN.
2175    Args are same as in `final', except that INSN
2176    is the insn being scanned.
2177    Value returned is the next insn to be scanned.
2178 
2179    NOPEEPHOLES is the flag to disallow peephole processing (currently
2180    used for within delayed branch sequence output).
2181 
2182    SEEN is used to track the end of the prologue, for emitting
2183    debug information.  We force the emission of a line note after
2184    both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG.  */
2185 
2186 static rtx_insn *
final_scan_insn_1(rtx_insn * insn,FILE * file,int optimize_p ATTRIBUTE_UNUSED,int nopeepholes ATTRIBUTE_UNUSED,int * seen)2187 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2188 		   int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2189 {
2190 #if HAVE_cc0
2191   rtx set;
2192 #endif
2193   rtx_insn *next;
2194   rtx_jump_table_data *table;
2195 
2196   insn_counter++;
2197 
2198   /* Ignore deleted insns.  These can occur when we split insns (due to a
2199      template of "#") while not optimizing.  */
2200   if (insn->deleted ())
2201     return NEXT_INSN (insn);
2202 
2203   switch (GET_CODE (insn))
2204     {
2205     case NOTE:
2206       switch (NOTE_KIND (insn))
2207 	{
2208 	case NOTE_INSN_DELETED:
2209 	case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2210 	  break;
2211 
2212 	case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2213 	  maybe_output_next_view (seen);
2214 
2215 	  output_function_exception_table (0);
2216 
2217 	  if (targetm.asm_out.unwind_emit)
2218 	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2219 
2220 	  in_cold_section_p = !in_cold_section_p;
2221 
2222 	  if (in_cold_section_p)
2223 	    cold_function_name
2224 	      = clone_function_name (current_function_decl, "cold");
2225 
2226 	  if (dwarf2out_do_frame ())
2227 	    {
2228 	      dwarf2out_switch_text_section ();
2229 	      if (!dwarf2_debug_info_emitted_p (current_function_decl)
2230 		  && !DECL_IGNORED_P (current_function_decl))
2231 		debug_hooks->switch_text_section ();
2232 	    }
2233 	  else if (!DECL_IGNORED_P (current_function_decl))
2234 	    debug_hooks->switch_text_section ();
2235 
2236 	  switch_to_section (current_function_section ());
2237 	  targetm.asm_out.function_switched_text_sections (asm_out_file,
2238 							   current_function_decl,
2239 							   in_cold_section_p);
2240 	  /* Emit a label for the split cold section.  Form label name by
2241 	     suffixing "cold" to the original function's name.  */
2242 	  if (in_cold_section_p)
2243 	    {
2244 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2245 	      ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2246 					      IDENTIFIER_POINTER
2247 					          (cold_function_name),
2248 					      current_function_decl);
2249 #else
2250 	      ASM_OUTPUT_LABEL (asm_out_file,
2251 				IDENTIFIER_POINTER (cold_function_name));
2252 #endif
2253 	      if (dwarf2out_do_frame ()
2254 	          && cfun->fde->dw_fde_second_begin != NULL)
2255 		ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
2256 	    }
2257 	  break;
2258 
2259 	case NOTE_INSN_BASIC_BLOCK:
2260 	  if (need_profile_function)
2261 	    {
2262 	      profile_function (asm_out_file);
2263 	      need_profile_function = false;
2264 	    }
2265 
2266 	  if (targetm.asm_out.unwind_emit)
2267 	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2268 
2269 	  bb_discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2270 	  break;
2271 
2272 	case NOTE_INSN_EH_REGION_BEG:
2273 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2274 				  NOTE_EH_HANDLER (insn));
2275 	  break;
2276 
2277 	case NOTE_INSN_EH_REGION_END:
2278 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2279 				  NOTE_EH_HANDLER (insn));
2280 	  break;
2281 
2282 	case NOTE_INSN_PROLOGUE_END:
2283 	  targetm.asm_out.function_end_prologue (file);
2284 	  profile_after_prologue (file);
2285 
2286 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2287 	    {
2288 	      *seen |= SEEN_EMITTED;
2289 	      force_source_line = true;
2290 	    }
2291 	  else
2292 	    *seen |= SEEN_NOTE;
2293 
2294 	  break;
2295 
2296 	case NOTE_INSN_EPILOGUE_BEG:
2297           if (!DECL_IGNORED_P (current_function_decl))
2298             (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2299 	  targetm.asm_out.function_begin_epilogue (file);
2300 	  break;
2301 
2302 	case NOTE_INSN_CFI:
2303 	  dwarf2out_emit_cfi (NOTE_CFI (insn));
2304 	  break;
2305 
2306 	case NOTE_INSN_CFI_LABEL:
2307 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2308 				  NOTE_LABEL_NUMBER (insn));
2309 	  break;
2310 
2311 	case NOTE_INSN_FUNCTION_BEG:
2312 	  if (need_profile_function)
2313 	    {
2314 	      profile_function (asm_out_file);
2315 	      need_profile_function = false;
2316 	    }
2317 
2318 	  app_disable ();
2319 	  if (!DECL_IGNORED_P (current_function_decl))
2320 	    debug_hooks->end_prologue (last_linenum, last_filename);
2321 
2322 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2323 	    {
2324 	      *seen |= SEEN_EMITTED;
2325 	      force_source_line = true;
2326 	    }
2327 	  else
2328 	    *seen |= SEEN_NOTE;
2329 
2330 	  break;
2331 
2332 	case NOTE_INSN_BLOCK_BEG:
2333 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2334 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2335 	      || write_symbols == DWARF2_DEBUG
2336 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2337 	      || write_symbols == VMS_DEBUG)
2338 	    {
2339 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2340 
2341 	      app_disable ();
2342 	      ++block_depth;
2343 	      high_block_linenum = last_linenum;
2344 
2345 	      /* Output debugging info about the symbol-block beginning.  */
2346 	      if (!DECL_IGNORED_P (current_function_decl))
2347 		debug_hooks->begin_block (last_linenum, n);
2348 
2349 	      /* Mark this block as output.  */
2350 	      TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2351 	      BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2352 	    }
2353 	  if (write_symbols == DBX_DEBUG)
2354 	    {
2355 	      location_t *locus_ptr
2356 		= block_nonartificial_location (NOTE_BLOCK (insn));
2357 
2358 	      if (locus_ptr != NULL)
2359 		{
2360 		  override_filename = LOCATION_FILE (*locus_ptr);
2361 		  override_linenum = LOCATION_LINE (*locus_ptr);
2362 		  override_columnnum = LOCATION_COLUMN (*locus_ptr);
2363 		  override_discriminator = compute_discriminator (*locus_ptr);
2364 		}
2365 	    }
2366 	  break;
2367 
2368 	case NOTE_INSN_BLOCK_END:
2369 	  maybe_output_next_view (seen);
2370 
2371 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2372 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2373 	      || write_symbols == DWARF2_DEBUG
2374 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2375 	      || write_symbols == VMS_DEBUG)
2376 	    {
2377 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2378 
2379 	      app_disable ();
2380 
2381 	      /* End of a symbol-block.  */
2382 	      --block_depth;
2383 	      gcc_assert (block_depth >= 0);
2384 
2385 	      if (!DECL_IGNORED_P (current_function_decl))
2386 		debug_hooks->end_block (high_block_linenum, n);
2387 	      gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2388 			  == in_cold_section_p);
2389 	    }
2390 	  if (write_symbols == DBX_DEBUG)
2391 	    {
2392 	      tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2393 	      location_t *locus_ptr
2394 		= block_nonartificial_location (outer_block);
2395 
2396 	      if (locus_ptr != NULL)
2397 		{
2398 		  override_filename = LOCATION_FILE (*locus_ptr);
2399 		  override_linenum = LOCATION_LINE (*locus_ptr);
2400 		  override_columnnum = LOCATION_COLUMN (*locus_ptr);
2401 		  override_discriminator = compute_discriminator (*locus_ptr);
2402 		}
2403 	      else
2404 		{
2405 		  override_filename = NULL;
2406 		  override_linenum = 0;
2407 		  override_columnnum = 0;
2408 		  override_discriminator = 0;
2409 		}
2410 	    }
2411 	  break;
2412 
2413 	case NOTE_INSN_DELETED_LABEL:
2414 	  /* Emit the label.  We may have deleted the CODE_LABEL because
2415 	     the label could be proved to be unreachable, though still
2416 	     referenced (in the form of having its address taken.  */
2417 	  ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2418 	  break;
2419 
2420 	case NOTE_INSN_DELETED_DEBUG_LABEL:
2421 	  /* Similarly, but need to use different namespace for it.  */
2422 	  if (CODE_LABEL_NUMBER (insn) != -1)
2423 	    ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2424 	  break;
2425 
2426 	case NOTE_INSN_VAR_LOCATION:
2427 	  if (!DECL_IGNORED_P (current_function_decl))
2428 	    {
2429 	      debug_hooks->var_location (insn);
2430 	      set_next_view_needed (seen);
2431 	    }
2432 	  break;
2433 
2434 	case NOTE_INSN_BEGIN_STMT:
2435 	  gcc_checking_assert (cfun->debug_nonbind_markers);
2436 	  if (!DECL_IGNORED_P (current_function_decl)
2437 	      && notice_source_line (insn, NULL))
2438 	    {
2439 	    output_source_line:
2440 	      (*debug_hooks->source_line) (last_linenum, last_columnnum,
2441 					   last_filename, last_discriminator,
2442 					   true);
2443 	      clear_next_view_needed (seen);
2444 	    }
2445 	  break;
2446 
2447 	case NOTE_INSN_INLINE_ENTRY:
2448 	  gcc_checking_assert (cfun->debug_nonbind_markers);
2449 	  if (!DECL_IGNORED_P (current_function_decl)
2450 	      && notice_source_line (insn, NULL))
2451 	    {
2452 	      (*debug_hooks->inline_entry) (LOCATION_BLOCK
2453 					    (NOTE_MARKER_LOCATION (insn)));
2454 	      goto output_source_line;
2455 	    }
2456 	  break;
2457 
2458 	default:
2459 	  gcc_unreachable ();
2460 	  break;
2461 	}
2462       break;
2463 
2464     case BARRIER:
2465       break;
2466 
2467     case CODE_LABEL:
2468       /* The target port might emit labels in the output function for
2469 	 some insn, e.g. sh.c output_branchy_insn.  */
2470       if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2471 	{
2472 	  align_flags alignment = LABEL_TO_ALIGNMENT (insn);
2473 	  if (alignment.levels[0].log && NEXT_INSN (insn))
2474 	    {
2475 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2476 	      /* Output both primary and secondary alignment.  */
2477 	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log,
2478 					 alignment.levels[0].maxskip);
2479 	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log,
2480 					 alignment.levels[1].maxskip);
2481 #else
2482 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2483               ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log);
2484 #else
2485 	      ASM_OUTPUT_ALIGN (file, alignment.levels[0].log);
2486 #endif
2487 #endif
2488 	    }
2489 	}
2490       CC_STATUS_INIT;
2491 
2492       if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2493 	debug_hooks->label (as_a <rtx_code_label *> (insn));
2494 
2495       app_disable ();
2496 
2497       /* If this label is followed by a jump-table, make sure we put
2498 	 the label in the read-only section.  Also possibly write the
2499 	 label and jump table together.  */
2500       table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2501       if (table)
2502 	{
2503 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2504 	  /* In this case, the case vector is being moved by the
2505 	     target, so don't output the label at all.  Leave that
2506 	     to the back end macros.  */
2507 #else
2508 	  if (! JUMP_TABLES_IN_TEXT_SECTION)
2509 	    {
2510 	      int log_align;
2511 
2512 	      switch_to_section (targetm.asm_out.function_rodata_section
2513 				 (current_function_decl,
2514 				  jumptable_relocatable ()));
2515 
2516 #ifdef ADDR_VEC_ALIGN
2517 	      log_align = ADDR_VEC_ALIGN (table);
2518 #else
2519 	      log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2520 #endif
2521 	      ASM_OUTPUT_ALIGN (file, log_align);
2522 	    }
2523 	  else
2524 	    switch_to_section (current_function_section ());
2525 
2526 #ifdef ASM_OUTPUT_CASE_LABEL
2527 	  ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2528 #else
2529 	  targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2530 #endif
2531 #endif
2532 	  break;
2533 	}
2534       if (LABEL_ALT_ENTRY_P (insn))
2535 	output_alternate_entry_point (file, insn);
2536       else
2537 	targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2538       break;
2539 
2540     default:
2541       {
2542 	rtx body = PATTERN (insn);
2543 	int insn_code_number;
2544 	const char *templ;
2545 	bool is_stmt, *is_stmt_p;
2546 
2547 	if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2548 	  {
2549 	    is_stmt = false;
2550 	    is_stmt_p = NULL;
2551 	  }
2552 	else
2553 	  is_stmt_p = &is_stmt;
2554 
2555 	/* Reset this early so it is correct for ASM statements.  */
2556 	current_insn_predicate = NULL_RTX;
2557 
2558 	/* An INSN, JUMP_INSN or CALL_INSN.
2559 	   First check for special kinds that recog doesn't recognize.  */
2560 
2561 	if (GET_CODE (body) == USE /* These are just declarations.  */
2562 	    || GET_CODE (body) == CLOBBER)
2563 	  break;
2564 
2565 #if HAVE_cc0
2566 	{
2567 	  /* If there is a REG_CC_SETTER note on this insn, it means that
2568 	     the setting of the condition code was done in the delay slot
2569 	     of the insn that branched here.  So recover the cc status
2570 	     from the insn that set it.  */
2571 
2572 	  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2573 	  if (note)
2574 	    {
2575 	      rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2576 	      NOTICE_UPDATE_CC (PATTERN (other), other);
2577 	      cc_prev_status = cc_status;
2578 	    }
2579 	}
2580 #endif
2581 
2582 	/* Detect insns that are really jump-tables
2583 	   and output them as such.  */
2584 
2585         if (JUMP_TABLE_DATA_P (insn))
2586 	  {
2587 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2588 	    int vlen, idx;
2589 #endif
2590 
2591 	    if (! JUMP_TABLES_IN_TEXT_SECTION)
2592 	      switch_to_section (targetm.asm_out.function_rodata_section
2593 				 (current_function_decl,
2594 				  jumptable_relocatable ()));
2595 	    else
2596 	      switch_to_section (current_function_section ());
2597 
2598 	    app_disable ();
2599 
2600 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2601 	    if (GET_CODE (body) == ADDR_VEC)
2602 	      {
2603 #ifdef ASM_OUTPUT_ADDR_VEC
2604 		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2605 #else
2606 		gcc_unreachable ();
2607 #endif
2608 	      }
2609 	    else
2610 	      {
2611 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2612 		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2613 #else
2614 		gcc_unreachable ();
2615 #endif
2616 	      }
2617 #else
2618 	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2619 	    for (idx = 0; idx < vlen; idx++)
2620 	      {
2621 		if (GET_CODE (body) == ADDR_VEC)
2622 		  {
2623 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2624 		    ASM_OUTPUT_ADDR_VEC_ELT
2625 		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2626 #else
2627 		    gcc_unreachable ();
2628 #endif
2629 		  }
2630 		else
2631 		  {
2632 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2633 		    ASM_OUTPUT_ADDR_DIFF_ELT
2634 		      (file,
2635 		       body,
2636 		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2637 		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2638 #else
2639 		    gcc_unreachable ();
2640 #endif
2641 		  }
2642 	      }
2643 #ifdef ASM_OUTPUT_CASE_END
2644 	    ASM_OUTPUT_CASE_END (file,
2645 				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2646 				 insn);
2647 #endif
2648 #endif
2649 
2650 	    switch_to_section (current_function_section ());
2651 
2652 	    if (debug_variable_location_views
2653 		&& !DECL_IGNORED_P (current_function_decl))
2654 	      debug_hooks->var_location (insn);
2655 
2656 	    break;
2657 	  }
2658 	/* Output this line note if it is the first or the last line
2659 	   note in a row.  */
2660 	if (!DECL_IGNORED_P (current_function_decl)
2661 	    && notice_source_line (insn, is_stmt_p))
2662 	  {
2663 	    if (flag_verbose_asm)
2664 	      asm_show_source (last_filename, last_linenum);
2665 	    (*debug_hooks->source_line) (last_linenum, last_columnnum,
2666 					 last_filename, last_discriminator,
2667 					 is_stmt);
2668 	    clear_next_view_needed (seen);
2669 	  }
2670 	else
2671 	  maybe_output_next_view (seen);
2672 
2673 	gcc_checking_assert (!DEBUG_INSN_P (insn));
2674 
2675 	if (GET_CODE (body) == PARALLEL
2676 	    && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2677 	  body = XVECEXP (body, 0, 0);
2678 
2679 	if (GET_CODE (body) == ASM_INPUT)
2680 	  {
2681 	    const char *string = XSTR (body, 0);
2682 
2683 	    /* There's no telling what that did to the condition codes.  */
2684 	    CC_STATUS_INIT;
2685 
2686 	    if (string[0])
2687 	      {
2688 		expanded_location loc;
2689 
2690 		app_enable ();
2691 		loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2692 		if (*loc.file && loc.line)
2693 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2694 			   ASM_COMMENT_START, loc.line, loc.file);
2695 		fprintf (asm_out_file, "\t%s\n", string);
2696 #if HAVE_AS_LINE_ZERO
2697 		if (*loc.file && loc.line)
2698 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2699 #endif
2700 	      }
2701 	    break;
2702 	  }
2703 
2704 	/* Detect `asm' construct with operands.  */
2705 	if (asm_noperands (body) >= 0)
2706 	  {
2707 	    unsigned int noperands = asm_noperands (body);
2708 	    rtx *ops = XALLOCAVEC (rtx, noperands);
2709 	    const char *string;
2710 	    location_t loc;
2711 	    expanded_location expanded;
2712 
2713 	    /* There's no telling what that did to the condition codes.  */
2714 	    CC_STATUS_INIT;
2715 
2716 	    /* Get out the operand values.  */
2717 	    string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2718 	    /* Inhibit dying on what would otherwise be compiler bugs.  */
2719 	    insn_noperands = noperands;
2720 	    this_is_asm_operands = insn;
2721 	    expanded = expand_location (loc);
2722 
2723 #ifdef FINAL_PRESCAN_INSN
2724 	    FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2725 #endif
2726 
2727 	    /* Output the insn using them.  */
2728 	    if (string[0])
2729 	      {
2730 		app_enable ();
2731 		if (expanded.file && expanded.line)
2732 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2733 			   ASM_COMMENT_START, expanded.line, expanded.file);
2734 	        output_asm_insn (string, ops);
2735 #if HAVE_AS_LINE_ZERO
2736 		if (expanded.file && expanded.line)
2737 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2738 #endif
2739 	      }
2740 
2741 	    if (targetm.asm_out.final_postscan_insn)
2742 	      targetm.asm_out.final_postscan_insn (file, insn, ops,
2743 						   insn_noperands);
2744 
2745 	    this_is_asm_operands = 0;
2746 	    break;
2747 	  }
2748 
2749 	app_disable ();
2750 
2751 	if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2752 	  {
2753 	    /* A delayed-branch sequence */
2754 	    int i;
2755 
2756 	    final_sequence = seq;
2757 
2758 	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2759 	       force the restoration of a comparison that was previously
2760 	       thought unnecessary.  If that happens, cancel this sequence
2761 	       and cause that insn to be restored.  */
2762 
2763 	    next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2764 	    if (next != seq->insn (1))
2765 	      {
2766 		final_sequence = 0;
2767 		return next;
2768 	      }
2769 
2770 	    for (i = 1; i < seq->len (); i++)
2771 	      {
2772 		rtx_insn *insn = seq->insn (i);
2773 		rtx_insn *next = NEXT_INSN (insn);
2774 		/* We loop in case any instruction in a delay slot gets
2775 		   split.  */
2776 		do
2777 		  insn = final_scan_insn (insn, file, 0, 1, seen);
2778 		while (insn != next);
2779 	      }
2780 #ifdef DBR_OUTPUT_SEQEND
2781 	    DBR_OUTPUT_SEQEND (file);
2782 #endif
2783 	    final_sequence = 0;
2784 
2785 	    /* If the insn requiring the delay slot was a CALL_INSN, the
2786 	       insns in the delay slot are actually executed before the
2787 	       called function.  Hence we don't preserve any CC-setting
2788 	       actions in these insns and the CC must be marked as being
2789 	       clobbered by the function.  */
2790 	    if (CALL_P (seq->insn (0)))
2791 	      {
2792 		CC_STATUS_INIT;
2793 	      }
2794 	    break;
2795 	  }
2796 
2797 	/* We have a real machine instruction as rtl.  */
2798 
2799 	body = PATTERN (insn);
2800 
2801 #if HAVE_cc0
2802 	set = single_set (insn);
2803 
2804 	/* Check for redundant test and compare instructions
2805 	   (when the condition codes are already set up as desired).
2806 	   This is done only when optimizing; if not optimizing,
2807 	   it should be possible for the user to alter a variable
2808 	   with the debugger in between statements
2809 	   and the next statement should reexamine the variable
2810 	   to compute the condition codes.  */
2811 
2812 	if (optimize_p)
2813 	  {
2814 	    if (set
2815 		&& GET_CODE (SET_DEST (set)) == CC0
2816 		&& insn != last_ignored_compare)
2817 	      {
2818 		rtx src1, src2;
2819 		if (GET_CODE (SET_SRC (set)) == SUBREG)
2820 		  SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2821 
2822 		src1 = SET_SRC (set);
2823 		src2 = NULL_RTX;
2824 		if (GET_CODE (SET_SRC (set)) == COMPARE)
2825 		  {
2826 		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2827 		      XEXP (SET_SRC (set), 0)
2828 			= alter_subreg (&XEXP (SET_SRC (set), 0), true);
2829 		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2830 		      XEXP (SET_SRC (set), 1)
2831 			= alter_subreg (&XEXP (SET_SRC (set), 1), true);
2832 		    if (XEXP (SET_SRC (set), 1)
2833 			== CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2834 		      src2 = XEXP (SET_SRC (set), 0);
2835 		  }
2836 		if ((cc_status.value1 != 0
2837 		     && rtx_equal_p (src1, cc_status.value1))
2838 		    || (cc_status.value2 != 0
2839 			&& rtx_equal_p (src1, cc_status.value2))
2840 		    || (src2 != 0 && cc_status.value1 != 0
2841 		        && rtx_equal_p (src2, cc_status.value1))
2842 		    || (src2 != 0 && cc_status.value2 != 0
2843 			&& rtx_equal_p (src2, cc_status.value2)))
2844 		  {
2845 		    /* Don't delete insn if it has an addressing side-effect.  */
2846 		    if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2847 			/* or if anything in it is volatile.  */
2848 			&& ! volatile_refs_p (PATTERN (insn)))
2849 		      {
2850 			/* We don't really delete the insn; just ignore it.  */
2851 			last_ignored_compare = insn;
2852 			break;
2853 		      }
2854 		  }
2855 	      }
2856 	  }
2857 
2858 	/* If this is a conditional branch, maybe modify it
2859 	   if the cc's are in a nonstandard state
2860 	   so that it accomplishes the same thing that it would
2861 	   do straightforwardly if the cc's were set up normally.  */
2862 
2863 	if (cc_status.flags != 0
2864 	    && JUMP_P (insn)
2865 	    && GET_CODE (body) == SET
2866 	    && SET_DEST (body) == pc_rtx
2867 	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2868 	    && COMPARISON_P (XEXP (SET_SRC (body), 0))
2869 	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2870 	  {
2871 	    /* This function may alter the contents of its argument
2872 	       and clear some of the cc_status.flags bits.
2873 	       It may also return 1 meaning condition now always true
2874 	       or -1 meaning condition now always false
2875 	       or 2 meaning condition nontrivial but altered.  */
2876 	    int result = alter_cond (XEXP (SET_SRC (body), 0));
2877 	    /* If condition now has fixed value, replace the IF_THEN_ELSE
2878 	       with its then-operand or its else-operand.  */
2879 	    if (result == 1)
2880 	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
2881 	    if (result == -1)
2882 	      SET_SRC (body) = XEXP (SET_SRC (body), 2);
2883 
2884 	    /* The jump is now either unconditional or a no-op.
2885 	       If it has become a no-op, don't try to output it.
2886 	       (It would not be recognized.)  */
2887 	    if (SET_SRC (body) == pc_rtx)
2888 	      {
2889 	        delete_insn (insn);
2890 		break;
2891 	      }
2892 	    else if (ANY_RETURN_P (SET_SRC (body)))
2893 	      /* Replace (set (pc) (return)) with (return).  */
2894 	      PATTERN (insn) = body = SET_SRC (body);
2895 
2896 	    /* Rerecognize the instruction if it has changed.  */
2897 	    if (result != 0)
2898 	      INSN_CODE (insn) = -1;
2899 	  }
2900 
2901 	/* If this is a conditional trap, maybe modify it if the cc's
2902 	   are in a nonstandard state so that it accomplishes the same
2903 	   thing that it would do straightforwardly if the cc's were
2904 	   set up normally.  */
2905 	if (cc_status.flags != 0
2906 	    && NONJUMP_INSN_P (insn)
2907 	    && GET_CODE (body) == TRAP_IF
2908 	    && COMPARISON_P (TRAP_CONDITION (body))
2909 	    && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2910 	  {
2911 	    /* This function may alter the contents of its argument
2912 	       and clear some of the cc_status.flags bits.
2913 	       It may also return 1 meaning condition now always true
2914 	       or -1 meaning condition now always false
2915 	       or 2 meaning condition nontrivial but altered.  */
2916 	    int result = alter_cond (TRAP_CONDITION (body));
2917 
2918 	    /* If TRAP_CONDITION has become always false, delete the
2919 	       instruction.  */
2920 	    if (result == -1)
2921 	      {
2922 		delete_insn (insn);
2923 		break;
2924 	      }
2925 
2926 	    /* If TRAP_CONDITION has become always true, replace
2927 	       TRAP_CONDITION with const_true_rtx.  */
2928 	    if (result == 1)
2929 	      TRAP_CONDITION (body) = const_true_rtx;
2930 
2931 	    /* Rerecognize the instruction if it has changed.  */
2932 	    if (result != 0)
2933 	      INSN_CODE (insn) = -1;
2934 	  }
2935 
2936 	/* Make same adjustments to instructions that examine the
2937 	   condition codes without jumping and instructions that
2938 	   handle conditional moves (if this machine has either one).  */
2939 
2940 	if (cc_status.flags != 0
2941 	    && set != 0)
2942 	  {
2943 	    rtx cond_rtx, then_rtx, else_rtx;
2944 
2945 	    if (!JUMP_P (insn)
2946 		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2947 	      {
2948 		cond_rtx = XEXP (SET_SRC (set), 0);
2949 		then_rtx = XEXP (SET_SRC (set), 1);
2950 		else_rtx = XEXP (SET_SRC (set), 2);
2951 	      }
2952 	    else
2953 	      {
2954 		cond_rtx = SET_SRC (set);
2955 		then_rtx = const_true_rtx;
2956 		else_rtx = const0_rtx;
2957 	      }
2958 
2959 	    if (COMPARISON_P (cond_rtx)
2960 		&& XEXP (cond_rtx, 0) == cc0_rtx)
2961 	      {
2962 		int result;
2963 		result = alter_cond (cond_rtx);
2964 		if (result == 1)
2965 		  validate_change (insn, &SET_SRC (set), then_rtx, 0);
2966 		else if (result == -1)
2967 		  validate_change (insn, &SET_SRC (set), else_rtx, 0);
2968 		else if (result == 2)
2969 		  INSN_CODE (insn) = -1;
2970 		if (SET_DEST (set) == SET_SRC (set))
2971 		  delete_insn (insn);
2972 	      }
2973 	  }
2974 
2975 #endif
2976 
2977 	/* Do machine-specific peephole optimizations if desired.  */
2978 
2979 	if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2980 	  {
2981 	    rtx_insn *next = peephole (insn);
2982 	    /* When peepholing, if there were notes within the peephole,
2983 	       emit them before the peephole.  */
2984 	    if (next != 0 && next != NEXT_INSN (insn))
2985 	      {
2986 		rtx_insn *note, *prev = PREV_INSN (insn);
2987 
2988 		for (note = NEXT_INSN (insn); note != next;
2989 		     note = NEXT_INSN (note))
2990 		  final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2991 
2992 		/* Put the notes in the proper position for a later
2993 		   rescan.  For example, the SH target can do this
2994 		   when generating a far jump in a delayed branch
2995 		   sequence.  */
2996 		note = NEXT_INSN (insn);
2997 		SET_PREV_INSN (note) = prev;
2998 		SET_NEXT_INSN (prev) = note;
2999 		SET_NEXT_INSN (PREV_INSN (next)) = insn;
3000 		SET_PREV_INSN (insn) = PREV_INSN (next);
3001 		SET_NEXT_INSN (insn) = next;
3002 		SET_PREV_INSN (next) = insn;
3003 	      }
3004 
3005 	    /* PEEPHOLE might have changed this.  */
3006 	    body = PATTERN (insn);
3007 	  }
3008 
3009 	/* Try to recognize the instruction.
3010 	   If successful, verify that the operands satisfy the
3011 	   constraints for the instruction.  Crash if they don't,
3012 	   since `reload' should have changed them so that they do.  */
3013 
3014 	insn_code_number = recog_memoized (insn);
3015 	cleanup_subreg_operands (insn);
3016 
3017 	/* Dump the insn in the assembly for debugging (-dAP).
3018 	   If the final dump is requested as slim RTL, dump slim
3019 	   RTL to the assembly file also.  */
3020 	if (flag_dump_rtl_in_asm)
3021 	  {
3022 	    print_rtx_head = ASM_COMMENT_START;
3023 	    if (! (dump_flags & TDF_SLIM))
3024 	      print_rtl_single (asm_out_file, insn);
3025 	    else
3026 	      dump_insn_slim (asm_out_file, insn);
3027 	    print_rtx_head = "";
3028 	  }
3029 
3030 	if (! constrain_operands_cached (insn, 1))
3031 	  fatal_insn_not_found (insn);
3032 
3033 	/* Some target machines need to prescan each insn before
3034 	   it is output.  */
3035 
3036 #ifdef FINAL_PRESCAN_INSN
3037 	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3038 #endif
3039 
3040 	if (targetm.have_conditional_execution ()
3041 	    && GET_CODE (PATTERN (insn)) == COND_EXEC)
3042 	  current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3043 
3044 #if HAVE_cc0
3045 	cc_prev_status = cc_status;
3046 
3047 	/* Update `cc_status' for this instruction.
3048 	   The instruction's output routine may change it further.
3049 	   If the output routine for a jump insn needs to depend
3050 	   on the cc status, it should look at cc_prev_status.  */
3051 
3052 	NOTICE_UPDATE_CC (body, insn);
3053 #endif
3054 
3055 	current_output_insn = debug_insn = insn;
3056 
3057 	/* Find the proper template for this insn.  */
3058 	templ = get_insn_template (insn_code_number, insn);
3059 
3060 	/* If the C code returns 0, it means that it is a jump insn
3061 	   which follows a deleted test insn, and that test insn
3062 	   needs to be reinserted.  */
3063 	if (templ == 0)
3064 	  {
3065 	    rtx_insn *prev;
3066 
3067 	    gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3068 
3069 	    /* We have already processed the notes between the setter and
3070 	       the user.  Make sure we don't process them again, this is
3071 	       particularly important if one of the notes is a block
3072 	       scope note or an EH note.  */
3073 	    for (prev = insn;
3074 		 prev != last_ignored_compare;
3075 		 prev = PREV_INSN (prev))
3076 	      {
3077 		if (NOTE_P (prev))
3078 		  delete_insn (prev);	/* Use delete_note.  */
3079 	      }
3080 
3081 	    return prev;
3082 	  }
3083 
3084 	/* If the template is the string "#", it means that this insn must
3085 	   be split.  */
3086 	if (templ[0] == '#' && templ[1] == '\0')
3087 	  {
3088 	    rtx_insn *new_rtx = try_split (body, insn, 0);
3089 
3090 	    /* If we didn't split the insn, go away.  */
3091 	    if (new_rtx == insn && PATTERN (new_rtx) == body)
3092 	      fatal_insn ("could not split insn", insn);
3093 
3094 	    /* If we have a length attribute, this instruction should have
3095 	       been split in shorten_branches, to ensure that we would have
3096 	       valid length info for the splitees.  */
3097 	    gcc_assert (!HAVE_ATTR_length);
3098 
3099 	    return new_rtx;
3100 	  }
3101 
3102 	/* ??? This will put the directives in the wrong place if
3103 	   get_insn_template outputs assembly directly.  However calling it
3104 	   before get_insn_template breaks if the insns is split.  */
3105 	if (targetm.asm_out.unwind_emit_before_insn
3106 	    && targetm.asm_out.unwind_emit)
3107 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3108 
3109 	rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3110 	if (call_insn != NULL)
3111 	  {
3112 	    rtx x = call_from_call_insn (call_insn);
3113 	    x = XEXP (x, 0);
3114 	    if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3115 	      {
3116 		tree t;
3117 		x = XEXP (x, 0);
3118 		t = SYMBOL_REF_DECL (x);
3119 		if (t)
3120 		  assemble_external (t);
3121 	      }
3122 	  }
3123 
3124 	/* Output assembler code from the template.  */
3125 	output_asm_insn (templ, recog_data.operand);
3126 
3127 	/* Some target machines need to postscan each insn after
3128 	   it is output.  */
3129 	if (targetm.asm_out.final_postscan_insn)
3130 	  targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3131 					       recog_data.n_operands);
3132 
3133 	if (!targetm.asm_out.unwind_emit_before_insn
3134 	    && targetm.asm_out.unwind_emit)
3135 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3136 
3137 	/* Let the debug info back-end know about this call.  We do this only
3138 	   after the instruction has been emitted because labels that may be
3139 	   created to reference the call instruction must appear after it.  */
3140 	if ((debug_variable_location_views || call_insn != NULL)
3141 	    && !DECL_IGNORED_P (current_function_decl))
3142 	  debug_hooks->var_location (insn);
3143 
3144 	current_output_insn = debug_insn = 0;
3145       }
3146     }
3147   return NEXT_INSN (insn);
3148 }
3149 
3150 /* This is a wrapper around final_scan_insn_1 that allows ports to
3151    call it recursively without a known value for SEEN.  The value is
3152    saved at the outermost call, and recovered for recursive calls.
3153    Recursive calls MUST pass NULL, or the same pointer if they can
3154    otherwise get to it.  */
3155 
3156 rtx_insn *
final_scan_insn(rtx_insn * insn,FILE * file,int optimize_p,int nopeepholes,int * seen)3157 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3158 		 int nopeepholes, int *seen)
3159 {
3160   static int *enclosing_seen;
3161   static int recursion_counter;
3162 
3163   gcc_assert (seen || recursion_counter);
3164   gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3165 
3166   if (!recursion_counter++)
3167     enclosing_seen = seen;
3168   else if (!seen)
3169     seen = enclosing_seen;
3170 
3171   rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3172 
3173   if (!--recursion_counter)
3174     enclosing_seen = NULL;
3175 
3176   return ret;
3177 }
3178 
3179 
3180 
3181 /* Map DECLs to instance discriminators.  This is allocated and
3182    defined in ada/gcc-interfaces/trans.c, when compiling with -gnateS.
3183    Mappings from this table are saved and restored for LTO, so
3184    link-time compilation will have this map set, at least in
3185    partitions containing at least one DECL with an associated instance
3186    discriminator.  */
3187 
3188 decl_to_instance_map_t *decl_to_instance_map;
3189 
3190 /* Return the instance number assigned to DECL.  */
3191 
3192 static inline int
map_decl_to_instance(const_tree decl)3193 map_decl_to_instance (const_tree decl)
3194 {
3195   int *inst;
3196 
3197   if (!decl_to_instance_map || !decl || !DECL_P (decl))
3198     return 0;
3199 
3200   inst = decl_to_instance_map->get (decl);
3201 
3202   if (!inst)
3203     return 0;
3204 
3205   return *inst;
3206 }
3207 
3208 /* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC.  */
3209 
3210 static inline int
compute_discriminator(location_t loc)3211 compute_discriminator (location_t loc)
3212 {
3213   int discriminator;
3214 
3215   if (!decl_to_instance_map)
3216     discriminator = bb_discriminator;
3217   else
3218     {
3219       tree block = LOCATION_BLOCK (loc);
3220 
3221       while (block && TREE_CODE (block) == BLOCK
3222 	     && !inlined_function_outer_scope_p (block))
3223 	block = BLOCK_SUPERCONTEXT (block);
3224 
3225       tree decl;
3226 
3227       if (!block)
3228 	decl = current_function_decl;
3229       else if (DECL_P (block))
3230 	decl = block;
3231       else
3232 	decl = block_ultimate_origin (block);
3233 
3234       discriminator = map_decl_to_instance (decl);
3235     }
3236 
3237   return discriminator;
3238 }
3239 
3240 /* Return whether a source line note needs to be emitted before INSN.
3241    Sets IS_STMT to TRUE if the line should be marked as a possible
3242    breakpoint location.  */
3243 
3244 static bool
notice_source_line(rtx_insn * insn,bool * is_stmt)3245 notice_source_line (rtx_insn *insn, bool *is_stmt)
3246 {
3247   const char *filename;
3248   int linenum, columnnum;
3249 
3250   if (NOTE_MARKER_P (insn))
3251     {
3252       location_t loc = NOTE_MARKER_LOCATION (insn);
3253       expanded_location xloc = expand_location (loc);
3254       if (xloc.line == 0
3255 	  && (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3256 	      || LOCATION_LOCUS (loc) == BUILTINS_LOCATION))
3257 	return false;
3258 
3259       filename = xloc.file;
3260       linenum = xloc.line;
3261       columnnum = xloc.column;
3262       discriminator = compute_discriminator (loc);
3263       force_source_line = true;
3264     }
3265   else if (override_filename)
3266     {
3267       filename = override_filename;
3268       linenum = override_linenum;
3269       columnnum = override_columnnum;
3270       discriminator = override_discriminator;
3271     }
3272   else if (INSN_HAS_LOCATION (insn))
3273     {
3274       expanded_location xloc = insn_location (insn);
3275       filename = xloc.file;
3276       linenum = xloc.line;
3277       columnnum = xloc.column;
3278       discriminator = compute_discriminator (INSN_LOCATION (insn));
3279     }
3280   else
3281     {
3282       filename = NULL;
3283       linenum = 0;
3284       columnnum = 0;
3285       discriminator = 0;
3286     }
3287 
3288   if (filename == NULL)
3289     return false;
3290 
3291   if (force_source_line
3292       || filename != last_filename
3293       || last_linenum != linenum
3294       || (debug_column_info && last_columnnum != columnnum))
3295     {
3296       force_source_line = false;
3297       last_filename = filename;
3298       last_linenum = linenum;
3299       last_columnnum = columnnum;
3300       last_discriminator = discriminator;
3301       if (is_stmt)
3302 	*is_stmt = true;
3303       high_block_linenum = MAX (last_linenum, high_block_linenum);
3304       high_function_linenum = MAX (last_linenum, high_function_linenum);
3305       return true;
3306     }
3307 
3308   if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3309     {
3310       /* If the discriminator changed, but the line number did not,
3311          output the line table entry with is_stmt false so the
3312          debugger does not treat this as a breakpoint location.  */
3313       last_discriminator = discriminator;
3314       if (is_stmt)
3315 	*is_stmt = false;
3316       return true;
3317     }
3318 
3319   return false;
3320 }
3321 
3322 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3323    directly to the desired hard register.  */
3324 
3325 void
cleanup_subreg_operands(rtx_insn * insn)3326 cleanup_subreg_operands (rtx_insn *insn)
3327 {
3328   int i;
3329   bool changed = false;
3330   extract_insn_cached (insn);
3331   for (i = 0; i < recog_data.n_operands; i++)
3332     {
3333       /* The following test cannot use recog_data.operand when testing
3334 	 for a SUBREG: the underlying object might have been changed
3335 	 already if we are inside a match_operator expression that
3336 	 matches the else clause.  Instead we test the underlying
3337 	 expression directly.  */
3338       if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3339 	{
3340 	  recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3341 	  changed = true;
3342 	}
3343       else if (GET_CODE (recog_data.operand[i]) == PLUS
3344 	       || GET_CODE (recog_data.operand[i]) == MULT
3345 	       || MEM_P (recog_data.operand[i]))
3346 	recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3347     }
3348 
3349   for (i = 0; i < recog_data.n_dups; i++)
3350     {
3351       if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3352 	{
3353 	  *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3354 	  changed = true;
3355 	}
3356       else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3357 	       || GET_CODE (*recog_data.dup_loc[i]) == MULT
3358 	       || MEM_P (*recog_data.dup_loc[i]))
3359 	*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3360     }
3361   if (changed)
3362     df_insn_rescan (insn);
3363 }
3364 
3365 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3366    the thing it is a subreg of.  Do it anyway if FINAL_P.  */
3367 
3368 rtx
alter_subreg(rtx * xp,bool final_p)3369 alter_subreg (rtx *xp, bool final_p)
3370 {
3371   rtx x = *xp;
3372   rtx y = SUBREG_REG (x);
3373 
3374   /* simplify_subreg does not remove subreg from volatile references.
3375      We are required to.  */
3376   if (MEM_P (y))
3377     {
3378       poly_int64 offset = SUBREG_BYTE (x);
3379 
3380       /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3381 	 contains 0 instead of the proper offset.  See simplify_subreg.  */
3382       if (paradoxical_subreg_p (x))
3383 	offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3384 
3385       if (final_p)
3386 	*xp = adjust_address (y, GET_MODE (x), offset);
3387       else
3388 	*xp = adjust_address_nv (y, GET_MODE (x), offset);
3389     }
3390   else if (REG_P (y) && HARD_REGISTER_P (y))
3391     {
3392       rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3393 				     SUBREG_BYTE (x));
3394 
3395       if (new_rtx != 0)
3396 	*xp = new_rtx;
3397       else if (final_p && REG_P (y))
3398 	{
3399 	  /* Simplify_subreg can't handle some REG cases, but we have to.  */
3400 	  unsigned int regno;
3401 	  poly_int64 offset;
3402 
3403 	  regno = subreg_regno (x);
3404 	  if (subreg_lowpart_p (x))
3405 	    offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3406 	  else
3407 	    offset = SUBREG_BYTE (x);
3408 	  *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3409 	}
3410     }
3411 
3412   return *xp;
3413 }
3414 
3415 /* Do alter_subreg on all the SUBREGs contained in X.  */
3416 
3417 static rtx
walk_alter_subreg(rtx * xp,bool * changed)3418 walk_alter_subreg (rtx *xp, bool *changed)
3419 {
3420   rtx x = *xp;
3421   switch (GET_CODE (x))
3422     {
3423     case PLUS:
3424     case MULT:
3425     case AND:
3426       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3427       XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3428       break;
3429 
3430     case MEM:
3431     case ZERO_EXTEND:
3432       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3433       break;
3434 
3435     case SUBREG:
3436       *changed = true;
3437       return alter_subreg (xp, true);
3438 
3439     default:
3440       break;
3441     }
3442 
3443   return *xp;
3444 }
3445 
3446 #if HAVE_cc0
3447 
3448 /* Given BODY, the body of a jump instruction, alter the jump condition
3449    as required by the bits that are set in cc_status.flags.
3450    Not all of the bits there can be handled at this level in all cases.
3451 
3452    The value is normally 0.
3453    1 means that the condition has become always true.
3454    -1 means that the condition has become always false.
3455    2 means that COND has been altered.  */
3456 
3457 static int
alter_cond(rtx cond)3458 alter_cond (rtx cond)
3459 {
3460   int value = 0;
3461 
3462   if (cc_status.flags & CC_REVERSED)
3463     {
3464       value = 2;
3465       PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3466     }
3467 
3468   if (cc_status.flags & CC_INVERTED)
3469     {
3470       value = 2;
3471       PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3472     }
3473 
3474   if (cc_status.flags & CC_NOT_POSITIVE)
3475     switch (GET_CODE (cond))
3476       {
3477       case LE:
3478       case LEU:
3479       case GEU:
3480 	/* Jump becomes unconditional.  */
3481 	return 1;
3482 
3483       case GT:
3484       case GTU:
3485       case LTU:
3486 	/* Jump becomes no-op.  */
3487 	return -1;
3488 
3489       case GE:
3490 	PUT_CODE (cond, EQ);
3491 	value = 2;
3492 	break;
3493 
3494       case LT:
3495 	PUT_CODE (cond, NE);
3496 	value = 2;
3497 	break;
3498 
3499       default:
3500 	break;
3501       }
3502 
3503   if (cc_status.flags & CC_NOT_NEGATIVE)
3504     switch (GET_CODE (cond))
3505       {
3506       case GE:
3507       case GEU:
3508 	/* Jump becomes unconditional.  */
3509 	return 1;
3510 
3511       case LT:
3512       case LTU:
3513 	/* Jump becomes no-op.  */
3514 	return -1;
3515 
3516       case LE:
3517       case LEU:
3518 	PUT_CODE (cond, EQ);
3519 	value = 2;
3520 	break;
3521 
3522       case GT:
3523       case GTU:
3524 	PUT_CODE (cond, NE);
3525 	value = 2;
3526 	break;
3527 
3528       default:
3529 	break;
3530       }
3531 
3532   if (cc_status.flags & CC_NO_OVERFLOW)
3533     switch (GET_CODE (cond))
3534       {
3535       case GEU:
3536 	/* Jump becomes unconditional.  */
3537 	return 1;
3538 
3539       case LEU:
3540 	PUT_CODE (cond, EQ);
3541 	value = 2;
3542 	break;
3543 
3544       case GTU:
3545 	PUT_CODE (cond, NE);
3546 	value = 2;
3547 	break;
3548 
3549       case LTU:
3550 	/* Jump becomes no-op.  */
3551 	return -1;
3552 
3553       default:
3554 	break;
3555       }
3556 
3557   if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3558     switch (GET_CODE (cond))
3559       {
3560       default:
3561 	gcc_unreachable ();
3562 
3563       case NE:
3564 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3565 	value = 2;
3566 	break;
3567 
3568       case EQ:
3569 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3570 	value = 2;
3571 	break;
3572       }
3573 
3574   if (cc_status.flags & CC_NOT_SIGNED)
3575     /* The flags are valid if signed condition operators are converted
3576        to unsigned.  */
3577     switch (GET_CODE (cond))
3578       {
3579       case LE:
3580 	PUT_CODE (cond, LEU);
3581 	value = 2;
3582 	break;
3583 
3584       case LT:
3585 	PUT_CODE (cond, LTU);
3586 	value = 2;
3587 	break;
3588 
3589       case GT:
3590 	PUT_CODE (cond, GTU);
3591 	value = 2;
3592 	break;
3593 
3594       case GE:
3595 	PUT_CODE (cond, GEU);
3596 	value = 2;
3597 	break;
3598 
3599       default:
3600 	break;
3601       }
3602 
3603   return value;
3604 }
3605 #endif
3606 
3607 /* Report inconsistency between the assembler template and the operands.
3608    In an `asm', it's the user's fault; otherwise, the compiler's fault.  */
3609 
3610 void
output_operand_lossage(const char * cmsgid,...)3611 output_operand_lossage (const char *cmsgid, ...)
3612 {
3613   char *fmt_string;
3614   char *new_message;
3615   const char *pfx_str;
3616   va_list ap;
3617 
3618   va_start (ap, cmsgid);
3619 
3620   pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3621   fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3622   new_message = xvasprintf (fmt_string, ap);
3623 
3624   if (this_is_asm_operands)
3625     error_for_asm (this_is_asm_operands, "%s", new_message);
3626   else
3627     internal_error ("%s", new_message);
3628 
3629   free (fmt_string);
3630   free (new_message);
3631   va_end (ap);
3632 }
3633 
3634 /* Output of assembler code from a template, and its subroutines.  */
3635 
3636 /* Annotate the assembly with a comment describing the pattern and
3637    alternative used.  */
3638 
3639 static void
output_asm_name(void)3640 output_asm_name (void)
3641 {
3642   if (debug_insn)
3643     {
3644       fprintf (asm_out_file, "\t%s %d\t",
3645 	       ASM_COMMENT_START, INSN_UID (debug_insn));
3646 
3647       fprintf (asm_out_file, "[c=%d",
3648 	       insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3649       if (HAVE_ATTR_length)
3650 	fprintf (asm_out_file, " l=%d",
3651 		 get_attr_length (debug_insn));
3652       fprintf (asm_out_file, "]  ");
3653 
3654       int num = INSN_CODE (debug_insn);
3655       fprintf (asm_out_file, "%s", insn_data[num].name);
3656       if (insn_data[num].n_alternatives > 1)
3657 	fprintf (asm_out_file, "/%d", which_alternative);
3658 
3659       /* Clear this so only the first assembler insn
3660 	 of any rtl insn will get the special comment for -dp.  */
3661       debug_insn = 0;
3662     }
3663 }
3664 
3665 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3666    or its address, return that expr .  Set *PADDRESSP to 1 if the expr
3667    corresponds to the address of the object and 0 if to the object.  */
3668 
3669 static tree
get_mem_expr_from_op(rtx op,int * paddressp)3670 get_mem_expr_from_op (rtx op, int *paddressp)
3671 {
3672   tree expr;
3673   int inner_addressp;
3674 
3675   *paddressp = 0;
3676 
3677   if (REG_P (op))
3678     return REG_EXPR (op);
3679   else if (!MEM_P (op))
3680     return 0;
3681 
3682   if (MEM_EXPR (op) != 0)
3683     return MEM_EXPR (op);
3684 
3685   /* Otherwise we have an address, so indicate it and look at the address.  */
3686   *paddressp = 1;
3687   op = XEXP (op, 0);
3688 
3689   /* First check if we have a decl for the address, then look at the right side
3690      if it is a PLUS.  Otherwise, strip off arithmetic and keep looking.
3691      But don't allow the address to itself be indirect.  */
3692   if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3693     return expr;
3694   else if (GET_CODE (op) == PLUS
3695 	   && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3696     return expr;
3697 
3698   while (UNARY_P (op)
3699 	 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3700     op = XEXP (op, 0);
3701 
3702   expr = get_mem_expr_from_op (op, &inner_addressp);
3703   return inner_addressp ? 0 : expr;
3704 }
3705 
3706 /* Output operand names for assembler instructions.  OPERANDS is the
3707    operand vector, OPORDER is the order to write the operands, and NOPS
3708    is the number of operands to write.  */
3709 
3710 static void
output_asm_operand_names(rtx * operands,int * oporder,int nops)3711 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3712 {
3713   int wrote = 0;
3714   int i;
3715 
3716   for (i = 0; i < nops; i++)
3717     {
3718       int addressp;
3719       rtx op = operands[oporder[i]];
3720       tree expr = get_mem_expr_from_op (op, &addressp);
3721 
3722       fprintf (asm_out_file, "%c%s",
3723 	       wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3724       wrote = 1;
3725       if (expr)
3726 	{
3727 	  fprintf (asm_out_file, "%s",
3728 		   addressp ? "*" : "");
3729 	  print_mem_expr (asm_out_file, expr);
3730 	  wrote = 1;
3731 	}
3732       else if (REG_P (op) && ORIGINAL_REGNO (op)
3733 	       && ORIGINAL_REGNO (op) != REGNO (op))
3734 	fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3735     }
3736 }
3737 
3738 #ifdef ASSEMBLER_DIALECT
3739 /* Helper function to parse assembler dialects in the asm string.
3740    This is called from output_asm_insn and asm_fprintf.  */
3741 static const char *
do_assembler_dialects(const char * p,int * dialect)3742 do_assembler_dialects (const char *p, int *dialect)
3743 {
3744   char c = *(p - 1);
3745 
3746   switch (c)
3747     {
3748     case '{':
3749       {
3750         int i;
3751 
3752         if (*dialect)
3753           output_operand_lossage ("nested assembly dialect alternatives");
3754         else
3755           *dialect = 1;
3756 
3757         /* If we want the first dialect, do nothing.  Otherwise, skip
3758            DIALECT_NUMBER of strings ending with '|'.  */
3759         for (i = 0; i < dialect_number; i++)
3760           {
3761             while (*p && *p != '}')
3762 	      {
3763 		if (*p == '|')
3764 		  {
3765 		    p++;
3766 		    break;
3767 		  }
3768 
3769 		/* Skip over any character after a percent sign.  */
3770 		if (*p == '%')
3771 		  p++;
3772 		if (*p)
3773 		  p++;
3774 	      }
3775 
3776             if (*p == '}')
3777 	      break;
3778           }
3779 
3780         if (*p == '\0')
3781           output_operand_lossage ("unterminated assembly dialect alternative");
3782       }
3783       break;
3784 
3785     case '|':
3786       if (*dialect)
3787         {
3788           /* Skip to close brace.  */
3789           do
3790             {
3791 	      if (*p == '\0')
3792 		{
3793 		  output_operand_lossage ("unterminated assembly dialect alternative");
3794 		  break;
3795 		}
3796 
3797 	      /* Skip over any character after a percent sign.  */
3798 	      if (*p == '%' && p[1])
3799 		{
3800 		  p += 2;
3801 		  continue;
3802 		}
3803 
3804 	      if (*p++ == '}')
3805 		break;
3806             }
3807           while (1);
3808 
3809           *dialect = 0;
3810         }
3811       else
3812         putc (c, asm_out_file);
3813       break;
3814 
3815     case '}':
3816       if (! *dialect)
3817         putc (c, asm_out_file);
3818       *dialect = 0;
3819       break;
3820     default:
3821       gcc_unreachable ();
3822     }
3823 
3824   return p;
3825 }
3826 #endif
3827 
3828 /* Output text from TEMPLATE to the assembler output file,
3829    obeying %-directions to substitute operands taken from
3830    the vector OPERANDS.
3831 
3832    %N (for N a digit) means print operand N in usual manner.
3833    %lN means require operand N to be a CODE_LABEL or LABEL_REF
3834       and print the label name with no punctuation.
3835    %cN means require operand N to be a constant
3836       and print the constant expression with no punctuation.
3837    %aN means expect operand N to be a memory address
3838       (not a memory reference!) and print a reference
3839       to that address.
3840    %nN means expect operand N to be a constant
3841       and print a constant expression for minus the value
3842       of the operand, with no other punctuation.  */
3843 
3844 void
output_asm_insn(const char * templ,rtx * operands)3845 output_asm_insn (const char *templ, rtx *operands)
3846 {
3847   const char *p;
3848   int c;
3849 #ifdef ASSEMBLER_DIALECT
3850   int dialect = 0;
3851 #endif
3852   int oporder[MAX_RECOG_OPERANDS];
3853   char opoutput[MAX_RECOG_OPERANDS];
3854   int ops = 0;
3855 
3856   /* An insn may return a null string template
3857      in a case where no assembler code is needed.  */
3858   if (*templ == 0)
3859     return;
3860 
3861   memset (opoutput, 0, sizeof opoutput);
3862   p = templ;
3863   putc ('\t', asm_out_file);
3864 
3865 #ifdef ASM_OUTPUT_OPCODE
3866   ASM_OUTPUT_OPCODE (asm_out_file, p);
3867 #endif
3868 
3869   while ((c = *p++))
3870     switch (c)
3871       {
3872       case '\n':
3873 	if (flag_verbose_asm)
3874 	  output_asm_operand_names (operands, oporder, ops);
3875 	if (flag_print_asm_name)
3876 	  output_asm_name ();
3877 
3878 	ops = 0;
3879 	memset (opoutput, 0, sizeof opoutput);
3880 
3881 	putc (c, asm_out_file);
3882 #ifdef ASM_OUTPUT_OPCODE
3883 	while ((c = *p) == '\t')
3884 	  {
3885 	    putc (c, asm_out_file);
3886 	    p++;
3887 	  }
3888 	ASM_OUTPUT_OPCODE (asm_out_file, p);
3889 #endif
3890 	break;
3891 
3892 #ifdef ASSEMBLER_DIALECT
3893       case '{':
3894       case '}':
3895       case '|':
3896 	p = do_assembler_dialects (p, &dialect);
3897 	break;
3898 #endif
3899 
3900       case '%':
3901 	/* %% outputs a single %.  %{, %} and %| print {, } and | respectively
3902 	   if ASSEMBLER_DIALECT defined and these characters have a special
3903 	   meaning as dialect delimiters.*/
3904 	if (*p == '%'
3905 #ifdef ASSEMBLER_DIALECT
3906 	    || *p == '{' || *p == '}' || *p == '|'
3907 #endif
3908 	    )
3909 	  {
3910 	    putc (*p, asm_out_file);
3911 	    p++;
3912 	  }
3913 	/* %= outputs a number which is unique to each insn in the entire
3914 	   compilation.  This is useful for making local labels that are
3915 	   referred to more than once in a given insn.  */
3916 	else if (*p == '=')
3917 	  {
3918 	    p++;
3919 	    fprintf (asm_out_file, "%d", insn_counter);
3920 	  }
3921 	/* % followed by a letter and some digits
3922 	   outputs an operand in a special way depending on the letter.
3923 	   Letters `acln' are implemented directly.
3924 	   Other letters are passed to `output_operand' so that
3925 	   the TARGET_PRINT_OPERAND hook can define them.  */
3926 	else if (ISALPHA (*p))
3927 	  {
3928 	    int letter = *p++;
3929 	    unsigned long opnum;
3930 	    char *endptr;
3931 
3932 	    opnum = strtoul (p, &endptr, 10);
3933 
3934 	    if (endptr == p)
3935 	      output_operand_lossage ("operand number missing "
3936 				      "after %%-letter");
3937 	    else if (this_is_asm_operands && opnum >= insn_noperands)
3938 	      output_operand_lossage ("operand number out of range");
3939 	    else if (letter == 'l')
3940 	      output_asm_label (operands[opnum]);
3941 	    else if (letter == 'a')
3942 	      output_address (VOIDmode, operands[opnum]);
3943 	    else if (letter == 'c')
3944 	      {
3945 		if (CONSTANT_ADDRESS_P (operands[opnum]))
3946 		  output_addr_const (asm_out_file, operands[opnum]);
3947 		else
3948 		  output_operand (operands[opnum], 'c');
3949 	      }
3950 	    else if (letter == 'n')
3951 	      {
3952 		if (CONST_INT_P (operands[opnum]))
3953 		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3954 			   - INTVAL (operands[opnum]));
3955 		else
3956 		  {
3957 		    putc ('-', asm_out_file);
3958 		    output_addr_const (asm_out_file, operands[opnum]);
3959 		  }
3960 	      }
3961 	    else
3962 	      output_operand (operands[opnum], letter);
3963 
3964 	    if (!opoutput[opnum])
3965 	      oporder[ops++] = opnum;
3966 	    opoutput[opnum] = 1;
3967 
3968 	    p = endptr;
3969 	    c = *p;
3970 	  }
3971 	/* % followed by a digit outputs an operand the default way.  */
3972 	else if (ISDIGIT (*p))
3973 	  {
3974 	    unsigned long opnum;
3975 	    char *endptr;
3976 
3977 	    opnum = strtoul (p, &endptr, 10);
3978 	    if (this_is_asm_operands && opnum >= insn_noperands)
3979 	      output_operand_lossage ("operand number out of range");
3980 	    else
3981 	      output_operand (operands[opnum], 0);
3982 
3983 	    if (!opoutput[opnum])
3984 	      oporder[ops++] = opnum;
3985 	    opoutput[opnum] = 1;
3986 
3987 	    p = endptr;
3988 	    c = *p;
3989 	  }
3990 	/* % followed by punctuation: output something for that
3991 	   punctuation character alone, with no operand.  The
3992 	   TARGET_PRINT_OPERAND hook decides what is actually done.  */
3993 	else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3994 	  output_operand (NULL_RTX, *p++);
3995 	else
3996 	  output_operand_lossage ("invalid %%-code");
3997 	break;
3998 
3999       default:
4000 	putc (c, asm_out_file);
4001       }
4002 
4003   /* Try to keep the asm a bit more readable.  */
4004   if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
4005     putc ('\t', asm_out_file);
4006 
4007   /* Write out the variable names for operands, if we know them.  */
4008   if (flag_verbose_asm)
4009     output_asm_operand_names (operands, oporder, ops);
4010   if (flag_print_asm_name)
4011     output_asm_name ();
4012 
4013   putc ('\n', asm_out_file);
4014 }
4015 
4016 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */
4017 
4018 void
output_asm_label(rtx x)4019 output_asm_label (rtx x)
4020 {
4021   char buf[256];
4022 
4023   if (GET_CODE (x) == LABEL_REF)
4024     x = label_ref_label (x);
4025   if (LABEL_P (x)
4026       || (NOTE_P (x)
4027 	  && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4028     ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4029   else
4030     output_operand_lossage ("'%%l' operand isn't a label");
4031 
4032   assemble_name (asm_out_file, buf);
4033 }
4034 
4035 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external.  */
4036 
4037 void
mark_symbol_refs_as_used(rtx x)4038 mark_symbol_refs_as_used (rtx x)
4039 {
4040   subrtx_iterator::array_type array;
4041   FOR_EACH_SUBRTX (iter, array, x, ALL)
4042     {
4043       const_rtx x = *iter;
4044       if (GET_CODE (x) == SYMBOL_REF)
4045 	if (tree t = SYMBOL_REF_DECL (x))
4046 	  assemble_external (t);
4047     }
4048 }
4049 
4050 /* Print operand X using machine-dependent assembler syntax.
4051    CODE is a non-digit that preceded the operand-number in the % spec,
4052    such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
4053    between the % and the digits.
4054    When CODE is a non-letter, X is 0.
4055 
4056    The meanings of the letters are machine-dependent and controlled
4057    by TARGET_PRINT_OPERAND.  */
4058 
4059 void
output_operand(rtx x,int code ATTRIBUTE_UNUSED)4060 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4061 {
4062   if (x && GET_CODE (x) == SUBREG)
4063     x = alter_subreg (&x, true);
4064 
4065   /* X must not be a pseudo reg.  */
4066   if (!targetm.no_register_allocation)
4067     gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4068 
4069   targetm.asm_out.print_operand (asm_out_file, x, code);
4070 
4071   if (x == NULL_RTX)
4072     return;
4073 
4074   mark_symbol_refs_as_used (x);
4075 }
4076 
4077 /* Print a memory reference operand for address X using
4078    machine-dependent assembler syntax.  */
4079 
4080 void
output_address(machine_mode mode,rtx x)4081 output_address (machine_mode mode, rtx x)
4082 {
4083   bool changed = false;
4084   walk_alter_subreg (&x, &changed);
4085   targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4086 }
4087 
4088 /* Print an integer constant expression in assembler syntax.
4089    Addition and subtraction are the only arithmetic
4090    that may appear in these expressions.  */
4091 
4092 void
output_addr_const(FILE * file,rtx x)4093 output_addr_const (FILE *file, rtx x)
4094 {
4095   char buf[256];
4096 
4097  restart:
4098   switch (GET_CODE (x))
4099     {
4100     case PC:
4101       putc ('.', file);
4102       break;
4103 
4104     case SYMBOL_REF:
4105       if (SYMBOL_REF_DECL (x))
4106 	assemble_external (SYMBOL_REF_DECL (x));
4107 #ifdef ASM_OUTPUT_SYMBOL_REF
4108       ASM_OUTPUT_SYMBOL_REF (file, x);
4109 #else
4110       assemble_name (file, XSTR (x, 0));
4111 #endif
4112       break;
4113 
4114     case LABEL_REF:
4115       x = label_ref_label (x);
4116       /* Fall through.  */
4117     case CODE_LABEL:
4118       ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4119 #ifdef ASM_OUTPUT_LABEL_REF
4120       ASM_OUTPUT_LABEL_REF (file, buf);
4121 #else
4122       assemble_name (file, buf);
4123 #endif
4124       break;
4125 
4126     case CONST_INT:
4127       fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4128       break;
4129 
4130     case CONST:
4131       /* This used to output parentheses around the expression,
4132 	 but that does not work on the 386 (either ATT or BSD assembler).  */
4133       output_addr_const (file, XEXP (x, 0));
4134       break;
4135 
4136     case CONST_WIDE_INT:
4137       /* We do not know the mode here so we have to use a round about
4138 	 way to build a wide-int to get it printed properly.  */
4139       {
4140 	wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4141 					   CONST_WIDE_INT_NUNITS (x),
4142 					   CONST_WIDE_INT_NUNITS (x)
4143 					   * HOST_BITS_PER_WIDE_INT,
4144 					   false);
4145 	print_decs (w, file);
4146       }
4147       break;
4148 
4149     case CONST_DOUBLE:
4150       if (CONST_DOUBLE_AS_INT_P (x))
4151 	{
4152 	  /* We can use %d if the number is one word and positive.  */
4153 	  if (CONST_DOUBLE_HIGH (x))
4154 	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4155 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4156 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4157 	  else if (CONST_DOUBLE_LOW (x) < 0)
4158 	    fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4159 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4160 	  else
4161 	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4162 	}
4163       else
4164 	/* We can't handle floating point constants;
4165 	   PRINT_OPERAND must handle them.  */
4166 	output_operand_lossage ("floating constant misused");
4167       break;
4168 
4169     case CONST_FIXED:
4170       fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4171       break;
4172 
4173     case PLUS:
4174       /* Some assemblers need integer constants to appear last (eg masm).  */
4175       if (CONST_INT_P (XEXP (x, 0)))
4176 	{
4177 	  output_addr_const (file, XEXP (x, 1));
4178 	  if (INTVAL (XEXP (x, 0)) >= 0)
4179 	    fprintf (file, "+");
4180 	  output_addr_const (file, XEXP (x, 0));
4181 	}
4182       else
4183 	{
4184 	  output_addr_const (file, XEXP (x, 0));
4185 	  if (!CONST_INT_P (XEXP (x, 1))
4186 	      || INTVAL (XEXP (x, 1)) >= 0)
4187 	    fprintf (file, "+");
4188 	  output_addr_const (file, XEXP (x, 1));
4189 	}
4190       break;
4191 
4192     case MINUS:
4193       /* Avoid outputting things like x-x or x+5-x,
4194 	 since some assemblers can't handle that.  */
4195       x = simplify_subtraction (x);
4196       if (GET_CODE (x) != MINUS)
4197 	goto restart;
4198 
4199       output_addr_const (file, XEXP (x, 0));
4200       fprintf (file, "-");
4201       if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4202 	  || GET_CODE (XEXP (x, 1)) == PC
4203 	  || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4204 	output_addr_const (file, XEXP (x, 1));
4205       else
4206 	{
4207 	  fputs (targetm.asm_out.open_paren, file);
4208 	  output_addr_const (file, XEXP (x, 1));
4209 	  fputs (targetm.asm_out.close_paren, file);
4210 	}
4211       break;
4212 
4213     case ZERO_EXTEND:
4214     case SIGN_EXTEND:
4215     case SUBREG:
4216     case TRUNCATE:
4217       output_addr_const (file, XEXP (x, 0));
4218       break;
4219 
4220     default:
4221       if (targetm.asm_out.output_addr_const_extra (file, x))
4222 	break;
4223 
4224       output_operand_lossage ("invalid expression as operand");
4225     }
4226 }
4227 
4228 /* Output a quoted string.  */
4229 
4230 void
output_quoted_string(FILE * asm_file,const char * string)4231 output_quoted_string (FILE *asm_file, const char *string)
4232 {
4233 #ifdef OUTPUT_QUOTED_STRING
4234   OUTPUT_QUOTED_STRING (asm_file, string);
4235 #else
4236   char c;
4237 
4238   putc ('\"', asm_file);
4239   while ((c = *string++) != 0)
4240     {
4241       if (ISPRINT (c))
4242 	{
4243 	  if (c == '\"' || c == '\\')
4244 	    putc ('\\', asm_file);
4245 	  putc (c, asm_file);
4246 	}
4247       else
4248 	fprintf (asm_file, "\\%03o", (unsigned char) c);
4249     }
4250   putc ('\"', asm_file);
4251 #endif
4252 }
4253 
4254 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4255 
4256 void
fprint_whex(FILE * f,unsigned HOST_WIDE_INT value)4257 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4258 {
4259   char buf[2 + CHAR_BIT * sizeof (value) / 4];
4260   if (value == 0)
4261     putc ('0', f);
4262   else
4263     {
4264       char *p = buf + sizeof (buf);
4265       do
4266         *--p = "0123456789abcdef"[value % 16];
4267       while ((value /= 16) != 0);
4268       *--p = 'x';
4269       *--p = '0';
4270       fwrite (p, 1, buf + sizeof (buf) - p, f);
4271     }
4272 }
4273 
4274 /* Internal function that prints an unsigned long in decimal in reverse.
4275    The output string IS NOT null-terminated. */
4276 
4277 static int
sprint_ul_rev(char * s,unsigned long value)4278 sprint_ul_rev (char *s, unsigned long value)
4279 {
4280   int i = 0;
4281   do
4282     {
4283       s[i] = "0123456789"[value % 10];
4284       value /= 10;
4285       i++;
4286       /* alternate version, without modulo */
4287       /* oldval = value; */
4288       /* value /= 10; */
4289       /* s[i] = "0123456789" [oldval - 10*value]; */
4290       /* i++ */
4291     }
4292   while (value != 0);
4293   return i;
4294 }
4295 
4296 /* Write an unsigned long as decimal to a file, fast. */
4297 
4298 void
fprint_ul(FILE * f,unsigned long value)4299 fprint_ul (FILE *f, unsigned long value)
4300 {
4301   /* python says: len(str(2**64)) == 20 */
4302   char s[20];
4303   int i;
4304 
4305   i = sprint_ul_rev (s, value);
4306 
4307   /* It's probably too small to bother with string reversal and fputs. */
4308   do
4309     {
4310       i--;
4311       putc (s[i], f);
4312     }
4313   while (i != 0);
4314 }
4315 
4316 /* Write an unsigned long as decimal to a string, fast.
4317    s must be wide enough to not overflow, at least 21 chars.
4318    Returns the length of the string (without terminating '\0'). */
4319 
4320 int
sprint_ul(char * s,unsigned long value)4321 sprint_ul (char *s, unsigned long value)
4322 {
4323   int len = sprint_ul_rev (s, value);
4324   s[len] = '\0';
4325 
4326   std::reverse (s, s + len);
4327   return len;
4328 }
4329 
4330 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4331    %R prints the value of REGISTER_PREFIX.
4332    %L prints the value of LOCAL_LABEL_PREFIX.
4333    %U prints the value of USER_LABEL_PREFIX.
4334    %I prints the value of IMMEDIATE_PREFIX.
4335    %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4336    Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4337 
4338    We handle alternate assembler dialects here, just like output_asm_insn.  */
4339 
4340 void
asm_fprintf(FILE * file,const char * p,...)4341 asm_fprintf (FILE *file, const char *p, ...)
4342 {
4343   char buf[10];
4344   char *q, c;
4345 #ifdef ASSEMBLER_DIALECT
4346   int dialect = 0;
4347 #endif
4348   va_list argptr;
4349 
4350   va_start (argptr, p);
4351 
4352   buf[0] = '%';
4353 
4354   while ((c = *p++))
4355     switch (c)
4356       {
4357 #ifdef ASSEMBLER_DIALECT
4358       case '{':
4359       case '}':
4360       case '|':
4361 	p = do_assembler_dialects (p, &dialect);
4362 	break;
4363 #endif
4364 
4365       case '%':
4366 	c = *p++;
4367 	q = &buf[1];
4368 	while (strchr ("-+ #0", c))
4369 	  {
4370 	    *q++ = c;
4371 	    c = *p++;
4372 	  }
4373 	while (ISDIGIT (c) || c == '.')
4374 	  {
4375 	    *q++ = c;
4376 	    c = *p++;
4377 	  }
4378 	switch (c)
4379 	  {
4380 	  case '%':
4381 	    putc ('%', file);
4382 	    break;
4383 
4384 	  case 'd':  case 'i':  case 'u':
4385 	  case 'x':  case 'X':  case 'o':
4386 	  case 'c':
4387 	    *q++ = c;
4388 	    *q = 0;
4389 	    fprintf (file, buf, va_arg (argptr, int));
4390 	    break;
4391 
4392 	  case 'w':
4393 	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4394 	       'o' cases, but we do not check for those cases.  It
4395 	       means that the value is a HOST_WIDE_INT, which may be
4396 	       either `long' or `long long'.  */
4397 	    memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4398 	    q += strlen (HOST_WIDE_INT_PRINT);
4399 	    *q++ = *p++;
4400 	    *q = 0;
4401 	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4402 	    break;
4403 
4404 	  case 'l':
4405 	    *q++ = c;
4406 #ifdef HAVE_LONG_LONG
4407 	    if (*p == 'l')
4408 	      {
4409 		*q++ = *p++;
4410 		*q++ = *p++;
4411 		*q = 0;
4412 		fprintf (file, buf, va_arg (argptr, long long));
4413 	      }
4414 	    else
4415 #endif
4416 	      {
4417 		*q++ = *p++;
4418 		*q = 0;
4419 		fprintf (file, buf, va_arg (argptr, long));
4420 	      }
4421 
4422 	    break;
4423 
4424 	  case 's':
4425 	    *q++ = c;
4426 	    *q = 0;
4427 	    fprintf (file, buf, va_arg (argptr, char *));
4428 	    break;
4429 
4430 	  case 'O':
4431 #ifdef ASM_OUTPUT_OPCODE
4432 	    ASM_OUTPUT_OPCODE (asm_out_file, p);
4433 #endif
4434 	    break;
4435 
4436 	  case 'R':
4437 #ifdef REGISTER_PREFIX
4438 	    fprintf (file, "%s", REGISTER_PREFIX);
4439 #endif
4440 	    break;
4441 
4442 	  case 'I':
4443 #ifdef IMMEDIATE_PREFIX
4444 	    fprintf (file, "%s", IMMEDIATE_PREFIX);
4445 #endif
4446 	    break;
4447 
4448 	  case 'L':
4449 #ifdef LOCAL_LABEL_PREFIX
4450 	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4451 #endif
4452 	    break;
4453 
4454 	  case 'U':
4455 	    fputs (user_label_prefix, file);
4456 	    break;
4457 
4458 #ifdef ASM_FPRINTF_EXTENSIONS
4459 	    /* Uppercase letters are reserved for general use by asm_fprintf
4460 	       and so are not available to target specific code.  In order to
4461 	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4462 	       they are defined here.  As they get turned into real extensions
4463 	       to asm_fprintf they should be removed from this list.  */
4464 	  case 'A': case 'B': case 'C': case 'D': case 'E':
4465 	  case 'F': case 'G': case 'H': case 'J': case 'K':
4466 	  case 'M': case 'N': case 'P': case 'Q': case 'S':
4467 	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
4468 	    break;
4469 
4470 	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4471 #endif
4472 	  default:
4473 	    gcc_unreachable ();
4474 	  }
4475 	break;
4476 
4477       default:
4478 	putc (c, file);
4479       }
4480   va_end (argptr);
4481 }
4482 
4483 /* Return nonzero if this function has no function calls.  */
4484 
4485 int
leaf_function_p(void)4486 leaf_function_p (void)
4487 {
4488   rtx_insn *insn;
4489 
4490   /* Ensure we walk the entire function body.  */
4491   gcc_assert (!in_sequence_p ());
4492 
4493   /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4494      functions even if they call mcount.  */
4495   if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4496     return 0;
4497 
4498   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4499     {
4500       if (CALL_P (insn)
4501 	  && ! SIBLING_CALL_P (insn))
4502 	return 0;
4503       if (NONJUMP_INSN_P (insn)
4504 	  && GET_CODE (PATTERN (insn)) == SEQUENCE
4505 	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4506 	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4507 	return 0;
4508     }
4509 
4510   return 1;
4511 }
4512 
4513 /* Return 1 if branch is a forward branch.
4514    Uses insn_shuid array, so it works only in the final pass.  May be used by
4515    output templates to customary add branch prediction hints.
4516  */
4517 int
final_forward_branch_p(rtx_insn * insn)4518 final_forward_branch_p (rtx_insn *insn)
4519 {
4520   int insn_id, label_id;
4521 
4522   gcc_assert (uid_shuid);
4523   insn_id = INSN_SHUID (insn);
4524   label_id = INSN_SHUID (JUMP_LABEL (insn));
4525   /* We've hit some insns that does not have id information available.  */
4526   gcc_assert (insn_id && label_id);
4527   return insn_id < label_id;
4528 }
4529 
4530 /* On some machines, a function with no call insns
4531    can run faster if it doesn't create its own register window.
4532    When output, the leaf function should use only the "output"
4533    registers.  Ordinarily, the function would be compiled to use
4534    the "input" registers to find its arguments; it is a candidate
4535    for leaf treatment if it uses only the "input" registers.
4536    Leaf function treatment means renumbering so the function
4537    uses the "output" registers instead.  */
4538 
4539 #ifdef LEAF_REGISTERS
4540 
4541 /* Return 1 if this function uses only the registers that can be
4542    safely renumbered.  */
4543 
4544 int
only_leaf_regs_used(void)4545 only_leaf_regs_used (void)
4546 {
4547   int i;
4548   const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4549 
4550   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4551     if ((df_regs_ever_live_p (i) || global_regs[i])
4552 	&& ! permitted_reg_in_leaf_functions[i])
4553       return 0;
4554 
4555   if (crtl->uses_pic_offset_table
4556       && pic_offset_table_rtx != 0
4557       && REG_P (pic_offset_table_rtx)
4558       && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4559     return 0;
4560 
4561   return 1;
4562 }
4563 
4564 /* Scan all instructions and renumber all registers into those
4565    available in leaf functions.  */
4566 
4567 static void
leaf_renumber_regs(rtx_insn * first)4568 leaf_renumber_regs (rtx_insn *first)
4569 {
4570   rtx_insn *insn;
4571 
4572   /* Renumber only the actual patterns.
4573      The reg-notes can contain frame pointer refs,
4574      and renumbering them could crash, and should not be needed.  */
4575   for (insn = first; insn; insn = NEXT_INSN (insn))
4576     if (INSN_P (insn))
4577       leaf_renumber_regs_insn (PATTERN (insn));
4578 }
4579 
4580 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4581    available in leaf functions.  */
4582 
4583 void
leaf_renumber_regs_insn(rtx in_rtx)4584 leaf_renumber_regs_insn (rtx in_rtx)
4585 {
4586   int i, j;
4587   const char *format_ptr;
4588 
4589   if (in_rtx == 0)
4590     return;
4591 
4592   /* Renumber all input-registers into output-registers.
4593      renumbered_regs would be 1 for an output-register;
4594      they  */
4595 
4596   if (REG_P (in_rtx))
4597     {
4598       int newreg;
4599 
4600       /* Don't renumber the same reg twice.  */
4601       if (in_rtx->used)
4602 	return;
4603 
4604       newreg = REGNO (in_rtx);
4605       /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
4606 	 to reach here as part of a REG_NOTE.  */
4607       if (newreg >= FIRST_PSEUDO_REGISTER)
4608 	{
4609 	  in_rtx->used = 1;
4610 	  return;
4611 	}
4612       newreg = LEAF_REG_REMAP (newreg);
4613       gcc_assert (newreg >= 0);
4614       df_set_regs_ever_live (REGNO (in_rtx), false);
4615       df_set_regs_ever_live (newreg, true);
4616       SET_REGNO (in_rtx, newreg);
4617       in_rtx->used = 1;
4618       return;
4619     }
4620 
4621   if (INSN_P (in_rtx))
4622     {
4623       /* Inside a SEQUENCE, we find insns.
4624 	 Renumber just the patterns of these insns,
4625 	 just as we do for the top-level insns.  */
4626       leaf_renumber_regs_insn (PATTERN (in_rtx));
4627       return;
4628     }
4629 
4630   format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4631 
4632   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4633     switch (*format_ptr++)
4634       {
4635       case 'e':
4636 	leaf_renumber_regs_insn (XEXP (in_rtx, i));
4637 	break;
4638 
4639       case 'E':
4640 	if (XVEC (in_rtx, i) != NULL)
4641 	  for (j = 0; j < XVECLEN (in_rtx, i); j++)
4642 	    leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4643 	break;
4644 
4645       case 'S':
4646       case 's':
4647       case '0':
4648       case 'i':
4649       case 'w':
4650       case 'p':
4651       case 'n':
4652       case 'u':
4653 	break;
4654 
4655       default:
4656 	gcc_unreachable ();
4657       }
4658 }
4659 #endif
4660 
4661 /* Turn the RTL into assembly.  */
4662 static unsigned int
rest_of_handle_final(void)4663 rest_of_handle_final (void)
4664 {
4665   const char *fnname = get_fnname_from_decl (current_function_decl);
4666 
4667   /* Turn debug markers into notes if the var-tracking pass has not
4668      been invoked.  */
4669   if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4670     delete_vta_debug_insns (false);
4671 
4672   assemble_start_function (current_function_decl, fnname);
4673   rtx_insn *first = get_insns ();
4674   int seen = 0;
4675   final_start_function_1 (&first, asm_out_file, &seen, optimize);
4676   final_1 (first, asm_out_file, seen, optimize);
4677   if (flag_ipa_ra
4678       && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl))
4679       /* Functions with naked attributes are supported only with basic asm
4680 	 statements in the body, thus for supported use cases the information
4681 	 on clobbered registers is not available.  */
4682       && !lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)))
4683     collect_fn_hard_reg_usage ();
4684   final_end_function ();
4685 
4686   /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4687      directive that closes the procedure descriptor.  Similarly, for x64 SEH.
4688      Otherwise it's not strictly necessary, but it doesn't hurt either.  */
4689   output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4690 
4691   assemble_end_function (current_function_decl, fnname);
4692 
4693   /* Free up reg info memory.  */
4694   free_reg_info ();
4695 
4696   if (! quiet_flag)
4697     fflush (asm_out_file);
4698 
4699   /* Write DBX symbols if requested.  */
4700 
4701   /* Note that for those inline functions where we don't initially
4702      know for certain that we will be generating an out-of-line copy,
4703      the first invocation of this routine (rest_of_compilation) will
4704      skip over this code by doing a `goto exit_rest_of_compilation;'.
4705      Later on, wrapup_global_declarations will (indirectly) call
4706      rest_of_compilation again for those inline functions that need
4707      to have out-of-line copies generated.  During that call, we
4708      *will* be routed past here.  */
4709 
4710   timevar_push (TV_SYMOUT);
4711   if (!DECL_IGNORED_P (current_function_decl))
4712     debug_hooks->function_decl (current_function_decl);
4713   timevar_pop (TV_SYMOUT);
4714 
4715   /* Release the blocks that are linked to DECL_INITIAL() to free the memory.  */
4716   DECL_INITIAL (current_function_decl) = error_mark_node;
4717 
4718   if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4719       && targetm.have_ctors_dtors)
4720     targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4721 				 decl_init_priority_lookup
4722 				   (current_function_decl));
4723   if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4724       && targetm.have_ctors_dtors)
4725     targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4726 				decl_fini_priority_lookup
4727 				  (current_function_decl));
4728   return 0;
4729 }
4730 
4731 namespace {
4732 
4733 const pass_data pass_data_final =
4734 {
4735   RTL_PASS, /* type */
4736   "final", /* name */
4737   OPTGROUP_NONE, /* optinfo_flags */
4738   TV_FINAL, /* tv_id */
4739   0, /* properties_required */
4740   0, /* properties_provided */
4741   0, /* properties_destroyed */
4742   0, /* todo_flags_start */
4743   0, /* todo_flags_finish */
4744 };
4745 
4746 class pass_final : public rtl_opt_pass
4747 {
4748 public:
pass_final(gcc::context * ctxt)4749   pass_final (gcc::context *ctxt)
4750     : rtl_opt_pass (pass_data_final, ctxt)
4751   {}
4752 
4753   /* opt_pass methods: */
execute(function *)4754   virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4755 
4756 }; // class pass_final
4757 
4758 } // anon namespace
4759 
4760 rtl_opt_pass *
make_pass_final(gcc::context * ctxt)4761 make_pass_final (gcc::context *ctxt)
4762 {
4763   return new pass_final (ctxt);
4764 }
4765 
4766 
4767 static unsigned int
rest_of_handle_shorten_branches(void)4768 rest_of_handle_shorten_branches (void)
4769 {
4770   /* Shorten branches.  */
4771   shorten_branches (get_insns ());
4772   return 0;
4773 }
4774 
4775 namespace {
4776 
4777 const pass_data pass_data_shorten_branches =
4778 {
4779   RTL_PASS, /* type */
4780   "shorten", /* name */
4781   OPTGROUP_NONE, /* optinfo_flags */
4782   TV_SHORTEN_BRANCH, /* tv_id */
4783   0, /* properties_required */
4784   0, /* properties_provided */
4785   0, /* properties_destroyed */
4786   0, /* todo_flags_start */
4787   0, /* todo_flags_finish */
4788 };
4789 
4790 class pass_shorten_branches : public rtl_opt_pass
4791 {
4792 public:
pass_shorten_branches(gcc::context * ctxt)4793   pass_shorten_branches (gcc::context *ctxt)
4794     : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4795   {}
4796 
4797   /* opt_pass methods: */
execute(function *)4798   virtual unsigned int execute (function *)
4799     {
4800       return rest_of_handle_shorten_branches ();
4801     }
4802 
4803 }; // class pass_shorten_branches
4804 
4805 } // anon namespace
4806 
4807 rtl_opt_pass *
make_pass_shorten_branches(gcc::context * ctxt)4808 make_pass_shorten_branches (gcc::context *ctxt)
4809 {
4810   return new pass_shorten_branches (ctxt);
4811 }
4812 
4813 
4814 static unsigned int
rest_of_clean_state(void)4815 rest_of_clean_state (void)
4816 {
4817   rtx_insn *insn, *next;
4818   FILE *final_output = NULL;
4819   int save_unnumbered = flag_dump_unnumbered;
4820   int save_noaddr = flag_dump_noaddr;
4821 
4822   if (flag_dump_final_insns)
4823     {
4824       final_output = fopen (flag_dump_final_insns, "a");
4825       if (!final_output)
4826 	{
4827 	  error ("could not open final insn dump file %qs: %m",
4828 		 flag_dump_final_insns);
4829 	  flag_dump_final_insns = NULL;
4830 	}
4831       else
4832 	{
4833 	  flag_dump_noaddr = flag_dump_unnumbered = 1;
4834 	  if (flag_compare_debug_opt || flag_compare_debug)
4835 	    dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4836 	  dump_function_header (final_output, current_function_decl,
4837 				dump_flags);
4838 	  final_insns_dump_p = true;
4839 
4840 	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4841 	    if (LABEL_P (insn))
4842 	      INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4843 	    else
4844 	      {
4845 		if (NOTE_P (insn))
4846 		  set_block_for_insn (insn, NULL);
4847 		INSN_UID (insn) = 0;
4848 	      }
4849 	}
4850     }
4851 
4852   /* It is very important to decompose the RTL instruction chain here:
4853      debug information keeps pointing into CODE_LABEL insns inside the function
4854      body.  If these remain pointing to the other insns, we end up preserving
4855      whole RTL chain and attached detailed debug info in memory.  */
4856   for (insn = get_insns (); insn; insn = next)
4857     {
4858       next = NEXT_INSN (insn);
4859       SET_NEXT_INSN (insn) = NULL;
4860       SET_PREV_INSN (insn) = NULL;
4861 
4862       rtx_insn *call_insn = insn;
4863       if (NONJUMP_INSN_P (call_insn)
4864 	  && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4865 	{
4866 	  rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4867 	  call_insn = seq->insn (0);
4868 	}
4869       if (CALL_P (call_insn))
4870 	{
4871 	  rtx note
4872 	    = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4873 	  if (note)
4874 	    remove_note (call_insn, note);
4875 	}
4876 
4877       if (final_output
4878 	  && (!NOTE_P (insn)
4879 	      || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4880 		  && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4881 		  && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4882 		  && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4883 		  && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4884 		  && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4885 	print_rtl_single (final_output, insn);
4886     }
4887 
4888   if (final_output)
4889     {
4890       flag_dump_noaddr = save_noaddr;
4891       flag_dump_unnumbered = save_unnumbered;
4892       final_insns_dump_p = false;
4893 
4894       if (fclose (final_output))
4895 	{
4896 	  error ("could not close final insn dump file %qs: %m",
4897 		 flag_dump_final_insns);
4898 	  flag_dump_final_insns = NULL;
4899 	}
4900     }
4901 
4902   flag_rerun_cse_after_global_opts = 0;
4903   reload_completed = 0;
4904   epilogue_completed = 0;
4905 #ifdef STACK_REGS
4906   regstack_completed = 0;
4907 #endif
4908 
4909   /* Clear out the insn_length contents now that they are no
4910      longer valid.  */
4911   init_insn_lengths ();
4912 
4913   /* Show no temporary slots allocated.  */
4914   init_temp_slots ();
4915 
4916   free_bb_for_insn ();
4917 
4918   if (cfun->gimple_df)
4919     delete_tree_ssa (cfun);
4920 
4921   /* We can reduce stack alignment on call site only when we are sure that
4922      the function body just produced will be actually used in the final
4923      executable.  */
4924   if (flag_ipa_stack_alignment
4925       && decl_binds_to_current_def_p (current_function_decl))
4926     {
4927       unsigned int pref = crtl->preferred_stack_boundary;
4928       if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4929         pref = crtl->stack_alignment_needed;
4930       cgraph_node::rtl_info (current_function_decl)
4931 	->preferred_incoming_stack_boundary = pref;
4932     }
4933 
4934   /* Make sure volatile mem refs aren't considered valid operands for
4935      arithmetic insns.  We must call this here if this is a nested inline
4936      function, since the above code leaves us in the init_recog state,
4937      and the function context push/pop code does not save/restore volatile_ok.
4938 
4939      ??? Maybe it isn't necessary for expand_start_function to call this
4940      anymore if we do it here?  */
4941 
4942   init_recog_no_volatile ();
4943 
4944   /* We're done with this function.  Free up memory if we can.  */
4945   free_after_parsing (cfun);
4946   free_after_compilation (cfun);
4947   return 0;
4948 }
4949 
4950 namespace {
4951 
4952 const pass_data pass_data_clean_state =
4953 {
4954   RTL_PASS, /* type */
4955   "*clean_state", /* name */
4956   OPTGROUP_NONE, /* optinfo_flags */
4957   TV_FINAL, /* tv_id */
4958   0, /* properties_required */
4959   0, /* properties_provided */
4960   PROP_rtl, /* properties_destroyed */
4961   0, /* todo_flags_start */
4962   0, /* todo_flags_finish */
4963 };
4964 
4965 class pass_clean_state : public rtl_opt_pass
4966 {
4967 public:
pass_clean_state(gcc::context * ctxt)4968   pass_clean_state (gcc::context *ctxt)
4969     : rtl_opt_pass (pass_data_clean_state, ctxt)
4970   {}
4971 
4972   /* opt_pass methods: */
execute(function *)4973   virtual unsigned int execute (function *)
4974     {
4975       return rest_of_clean_state ();
4976     }
4977 
4978 }; // class pass_clean_state
4979 
4980 } // anon namespace
4981 
4982 rtl_opt_pass *
make_pass_clean_state(gcc::context * ctxt)4983 make_pass_clean_state (gcc::context *ctxt)
4984 {
4985   return new pass_clean_state (ctxt);
4986 }
4987 
4988 /* Return true if INSN is a call to the current function.  */
4989 
4990 static bool
self_recursive_call_p(rtx_insn * insn)4991 self_recursive_call_p (rtx_insn *insn)
4992 {
4993   tree fndecl = get_call_fndecl (insn);
4994   return (fndecl == current_function_decl
4995 	  && decl_binds_to_current_def_p (fndecl));
4996 }
4997 
4998 /* Collect hard register usage for the current function.  */
4999 
5000 static void
collect_fn_hard_reg_usage(void)5001 collect_fn_hard_reg_usage (void)
5002 {
5003   rtx_insn *insn;
5004 #ifdef STACK_REGS
5005   int i;
5006 #endif
5007   struct cgraph_rtl_info *node;
5008   HARD_REG_SET function_used_regs;
5009 
5010   /* ??? To be removed when all the ports have been fixed.  */
5011   if (!targetm.call_fusage_contains_non_callee_clobbers)
5012     return;
5013 
5014   /* Be conservative - mark fixed and global registers as used.  */
5015   function_used_regs = fixed_reg_set;
5016 
5017 #ifdef STACK_REGS
5018   /* Handle STACK_REGS conservatively, since the df-framework does not
5019      provide accurate information for them.  */
5020 
5021   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5022     SET_HARD_REG_BIT (function_used_regs, i);
5023 #endif
5024 
5025   for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5026     {
5027       HARD_REG_SET insn_used_regs;
5028 
5029       if (!NONDEBUG_INSN_P (insn))
5030 	continue;
5031 
5032       if (CALL_P (insn)
5033 	  && !self_recursive_call_p (insn))
5034 	function_used_regs
5035 	  |= insn_callee_abi (insn).full_and_partial_reg_clobbers ();
5036 
5037       find_all_hard_reg_sets (insn, &insn_used_regs, false);
5038       function_used_regs |= insn_used_regs;
5039 
5040       if (hard_reg_set_subset_p (crtl->abi->full_and_partial_reg_clobbers (),
5041 				 function_used_regs))
5042 	return;
5043     }
5044 
5045   /* Mask out fully-saved registers, so that they don't affect equality
5046      comparisons between function_abis.  */
5047   function_used_regs &= crtl->abi->full_and_partial_reg_clobbers ();
5048 
5049   node = cgraph_node::rtl_info (current_function_decl);
5050   gcc_assert (node != NULL);
5051 
5052   node->function_used_regs = function_used_regs;
5053 }
5054