1 /* LRA (local register allocator) driver and LRA utilities.
2    Copyright (C) 2010-2021 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.	If not see
19 <http://www.gnu.org/licenses/>.	 */
20 
21 
22 /* The Local Register Allocator (LRA) is a replacement of former
23    reload pass.	 It is focused to simplify code solving the reload
24    pass tasks, to make the code maintenance easier, and to implement new
25    perspective optimizations.
26 
27    The major LRA design solutions are:
28      o division small manageable, separated sub-tasks
29      o reflection of all transformations and decisions in RTL as more
30        as possible
31      o insn constraints as a primary source of the info (minimizing
32        number of target-depended macros/hooks)
33 
34    In brief LRA works by iterative insn process with the final goal is
35    to satisfy all insn and address constraints:
36      o New reload insns (in brief reloads) and reload pseudos might be
37        generated;
38      o Some pseudos might be spilled to assign hard registers to
39        new reload pseudos;
40      o Recalculating spilled pseudo values (rematerialization);
41      o Changing spilled pseudos to stack memory or their equivalences;
42      o Allocation stack memory changes the address displacement and
43        new iteration is needed.
44 
45    Here is block diagram of LRA passes:
46 
47                                 ------------------------
48            ---------------     | Undo inheritance for   |     ---------------
49           | Memory-memory |    | spilled pseudos,       |    | New (and old) |
50           | move coalesce |<---| splits for pseudos got |<-- |   pseudos     |
51            ---------------     | the same hard regs,    |    |  assignment   |
52   Start           |            | and optional reloads   |     ---------------
53     |             |             ------------------------            ^
54     V             |              ----------------                   |
55  -----------      V             | Update virtual |                  |
56 |  Remove   |----> ------------>|    register    |                  |
57 | scratches |     ^             |  displacements |                  |
58  -----------      |              ----------------                   |
59                   |                      |                          |
60                   |                      V         New              |
61                   |                 ------------  pseudos   -------------------
62                   |                |Constraints:| or insns | Inheritance/split |
63                   |                |    RTL     |--------->|  transformations  |
64                   |                | transfor-  |          |    in EBB scope   |
65                   | substi-        |  mations   |           -------------------
66                   | tutions         ------------
67                   |                     | No change
68           ----------------              V
69          | Spilled pseudo |      -------------------
70          |    to memory   |<----| Rematerialization |
71          |  substitution  |      -------------------
72           ----------------
73                   | No susbtitions
74                   V
75       -------------------------
76      | Hard regs substitution, |
77      |  devirtalization, and   |------> Finish
78      | restoring scratches got |
79      |         memory          |
80       -------------------------
81 
82    To speed up the process:
83      o We process only insns affected by changes on previous
84        iterations;
85      o We don't use DFA-infrastructure because it results in much slower
86        compiler speed than a special IR described below does;
87      o We use a special insn representation for quick access to insn
88        info which is always *synchronized* with the current RTL;
89        o Insn IR is minimized by memory.  It is divided on three parts:
90 	 o one specific for each insn in RTL (only operand locations);
91 	 o one common for all insns in RTL with the same insn code
92 	   (different operand attributes from machine descriptions);
93 	 o one oriented for maintenance of live info (list of pseudos).
94        o Pseudo data:
95 	 o all insns where the pseudo is referenced;
96 	 o live info (conflicting hard regs, live ranges, # of
97 	   references etc);
98 	 o data used for assigning (preferred hard regs, costs etc).
99 
100    This file contains LRA driver, LRA utility functions and data, and
101    code for dealing with scratches.  */
102 
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "backend.h"
107 #include "target.h"
108 #include "rtl.h"
109 #include "tree.h"
110 #include "predict.h"
111 #include "df.h"
112 #include "memmodel.h"
113 #include "tm_p.h"
114 #include "optabs.h"
115 #include "regs.h"
116 #include "ira.h"
117 #include "recog.h"
118 #include "expr.h"
119 #include "cfgrtl.h"
120 #include "cfgbuild.h"
121 #include "lra.h"
122 #include "lra-int.h"
123 #include "print-rtl.h"
124 #include "function-abi.h"
125 
126 /* Dump bitmap SET with TITLE and BB INDEX.  */
127 void
lra_dump_bitmap_with_title(const char * title,bitmap set,int index)128 lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
129 {
130   unsigned int i;
131   int count;
132   bitmap_iterator bi;
133   static const int max_nums_on_line = 10;
134 
135   if (bitmap_empty_p (set))
136     return;
137   fprintf (lra_dump_file, "  %s %d:", title, index);
138   fprintf (lra_dump_file, "\n");
139   count = max_nums_on_line + 1;
140   EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
141     {
142       if (count > max_nums_on_line)
143 	{
144 	  fprintf (lra_dump_file, "\n    ");
145 	  count = 0;
146 	}
147       fprintf (lra_dump_file, " %4u", i);
148       count++;
149     }
150   fprintf (lra_dump_file, "\n");
151 }
152 
153 /* Hard registers currently not available for allocation.  It can
154    changed after some hard  registers become not eliminable.  */
155 HARD_REG_SET lra_no_alloc_regs;
156 
157 static int get_new_reg_value (void);
158 static void expand_reg_info (void);
159 static void invalidate_insn_recog_data (int);
160 static int get_insn_freq (rtx_insn *);
161 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
162 					     rtx_insn *, int);
163 /* Expand all regno related info needed for LRA.  */
164 static void
expand_reg_data(int old)165 expand_reg_data (int old)
166 {
167   resize_reg_info ();
168   expand_reg_info ();
169   ira_expand_reg_equiv ();
170   for (int i = (int) max_reg_num () - 1; i >= old; i--)
171     lra_change_class (i, ALL_REGS, "      Set", true);
172 }
173 
174 /* Create and return a new reg of ORIGINAL mode.  If ORIGINAL is NULL
175    or of VOIDmode, use MD_MODE for the new reg.  Initialize its
176    register class to RCLASS.  Print message about assigning class
177    RCLASS containing new register name TITLE unless it is NULL.  Use
178    attributes of ORIGINAL if it is a register.  The created register
179    will have unique held value.  */
180 rtx
lra_create_new_reg_with_unique_value(machine_mode md_mode,rtx original,enum reg_class rclass,const char * title)181 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
182 				      enum reg_class rclass, const char *title)
183 {
184   machine_mode mode;
185   rtx new_reg;
186 
187   if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
188     mode = md_mode;
189   lra_assert (mode != VOIDmode);
190   new_reg = gen_reg_rtx (mode);
191   if (original == NULL_RTX || ! REG_P (original))
192     {
193       if (lra_dump_file != NULL)
194 	fprintf (lra_dump_file, "      Creating newreg=%i", REGNO (new_reg));
195     }
196   else
197     {
198       if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
199 	ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
200       REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
201       REG_POINTER (new_reg) = REG_POINTER (original);
202       REG_ATTRS (new_reg) = REG_ATTRS (original);
203       if (lra_dump_file != NULL)
204 	fprintf (lra_dump_file, "      Creating newreg=%i from oldreg=%i",
205 		 REGNO (new_reg), REGNO (original));
206     }
207   if (lra_dump_file != NULL)
208     {
209       if (title != NULL)
210 	fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
211 		 reg_class_names[rclass], *title == '\0' ? "" : " ",
212 		 title, REGNO (new_reg));
213       fprintf (lra_dump_file, "\n");
214     }
215   expand_reg_data (max_reg_num ());
216   setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
217   return new_reg;
218 }
219 
220 /* Analogous to the previous function but also inherits value of
221    ORIGINAL.  */
222 rtx
lra_create_new_reg(machine_mode md_mode,rtx original,enum reg_class rclass,const char * title)223 lra_create_new_reg (machine_mode md_mode, rtx original,
224 		    enum reg_class rclass, const char *title)
225 {
226   rtx new_reg;
227 
228   new_reg
229     = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
230   if (original != NULL_RTX && REG_P (original))
231     lra_assign_reg_val (REGNO (original), REGNO (new_reg));
232   return new_reg;
233 }
234 
235 /* Set up for REGNO unique hold value.	*/
236 void
lra_set_regno_unique_value(int regno)237 lra_set_regno_unique_value (int regno)
238 {
239   lra_reg_info[regno].val = get_new_reg_value ();
240 }
241 
242 /* Invalidate INSN related info used by LRA.  The info should never be
243    used after that.  */
244 void
lra_invalidate_insn_data(rtx_insn * insn)245 lra_invalidate_insn_data (rtx_insn *insn)
246 {
247   lra_invalidate_insn_regno_info (insn);
248   invalidate_insn_recog_data (INSN_UID (insn));
249 }
250 
251 /* Mark INSN deleted and invalidate the insn related info used by
252    LRA.	 */
253 void
lra_set_insn_deleted(rtx_insn * insn)254 lra_set_insn_deleted (rtx_insn *insn)
255 {
256   lra_invalidate_insn_data (insn);
257   SET_INSN_DELETED (insn);
258 }
259 
260 /* Delete an unneeded INSN and any previous insns who sole purpose is
261    loading data that is dead in INSN.  */
262 void
lra_delete_dead_insn(rtx_insn * insn)263 lra_delete_dead_insn (rtx_insn *insn)
264 {
265   rtx_insn *prev = prev_real_insn (insn);
266   rtx prev_dest;
267 
268   /* If the previous insn sets a register that dies in our insn,
269      delete it too.  */
270   if (prev && GET_CODE (PATTERN (prev)) == SET
271       && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
272       && reg_mentioned_p (prev_dest, PATTERN (insn))
273       && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
274       && ! side_effects_p (SET_SRC (PATTERN (prev))))
275     lra_delete_dead_insn (prev);
276 
277   lra_set_insn_deleted (insn);
278 }
279 
280 /* Emit insn x = y + z.  Return NULL if we failed to do it.
281    Otherwise, return the insn.  We don't use gen_add3_insn as it might
282    clobber CC.  */
283 static rtx_insn *
emit_add3_insn(rtx x,rtx y,rtx z)284 emit_add3_insn (rtx x, rtx y, rtx z)
285 {
286   rtx_insn *last;
287 
288   last = get_last_insn ();
289 
290   if (have_addptr3_insn (x, y, z))
291     {
292       rtx_insn *insn = gen_addptr3_insn (x, y, z);
293 
294       /* If the target provides an "addptr" pattern it hopefully does
295 	 for a reason.  So falling back to the normal add would be
296 	 a bug.  */
297       lra_assert (insn != NULL_RTX);
298       emit_insn (insn);
299       return insn;
300     }
301 
302   rtx_insn *insn = emit_insn (gen_rtx_SET (x, gen_rtx_PLUS (GET_MODE (y),
303 							    y, z)));
304   if (recog_memoized (insn) < 0)
305     {
306       delete_insns_since (last);
307       insn = NULL;
308     }
309   return insn;
310 }
311 
312 /* Emit insn x = x + y.  Return the insn.  We use gen_add2_insn as the
313    last resort.  */
314 static rtx_insn *
emit_add2_insn(rtx x,rtx y)315 emit_add2_insn (rtx x, rtx y)
316 {
317   rtx_insn *insn = emit_add3_insn (x, x, y);
318   if (insn == NULL_RTX)
319     {
320       insn = gen_add2_insn (x, y);
321       if (insn != NULL_RTX)
322 	emit_insn (insn);
323     }
324   return insn;
325 }
326 
327 /* Target checks operands through operand predicates to recognize an
328    insn.  We should have a special precaution to generate add insns
329    which are frequent results of elimination.
330 
331    Emit insns for x = y + z.  X can be used to store intermediate
332    values and should be not in Y and Z when we use X to store an
333    intermediate value.  Y + Z should form [base] [+ index[ * scale]] [
334    + disp] where base and index are registers, disp and scale are
335    constants.  Y should contain base if it is present, Z should
336    contain disp if any.  index[*scale] can be part of Y or Z.  */
337 void
lra_emit_add(rtx x,rtx y,rtx z)338 lra_emit_add (rtx x, rtx y, rtx z)
339 {
340   int old;
341   rtx_insn *last;
342   rtx a1, a2, base, index, disp, scale, index_scale;
343   bool ok_p;
344 
345   rtx_insn *add3_insn = emit_add3_insn (x, y, z);
346   old = max_reg_num ();
347   if (add3_insn != NULL)
348     ;
349   else
350     {
351       disp = a2 = NULL_RTX;
352       if (GET_CODE (y) == PLUS)
353 	{
354 	  a1 = XEXP (y, 0);
355 	  a2 = XEXP (y, 1);
356 	  disp = z;
357 	}
358       else
359 	{
360 	  a1 = y;
361 	  if (CONSTANT_P (z))
362 	    disp = z;
363 	  else
364 	    a2 = z;
365 	}
366       index_scale = scale = NULL_RTX;
367       if (GET_CODE (a1) == MULT)
368 	{
369 	  index_scale = a1;
370 	  index = XEXP (a1, 0);
371 	  scale = XEXP (a1, 1);
372 	  base = a2;
373 	}
374       else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
375 	{
376 	  index_scale = a2;
377 	  index = XEXP (a2, 0);
378 	  scale = XEXP (a2, 1);
379 	  base = a1;
380 	}
381       else
382 	{
383 	  base = a1;
384 	  index = a2;
385 	}
386       if ((base != NULL_RTX && ! (REG_P (base) || GET_CODE (base) == SUBREG))
387 	  || (index != NULL_RTX
388 	      && ! (REG_P (index) || GET_CODE (index) == SUBREG))
389 	  || (disp != NULL_RTX && ! CONSTANT_P (disp))
390 	  || (scale != NULL_RTX && ! CONSTANT_P (scale)))
391 	{
392 	  /* Probably we have no 3 op add.  Last chance is to use 2-op
393 	     add insn.  To succeed, don't move Z to X as an address
394 	     segment always comes in Y.  Otherwise, we might fail when
395 	     adding the address segment to register.  */
396 	  lra_assert (x != y && x != z);
397 	  emit_move_insn (x, y);
398 	  rtx_insn *insn = emit_add2_insn (x, z);
399 	  lra_assert (insn != NULL_RTX);
400 	}
401       else
402 	{
403 	  if (index_scale == NULL_RTX)
404 	    index_scale = index;
405 	  if (disp == NULL_RTX)
406 	    {
407 	      /* Generate x = index_scale; x = x + base.  */
408 	      lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
409 	      emit_move_insn (x, index_scale);
410 	      rtx_insn *insn = emit_add2_insn (x, base);
411 	      lra_assert (insn != NULL_RTX);
412 	    }
413 	  else if (scale == NULL_RTX)
414 	    {
415 	      /* Try x = base + disp.  */
416 	      lra_assert (base != NULL_RTX);
417 	      last = get_last_insn ();
418 	      rtx_insn *move_insn =
419 		emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
420 	      if (recog_memoized (move_insn) < 0)
421 		{
422 		  delete_insns_since (last);
423 		  /* Generate x = disp; x = x + base.  */
424 		  emit_move_insn (x, disp);
425 		  rtx_insn *add2_insn = emit_add2_insn (x, base);
426 		  lra_assert (add2_insn != NULL_RTX);
427 		}
428 	      /* Generate x = x + index.  */
429 	      if (index != NULL_RTX)
430 		{
431 		  rtx_insn *insn = emit_add2_insn (x, index);
432 		  lra_assert (insn != NULL_RTX);
433 		}
434 	    }
435 	  else
436 	    {
437 	      /* Try x = index_scale; x = x + disp; x = x + base.  */
438 	      last = get_last_insn ();
439 	      rtx_insn *move_insn = emit_move_insn (x, index_scale);
440 	      ok_p = false;
441 	      if (recog_memoized (move_insn) >= 0)
442 		{
443 		  rtx_insn *insn = emit_add2_insn (x, disp);
444 		  if (insn != NULL_RTX)
445 		    {
446 		      if (base == NULL_RTX)
447 			ok_p = true;
448 		      else
449 			{
450 			  insn = emit_add2_insn (x, base);
451 			  if (insn != NULL_RTX)
452 			    ok_p = true;
453 			}
454 		    }
455 		}
456 	      if (! ok_p)
457 		{
458 		  rtx_insn *insn;
459 
460 		  delete_insns_since (last);
461 		  /* Generate x = disp; x = x + base; x = x + index_scale.  */
462 		  emit_move_insn (x, disp);
463 		  if (base != NULL_RTX)
464 		    {
465 		      insn = emit_add2_insn (x, base);
466 		      lra_assert (insn != NULL_RTX);
467 		    }
468 		  insn = emit_add2_insn (x, index_scale);
469 		  lra_assert (insn != NULL_RTX);
470 		}
471 	    }
472 	}
473     }
474   /* Functions emit_... can create pseudos -- so expand the pseudo
475      data.  */
476   if (old != max_reg_num ())
477     expand_reg_data (old);
478 }
479 
480 /* The number of emitted reload insns so far.  */
481 int lra_curr_reload_num;
482 
483 static void remove_insn_scratches (rtx_insn *insn);
484 
485 /* Emit x := y, processing special case when y = u + v or y = u + v *
486    scale + w through emit_add (Y can be an address which is base +
487    index reg * scale + displacement in general case).  X may be used
488    as intermediate result therefore it should be not in Y.  */
489 void
lra_emit_move(rtx x,rtx y)490 lra_emit_move (rtx x, rtx y)
491 {
492   int old;
493   rtx_insn *insn;
494 
495   if (GET_CODE (y) != PLUS)
496     {
497       if (rtx_equal_p (x, y))
498 	return;
499       old = max_reg_num ();
500 
501       insn = (GET_CODE (x) != STRICT_LOW_PART
502 	      ? emit_move_insn (x, y) : emit_insn (gen_rtx_SET (x, y)));
503       /* The move pattern may require scratch registers, so convert them
504 	 into real registers now.  */
505       if (insn != NULL_RTX)
506 	remove_insn_scratches (insn);
507       if (REG_P (x))
508 	lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
509       /* Function emit_move can create pseudos -- so expand the pseudo
510 	 data.	*/
511       if (old != max_reg_num ())
512 	expand_reg_data (old);
513       return;
514     }
515   lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
516 }
517 
518 /* Update insn operands which are duplication of operands whose
519    numbers are in array of NOPS (with end marker -1).  The insn is
520    represented by its LRA internal representation ID.  */
521 void
lra_update_dups(lra_insn_recog_data_t id,signed char * nops)522 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
523 {
524   int i, j, nop;
525   struct lra_static_insn_data *static_id = id->insn_static_data;
526 
527   for (i = 0; i < static_id->n_dups; i++)
528     for (j = 0; (nop = nops[j]) >= 0; j++)
529       if (static_id->dup_num[i] == nop)
530 	*id->dup_loc[i] = *id->operand_loc[nop];
531 }
532 
533 
534 
535 /* This page contains code dealing with info about registers in the
536    insns.  */
537 
538 /* Pools for insn reg info.  */
539 object_allocator<lra_insn_reg> lra_insn_reg_pool ("insn regs");
540 
541 /* Create LRA insn related info about a reference to REGNO in INSN
542    with TYPE (in/out/inout), biggest reference mode MODE, flag that it
543    is reference through subreg (SUBREG_P), and reference to the next
544    insn reg info (NEXT).  If REGNO can be early clobbered,
545    alternatives in which it can be early clobbered are given by
546    EARLY_CLOBBER_ALTS.  */
547 static struct lra_insn_reg *
new_insn_reg(rtx_insn * insn,int regno,enum op_type type,machine_mode mode,bool subreg_p,alternative_mask early_clobber_alts,struct lra_insn_reg * next)548 new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
549 	      machine_mode mode, bool subreg_p,
550 	      alternative_mask early_clobber_alts,
551 	      struct lra_insn_reg *next)
552 {
553   lra_insn_reg *ir = lra_insn_reg_pool.allocate ();
554   ir->type = type;
555   ir->biggest_mode = mode;
556   if (NONDEBUG_INSN_P (insn)
557       && partial_subreg_p (lra_reg_info[regno].biggest_mode, mode))
558     lra_reg_info[regno].biggest_mode = mode;
559   ir->subreg_p = subreg_p;
560   ir->early_clobber_alts = early_clobber_alts;
561   ir->regno = regno;
562   ir->next = next;
563   return ir;
564 }
565 
566 /* Free insn reg info list IR.	*/
567 static void
free_insn_regs(struct lra_insn_reg * ir)568 free_insn_regs (struct lra_insn_reg *ir)
569 {
570   struct lra_insn_reg *next_ir;
571 
572   for (; ir != NULL; ir = next_ir)
573     {
574       next_ir = ir->next;
575       lra_insn_reg_pool.remove (ir);
576     }
577 }
578 
579 /* Finish pool for insn reg info.  */
580 static void
finish_insn_regs(void)581 finish_insn_regs (void)
582 {
583   lra_insn_reg_pool.release ();
584 }
585 
586 
587 
588 /* This page contains code dealing LRA insn info (or in other words
589    LRA internal insn representation).  */
590 
591 /* Map INSN_CODE -> the static insn data.  This info is valid during
592    all translation unit.  */
593 struct lra_static_insn_data *insn_code_data[NUM_INSN_CODES];
594 
595 /* Debug insns are represented as a special insn with one input
596    operand which is RTL expression in var_location.  */
597 
598 /* The following data are used as static insn operand data for all
599    debug insns.	 If structure lra_operand_data is changed, the
600    initializer should be changed too.  */
601 static struct lra_operand_data debug_operand_data =
602   {
603     NULL, /* alternative  */
604     0, /* early_clobber_alts */
605     E_VOIDmode, /* We are not interesting in the operand mode.  */
606     OP_IN,
607     0, 0, 0
608   };
609 
610 /* The following data are used as static insn data for all debug
611    bind insns.  If structure lra_static_insn_data is changed, the
612    initializer should be changed too.  */
613 static struct lra_static_insn_data debug_bind_static_data =
614   {
615     &debug_operand_data,
616     0,	/* Duplication operands #.  */
617     -1, /* Commutative operand #.  */
618     1,	/* Operands #.	There is only one operand which is debug RTL
619 	   expression.	*/
620     0,	/* Duplications #.  */
621     0,	/* Alternatives #.  We are not interesting in alternatives
622 	   because we does not proceed debug_insns for reloads.	 */
623     NULL, /* Hard registers referenced in machine description.	*/
624     NULL  /* Descriptions of operands in alternatives.	*/
625   };
626 
627 /* The following data are used as static insn data for all debug
628    marker insns.  If structure lra_static_insn_data is changed, the
629    initializer should be changed too.  */
630 static struct lra_static_insn_data debug_marker_static_data =
631   {
632     &debug_operand_data,
633     0,	/* Duplication operands #.  */
634     -1, /* Commutative operand #.  */
635     0,	/* Operands #.	There isn't any operand.  */
636     0,	/* Duplications #.  */
637     0,	/* Alternatives #.  We are not interesting in alternatives
638 	   because we does not proceed debug_insns for reloads.	 */
639     NULL, /* Hard registers referenced in machine description.	*/
640     NULL  /* Descriptions of operands in alternatives.	*/
641   };
642 
643 /* Called once per compiler work to initialize some LRA data related
644    to insns.  */
645 static void
init_insn_code_data_once(void)646 init_insn_code_data_once (void)
647 {
648   memset (insn_code_data, 0, sizeof (insn_code_data));
649 }
650 
651 /* Called once per compiler work to finalize some LRA data related to
652    insns.  */
653 static void
finish_insn_code_data_once(void)654 finish_insn_code_data_once (void)
655 {
656   for (unsigned int i = 0; i < NUM_INSN_CODES; i++)
657     {
658       if (insn_code_data[i] != NULL)
659 	{
660 	  free (insn_code_data[i]);
661 	  insn_code_data[i] = NULL;
662 	}
663     }
664 }
665 
666 /* Return static insn data, allocate and setup if necessary.  Although
667    dup_num is static data (it depends only on icode), to set it up we
668    need to extract insn first.	So recog_data should be valid for
669    normal insn (ICODE >= 0) before the call.  */
670 static struct lra_static_insn_data *
get_static_insn_data(int icode,int nop,int ndup,int nalt)671 get_static_insn_data (int icode, int nop, int ndup, int nalt)
672 {
673   struct lra_static_insn_data *data;
674   size_t n_bytes;
675 
676   lra_assert (icode < (int) NUM_INSN_CODES);
677   if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
678     return data;
679   lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
680   n_bytes = sizeof (struct lra_static_insn_data)
681 	    + sizeof (struct lra_operand_data) * nop
682 	    + sizeof (int) * ndup;
683   data = XNEWVAR (struct lra_static_insn_data, n_bytes);
684   data->operand_alternative = NULL;
685   data->n_operands = nop;
686   data->n_dups = ndup;
687   data->n_alternatives = nalt;
688   data->operand = ((struct lra_operand_data *)
689 		   ((char *) data + sizeof (struct lra_static_insn_data)));
690   data->dup_num = ((int *) ((char *) data->operand
691 			    + sizeof (struct lra_operand_data) * nop));
692   if (icode >= 0)
693     {
694       int i;
695 
696       insn_code_data[icode] = data;
697       for (i = 0; i < nop; i++)
698 	{
699 	  data->operand[i].constraint
700 	    = insn_data[icode].operand[i].constraint;
701 	  data->operand[i].mode = insn_data[icode].operand[i].mode;
702 	  data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
703 	  data->operand[i].is_operator
704 	    = insn_data[icode].operand[i].is_operator;
705 	  data->operand[i].type
706 	    = (data->operand[i].constraint[0] == '=' ? OP_OUT
707 	       : data->operand[i].constraint[0] == '+' ? OP_INOUT
708 	       : OP_IN);
709 	  data->operand[i].is_address = false;
710 	}
711       for (i = 0; i < ndup; i++)
712 	data->dup_num[i] = recog_data.dup_num[i];
713     }
714   return data;
715 }
716 
717 /* The current length of the following array.  */
718 int lra_insn_recog_data_len;
719 
720 /* Map INSN_UID -> the insn recog data (NULL if unknown).  */
721 lra_insn_recog_data_t *lra_insn_recog_data;
722 
723 /* Alloc pool we allocate entries for lra_insn_recog_data from.  */
724 static object_allocator<class lra_insn_recog_data>
725   lra_insn_recog_data_pool ("insn recog data pool");
726 
727 /* Initialize LRA data about insns.  */
728 static void
init_insn_recog_data(void)729 init_insn_recog_data (void)
730 {
731   lra_insn_recog_data_len = 0;
732   lra_insn_recog_data = NULL;
733 }
734 
735 /* Expand, if necessary, LRA data about insns.	*/
736 static void
check_and_expand_insn_recog_data(int index)737 check_and_expand_insn_recog_data (int index)
738 {
739   int i, old;
740 
741   if (lra_insn_recog_data_len > index)
742     return;
743   old = lra_insn_recog_data_len;
744   lra_insn_recog_data_len = index * 3 / 2 + 1;
745   lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
746 				    lra_insn_recog_data,
747 				    lra_insn_recog_data_len);
748   for (i = old; i < lra_insn_recog_data_len; i++)
749     lra_insn_recog_data[i] = NULL;
750 }
751 
752 /* Finish LRA DATA about insn.	*/
753 static void
free_insn_recog_data(lra_insn_recog_data_t data)754 free_insn_recog_data (lra_insn_recog_data_t data)
755 {
756   if (data->operand_loc != NULL)
757     free (data->operand_loc);
758   if (data->dup_loc != NULL)
759     free (data->dup_loc);
760   if (data->arg_hard_regs != NULL)
761     free (data->arg_hard_regs);
762   if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
763     {
764       if (data->insn_static_data->operand_alternative != NULL)
765 	free (const_cast <operand_alternative *>
766 	      (data->insn_static_data->operand_alternative));
767       free_insn_regs (data->insn_static_data->hard_regs);
768       free (data->insn_static_data);
769     }
770   free_insn_regs (data->regs);
771   data->regs = NULL;
772   lra_insn_recog_data_pool.remove (data);
773 }
774 
775 /* Pools for copies.  */
776 static object_allocator<lra_copy> lra_copy_pool ("lra copies");
777 
778 /* Finish LRA data about all insns.  */
779 static void
finish_insn_recog_data(void)780 finish_insn_recog_data (void)
781 {
782   int i;
783   lra_insn_recog_data_t data;
784 
785   for (i = 0; i < lra_insn_recog_data_len; i++)
786     if ((data = lra_insn_recog_data[i]) != NULL)
787       free_insn_recog_data (data);
788   finish_insn_regs ();
789   lra_copy_pool.release ();
790   lra_insn_reg_pool.release ();
791   lra_insn_recog_data_pool.release ();
792   free (lra_insn_recog_data);
793 }
794 
795 /* Setup info about operands in alternatives of LRA DATA of insn.  */
796 static void
setup_operand_alternative(lra_insn_recog_data_t data,const operand_alternative * op_alt)797 setup_operand_alternative (lra_insn_recog_data_t data,
798 			   const operand_alternative *op_alt)
799 {
800   int i, j, nop, nalt;
801   int icode = data->icode;
802   struct lra_static_insn_data *static_data = data->insn_static_data;
803 
804   static_data->commutative = -1;
805   nop = static_data->n_operands;
806   nalt = static_data->n_alternatives;
807   static_data->operand_alternative = op_alt;
808   for (i = 0; i < nop; i++)
809     {
810       static_data->operand[i].early_clobber_alts = 0;
811       static_data->operand[i].is_address = false;
812       if (static_data->operand[i].constraint[0] == '%')
813 	{
814 	  /* We currently only support one commutative pair of operands.  */
815 	  if (static_data->commutative < 0)
816 	    static_data->commutative = i;
817 	  else
818 	    lra_assert (icode < 0); /* Asm  */
819 	  /* The last operand should not be marked commutative.  */
820 	  lra_assert (i != nop - 1);
821 	}
822     }
823   for (j = 0; j < nalt; j++)
824     for (i = 0; i < nop; i++, op_alt++)
825       {
826 	if (op_alt->earlyclobber)
827 	  static_data->operand[i].early_clobber_alts |= (alternative_mask) 1 << j;
828 	static_data->operand[i].is_address |= op_alt->is_address;
829       }
830 }
831 
832 /* Recursively process X and collect info about registers, which are
833    not the insn operands, in X with TYPE (in/out/inout) and flag that
834    it is early clobbered in the insn (EARLY_CLOBBER) and add the info
835    to LIST.  X is a part of insn given by DATA.	 Return the result
836    list.  */
837 static struct lra_insn_reg *
collect_non_operand_hard_regs(rtx_insn * insn,rtx * x,lra_insn_recog_data_t data,struct lra_insn_reg * list,enum op_type type,bool early_clobber)838 collect_non_operand_hard_regs (rtx_insn *insn, rtx *x,
839 			       lra_insn_recog_data_t data,
840 			       struct lra_insn_reg *list,
841 			       enum op_type type, bool early_clobber)
842 {
843   int i, j, regno, last;
844   bool subreg_p;
845   machine_mode mode;
846   struct lra_insn_reg *curr;
847   rtx op = *x;
848   enum rtx_code code = GET_CODE (op);
849   const char *fmt = GET_RTX_FORMAT (code);
850 
851   for (i = 0; i < data->insn_static_data->n_operands; i++)
852     if (! data->insn_static_data->operand[i].is_operator
853 	&& x == data->operand_loc[i])
854       /* It is an operand loc. Stop here.  */
855       return list;
856   for (i = 0; i < data->insn_static_data->n_dups; i++)
857     if (x == data->dup_loc[i])
858       /* It is a dup loc. Stop here.  */
859       return list;
860   mode = GET_MODE (op);
861   subreg_p = false;
862   if (code == SUBREG)
863     {
864       mode = wider_subreg_mode (op);
865       if (read_modify_subreg_p (op))
866 	subreg_p = true;
867       op = SUBREG_REG (op);
868       code = GET_CODE (op);
869     }
870   if (REG_P (op))
871     {
872       if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
873 	return list;
874       /* Process all regs even unallocatable ones as we need info
875 	 about all regs for rematerialization pass.  */
876       for (last = end_hard_regno (mode, regno); regno < last; regno++)
877 	{
878 	  for (curr = list; curr != NULL; curr = curr->next)
879 	    if (curr->regno == regno && curr->subreg_p == subreg_p
880 		&& curr->biggest_mode == mode)
881 	      {
882 		if (curr->type != type)
883 		  curr->type = OP_INOUT;
884 		if (early_clobber)
885 		  curr->early_clobber_alts = ALL_ALTERNATIVES;
886 		break;
887 	      }
888 	  if (curr == NULL)
889 	    {
890 	      /* This is a new hard regno or the info cannot be
891 		 integrated into the found structure.	 */
892 #ifdef STACK_REGS
893 	      early_clobber
894 		= (early_clobber
895 		   /* This clobber is to inform popping floating
896 		      point stack only.  */
897 		   && ! (FIRST_STACK_REG <= regno
898 			 && regno <= LAST_STACK_REG));
899 #endif
900 	      list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
901 				   early_clobber ? ALL_ALTERNATIVES : 0, list);
902 	    }
903 	}
904       return list;
905     }
906   switch (code)
907     {
908     case SET:
909       list = collect_non_operand_hard_regs (insn, &SET_DEST (op), data,
910 					    list, OP_OUT, false);
911       list = collect_non_operand_hard_regs (insn, &SET_SRC (op), data,
912 					    list, OP_IN, false);
913       break;
914     case CLOBBER:
915       /* We treat clobber of non-operand hard registers as early clobber.  */
916       list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
917 					    list, OP_OUT, true);
918       break;
919     case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
920       list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
921 					    list, OP_INOUT, false);
922       break;
923     case PRE_MODIFY: case POST_MODIFY:
924       list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
925 					    list, OP_INOUT, false);
926       list = collect_non_operand_hard_regs (insn, &XEXP (op, 1), data,
927 					    list, OP_IN, false);
928       break;
929     default:
930       fmt = GET_RTX_FORMAT (code);
931       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
932 	{
933 	  if (fmt[i] == 'e')
934 	    list = collect_non_operand_hard_regs (insn, &XEXP (op, i), data,
935 						  list, OP_IN, false);
936 	  else if (fmt[i] == 'E')
937 	    for (j = XVECLEN (op, i) - 1; j >= 0; j--)
938 	      list = collect_non_operand_hard_regs (insn, &XVECEXP (op, i, j),
939 						    data, list, OP_IN, false);
940 	}
941     }
942   return list;
943 }
944 
945 /* Set up and return info about INSN.  Set up the info if it is not set up
946    yet.	 */
947 lra_insn_recog_data_t
lra_set_insn_recog_data(rtx_insn * insn)948 lra_set_insn_recog_data (rtx_insn *insn)
949 {
950   lra_insn_recog_data_t data;
951   int i, n, icode;
952   rtx **locs;
953   unsigned int uid = INSN_UID (insn);
954   struct lra_static_insn_data *insn_static_data;
955 
956   check_and_expand_insn_recog_data (uid);
957   if (DEBUG_INSN_P (insn))
958     icode = -1;
959   else
960     {
961       icode = INSN_CODE (insn);
962       if (icode < 0)
963 	/* It might be a new simple insn which is not recognized yet.  */
964 	INSN_CODE (insn) = icode = recog_memoized (insn);
965     }
966   data = lra_insn_recog_data_pool.allocate ();
967   lra_insn_recog_data[uid] = data;
968   data->insn = insn;
969   data->used_insn_alternative = LRA_UNKNOWN_ALT;
970   data->icode = icode;
971   data->regs = NULL;
972   if (DEBUG_INSN_P (insn))
973     {
974       data->dup_loc = NULL;
975       data->arg_hard_regs = NULL;
976       data->preferred_alternatives = ALL_ALTERNATIVES;
977       if (DEBUG_BIND_INSN_P (insn))
978 	{
979 	  data->insn_static_data = &debug_bind_static_data;
980 	  data->operand_loc = XNEWVEC (rtx *, 1);
981 	  data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
982 	}
983       else if (DEBUG_MARKER_INSN_P (insn))
984 	{
985 	  data->insn_static_data = &debug_marker_static_data;
986 	  data->operand_loc = NULL;
987 	}
988       return data;
989     }
990   if (icode < 0)
991     {
992       int nop, nalt;
993       machine_mode operand_mode[MAX_RECOG_OPERANDS];
994       const char *constraints[MAX_RECOG_OPERANDS];
995 
996       nop = asm_noperands (PATTERN (insn));
997       data->operand_loc = data->dup_loc = NULL;
998       nalt = 1;
999       if (nop < 0)
1000 	{
1001 	  /* It is a special insn like USE or CLOBBER.  We should
1002 	     recognize any regular insn otherwise LRA can do nothing
1003 	     with this insn.  */
1004 	  gcc_assert (GET_CODE (PATTERN (insn)) == USE
1005 		      || GET_CODE (PATTERN (insn)) == CLOBBER
1006 		      || GET_CODE (PATTERN (insn)) == ASM_INPUT);
1007 	  data->insn_static_data = insn_static_data
1008 	    = get_static_insn_data (-1, 0, 0, nalt);
1009 	}
1010       else
1011 	{
1012 	  /* expand_asm_operands makes sure there aren't too many
1013 	     operands.	*/
1014 	  lra_assert (nop <= MAX_RECOG_OPERANDS);
1015 	  if (nop != 0)
1016 	    data->operand_loc = XNEWVEC (rtx *, nop);
1017 	  /* Now get the operand values and constraints out of the
1018 	     insn.  */
1019 	  decode_asm_operands (PATTERN (insn), NULL,
1020 			       data->operand_loc,
1021 			       constraints, operand_mode, NULL);
1022 	  if (nop > 0)
1023 	    for (const char *p =constraints[0]; *p; p++)
1024 	      nalt += *p == ',';
1025 	  data->insn_static_data = insn_static_data
1026 	    = get_static_insn_data (-1, nop, 0, nalt);
1027 	  for (i = 0; i < nop; i++)
1028 	    {
1029 	      insn_static_data->operand[i].mode = operand_mode[i];
1030 	      insn_static_data->operand[i].constraint = constraints[i];
1031 	      insn_static_data->operand[i].strict_low = false;
1032 	      insn_static_data->operand[i].is_operator = false;
1033 	      insn_static_data->operand[i].is_address = false;
1034 	    }
1035 	}
1036       for (i = 0; i < insn_static_data->n_operands; i++)
1037 	insn_static_data->operand[i].type
1038 	  = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1039 	     : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1040 	     : OP_IN);
1041       data->preferred_alternatives = ALL_ALTERNATIVES;
1042       if (nop > 0)
1043 	{
1044 	  operand_alternative *op_alt = XCNEWVEC (operand_alternative,
1045 						  nalt * nop);
1046 	  preprocess_constraints (nop, nalt, constraints, op_alt,
1047 				  data->operand_loc);
1048 	  setup_operand_alternative (data, op_alt);
1049 	}
1050     }
1051   else
1052     {
1053       insn_extract (insn);
1054       data->insn_static_data = insn_static_data
1055 	= get_static_insn_data (icode, insn_data[icode].n_operands,
1056 				insn_data[icode].n_dups,
1057 				insn_data[icode].n_alternatives);
1058       n = insn_static_data->n_operands;
1059       if (n == 0)
1060 	locs = NULL;
1061       else
1062 	{
1063 	  locs = XNEWVEC (rtx *, n);
1064 	  memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1065 	}
1066       data->operand_loc = locs;
1067       n = insn_static_data->n_dups;
1068       if (n == 0)
1069 	locs = NULL;
1070       else
1071 	{
1072 	  locs = XNEWVEC (rtx *, n);
1073 	  memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1074 	}
1075       data->dup_loc = locs;
1076       data->preferred_alternatives = get_preferred_alternatives (insn);
1077       const operand_alternative *op_alt = preprocess_insn_constraints (icode);
1078       if (!insn_static_data->operand_alternative)
1079 	setup_operand_alternative (data, op_alt);
1080       else if (op_alt != insn_static_data->operand_alternative)
1081 	insn_static_data->operand_alternative = op_alt;
1082     }
1083   if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1084     insn_static_data->hard_regs = NULL;
1085   else
1086     insn_static_data->hard_regs
1087       = collect_non_operand_hard_regs (insn, &PATTERN (insn), data,
1088 				       NULL, OP_IN, false);
1089   data->arg_hard_regs = NULL;
1090   if (CALL_P (insn))
1091     {
1092       bool use_p;
1093       rtx link;
1094       int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1095 
1096       n_hard_regs = 0;
1097       /* Finding implicit hard register usage.	We believe it will be
1098 	 not changed whatever transformations are used.	 Call insns
1099 	 are such example.  */
1100       for (link = CALL_INSN_FUNCTION_USAGE (insn);
1101 	   link != NULL_RTX;
1102 	   link = XEXP (link, 1))
1103 	if (((use_p = GET_CODE (XEXP (link, 0)) == USE)
1104 	     || GET_CODE (XEXP (link, 0)) == CLOBBER)
1105 	    && REG_P (XEXP (XEXP (link, 0), 0)))
1106 	  {
1107 	    regno = REGNO (XEXP (XEXP (link, 0), 0));
1108 	    lra_assert (regno < FIRST_PSEUDO_REGISTER);
1109 	    /* It is an argument register.  */
1110 	    for (i = REG_NREGS (XEXP (XEXP (link, 0), 0)) - 1; i >= 0; i--)
1111 	      arg_hard_regs[n_hard_regs++]
1112 		= regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER);
1113 	  }
1114 
1115       if (n_hard_regs != 0)
1116 	{
1117 	  arg_hard_regs[n_hard_regs++] = -1;
1118 	  data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1119 	  memcpy (data->arg_hard_regs, arg_hard_regs,
1120 		  sizeof (int) * n_hard_regs);
1121 	}
1122     }
1123   /* Some output operand can be recognized only from the context not
1124      from the constraints which are empty in this case.	 Call insn may
1125      contain a hard register in set destination with empty constraint
1126      and extract_insn treats them as an input.	*/
1127   for (i = 0; i < insn_static_data->n_operands; i++)
1128     {
1129       int j;
1130       rtx pat, set;
1131       struct lra_operand_data *operand = &insn_static_data->operand[i];
1132 
1133       /* ??? Should we treat 'X' the same way.	It looks to me that
1134 	 'X' means anything and empty constraint means we do not
1135 	 care.	*/
1136       if (operand->type != OP_IN || *operand->constraint != '\0'
1137 	  || operand->is_operator)
1138 	continue;
1139       pat = PATTERN (insn);
1140       if (GET_CODE (pat) == SET)
1141 	{
1142 	  if (data->operand_loc[i] != &SET_DEST (pat))
1143 	    continue;
1144 	}
1145       else if (GET_CODE (pat) == PARALLEL)
1146 	{
1147 	  for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1148 	    {
1149 	      set = XVECEXP (PATTERN (insn), 0, j);
1150 	      if (GET_CODE (set) == SET
1151 		  && &SET_DEST (set) == data->operand_loc[i])
1152 		break;
1153 	    }
1154 	  if (j < 0)
1155 	    continue;
1156 	}
1157       else
1158 	continue;
1159       operand->type = OP_OUT;
1160     }
1161   return data;
1162 }
1163 
1164 /* Return info about insn give by UID.	The info should be already set
1165    up.	*/
1166 static lra_insn_recog_data_t
get_insn_recog_data_by_uid(int uid)1167 get_insn_recog_data_by_uid (int uid)
1168 {
1169   lra_insn_recog_data_t data;
1170 
1171   data = lra_insn_recog_data[uid];
1172   lra_assert (data != NULL);
1173   return data;
1174 }
1175 
1176 /* Invalidate all info about insn given by its UID.  */
1177 static void
invalidate_insn_recog_data(int uid)1178 invalidate_insn_recog_data (int uid)
1179 {
1180   lra_insn_recog_data_t data;
1181 
1182   data = lra_insn_recog_data[uid];
1183   lra_assert (data != NULL);
1184   free_insn_recog_data (data);
1185   lra_insn_recog_data[uid] = NULL;
1186 }
1187 
1188 /* Update all the insn info about INSN.	 It is usually called when
1189    something in the insn was changed.  Return the updated info.	 */
1190 lra_insn_recog_data_t
lra_update_insn_recog_data(rtx_insn * insn)1191 lra_update_insn_recog_data (rtx_insn *insn)
1192 {
1193   lra_insn_recog_data_t data;
1194   int n;
1195   unsigned int uid = INSN_UID (insn);
1196   struct lra_static_insn_data *insn_static_data;
1197   poly_int64 sp_offset = 0;
1198 
1199   check_and_expand_insn_recog_data (uid);
1200   if ((data = lra_insn_recog_data[uid]) != NULL
1201       && data->icode != INSN_CODE (insn))
1202     {
1203       sp_offset = data->sp_offset;
1204       invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1205       invalidate_insn_recog_data (uid);
1206       data = NULL;
1207     }
1208   if (data == NULL)
1209     {
1210       data = lra_get_insn_recog_data (insn);
1211       /* Initiate or restore SP offset.  */
1212       data->sp_offset = sp_offset;
1213       return data;
1214     }
1215   insn_static_data = data->insn_static_data;
1216   data->used_insn_alternative = LRA_UNKNOWN_ALT;
1217   if (DEBUG_INSN_P (insn))
1218     return data;
1219   if (data->icode < 0)
1220     {
1221       int nop;
1222       machine_mode operand_mode[MAX_RECOG_OPERANDS];
1223       const char *constraints[MAX_RECOG_OPERANDS];
1224 
1225       nop = asm_noperands (PATTERN (insn));
1226       if (nop >= 0)
1227 	{
1228 	  lra_assert (nop == data->insn_static_data->n_operands);
1229 	  /* Now get the operand values and constraints out of the
1230 	     insn.  */
1231 	  decode_asm_operands (PATTERN (insn), NULL,
1232 			       data->operand_loc,
1233 			       constraints, operand_mode, NULL);
1234 
1235 	  if (flag_checking)
1236 	    for (int i = 0; i < nop; i++)
1237 	      lra_assert
1238 		(insn_static_data->operand[i].mode == operand_mode[i]
1239 		 && insn_static_data->operand[i].constraint == constraints[i]
1240 		 && ! insn_static_data->operand[i].is_operator);
1241 	}
1242 
1243       if (flag_checking)
1244 	for (int i = 0; i < insn_static_data->n_operands; i++)
1245 	  lra_assert
1246 	    (insn_static_data->operand[i].type
1247 	     == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1248 		 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1249 		 : OP_IN));
1250     }
1251   else
1252     {
1253       insn_extract (insn);
1254       n = insn_static_data->n_operands;
1255       if (n != 0)
1256 	memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1257       n = insn_static_data->n_dups;
1258       if (n != 0)
1259 	memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1260       lra_assert (check_bool_attrs (insn));
1261     }
1262   return data;
1263 }
1264 
1265 /* Set up that INSN is using alternative ALT now.  */
1266 void
lra_set_used_insn_alternative(rtx_insn * insn,int alt)1267 lra_set_used_insn_alternative (rtx_insn *insn, int alt)
1268 {
1269   lra_insn_recog_data_t data;
1270 
1271   data = lra_get_insn_recog_data (insn);
1272   data->used_insn_alternative = alt;
1273 }
1274 
1275 /* Set up that insn with UID is using alternative ALT now.  The insn
1276    info should be already set up.  */
1277 void
lra_set_used_insn_alternative_by_uid(int uid,int alt)1278 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1279 {
1280   lra_insn_recog_data_t data;
1281 
1282   check_and_expand_insn_recog_data (uid);
1283   data = lra_insn_recog_data[uid];
1284   lra_assert (data != NULL);
1285   data->used_insn_alternative = alt;
1286 }
1287 
1288 
1289 
1290 /* This page contains code dealing with common register info and
1291    pseudo copies.  */
1292 
1293 /* The size of the following array.  */
1294 static int reg_info_size;
1295 /* Common info about each register.  */
1296 class lra_reg *lra_reg_info;
1297 
1298 HARD_REG_SET hard_regs_spilled_into;
1299 
1300 /* Last register value.	 */
1301 static int last_reg_value;
1302 
1303 /* Return new register value.  */
1304 static int
get_new_reg_value(void)1305 get_new_reg_value (void)
1306 {
1307   return ++last_reg_value;
1308 }
1309 
1310 /* Vec referring to pseudo copies.  */
1311 static vec<lra_copy_t> copy_vec;
1312 
1313 /* Initialize I-th element of lra_reg_info.  */
1314 static inline void
initialize_lra_reg_info_element(int i)1315 initialize_lra_reg_info_element (int i)
1316 {
1317   bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1318 #ifdef STACK_REGS
1319   lra_reg_info[i].no_stack_p = false;
1320 #endif
1321   CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1322   lra_reg_info[i].preferred_hard_regno1 = -1;
1323   lra_reg_info[i].preferred_hard_regno2 = -1;
1324   lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1325   lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1326   lra_reg_info[i].biggest_mode = VOIDmode;
1327   lra_reg_info[i].live_ranges = NULL;
1328   lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1329   lra_reg_info[i].last_reload = 0;
1330   lra_reg_info[i].restore_rtx = NULL_RTX;
1331   lra_reg_info[i].val = get_new_reg_value ();
1332   lra_reg_info[i].offset = 0;
1333   lra_reg_info[i].copies = NULL;
1334 }
1335 
1336 /* Initialize common reg info and copies.  */
1337 static void
init_reg_info(void)1338 init_reg_info (void)
1339 {
1340   int i;
1341 
1342   last_reg_value = 0;
1343   reg_info_size = max_reg_num () * 3 / 2 + 1;
1344   lra_reg_info = XNEWVEC (class lra_reg, reg_info_size);
1345   for (i = 0; i < reg_info_size; i++)
1346     initialize_lra_reg_info_element (i);
1347   copy_vec.truncate (0);
1348   CLEAR_HARD_REG_SET (hard_regs_spilled_into);
1349 }
1350 
1351 
1352 /* Finish common reg info and copies.  */
1353 static void
finish_reg_info(void)1354 finish_reg_info (void)
1355 {
1356   int i;
1357 
1358   for (i = 0; i < reg_info_size; i++)
1359     bitmap_clear (&lra_reg_info[i].insn_bitmap);
1360   free (lra_reg_info);
1361   reg_info_size = 0;
1362 }
1363 
1364 /* Expand common reg info if it is necessary.  */
1365 static void
expand_reg_info(void)1366 expand_reg_info (void)
1367 {
1368   int i, old = reg_info_size;
1369 
1370   if (reg_info_size > max_reg_num ())
1371     return;
1372   reg_info_size = max_reg_num () * 3 / 2 + 1;
1373   lra_reg_info = XRESIZEVEC (class lra_reg, lra_reg_info, reg_info_size);
1374   for (i = old; i < reg_info_size; i++)
1375     initialize_lra_reg_info_element (i);
1376 }
1377 
1378 /* Free all copies.  */
1379 void
lra_free_copies(void)1380 lra_free_copies (void)
1381 {
1382   lra_copy_t cp;
1383 
1384   while (copy_vec.length () != 0)
1385     {
1386       cp = copy_vec.pop ();
1387       lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1388       lra_copy_pool.remove (cp);
1389     }
1390 }
1391 
1392 /* Create copy of two pseudos REGNO1 and REGNO2.  The copy execution
1393    frequency is FREQ.  */
1394 void
lra_create_copy(int regno1,int regno2,int freq)1395 lra_create_copy (int regno1, int regno2, int freq)
1396 {
1397   bool regno1_dest_p;
1398   lra_copy_t cp;
1399 
1400   lra_assert (regno1 != regno2);
1401   regno1_dest_p = true;
1402   if (regno1 > regno2)
1403     {
1404       std::swap (regno1, regno2);
1405       regno1_dest_p = false;
1406     }
1407   cp = lra_copy_pool.allocate ();
1408   copy_vec.safe_push (cp);
1409   cp->regno1_dest_p = regno1_dest_p;
1410   cp->freq = freq;
1411   cp->regno1 = regno1;
1412   cp->regno2 = regno2;
1413   cp->regno1_next = lra_reg_info[regno1].copies;
1414   lra_reg_info[regno1].copies = cp;
1415   cp->regno2_next = lra_reg_info[regno2].copies;
1416   lra_reg_info[regno2].copies = cp;
1417   if (lra_dump_file != NULL)
1418     fprintf (lra_dump_file, "	   Creating copy r%d%sr%d@%d\n",
1419 	     regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1420 }
1421 
1422 /* Return N-th (0, 1, ...) copy.  If there is no copy, return
1423    NULL.  */
1424 lra_copy_t
lra_get_copy(int n)1425 lra_get_copy (int n)
1426 {
1427   if (n >= (int) copy_vec.length ())
1428     return NULL;
1429   return copy_vec[n];
1430 }
1431 
1432 
1433 
1434 /* This page contains code dealing with info about registers in
1435    insns.  */
1436 
1437 /* Process X of INSN recursively and add info (operand type is given
1438    by TYPE) about registers in X to the insn DATA.  If X can be early
1439    clobbered, alternatives in which it can be early clobbered are given
1440    by EARLY_CLOBBER_ALTS.  */
1441 static void
add_regs_to_insn_regno_info(lra_insn_recog_data_t data,rtx x,rtx_insn * insn,enum op_type type,alternative_mask early_clobber_alts)1442 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x,
1443 			     rtx_insn *insn, enum op_type type,
1444 			     alternative_mask early_clobber_alts)
1445 {
1446   int i, j, regno;
1447   bool subreg_p;
1448   machine_mode mode;
1449   const char *fmt;
1450   enum rtx_code code;
1451   struct lra_insn_reg *curr;
1452 
1453   code = GET_CODE (x);
1454   mode = GET_MODE (x);
1455   subreg_p = false;
1456   if (GET_CODE (x) == SUBREG)
1457     {
1458       mode = wider_subreg_mode (x);
1459       if (read_modify_subreg_p (x))
1460 	subreg_p = true;
1461       x = SUBREG_REG (x);
1462       code = GET_CODE (x);
1463     }
1464   if (REG_P (x))
1465     {
1466       regno = REGNO (x);
1467       /* Process all regs even unallocatable ones as we need info about
1468 	 all regs for rematerialization pass.  */
1469       expand_reg_info ();
1470       if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, INSN_UID (insn)))
1471 	{
1472 	  data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1473 				     early_clobber_alts, data->regs);
1474 	  return;
1475 	}
1476       else
1477 	{
1478 	  for (curr = data->regs; curr != NULL; curr = curr->next)
1479 	    if (curr->regno == regno)
1480 	      {
1481 		if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1482 		  /* The info cannot be integrated into the found
1483 		     structure.  */
1484 		  data->regs = new_insn_reg (data->insn, regno, type, mode,
1485 					     subreg_p, early_clobber_alts,
1486 					     data->regs);
1487 		else
1488 		  {
1489 		    if (curr->type != type)
1490 		      curr->type = OP_INOUT;
1491 		    curr->early_clobber_alts |= early_clobber_alts;
1492 		  }
1493 		return;
1494 	      }
1495 	  gcc_unreachable ();
1496 	}
1497     }
1498 
1499   switch (code)
1500     {
1501     case SET:
1502       add_regs_to_insn_regno_info (data, SET_DEST (x), insn, OP_OUT, 0);
1503       add_regs_to_insn_regno_info (data, SET_SRC (x), insn, OP_IN, 0);
1504       break;
1505     case CLOBBER:
1506       /* We treat clobber of non-operand hard registers as early
1507 	 clobber.  */
1508       add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_OUT,
1509 				   ALL_ALTERNATIVES);
1510       break;
1511     case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1512       add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, 0);
1513       break;
1514     case PRE_MODIFY: case POST_MODIFY:
1515       add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, 0);
1516       add_regs_to_insn_regno_info (data, XEXP (x, 1), insn, OP_IN, 0);
1517       break;
1518     default:
1519       if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1520 	/* Some targets place small structures in registers for return
1521 	   values of functions, and those registers are wrapped in
1522 	   PARALLEL that we may see as the destination of a SET.  Here
1523 	   is an example:
1524 
1525 	   (call_insn 13 12 14 2 (set (parallel:BLK [
1526 		(expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1527 		    (const_int 0 [0]))
1528 		(expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1529 		    (const_int 8 [0x8]))
1530 	       ])
1531 	     (call (mem:QI (symbol_ref:DI (...	*/
1532 	type = OP_IN;
1533       fmt = GET_RTX_FORMAT (code);
1534       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1535 	{
1536 	  if (fmt[i] == 'e')
1537 	    add_regs_to_insn_regno_info (data, XEXP (x, i), insn, type, 0);
1538 	  else if (fmt[i] == 'E')
1539 	    {
1540 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1541 		add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), insn,
1542 					     type, 0);
1543 	    }
1544 	}
1545     }
1546 }
1547 
1548 /* Return execution frequency of INSN.	*/
1549 static int
get_insn_freq(rtx_insn * insn)1550 get_insn_freq (rtx_insn *insn)
1551 {
1552   basic_block bb = BLOCK_FOR_INSN (insn);
1553 
1554   gcc_checking_assert (bb != NULL);
1555   return REG_FREQ_FROM_BB (bb);
1556 }
1557 
1558 /* Invalidate all reg info of INSN with DATA and execution frequency
1559    FREQ.  Update common info about the invalidated registers.  */
1560 static void
invalidate_insn_data_regno_info(lra_insn_recog_data_t data,rtx_insn * insn,int freq)1561 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
1562 				 int freq)
1563 {
1564   int uid;
1565   bool debug_p;
1566   unsigned int i;
1567   struct lra_insn_reg *ir, *next_ir;
1568 
1569   uid = INSN_UID (insn);
1570   debug_p = DEBUG_INSN_P (insn);
1571   for (ir = data->regs; ir != NULL; ir = next_ir)
1572     {
1573       i = ir->regno;
1574       next_ir = ir->next;
1575       lra_insn_reg_pool.remove (ir);
1576       bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1577       if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1578 	{
1579 	  lra_reg_info[i].nrefs--;
1580 	  lra_reg_info[i].freq -= freq;
1581 	  lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1582 	}
1583     }
1584   data->regs = NULL;
1585 }
1586 
1587 /* Invalidate all reg info of INSN.  Update common info about the
1588    invalidated registers.  */
1589 void
lra_invalidate_insn_regno_info(rtx_insn * insn)1590 lra_invalidate_insn_regno_info (rtx_insn *insn)
1591 {
1592   invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1593 				   get_insn_freq (insn));
1594 }
1595 
1596 /* Update common reg info from reg info of insn given by its DATA and
1597    execution frequency FREQ.  */
1598 static void
setup_insn_reg_info(lra_insn_recog_data_t data,int freq)1599 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1600 {
1601   unsigned int i;
1602   struct lra_insn_reg *ir;
1603 
1604   for (ir = data->regs; ir != NULL; ir = ir->next)
1605     if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1606       {
1607 	lra_reg_info[i].nrefs++;
1608 	lra_reg_info[i].freq += freq;
1609       }
1610 }
1611 
1612 /* Set up insn reg info of INSN.  Update common reg info from reg info
1613    of INSN.  */
1614 void
lra_update_insn_regno_info(rtx_insn * insn)1615 lra_update_insn_regno_info (rtx_insn *insn)
1616 {
1617   int i, freq;
1618   lra_insn_recog_data_t data;
1619   struct lra_static_insn_data *static_data;
1620   enum rtx_code code;
1621   rtx link;
1622 
1623   if (! INSN_P (insn))
1624     return;
1625   data = lra_get_insn_recog_data (insn);
1626   static_data = data->insn_static_data;
1627   freq = NONDEBUG_INSN_P (insn) ? get_insn_freq (insn) : 0;
1628   invalidate_insn_data_regno_info (data, insn, freq);
1629   for (i = static_data->n_operands - 1; i >= 0; i--)
1630     add_regs_to_insn_regno_info (data, *data->operand_loc[i], insn,
1631 				 static_data->operand[i].type,
1632 				 static_data->operand[i].early_clobber_alts);
1633   if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1634     add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), insn,
1635 				 code == USE ? OP_IN : OP_OUT, 0);
1636   if (CALL_P (insn))
1637     /* On some targets call insns can refer to pseudos in memory in
1638        CALL_INSN_FUNCTION_USAGE list.  Process them in order to
1639        consider their occurrences in calls for different
1640        transformations (e.g. inheritance) with given pseudos.  */
1641     for (link = CALL_INSN_FUNCTION_USAGE (insn);
1642 	 link != NULL_RTX;
1643 	 link = XEXP (link, 1))
1644       {
1645 	code = GET_CODE (XEXP (link, 0));
1646 	if ((code == USE || code == CLOBBER)
1647 	    && MEM_P (XEXP (XEXP (link, 0), 0)))
1648 	  add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), insn,
1649 				       code == USE ? OP_IN : OP_OUT, 0);
1650       }
1651   if (NONDEBUG_INSN_P (insn))
1652     setup_insn_reg_info (data, freq);
1653 }
1654 
1655 /* Return reg info of insn given by it UID.  */
1656 struct lra_insn_reg *
lra_get_insn_regs(int uid)1657 lra_get_insn_regs (int uid)
1658 {
1659   lra_insn_recog_data_t data;
1660 
1661   data = get_insn_recog_data_by_uid (uid);
1662   return data->regs;
1663 }
1664 
1665 
1666 
1667 /* Recursive hash function for RTL X.  */
1668 hashval_t
lra_rtx_hash(rtx x)1669 lra_rtx_hash (rtx x)
1670 {
1671   int i, j;
1672   enum rtx_code code;
1673   const char *fmt;
1674   hashval_t val = 0;
1675 
1676   if (x == 0)
1677     return val;
1678 
1679   code = GET_CODE (x);
1680   val += (int) code + 4095;
1681 
1682   /* Some RTL can be compared nonrecursively.  */
1683   switch (code)
1684     {
1685     case REG:
1686       return val + REGNO (x);
1687 
1688     case LABEL_REF:
1689       return iterative_hash_object (XEXP (x, 0), val);
1690 
1691     case SYMBOL_REF:
1692       return iterative_hash_object (XSTR (x, 0), val);
1693 
1694     case SCRATCH:
1695     case CONST_DOUBLE:
1696     case CONST_VECTOR:
1697       return val;
1698 
1699     case CONST_INT:
1700       return val + UINTVAL (x);
1701 
1702     default:
1703       break;
1704     }
1705 
1706   /* Hash the elements.  */
1707   fmt = GET_RTX_FORMAT (code);
1708   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1709     {
1710       switch (fmt[i])
1711 	{
1712 	case 'w':
1713 	  val += XWINT (x, i);
1714 	  break;
1715 
1716 	case 'n':
1717 	case 'i':
1718 	  val += XINT (x, i);
1719 	  break;
1720 
1721 	case 'V':
1722 	case 'E':
1723 	  val += XVECLEN (x, i);
1724 
1725 	  for (j = 0; j < XVECLEN (x, i); j++)
1726 	    val += lra_rtx_hash (XVECEXP (x, i, j));
1727 	  break;
1728 
1729 	case 'e':
1730 	  val += lra_rtx_hash (XEXP (x, i));
1731 	  break;
1732 
1733 	case 'S':
1734 	case 's':
1735 	  val += htab_hash_string (XSTR (x, i));
1736 	  break;
1737 
1738 	case 'u':
1739 	case '0':
1740 	case 't':
1741 	  break;
1742 
1743 	  /* It is believed that rtx's at this level will never
1744 	     contain anything but integers and other rtx's, except for
1745 	     within LABEL_REFs and SYMBOL_REFs.  */
1746 	default:
1747 	  abort ();
1748 	}
1749     }
1750   return val;
1751 }
1752 
1753 
1754 
1755 /* This page contains code dealing with stack of the insns which
1756    should be processed by the next constraint pass.  */
1757 
1758 /* Bitmap used to put an insn on the stack only in one exemplar.  */
1759 static sbitmap lra_constraint_insn_stack_bitmap;
1760 
1761 /* The stack itself.  */
1762 vec<rtx_insn *> lra_constraint_insn_stack;
1763 
1764 /* Put INSN on the stack.  If ALWAYS_UPDATE is true, always update the reg
1765    info for INSN, otherwise only update it if INSN is not already on the
1766    stack.  */
1767 static inline void
lra_push_insn_1(rtx_insn * insn,bool always_update)1768 lra_push_insn_1 (rtx_insn *insn, bool always_update)
1769 {
1770   unsigned int uid = INSN_UID (insn);
1771   if (always_update)
1772     lra_update_insn_regno_info (insn);
1773   if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1774     lra_constraint_insn_stack_bitmap =
1775       sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1776   if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1777     return;
1778   bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1779   if (! always_update)
1780     lra_update_insn_regno_info (insn);
1781   lra_constraint_insn_stack.safe_push (insn);
1782 }
1783 
1784 /* Put INSN on the stack.  */
1785 void
lra_push_insn(rtx_insn * insn)1786 lra_push_insn (rtx_insn *insn)
1787 {
1788   lra_push_insn_1 (insn, false);
1789 }
1790 
1791 /* Put INSN on the stack and update its reg info.  */
1792 void
lra_push_insn_and_update_insn_regno_info(rtx_insn * insn)1793 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
1794 {
1795   lra_push_insn_1 (insn, true);
1796 }
1797 
1798 /* Put insn with UID on the stack.  */
1799 void
lra_push_insn_by_uid(unsigned int uid)1800 lra_push_insn_by_uid (unsigned int uid)
1801 {
1802   lra_push_insn (lra_insn_recog_data[uid]->insn);
1803 }
1804 
1805 /* Take the last-inserted insns off the stack and return it.  */
1806 rtx_insn *
lra_pop_insn(void)1807 lra_pop_insn (void)
1808 {
1809   rtx_insn *insn = lra_constraint_insn_stack.pop ();
1810   bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1811   return insn;
1812 }
1813 
1814 /* Return the current size of the insn stack.  */
1815 unsigned int
lra_insn_stack_length(void)1816 lra_insn_stack_length (void)
1817 {
1818   return lra_constraint_insn_stack.length ();
1819 }
1820 
1821 /* Push insns FROM to TO (excluding it) going in reverse order.	 */
1822 static void
push_insns(rtx_insn * from,rtx_insn * to)1823 push_insns (rtx_insn *from, rtx_insn *to)
1824 {
1825   rtx_insn *insn;
1826 
1827   if (from == NULL_RTX)
1828     return;
1829   for (insn = from; insn != to; insn = PREV_INSN (insn))
1830     if (INSN_P (insn))
1831       lra_push_insn (insn);
1832 }
1833 
1834 /* Set up sp offset for insn in range [FROM, LAST].  The offset is
1835    taken from the next BB insn after LAST or zero if there in such
1836    insn.  */
1837 static void
setup_sp_offset(rtx_insn * from,rtx_insn * last)1838 setup_sp_offset (rtx_insn *from, rtx_insn *last)
1839 {
1840   rtx_insn *before = next_nonnote_nondebug_insn_bb (last);
1841   poly_int64 offset = (before == NULL_RTX || ! INSN_P (before)
1842 		       ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1843 
1844   for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1845     lra_get_insn_recog_data (insn)->sp_offset = offset;
1846 }
1847 
1848 /* Emit insns BEFORE before INSN and insns AFTER after INSN.  Put the
1849    insns onto the stack.  Print about emitting the insns with
1850    TITLE.  */
1851 void
lra_process_new_insns(rtx_insn * insn,rtx_insn * before,rtx_insn * after,const char * title)1852 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
1853 		       const char *title)
1854 {
1855   if (before == NULL_RTX && after == NULL_RTX)
1856     return;
1857   if (lra_dump_file != NULL)
1858     {
1859       dump_insn_slim (lra_dump_file, insn);
1860       if (before != NULL_RTX)
1861 	{
1862 	  fprintf (lra_dump_file,"    %s before:\n", title);
1863 	  dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
1864 	}
1865     }
1866   if (before != NULL_RTX)
1867     {
1868       if (cfun->can_throw_non_call_exceptions)
1869 	copy_reg_eh_region_note_forward (insn, before, NULL);
1870       emit_insn_before (before, insn);
1871       push_insns (PREV_INSN (insn), PREV_INSN (before));
1872       setup_sp_offset (before, PREV_INSN (insn));
1873     }
1874   if (after != NULL_RTX)
1875     {
1876       if (cfun->can_throw_non_call_exceptions)
1877 	copy_reg_eh_region_note_forward (insn, after, NULL);
1878       if (! JUMP_P (insn))
1879 	{
1880 	  rtx_insn *last;
1881 
1882 	  if (lra_dump_file != NULL)
1883 	    {
1884 	      fprintf (lra_dump_file, "    %s after:\n", title);
1885 	      dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
1886 	    }
1887 	  for (last = after;
1888 	       NEXT_INSN (last) != NULL_RTX;
1889 	       last = NEXT_INSN (last))
1890 	    ;
1891 	  emit_insn_after (after, insn);
1892 	  push_insns (last, insn);
1893 	  setup_sp_offset (after, last);
1894 	}
1895       else
1896 	{
1897 	  /* Put output reload insns on successor BBs: */
1898 	  edge_iterator ei;
1899 	  edge e;
1900 
1901 	  FOR_EACH_EDGE (e, ei, BLOCK_FOR_INSN (insn)->succs)
1902 	    if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1903 	      {
1904 		/* We already made the edge no-critical in ira.c::ira */
1905 		lra_assert (!EDGE_CRITICAL_P (e));
1906 		rtx_insn *curr, *tmp = BB_HEAD (e->dest);
1907 		if (LABEL_P (tmp))
1908 		  tmp = NEXT_INSN (tmp);
1909 		if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1910 		  tmp = NEXT_INSN (tmp);
1911 		/* Do not put reload insns if it is the last BB
1912 		   without actual insns.  */
1913 		if (tmp == NULL)
1914 		  continue;
1915 		start_sequence ();
1916 		for (curr = after; curr != NULL_RTX; curr = NEXT_INSN (curr))
1917 		  emit_insn (copy_insn (PATTERN (curr)));
1918 		rtx_insn *copy = get_insns (), *last = get_last_insn ();
1919 		end_sequence ();
1920 		if (lra_dump_file != NULL)
1921 		  {
1922 		    fprintf (lra_dump_file, "    %s after in bb%d:\n", title,
1923 			     e->dest->index);
1924 		    dump_rtl_slim (lra_dump_file, copy, NULL, -1, 0);
1925 		  }
1926 		/* Use the right emit func for setting up BB_END/BB_HEAD: */
1927 		if (BB_END (e->dest) == PREV_INSN (tmp))
1928 		  emit_insn_after_noloc (copy, PREV_INSN (tmp), e->dest);
1929 		else
1930 		  emit_insn_before_noloc (copy, tmp, e->dest);
1931 		push_insns (last, PREV_INSN (copy));
1932 		setup_sp_offset (copy, last);
1933 		/* We can ignore BB live info here as it and reg notes
1934 		   will be updated before the next assignment
1935 		   sub-pass. */
1936 	      }
1937 	}
1938     }
1939   if (lra_dump_file != NULL)
1940     fprintf (lra_dump_file, "\n");
1941   if (cfun->can_throw_non_call_exceptions)
1942     {
1943       rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1944       if (note && !insn_could_throw_p (insn))
1945 	remove_note (insn, note);
1946     }
1947 }
1948 
1949 
1950 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1951    register NEW_REG.  Try to simplify subreg of constant if SUBREG_P.
1952    DEBUG_P is if LOC is within a DEBUG_INSN.  Return true if any
1953    change was made.  */
1954 bool
lra_substitute_pseudo(rtx * loc,int old_regno,rtx new_reg,bool subreg_p,bool debug_p)1955 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p,
1956 		       bool debug_p)
1957 {
1958   rtx x = *loc;
1959   bool result = false;
1960   enum rtx_code code;
1961   const char *fmt;
1962   int i, j;
1963 
1964   if (x == NULL_RTX)
1965     return false;
1966 
1967   code = GET_CODE (x);
1968   if (code == SUBREG && subreg_p)
1969     {
1970       rtx subst, inner = SUBREG_REG (x);
1971       /* Transform subreg of constant while we still have inner mode
1972 	 of the subreg.  The subreg internal should not be an insn
1973 	 operand.  */
1974       if (REG_P (inner) && (int) REGNO (inner) == old_regno
1975 	  && CONSTANT_P (new_reg)
1976 	  && (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner),
1977 				       SUBREG_BYTE (x))) != NULL_RTX)
1978 	{
1979 	  *loc = subst;
1980 	  return true;
1981 	}
1982 
1983     }
1984   else if (code == REG && (int) REGNO (x) == old_regno)
1985     {
1986       machine_mode mode = GET_MODE (x);
1987       machine_mode inner_mode = GET_MODE (new_reg);
1988 
1989       if (mode != inner_mode
1990 	  && ! (CONST_SCALAR_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
1991 	{
1992 	  poly_uint64 offset = 0;
1993 	  if (partial_subreg_p (mode, inner_mode)
1994 	      && SCALAR_INT_MODE_P (inner_mode))
1995 	    offset = subreg_lowpart_offset (mode, inner_mode);
1996 	  if (debug_p)
1997 	    new_reg = gen_rtx_raw_SUBREG (mode, new_reg, offset);
1998 	  else
1999 	    new_reg = gen_rtx_SUBREG (mode, new_reg, offset);
2000 	}
2001       *loc = new_reg;
2002       return true;
2003     }
2004 
2005   /* Scan all the operand sub-expressions.  */
2006   fmt = GET_RTX_FORMAT (code);
2007   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2008     {
2009       if (fmt[i] == 'e')
2010 	{
2011 	  if (lra_substitute_pseudo (&XEXP (x, i), old_regno,
2012 				     new_reg, subreg_p, debug_p))
2013 	    result = true;
2014 	}
2015       else if (fmt[i] == 'E')
2016 	{
2017 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2018 	    if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno,
2019 				       new_reg, subreg_p, debug_p))
2020 	      result = true;
2021 	}
2022     }
2023   return result;
2024 }
2025 
2026 /* Call lra_substitute_pseudo within an insn.  Try to simplify subreg
2027    of constant if SUBREG_P.  This won't update the insn ptr, just the
2028    contents of the insn.  */
2029 bool
lra_substitute_pseudo_within_insn(rtx_insn * insn,int old_regno,rtx new_reg,bool subreg_p)2030 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno,
2031 				   rtx new_reg, bool subreg_p)
2032 {
2033   rtx loc = insn;
2034   return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p,
2035 				DEBUG_INSN_P (insn));
2036 }
2037 
2038 
2039 
2040 /* Return new register of the same mode as ORIGINAL of class ALL_REGS.
2041    Used in ira_remove_scratches.  */
2042 static rtx
get_scratch_reg(rtx original)2043 get_scratch_reg (rtx original)
2044 {
2045   return lra_create_new_reg (GET_MODE (original), original, ALL_REGS, NULL);
2046 }
2047 
2048 /* Remove all insn scratches in INSN.  */
2049 static void
remove_insn_scratches(rtx_insn * insn)2050 remove_insn_scratches (rtx_insn *insn)
2051 {
2052   if (ira_remove_insn_scratches (insn, true, lra_dump_file, get_scratch_reg))
2053     df_insn_rescan (insn);
2054 }
2055 
2056 /* Remove all insn scratches in the current function.  */
2057 static void
remove_scratches(void)2058 remove_scratches (void)
2059 {
2060   basic_block bb;
2061   rtx_insn *insn;
2062 
2063   FOR_EACH_BB_FN (bb, cfun)
2064     FOR_BB_INSNS (bb, insn)
2065       if (INSN_P (insn))
2066         remove_insn_scratches (insn);
2067 }
2068 
2069 /* Function checks RTL for correctness.	 If FINAL_P is true, it is
2070    done at the end of LRA and the check is more rigorous.  */
2071 static void
check_rtl(bool final_p)2072 check_rtl (bool final_p)
2073 {
2074   basic_block bb;
2075   rtx_insn *insn;
2076 
2077   lra_assert (! final_p || reload_completed);
2078   FOR_EACH_BB_FN (bb, cfun)
2079     FOR_BB_INSNS (bb, insn)
2080     if (NONDEBUG_INSN_P (insn)
2081 	&& GET_CODE (PATTERN (insn)) != USE
2082 	&& GET_CODE (PATTERN (insn)) != CLOBBER
2083 	&& GET_CODE (PATTERN (insn)) != ASM_INPUT)
2084       {
2085 	if (final_p)
2086 	  {
2087 	    extract_constrain_insn (insn);
2088 	    continue;
2089 	  }
2090 	/* LRA code is based on assumption that all addresses can be
2091 	   correctly decomposed.  LRA can generate reloads for
2092 	   decomposable addresses.  The decomposition code checks the
2093 	   correctness of the addresses.  So we don't need to check
2094 	   the addresses here.  Don't call insn_invalid_p here, it can
2095 	   change the code at this stage.  */
2096 	if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2097 	  fatal_insn_not_found (insn);
2098       }
2099 }
2100 
2101 /* Determine if the current function has an exception receiver block
2102    that reaches the exit block via non-exceptional edges  */
2103 static bool
has_nonexceptional_receiver(void)2104 has_nonexceptional_receiver (void)
2105 {
2106   edge e;
2107   edge_iterator ei;
2108   basic_block *tos, *worklist, bb;
2109 
2110   /* If we're not optimizing, then just err on the safe side.  */
2111   if (!optimize)
2112     return true;
2113 
2114   /* First determine which blocks can reach exit via normal paths.  */
2115   tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2116 
2117   FOR_EACH_BB_FN (bb, cfun)
2118     bb->flags &= ~BB_REACHABLE;
2119 
2120   /* Place the exit block on our worklist.  */
2121   EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2122   *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2123 
2124   /* Iterate: find everything reachable from what we've already seen.  */
2125   while (tos != worklist)
2126     {
2127       bb = *--tos;
2128 
2129       FOR_EACH_EDGE (e, ei, bb->preds)
2130 	if (e->flags & EDGE_ABNORMAL)
2131 	  {
2132 	    free (worklist);
2133 	    return true;
2134 	  }
2135 	else
2136 	  {
2137 	    basic_block src = e->src;
2138 
2139 	    if (!(src->flags & BB_REACHABLE))
2140 	      {
2141 		src->flags |= BB_REACHABLE;
2142 		*tos++ = src;
2143 	      }
2144 	  }
2145     }
2146   free (worklist);
2147   /* No exceptional block reached exit unexceptionally.	 */
2148   return false;
2149 }
2150 
2151 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2152    We change pseudos by hard registers without notification of DF and
2153    that can make the notes obsolete.  DF-infrastructure does not deal
2154    with REG_INC notes -- so we should regenerate them here.  */
2155 static void
update_inc_notes(void)2156 update_inc_notes (void)
2157 {
2158   rtx *pnote;
2159   basic_block bb;
2160   rtx_insn *insn;
2161 
2162   FOR_EACH_BB_FN (bb, cfun)
2163     FOR_BB_INSNS (bb, insn)
2164     if (NONDEBUG_INSN_P (insn))
2165       {
2166 	pnote = &REG_NOTES (insn);
2167 	while (*pnote != 0)
2168 	  {
2169 	    if (REG_NOTE_KIND (*pnote) == REG_DEAD
2170                 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2171                 || REG_NOTE_KIND (*pnote) == REG_INC)
2172 	      *pnote = XEXP (*pnote, 1);
2173 	    else
2174 	      pnote = &XEXP (*pnote, 1);
2175 	  }
2176 
2177 	if (AUTO_INC_DEC)
2178 	  add_auto_inc_notes (insn, PATTERN (insn));
2179       }
2180 }
2181 
2182 /* Set to 1 while in lra.  */
2183 int lra_in_progress;
2184 
2185 /* Start of pseudo regnos before the LRA.  */
2186 int lra_new_regno_start;
2187 
2188 /* Start of reload pseudo regnos before the new spill pass.  */
2189 int lra_constraint_new_regno_start;
2190 
2191 /* Avoid spilling pseudos with regno more than the following value if
2192    it is possible.  */
2193 int lra_bad_spill_regno_start;
2194 
2195 /* A pseudo of Pmode.  */
2196 rtx lra_pmode_pseudo;
2197 
2198 /* Inheritance pseudo regnos before the new spill pass.	 */
2199 bitmap_head lra_inheritance_pseudos;
2200 
2201 /* Split regnos before the new spill pass.  */
2202 bitmap_head lra_split_regs;
2203 
2204 /* Reload pseudo regnos before the new assignment pass which still can
2205    be spilled after the assignment pass as memory is also accepted in
2206    insns for the reload pseudos.  */
2207 bitmap_head lra_optional_reload_pseudos;
2208 
2209 /* Pseudo regnos used for subreg reloads before the new assignment
2210    pass.  Such pseudos still can be spilled after the assignment
2211    pass.  */
2212 bitmap_head lra_subreg_reload_pseudos;
2213 
2214 /* File used for output of LRA debug information.  */
2215 FILE *lra_dump_file;
2216 
2217 /* True if we split hard reg after the last constraint sub-pass.  */
2218 bool lra_hard_reg_split_p;
2219 
2220 /* True if we found an asm error.  */
2221 bool lra_asm_error_p;
2222 
2223 /* True if we should try spill into registers of different classes
2224    instead of memory.  */
2225 bool lra_reg_spill_p;
2226 
2227 /* Set up value LRA_REG_SPILL_P.  */
2228 static void
setup_reg_spill_flag(void)2229 setup_reg_spill_flag (void)
2230 {
2231   int cl, mode;
2232 
2233   if (targetm.spill_class != NULL)
2234     for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2235       for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2236 	if (targetm.spill_class ((enum reg_class) cl,
2237 				 (machine_mode) mode) != NO_REGS)
2238 	  {
2239 	    lra_reg_spill_p = true;
2240 	    return;
2241 	  }
2242   lra_reg_spill_p = false;
2243 }
2244 
2245 /* True if the current function is too big to use regular algorithms
2246    in LRA. In other words, we should use simpler and faster algorithms
2247    in LRA.  It also means we should not worry about generation code
2248    for caller saves.  The value is set up in IRA.  */
2249 bool lra_simple_p;
2250 
2251 /* Major LRA entry function.  F is a file should be used to dump LRA
2252    debug info.  */
2253 void
lra(FILE * f)2254 lra (FILE *f)
2255 {
2256   int i;
2257   bool live_p, inserted_p;
2258 
2259   lra_dump_file = f;
2260   lra_asm_error_p = false;
2261   lra_pmode_pseudo = gen_reg_rtx (Pmode);
2262 
2263   timevar_push (TV_LRA);
2264 
2265   /* Make sure that the last insn is a note.  Some subsequent passes
2266      need it.  */
2267   emit_note (NOTE_INSN_DELETED);
2268 
2269   lra_no_alloc_regs = ira_no_alloc_regs;
2270 
2271   init_reg_info ();
2272   expand_reg_info ();
2273 
2274   init_insn_recog_data ();
2275 
2276   /* Some quick check on RTL generated by previous passes.  */
2277   if (flag_checking)
2278     check_rtl (false);
2279 
2280   lra_in_progress = 1;
2281 
2282   lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
2283   lra_assignment_iter = lra_assignment_iter_after_spill = 0;
2284   lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2285   lra_rematerialization_iter = 0;
2286 
2287   setup_reg_spill_flag ();
2288 
2289   /* Function remove_scratches can creates new pseudos for clobbers --
2290      so set up lra_constraint_new_regno_start before its call to
2291      permit changing reg classes for pseudos created by this
2292      simplification.  */
2293   lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2294   lra_bad_spill_regno_start = INT_MAX;
2295   remove_scratches ();
2296 
2297   /* A function that has a non-local label that can reach the exit
2298      block via non-exceptional paths must save all call-saved
2299      registers.	 */
2300   if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2301     crtl->saves_all_registers = 1;
2302 
2303   if (crtl->saves_all_registers)
2304     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2305       if (!crtl->abi->clobbers_full_reg_p (i)
2306 	  && !fixed_regs[i]
2307 	  && !LOCAL_REGNO (i))
2308 	df_set_regs_ever_live (i, true);
2309 
2310   /* We don't DF from now and avoid its using because it is to
2311      expensive when a lot of RTL changes are made.  */
2312   df_set_flags (DF_NO_INSN_RESCAN);
2313   lra_constraint_insn_stack.create (get_max_uid ());
2314   lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2315   bitmap_clear (lra_constraint_insn_stack_bitmap);
2316   lra_live_ranges_init ();
2317   lra_constraints_init ();
2318   lra_curr_reload_num = 0;
2319   push_insns (get_last_insn (), NULL);
2320   /* It is needed for the 1st coalescing.  */
2321   bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2322   bitmap_initialize (&lra_split_regs, &reg_obstack);
2323   bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2324   bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2325   live_p = false;
2326   if (maybe_ne (get_frame_size (), 0) && crtl->stack_alignment_needed)
2327     /* If we have a stack frame, we must align it now.  The stack size
2328        may be a part of the offset computation for register
2329        elimination.  */
2330     assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2331   lra_init_equiv ();
2332   for (;;)
2333     {
2334       for (;;)
2335 	{
2336 	  bool reloads_p = lra_constraints (lra_constraint_iter == 0);
2337 	  /* Constraint transformations may result in that eliminable
2338 	     hard regs become uneliminable and pseudos which use them
2339 	     should be spilled.	 It is better to do it before pseudo
2340 	     assignments.
2341 
2342 	     For example, rs6000 can make
2343 	     RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2344 	     to use a constant pool.  */
2345 	  lra_eliminate (false, false);
2346 	  /* We should try to assign hard registers to scratches even
2347 	     if there were no RTL transformations in lra_constraints.
2348 	     Also we should check IRA assignments on the first
2349 	     iteration as they can be wrong because of early clobbers
2350 	     operands which are ignored in IRA.  */
2351 	  if (! reloads_p && lra_constraint_iter > 1)
2352 	    {
2353 	      /* Stack is not empty here only when there are changes
2354 		 during the elimination sub-pass.  */
2355 	      if (bitmap_empty_p (lra_constraint_insn_stack_bitmap))
2356 		break;
2357 	      else
2358 		/* If there are no reloads but changing due
2359 		   elimination, restart the constraint sub-pass
2360 		   first.  */
2361 		continue;
2362 	    }
2363 	  /* Do inheritance only for regular algorithms.  */
2364 	  if (! lra_simple_p)
2365 	    lra_inheritance ();
2366 	  if (live_p)
2367 	    lra_clear_live_ranges ();
2368 	  bool fails_p;
2369 	  lra_hard_reg_split_p = false;
2370 	  do
2371 	    {
2372 	      /* We need live ranges for lra_assign -- so build them.
2373 		 But don't remove dead insns or change global live
2374 		 info as we can undo inheritance transformations after
2375 		 inheritance pseudo assigning.  */
2376 	      lra_create_live_ranges (true, !lra_simple_p);
2377 	      live_p = true;
2378 	      /* If we don't spill non-reload and non-inheritance
2379 		 pseudos, there is no sense to run memory-memory move
2380 		 coalescing.  If inheritance pseudos were spilled, the
2381 		 memory-memory moves involving them will be removed by
2382 		 pass undoing inheritance.  */
2383 	      if (lra_simple_p)
2384 		lra_assign (fails_p);
2385 	      else
2386 		{
2387 		  bool spill_p = !lra_assign (fails_p);
2388 
2389 		  if (lra_undo_inheritance ())
2390 		    live_p = false;
2391 		  if (spill_p && ! fails_p)
2392 		    {
2393 		      if (! live_p)
2394 			{
2395 			  lra_create_live_ranges (true, true);
2396 			  live_p = true;
2397 			}
2398 		      if (lra_coalesce ())
2399 			live_p = false;
2400 		    }
2401 		  if (! live_p)
2402 		    lra_clear_live_ranges ();
2403 		}
2404 	      if (fails_p)
2405 		{
2406 		  /* It is a very rare case.  It is the last hope to
2407 		     split a hard regno live range for a reload
2408 		     pseudo.  */
2409 		  if (live_p)
2410 		    lra_clear_live_ranges ();
2411 		  live_p = false;
2412 		  if (! lra_split_hard_reg_for ())
2413 		    break;
2414 		  lra_hard_reg_split_p = true;
2415 		}
2416 	    }
2417 	  while (fails_p);
2418 	  if (! live_p) {
2419 	    /* We need the correct reg notes for work of constraint sub-pass.  */
2420 	    lra_create_live_ranges (true, true);
2421 	    live_p = true;
2422 	  }
2423 	}
2424       /* Don't clear optional reloads bitmap until all constraints are
2425 	 satisfied as we need to differ them from regular reloads.  */
2426       bitmap_clear (&lra_optional_reload_pseudos);
2427       bitmap_clear (&lra_subreg_reload_pseudos);
2428       bitmap_clear (&lra_inheritance_pseudos);
2429       bitmap_clear (&lra_split_regs);
2430       if (! live_p)
2431 	{
2432 	  /* We need full live info for spilling pseudos into
2433 	     registers instead of memory.  */
2434 	  lra_create_live_ranges (lra_reg_spill_p, true);
2435 	  live_p = true;
2436 	}
2437       /* We should check necessity for spilling here as the above live
2438 	 range pass can remove spilled pseudos.  */
2439       if (! lra_need_for_spills_p ())
2440 	break;
2441       /* Now we know what pseudos should be spilled.  Try to
2442 	 rematerialize them first.  */
2443       if (lra_remat ())
2444 	{
2445 	  /* We need full live info -- see the comment above.  */
2446 	  lra_create_live_ranges (lra_reg_spill_p, true);
2447 	  live_p = true;
2448 	  if (! lra_need_for_spills_p ())
2449 	    {
2450 	      if (lra_need_for_scratch_reg_p ())
2451 		continue;
2452 	      break;
2453 	    }
2454 	}
2455       lra_spill ();
2456       /* Assignment of stack slots changes elimination offsets for
2457 	 some eliminations.  So update the offsets here.  */
2458       lra_eliminate (false, false);
2459       lra_constraint_new_regno_start = max_reg_num ();
2460       if (lra_bad_spill_regno_start == INT_MAX
2461 	  && lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
2462 	  && lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
2463 	/* After switching off inheritance and rematerialization
2464 	   passes, avoid spilling reload pseudos will be created to
2465 	   prevent LRA cycling in some complicated cases.  */
2466 	lra_bad_spill_regno_start = lra_constraint_new_regno_start;
2467       lra_assignment_iter_after_spill = 0;
2468     }
2469   ira_restore_scratches (lra_dump_file);
2470   lra_eliminate (true, false);
2471   lra_final_code_change ();
2472   lra_in_progress = 0;
2473   if (live_p)
2474     lra_clear_live_ranges ();
2475   lra_live_ranges_finish ();
2476   lra_constraints_finish ();
2477   finish_reg_info ();
2478   sbitmap_free (lra_constraint_insn_stack_bitmap);
2479   lra_constraint_insn_stack.release ();
2480   finish_insn_recog_data ();
2481   regstat_free_n_sets_and_refs ();
2482   regstat_free_ri ();
2483   reload_completed = 1;
2484   update_inc_notes ();
2485 
2486   inserted_p = fixup_abnormal_edges ();
2487 
2488   /* We've possibly turned single trapping insn into multiple ones.  */
2489   if (cfun->can_throw_non_call_exceptions)
2490     {
2491       auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2492       bitmap_ones (blocks);
2493       find_many_sub_basic_blocks (blocks);
2494     }
2495 
2496   if (inserted_p)
2497     commit_edge_insertions ();
2498 
2499   /* Replacing pseudos with their memory equivalents might have
2500      created shared rtx.  Subsequent passes would get confused
2501      by this, so unshare everything here.  */
2502   unshare_all_rtl_again (get_insns ());
2503 
2504   if (flag_checking)
2505     check_rtl (true);
2506 
2507   timevar_pop (TV_LRA);
2508 }
2509 
2510 /* Called once per compiler to initialize LRA data once.  */
2511 void
lra_init_once(void)2512 lra_init_once (void)
2513 {
2514   init_insn_code_data_once ();
2515 }
2516 
2517 /* Called once per compiler to finish LRA data which are initialize
2518    once.  */
2519 void
lra_finish_once(void)2520 lra_finish_once (void)
2521 {
2522   finish_insn_code_data_once ();
2523 }
2524