1 /* Passes for transactional memory support.
2    Copyright (C) 2008-2021 Free Software Foundation, Inc.
3    Contributed by Richard Henderson <rth@redhat.com>
4    and Aldy Hernandez <aldyh@redhat.com>.
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify it under
9    the terms of the GNU General Public License as published by the Free
10    Software Foundation; either version 3, or (at your option) any later
11    version.
12 
13    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14    WARRANTY; without even the implied warranty of MERCHANTABILITY or
15    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16    for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "cgraph.h"
34 #include "gimple-pretty-print.h"
35 #include "diagnostic-core.h"
36 #include "fold-const.h"
37 #include "tree-eh.h"
38 #include "calls.h"
39 #include "gimplify.h"
40 #include "gimple-iterator.h"
41 #include "gimplify-me.h"
42 #include "gimple-walk.h"
43 #include "tree-cfg.h"
44 #include "tree-into-ssa.h"
45 #include "tree-inline.h"
46 #include "demangle.h"
47 #include "output.h"
48 #include "trans-mem.h"
49 #include "langhooks.h"
50 #include "cfgloop.h"
51 #include "tree-ssa-address.h"
52 #include "stringpool.h"
53 #include "attribs.h"
54 #include "alloc-pool.h"
55 #include "symbol-summary.h"
56 #include "symtab-thunks.h"
57 
58 #define A_RUNINSTRUMENTEDCODE	0x0001
59 #define A_RUNUNINSTRUMENTEDCODE	0x0002
60 #define A_SAVELIVEVARIABLES	0x0004
61 #define A_RESTORELIVEVARIABLES	0x0008
62 #define A_ABORTTRANSACTION	0x0010
63 
64 #define AR_USERABORT		0x0001
65 #define AR_USERRETRY		0x0002
66 #define AR_TMCONFLICT		0x0004
67 #define AR_EXCEPTIONBLOCKABORT	0x0008
68 #define AR_OUTERABORT		0x0010
69 
70 #define MODE_SERIALIRREVOCABLE	0x0000
71 
72 
73 /* The representation of a transaction changes several times during the
74    lowering process.  In the beginning, in the front-end we have the
75    GENERIC tree TRANSACTION_EXPR.  For example,
76 
77 	__transaction {
78 	  local++;
79 	  if (++global == 10)
80 	    __tm_abort;
81 	}
82 
83   During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
84   trivially replaced with a GIMPLE_TRANSACTION node.
85 
86   During pass_lower_tm, we examine the body of transactions looking
87   for aborts.  Transactions that do not contain an abort may be
88   merged into an outer transaction.  We also add a TRY-FINALLY node
89   to arrange for the transaction to be committed on any exit.
90 
91   [??? Think about how this arrangement affects throw-with-commit
92   and throw-with-abort operations.  In this case we want the TRY to
93   handle gotos, but not to catch any exceptions because the transaction
94   will already be closed.]
95 
96 	GIMPLE_TRANSACTION [label=NULL] {
97 	  try {
98 	    local = local + 1;
99 	    t0 = global;
100 	    t1 = t0 + 1;
101 	    global = t1;
102 	    if (t1 == 10)
103 	      __builtin___tm_abort ();
104 	  } finally {
105 	    __builtin___tm_commit ();
106 	  }
107 	}
108 
109   During pass_lower_eh, we create EH regions for the transactions,
110   intermixed with the regular EH stuff.  This gives us a nice persistent
111   mapping (all the way through rtl) from transactional memory operation
112   back to the transaction, which allows us to get the abnormal edges
113   correct to model transaction aborts and restarts:
114 
115 	GIMPLE_TRANSACTION [label=over]
116 	local = local + 1;
117 	t0 = global;
118 	t1 = t0 + 1;
119 	global = t1;
120 	if (t1 == 10)
121 	  __builtin___tm_abort ();
122 	__builtin___tm_commit ();
123 	over:
124 
125   This is the end of all_lowering_passes, and so is what is present
126   during the IPA passes, and through all of the optimization passes.
127 
128   During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
129   functions and mark functions for cloning.
130 
131   At the end of gimple optimization, before exiting SSA form,
132   pass_tm_edges replaces statements that perform transactional
133   memory operations with the appropriate TM builtins, and swap
134   out function calls with their transactional clones.  At this
135   point we introduce the abnormal transaction restart edges and
136   complete lowering of the GIMPLE_TRANSACTION node.
137 
138 	x = __builtin___tm_start (MAY_ABORT);
139 	eh_label:
140 	if (x & abort_transaction)
141 	  goto over;
142 	local = local + 1;
143 	t0 = __builtin___tm_load (global);
144 	t1 = t0 + 1;
145 	__builtin___tm_store (&global, t1);
146 	if (t1 == 10)
147 	  __builtin___tm_abort ();
148 	__builtin___tm_commit ();
149 	over:
150 */
151 
152 static void *expand_regions (struct tm_region *,
153 			     void *(*callback)(struct tm_region *, void *),
154 			     void *, bool);
155 
156 
157 /* Return the attributes we want to examine for X, or NULL if it's not
158    something we examine.  We look at function types, but allow pointers
159    to function types and function decls and peek through.  */
160 
161 static tree
get_attrs_for(const_tree x)162 get_attrs_for (const_tree x)
163 {
164   if (x == NULL_TREE)
165     return NULL_TREE;
166 
167   switch (TREE_CODE (x))
168     {
169     case FUNCTION_DECL:
170       return TYPE_ATTRIBUTES (TREE_TYPE (x));
171 
172     default:
173       if (TYPE_P (x))
174 	return NULL_TREE;
175       x = TREE_TYPE (x);
176       if (TREE_CODE (x) != POINTER_TYPE)
177 	return NULL_TREE;
178       /* FALLTHRU */
179 
180     case POINTER_TYPE:
181       x = TREE_TYPE (x);
182       if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
183 	return NULL_TREE;
184       /* FALLTHRU */
185 
186     case FUNCTION_TYPE:
187     case METHOD_TYPE:
188       return TYPE_ATTRIBUTES (x);
189     }
190 }
191 
192 /* Return true if X has been marked TM_PURE.  */
193 
194 bool
is_tm_pure(const_tree x)195 is_tm_pure (const_tree x)
196 {
197   unsigned flags;
198 
199   switch (TREE_CODE (x))
200     {
201     case FUNCTION_DECL:
202     case FUNCTION_TYPE:
203     case METHOD_TYPE:
204       break;
205 
206     default:
207       if (TYPE_P (x))
208 	return false;
209       x = TREE_TYPE (x);
210       if (TREE_CODE (x) != POINTER_TYPE)
211 	return false;
212       /* FALLTHRU */
213 
214     case POINTER_TYPE:
215       x = TREE_TYPE (x);
216       if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
217 	return false;
218       break;
219     }
220 
221   flags = flags_from_decl_or_type (x);
222   return (flags & ECF_TM_PURE) != 0;
223 }
224 
225 /* Return true if X has been marked TM_IRREVOCABLE.  */
226 
227 static bool
is_tm_irrevocable(tree x)228 is_tm_irrevocable (tree x)
229 {
230   tree attrs = get_attrs_for (x);
231 
232   if (attrs && lookup_attribute ("transaction_unsafe", attrs))
233     return true;
234 
235   /* A call to the irrevocable builtin is by definition,
236      irrevocable.  */
237   if (TREE_CODE (x) == ADDR_EXPR)
238     x = TREE_OPERAND (x, 0);
239   if (TREE_CODE (x) == FUNCTION_DECL
240       && fndecl_built_in_p (x, BUILT_IN_TM_IRREVOCABLE))
241     return true;
242 
243   return false;
244 }
245 
246 /* Return true if X has been marked TM_SAFE.  */
247 
248 bool
is_tm_safe(const_tree x)249 is_tm_safe (const_tree x)
250 {
251   if (flag_tm)
252     {
253       tree attrs = get_attrs_for (x);
254       if (attrs)
255 	{
256 	  if (lookup_attribute ("transaction_safe", attrs))
257 	    return true;
258 	  if (lookup_attribute ("transaction_may_cancel_outer", attrs))
259 	    return true;
260 	}
261     }
262   return false;
263 }
264 
265 /* Return true if CALL is const, or tm_pure.  */
266 
267 static bool
is_tm_pure_call(gimple * call)268 is_tm_pure_call (gimple *call)
269 {
270   return (gimple_call_flags (call) & (ECF_CONST | ECF_TM_PURE)) != 0;
271 }
272 
273 /* Return true if X has been marked TM_CALLABLE.  */
274 
275 static bool
is_tm_callable(tree x)276 is_tm_callable (tree x)
277 {
278   tree attrs = get_attrs_for (x);
279   if (attrs)
280     {
281       if (lookup_attribute ("transaction_callable", attrs))
282 	return true;
283       if (lookup_attribute ("transaction_safe", attrs))
284 	return true;
285       if (lookup_attribute ("transaction_may_cancel_outer", attrs))
286 	return true;
287     }
288   return false;
289 }
290 
291 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER.  */
292 
293 bool
is_tm_may_cancel_outer(tree x)294 is_tm_may_cancel_outer (tree x)
295 {
296   tree attrs = get_attrs_for (x);
297   if (attrs)
298     return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
299   return false;
300 }
301 
302 /* Return true for built in functions that "end" a transaction.   */
303 
304 bool
is_tm_ending_fndecl(tree fndecl)305 is_tm_ending_fndecl (tree fndecl)
306 {
307   if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
308     switch (DECL_FUNCTION_CODE (fndecl))
309       {
310       case BUILT_IN_TM_COMMIT:
311       case BUILT_IN_TM_COMMIT_EH:
312       case BUILT_IN_TM_ABORT:
313       case BUILT_IN_TM_IRREVOCABLE:
314 	return true;
315       default:
316 	break;
317       }
318 
319   return false;
320 }
321 
322 /* Return true if STMT is a built in function call that "ends" a
323    transaction.  */
324 
325 bool
is_tm_ending(gimple * stmt)326 is_tm_ending (gimple *stmt)
327 {
328   tree fndecl;
329 
330   if (gimple_code (stmt) != GIMPLE_CALL)
331     return false;
332 
333   fndecl = gimple_call_fndecl (stmt);
334   return (fndecl != NULL_TREE
335 	  && is_tm_ending_fndecl (fndecl));
336 }
337 
338 /* Return true if STMT is a TM load.  */
339 
340 static bool
is_tm_load(gimple * stmt)341 is_tm_load (gimple *stmt)
342 {
343   tree fndecl;
344 
345   if (gimple_code (stmt) != GIMPLE_CALL)
346     return false;
347 
348   fndecl = gimple_call_fndecl (stmt);
349   return (fndecl
350 	  && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
351 	  && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
352 }
353 
354 /* Same as above, but for simple TM loads, that is, not the
355    after-write, after-read, etc optimized variants.  */
356 
357 static bool
is_tm_simple_load(gimple * stmt)358 is_tm_simple_load (gimple *stmt)
359 {
360   tree fndecl;
361 
362   if (gimple_code (stmt) != GIMPLE_CALL)
363     return false;
364 
365   fndecl = gimple_call_fndecl (stmt);
366   if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
367     {
368       enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
369       return (fcode == BUILT_IN_TM_LOAD_1
370 	      || fcode == BUILT_IN_TM_LOAD_2
371 	      || fcode == BUILT_IN_TM_LOAD_4
372 	      || fcode == BUILT_IN_TM_LOAD_8
373 	      || fcode == BUILT_IN_TM_LOAD_FLOAT
374 	      || fcode == BUILT_IN_TM_LOAD_DOUBLE
375 	      || fcode == BUILT_IN_TM_LOAD_LDOUBLE
376 	      || fcode == BUILT_IN_TM_LOAD_M64
377 	      || fcode == BUILT_IN_TM_LOAD_M128
378 	      || fcode == BUILT_IN_TM_LOAD_M256);
379     }
380   return false;
381 }
382 
383 /* Return true if STMT is a TM store.  */
384 
385 static bool
is_tm_store(gimple * stmt)386 is_tm_store (gimple *stmt)
387 {
388   tree fndecl;
389 
390   if (gimple_code (stmt) != GIMPLE_CALL)
391     return false;
392 
393   fndecl = gimple_call_fndecl (stmt);
394   return (fndecl
395 	  && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
396 	  && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
397 }
398 
399 /* Same as above, but for simple TM stores, that is, not the
400    after-write, after-read, etc optimized variants.  */
401 
402 static bool
is_tm_simple_store(gimple * stmt)403 is_tm_simple_store (gimple *stmt)
404 {
405   tree fndecl;
406 
407   if (gimple_code (stmt) != GIMPLE_CALL)
408     return false;
409 
410   fndecl = gimple_call_fndecl (stmt);
411   if (fndecl
412       && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
413     {
414       enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
415       return (fcode == BUILT_IN_TM_STORE_1
416 	      || fcode == BUILT_IN_TM_STORE_2
417 	      || fcode == BUILT_IN_TM_STORE_4
418 	      || fcode == BUILT_IN_TM_STORE_8
419 	      || fcode == BUILT_IN_TM_STORE_FLOAT
420 	      || fcode == BUILT_IN_TM_STORE_DOUBLE
421 	      || fcode == BUILT_IN_TM_STORE_LDOUBLE
422 	      || fcode == BUILT_IN_TM_STORE_M64
423 	      || fcode == BUILT_IN_TM_STORE_M128
424 	      || fcode == BUILT_IN_TM_STORE_M256);
425     }
426   return false;
427 }
428 
429 /* Return true if FNDECL is BUILT_IN_TM_ABORT.  */
430 
431 static bool
is_tm_abort(tree fndecl)432 is_tm_abort (tree fndecl)
433 {
434   return (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_TM_ABORT));
435 }
436 
437 /* Build a GENERIC tree for a user abort.  This is called by front ends
438    while transforming the __tm_abort statement.  */
439 
440 tree
build_tm_abort_call(location_t loc,bool is_outer)441 build_tm_abort_call (location_t loc, bool is_outer)
442 {
443   return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
444 			      build_int_cst (integer_type_node,
445 					     AR_USERABORT
446 					     | (is_outer ? AR_OUTERABORT : 0)));
447 }
448 
449 /* Map for arbitrary function replacement under TM, as created
450    by the tm_wrap attribute.  */
451 
452 struct tm_wrapper_hasher : ggc_cache_ptr_hash<tree_map>
453 {
hashtm_wrapper_hasher454   static inline hashval_t hash (tree_map *m) { return m->hash; }
455   static inline bool
equaltm_wrapper_hasher456   equal (tree_map *a, tree_map *b)
457   {
458     return a->base.from == b->base.from;
459   }
460 
461   static int
keep_cache_entrytm_wrapper_hasher462   keep_cache_entry (tree_map *&m)
463   {
464     return ggc_marked_p (m->base.from);
465   }
466 };
467 
468 static GTY((cache)) hash_table<tm_wrapper_hasher> *tm_wrap_map;
469 
470 void
record_tm_replacement(tree from,tree to)471 record_tm_replacement (tree from, tree to)
472 {
473   struct tree_map **slot, *h;
474 
475   /* Do not inline wrapper functions that will get replaced in the TM
476      pass.
477 
478      Suppose you have foo() that will get replaced into tmfoo().  Make
479      sure the inliner doesn't try to outsmart us and inline foo()
480      before we get a chance to do the TM replacement.  */
481   DECL_UNINLINABLE (from) = 1;
482 
483   if (tm_wrap_map == NULL)
484     tm_wrap_map = hash_table<tm_wrapper_hasher>::create_ggc (32);
485 
486   h = ggc_alloc<tree_map> ();
487   h->hash = htab_hash_pointer (from);
488   h->base.from = from;
489   h->to = to;
490 
491   slot = tm_wrap_map->find_slot_with_hash (h, h->hash, INSERT);
492   *slot = h;
493 }
494 
495 /* Return a TM-aware replacement function for DECL.  */
496 
497 static tree
find_tm_replacement_function(tree fndecl)498 find_tm_replacement_function (tree fndecl)
499 {
500   if (tm_wrap_map)
501     {
502       struct tree_map *h, in;
503 
504       in.base.from = fndecl;
505       in.hash = htab_hash_pointer (fndecl);
506       h = tm_wrap_map->find_with_hash (&in, in.hash);
507       if (h)
508 	return h->to;
509     }
510 
511   /* ??? We may well want TM versions of most of the common <string.h>
512      functions.  For now, we've already these two defined.  */
513   /* Adjust expand_call_tm() attributes as necessary for the cases
514      handled here:  */
515   if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
516     switch (DECL_FUNCTION_CODE (fndecl))
517       {
518       case BUILT_IN_MEMCPY:
519 	return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
520       case BUILT_IN_MEMMOVE:
521 	return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
522       case BUILT_IN_MEMSET:
523 	return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
524       default:
525 	return NULL;
526       }
527 
528   return NULL;
529 }
530 
531 /* When appropriate, record TM replacement for memory allocation functions.
532 
533    FROM is the FNDECL to wrap.  */
534 void
tm_malloc_replacement(tree from)535 tm_malloc_replacement (tree from)
536 {
537   const char *str;
538   tree to;
539 
540   if (TREE_CODE (from) != FUNCTION_DECL)
541     return;
542 
543   /* If we have a previous replacement, the user must be explicitly
544      wrapping malloc/calloc/free.  They better know what they're
545      doing... */
546   if (find_tm_replacement_function (from))
547     return;
548 
549   str = IDENTIFIER_POINTER (DECL_NAME (from));
550 
551   if (!strcmp (str, "malloc"))
552     to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
553   else if (!strcmp (str, "calloc"))
554     to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
555   else if (!strcmp (str, "free"))
556     to = builtin_decl_explicit (BUILT_IN_TM_FREE);
557   else
558     return;
559 
560   TREE_NOTHROW (to) = 0;
561 
562   record_tm_replacement (from, to);
563 }
564 
565 /* Diagnostics for tm_safe functions/regions.  Called by the front end
566    once we've lowered the function to high-gimple.  */
567 
568 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
569    Process exactly one statement.  WI->INFO is set to non-null when in
570    the context of a tm_safe function, and null for a __transaction block.  */
571 
572 #define DIAG_TM_OUTER		1
573 #define DIAG_TM_SAFE		2
574 #define DIAG_TM_RELAXED		4
575 
576 struct diagnose_tm
577 {
578   unsigned int summary_flags : 8;
579   unsigned int block_flags : 8;
580   unsigned int func_flags : 8;
581   unsigned int saw_volatile : 1;
582   gimple *stmt;
583 };
584 
585 /* Return true if T is a volatile lvalue of some kind.  */
586 
587 static bool
volatile_lvalue_p(tree t)588 volatile_lvalue_p (tree t)
589 {
590   return ((SSA_VAR_P (t) || REFERENCE_CLASS_P (t))
591 	  && TREE_THIS_VOLATILE (TREE_TYPE (t)));
592 }
593 
594 /* Tree callback function for diagnose_tm pass.  */
595 
596 static tree
diagnose_tm_1_op(tree * tp,int * walk_subtrees,void * data)597 diagnose_tm_1_op (tree *tp, int *walk_subtrees, void *data)
598 {
599   struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
600   struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
601 
602   if (TYPE_P (*tp))
603     *walk_subtrees = false;
604   else if (volatile_lvalue_p (*tp)
605 	   && !d->saw_volatile)
606     {
607       d->saw_volatile = 1;
608       if (d->block_flags & DIAG_TM_SAFE)
609 	error_at (gimple_location (d->stmt),
610 		  "invalid use of volatile lvalue inside transaction");
611       else if (d->func_flags & DIAG_TM_SAFE)
612 	error_at (gimple_location (d->stmt),
613 		  "invalid use of volatile lvalue inside %<transaction_safe%> "
614 		  "function");
615     }
616 
617   return NULL_TREE;
618 }
619 
620 static inline bool
is_tm_safe_or_pure(const_tree x)621 is_tm_safe_or_pure (const_tree x)
622 {
623   return is_tm_safe (x) || is_tm_pure (x);
624 }
625 
626 static tree
diagnose_tm_1(gimple_stmt_iterator * gsi,bool * handled_ops_p,struct walk_stmt_info * wi)627 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
628 		    struct walk_stmt_info *wi)
629 {
630   gimple *stmt = gsi_stmt (*gsi);
631   struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
632 
633   /* Save stmt for use in leaf analysis.  */
634   d->stmt = stmt;
635 
636   switch (gimple_code (stmt))
637     {
638     case GIMPLE_CALL:
639       {
640 	tree fn = gimple_call_fn (stmt);
641 
642 	if ((d->summary_flags & DIAG_TM_OUTER) == 0
643 	    && is_tm_may_cancel_outer (fn))
644 	  error_at (gimple_location (stmt),
645 		    "%<transaction_may_cancel_outer%> function call not within"
646 		    " outer transaction or %<transaction_may_cancel_outer%>");
647 
648 	if (d->summary_flags & DIAG_TM_SAFE)
649 	  {
650 	    bool is_safe, direct_call_p;
651 	    tree replacement;
652 
653 	    if (TREE_CODE (fn) == ADDR_EXPR
654 		&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
655 	      {
656 		direct_call_p = true;
657 		replacement = TREE_OPERAND (fn, 0);
658 		replacement = find_tm_replacement_function (replacement);
659 		if (replacement)
660 		  fn = replacement;
661 	      }
662 	    else
663 	      {
664 		direct_call_p = false;
665 		replacement = NULL_TREE;
666 	      }
667 
668 	    if (is_tm_safe_or_pure (fn))
669 	      is_safe = true;
670 	    else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
671 	      {
672 		/* A function explicitly marked transaction_callable as
673 		   opposed to transaction_safe is being defined to be
674 		   unsafe as part of its ABI, regardless of its contents.  */
675 		is_safe = false;
676 	      }
677 	    else if (direct_call_p)
678 	      {
679 		if (IS_TYPE_OR_DECL_P (fn)
680 		    && flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
681 		  is_safe = true;
682 		else if (replacement)
683 		  {
684 		    /* ??? At present we've been considering replacements
685 		       merely transaction_callable, and therefore might
686 		       enter irrevocable.  The tm_wrap attribute has not
687 		       yet made it into the new language spec.  */
688 		    is_safe = false;
689 		  }
690 		else
691 		  {
692 		    /* ??? Diagnostics for unmarked direct calls moved into
693 		       the IPA pass.  Section 3.2 of the spec details how
694 		       functions not marked should be considered "implicitly
695 		       safe" based on having examined the function body.  */
696 		    is_safe = true;
697 		  }
698 	      }
699 	    else
700 	      {
701 		/* An unmarked indirect call.  Consider it unsafe even
702 		   though optimization may yet figure out how to inline.  */
703 		is_safe = false;
704 	      }
705 
706 	    if (!is_safe)
707 	      {
708 		if (TREE_CODE (fn) == ADDR_EXPR)
709 		  fn = TREE_OPERAND (fn, 0);
710 		if (d->block_flags & DIAG_TM_SAFE)
711 		  {
712 		    if (direct_call_p)
713 		      error_at (gimple_location (stmt),
714 				"unsafe function call %qD within "
715 				"atomic transaction", fn);
716 		    else
717 		      {
718 			if ((!DECL_P (fn) || DECL_NAME (fn))
719 			    && TREE_CODE (fn) != SSA_NAME)
720 			  error_at (gimple_location (stmt),
721 				    "unsafe function call %qE within "
722 				    "atomic transaction", fn);
723 			else
724 			  error_at (gimple_location (stmt),
725 				    "unsafe indirect function call within "
726 				    "atomic transaction");
727 		      }
728 		  }
729 		else
730 		  {
731 		    if (direct_call_p)
732 		      error_at (gimple_location (stmt),
733 				"unsafe function call %qD within "
734 				"%<transaction_safe%> function", fn);
735 		    else
736 		      {
737 			if ((!DECL_P (fn) || DECL_NAME (fn))
738 			    && TREE_CODE (fn) != SSA_NAME)
739 			  error_at (gimple_location (stmt),
740 				    "unsafe function call %qE within "
741 				    "%<transaction_safe%> function", fn);
742 			else
743 			  error_at (gimple_location (stmt),
744 				    "unsafe indirect function call within "
745 				    "%<transaction_safe%> function");
746 		      }
747 		  }
748 	      }
749 	  }
750       }
751       break;
752 
753     case GIMPLE_ASM:
754       /* ??? We ought to come up with a way to add attributes to
755 	 asm statements, and then add "transaction_safe" to it.
756 	 Either that or get the language spec to resurrect __tm_waiver.  */
757       if (d->block_flags & DIAG_TM_SAFE)
758 	error_at (gimple_location (stmt),
759 		  "%<asm%> not allowed in atomic transaction");
760       else if (d->func_flags & DIAG_TM_SAFE)
761 	error_at (gimple_location (stmt),
762 		  "%<asm%> not allowed in %<transaction_safe%> function");
763       break;
764 
765     case GIMPLE_TRANSACTION:
766       {
767 	gtransaction *trans_stmt = as_a <gtransaction *> (stmt);
768 	unsigned char inner_flags = DIAG_TM_SAFE;
769 
770 	if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_RELAXED)
771 	  {
772 	    if (d->block_flags & DIAG_TM_SAFE)
773 	      error_at (gimple_location (stmt),
774 			"relaxed transaction in atomic transaction");
775 	    else if (d->func_flags & DIAG_TM_SAFE)
776 	      error_at (gimple_location (stmt),
777 			"relaxed transaction in %<transaction_safe%> function");
778 	    inner_flags = DIAG_TM_RELAXED;
779 	  }
780 	else if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_OUTER)
781 	  {
782 	    if (d->block_flags)
783 	      error_at (gimple_location (stmt),
784 			"outer transaction in transaction");
785 	    else if (d->func_flags & DIAG_TM_OUTER)
786 	      error_at (gimple_location (stmt),
787 			"outer transaction in "
788 			"%<transaction_may_cancel_outer%> function");
789 	    else if (d->func_flags & DIAG_TM_SAFE)
790 	      error_at (gimple_location (stmt),
791 			"outer transaction in %<transaction_safe%> function");
792 	    inner_flags |= DIAG_TM_OUTER;
793 	  }
794 
795 	*handled_ops_p = true;
796 	if (gimple_transaction_body (trans_stmt))
797 	  {
798 	    struct walk_stmt_info wi_inner;
799 	    struct diagnose_tm d_inner;
800 
801 	    memset (&d_inner, 0, sizeof (d_inner));
802 	    d_inner.func_flags = d->func_flags;
803 	    d_inner.block_flags = d->block_flags | inner_flags;
804 	    d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
805 
806 	    memset (&wi_inner, 0, sizeof (wi_inner));
807 	    wi_inner.info = &d_inner;
808 
809 	    walk_gimple_seq (gimple_transaction_body (trans_stmt),
810 			     diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
811 	  }
812       }
813       break;
814 
815     default:
816       break;
817     }
818 
819   return NULL_TREE;
820 }
821 
822 static unsigned int
diagnose_tm_blocks(void)823 diagnose_tm_blocks (void)
824 {
825   struct walk_stmt_info wi;
826   struct diagnose_tm d;
827 
828   memset (&d, 0, sizeof (d));
829   if (is_tm_may_cancel_outer (current_function_decl))
830     d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
831   else if (is_tm_safe (current_function_decl))
832     d.func_flags = DIAG_TM_SAFE;
833   d.summary_flags = d.func_flags;
834 
835   memset (&wi, 0, sizeof (wi));
836   wi.info = &d;
837 
838   walk_gimple_seq (gimple_body (current_function_decl),
839 		   diagnose_tm_1, diagnose_tm_1_op, &wi);
840 
841   return 0;
842 }
843 
844 namespace {
845 
846 const pass_data pass_data_diagnose_tm_blocks =
847 {
848   GIMPLE_PASS, /* type */
849   "*diagnose_tm_blocks", /* name */
850   OPTGROUP_NONE, /* optinfo_flags */
851   TV_TRANS_MEM, /* tv_id */
852   PROP_gimple_any, /* properties_required */
853   0, /* properties_provided */
854   0, /* properties_destroyed */
855   0, /* todo_flags_start */
856   0, /* todo_flags_finish */
857 };
858 
859 class pass_diagnose_tm_blocks : public gimple_opt_pass
860 {
861 public:
pass_diagnose_tm_blocks(gcc::context * ctxt)862   pass_diagnose_tm_blocks (gcc::context *ctxt)
863     : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
864   {}
865 
866   /* opt_pass methods: */
gate(function *)867   virtual bool gate (function *) { return flag_tm; }
execute(function *)868   virtual unsigned int execute (function *) { return diagnose_tm_blocks (); }
869 
870 }; // class pass_diagnose_tm_blocks
871 
872 } // anon namespace
873 
874 gimple_opt_pass *
make_pass_diagnose_tm_blocks(gcc::context * ctxt)875 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
876 {
877   return new pass_diagnose_tm_blocks (ctxt);
878 }
879 
880 /* Instead of instrumenting thread private memory, we save the
881    addresses in a log which we later use to save/restore the addresses
882    upon transaction start/restart.
883 
884    The log is keyed by address, where each element contains individual
885    statements among different code paths that perform the store.
886 
887    This log is later used to generate either plain save/restore of the
888    addresses upon transaction start/restart, or calls to the ITM_L*
889    logging functions.
890 
891    So for something like:
892 
893        struct large { int x[1000]; };
894        struct large lala = { 0 };
895        __transaction {
896 	 lala.x[i] = 123;
897 	 ...
898        }
899 
900    We can either save/restore:
901 
902        lala = { 0 };
903        trxn = _ITM_startTransaction ();
904        if (trxn & a_saveLiveVariables)
905 	 tmp_lala1 = lala.x[i];
906        else if (a & a_restoreLiveVariables)
907 	 lala.x[i] = tmp_lala1;
908 
909    or use the logging functions:
910 
911        lala = { 0 };
912        trxn = _ITM_startTransaction ();
913        _ITM_LU4 (&lala.x[i]);
914 
915    Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
916    far up the dominator tree to shadow all of the writes to a given
917    location (thus reducing the total number of logging calls), but not
918    so high as to be called on a path that does not perform a
919    write.  */
920 
921 /* One individual log entry.  We may have multiple statements for the
922    same location if neither dominate each other (on different
923    execution paths).  */
924 struct tm_log_entry
925 {
926   /* Address to save.  */
927   tree addr;
928   /* Entry block for the transaction this address occurs in.  */
929   basic_block entry_block;
930   /* Dominating statements the store occurs in.  */
931   vec<gimple *> stmts;
932   /* Initially, while we are building the log, we place a nonzero
933      value here to mean that this address *will* be saved with a
934      save/restore sequence.  Later, when generating the save sequence
935      we place the SSA temp generated here.  */
936   tree save_var;
937 };
938 
939 
940 /* Log entry hashtable helpers.  */
941 
942 struct log_entry_hasher : pointer_hash <tm_log_entry>
943 {
944   static inline hashval_t hash (const tm_log_entry *);
945   static inline bool equal (const tm_log_entry *, const tm_log_entry *);
946   static inline void remove (tm_log_entry *);
947 };
948 
949 /* Htab support.  Return hash value for a `tm_log_entry'.  */
950 inline hashval_t
hash(const tm_log_entry * log)951 log_entry_hasher::hash (const tm_log_entry *log)
952 {
953   return iterative_hash_expr (log->addr, 0);
954 }
955 
956 /* Htab support.  Return true if two log entries are the same.  */
957 inline bool
equal(const tm_log_entry * log1,const tm_log_entry * log2)958 log_entry_hasher::equal (const tm_log_entry *log1, const tm_log_entry *log2)
959 {
960   /* FIXME:
961 
962      rth: I suggest that we get rid of the component refs etc.
963      I.e. resolve the reference to base + offset.
964 
965      We may need to actually finish a merge with mainline for this,
966      since we'd like to be presented with Richi's MEM_REF_EXPRs more
967      often than not.  But in the meantime your tm_log_entry could save
968      the results of get_inner_reference.
969 
970      See: g++.dg/tm/pr46653.C
971   */
972 
973   /* Special case plain equality because operand_equal_p() below will
974      return FALSE if the addresses are equal but they have
975      side-effects (e.g. a volatile address).  */
976   if (log1->addr == log2->addr)
977     return true;
978 
979   return operand_equal_p (log1->addr, log2->addr, 0);
980 }
981 
982 /* Htab support.  Free one tm_log_entry.  */
983 inline void
remove(tm_log_entry * lp)984 log_entry_hasher::remove (tm_log_entry *lp)
985 {
986   lp->stmts.release ();
987   free (lp);
988 }
989 
990 
991 /* The actual log.  */
992 static hash_table<log_entry_hasher> *tm_log;
993 
994 /* Addresses to log with a save/restore sequence.  These should be in
995    dominator order.  */
996 static vec<tree> tm_log_save_addresses;
997 
998 enum thread_memory_type
999   {
1000     mem_non_local = 0,
1001     mem_thread_local,
1002     mem_transaction_local,
1003     mem_max
1004   };
1005 
1006 struct tm_new_mem_map
1007 {
1008   /* SSA_NAME being dereferenced.  */
1009   tree val;
1010   enum thread_memory_type local_new_memory;
1011 };
1012 
1013 /* Hashtable helpers.  */
1014 
1015 struct tm_mem_map_hasher : free_ptr_hash <tm_new_mem_map>
1016 {
1017   static inline hashval_t hash (const tm_new_mem_map *);
1018   static inline bool equal (const tm_new_mem_map *, const tm_new_mem_map *);
1019 };
1020 
1021 inline hashval_t
hash(const tm_new_mem_map * v)1022 tm_mem_map_hasher::hash (const tm_new_mem_map *v)
1023 {
1024   return (intptr_t)v->val >> 4;
1025 }
1026 
1027 inline bool
equal(const tm_new_mem_map * v,const tm_new_mem_map * c)1028 tm_mem_map_hasher::equal (const tm_new_mem_map *v, const tm_new_mem_map *c)
1029 {
1030   return v->val == c->val;
1031 }
1032 
1033 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1034    of memory (malloc, alloc, etc).  */
1035 static hash_table<tm_mem_map_hasher> *tm_new_mem_hash;
1036 
1037 /* Initialize logging data structures.  */
1038 static void
tm_log_init(void)1039 tm_log_init (void)
1040 {
1041   tm_log = new hash_table<log_entry_hasher> (10);
1042   tm_new_mem_hash = new hash_table<tm_mem_map_hasher> (5);
1043   tm_log_save_addresses.create (5);
1044 }
1045 
1046 /* Free logging data structures.  */
1047 static void
tm_log_delete(void)1048 tm_log_delete (void)
1049 {
1050   delete tm_log;
1051   tm_log = NULL;
1052   delete tm_new_mem_hash;
1053   tm_new_mem_hash = NULL;
1054   tm_log_save_addresses.release ();
1055 }
1056 
1057 /* Return true if MEM is a transaction invariant memory for the TM
1058    region starting at REGION_ENTRY_BLOCK.  */
1059 static bool
transaction_invariant_address_p(const_tree mem,basic_block region_entry_block)1060 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1061 {
1062   if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1063       && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1064     {
1065       basic_block def_bb;
1066 
1067       def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1068       return def_bb != region_entry_block
1069 	&& dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1070     }
1071 
1072   mem = strip_invariant_refs (mem);
1073   return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1074 }
1075 
1076 /* Given an address ADDR in STMT, find it in the memory log or add it,
1077    making sure to keep only the addresses highest in the dominator
1078    tree.
1079 
1080    ENTRY_BLOCK is the entry_block for the transaction.
1081 
1082    If we find the address in the log, make sure it's either the same
1083    address, or an equivalent one that dominates ADDR.
1084 
1085    If we find the address, but neither ADDR dominates the found
1086    address, nor the found one dominates ADDR, we're on different
1087    execution paths.  Add it.
1088 
1089    If known, ENTRY_BLOCK is the entry block for the region, otherwise
1090    NULL.  */
1091 static void
tm_log_add(basic_block entry_block,tree addr,gimple * stmt)1092 tm_log_add (basic_block entry_block, tree addr, gimple *stmt)
1093 {
1094   tm_log_entry **slot;
1095   struct tm_log_entry l, *lp;
1096 
1097   l.addr = addr;
1098   slot = tm_log->find_slot (&l, INSERT);
1099   if (!*slot)
1100     {
1101       tree type = TREE_TYPE (addr);
1102 
1103       lp = XNEW (struct tm_log_entry);
1104       lp->addr = addr;
1105       *slot = lp;
1106 
1107       /* Small invariant addresses can be handled as save/restores.  */
1108       if (entry_block
1109 	  && transaction_invariant_address_p (lp->addr, entry_block)
1110 	  && TYPE_SIZE_UNIT (type) != NULL
1111 	  && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1112 	  && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1113 	      < param_tm_max_aggregate_size)
1114 	  /* We must be able to copy this type normally.  I.e., no
1115 	     special constructors and the like.  */
1116 	  && !TREE_ADDRESSABLE (type))
1117 	{
1118 	  lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1119 	  lp->stmts.create (0);
1120 	  lp->entry_block = entry_block;
1121 	  /* Save addresses separately in dominator order so we don't
1122 	     get confused by overlapping addresses in the save/restore
1123 	     sequence.  */
1124 	  tm_log_save_addresses.safe_push (lp->addr);
1125 	}
1126       else
1127 	{
1128 	  /* Use the logging functions.  */
1129 	  lp->stmts.create (5);
1130 	  lp->stmts.quick_push (stmt);
1131 	  lp->save_var = NULL;
1132 	}
1133     }
1134   else
1135     {
1136       size_t i;
1137       gimple *oldstmt;
1138 
1139       lp = *slot;
1140 
1141       /* If we're generating a save/restore sequence, we don't care
1142 	 about statements.  */
1143       if (lp->save_var)
1144 	return;
1145 
1146       for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1147 	{
1148 	  if (stmt == oldstmt)
1149 	    return;
1150 	  /* We already have a store to the same address, higher up the
1151 	     dominator tree.  Nothing to do.  */
1152 	  if (dominated_by_p (CDI_DOMINATORS,
1153 			      gimple_bb (stmt), gimple_bb (oldstmt)))
1154 	    return;
1155 	  /* We should be processing blocks in dominator tree order.  */
1156 	  gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1157 				       gimple_bb (oldstmt), gimple_bb (stmt)));
1158 	}
1159       /* Store is on a different code path.  */
1160       lp->stmts.safe_push (stmt);
1161     }
1162 }
1163 
1164 /* Gimplify the address of a TARGET_MEM_REF.  Return the SSA_NAME
1165    result, insert the new statements before GSI.  */
1166 
1167 static tree
gimplify_addr(gimple_stmt_iterator * gsi,tree x)1168 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1169 {
1170   if (TREE_CODE (x) == TARGET_MEM_REF)
1171     x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1172   else
1173     x = build_fold_addr_expr (x);
1174   return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1175 }
1176 
1177 /* Instrument one address with the logging functions.
1178    ADDR is the address to save.
1179    STMT is the statement before which to place it.  */
1180 static void
tm_log_emit_stmt(tree addr,gimple * stmt)1181 tm_log_emit_stmt (tree addr, gimple *stmt)
1182 {
1183   tree type = TREE_TYPE (addr);
1184   gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1185   gimple *log;
1186   enum built_in_function code = BUILT_IN_TM_LOG;
1187 
1188   if (type == float_type_node)
1189     code = BUILT_IN_TM_LOG_FLOAT;
1190   else if (type == double_type_node)
1191     code = BUILT_IN_TM_LOG_DOUBLE;
1192   else if (type == long_double_type_node)
1193     code = BUILT_IN_TM_LOG_LDOUBLE;
1194   else if (TYPE_SIZE (type) != NULL
1195 	   && tree_fits_uhwi_p (TYPE_SIZE (type)))
1196     {
1197       unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
1198 
1199       if (TREE_CODE (type) == VECTOR_TYPE)
1200 	{
1201 	  switch (type_size)
1202 	    {
1203 	    case 64:
1204 	      code = BUILT_IN_TM_LOG_M64;
1205 	      break;
1206 	    case 128:
1207 	      code = BUILT_IN_TM_LOG_M128;
1208 	      break;
1209 	    case 256:
1210 	      code = BUILT_IN_TM_LOG_M256;
1211 	      break;
1212 	    default:
1213 	      goto unhandled_vec;
1214 	    }
1215 	  if (!builtin_decl_explicit_p (code))
1216 	    goto unhandled_vec;
1217 	}
1218       else
1219 	{
1220 	unhandled_vec:
1221 	  switch (type_size)
1222 	    {
1223 	    case 8:
1224 	      code = BUILT_IN_TM_LOG_1;
1225 	      break;
1226 	    case 16:
1227 	      code = BUILT_IN_TM_LOG_2;
1228 	      break;
1229 	    case 32:
1230 	      code = BUILT_IN_TM_LOG_4;
1231 	      break;
1232 	    case 64:
1233 	      code = BUILT_IN_TM_LOG_8;
1234 	      break;
1235 	    }
1236 	}
1237     }
1238 
1239   if (code != BUILT_IN_TM_LOG && !builtin_decl_explicit_p (code))
1240     code = BUILT_IN_TM_LOG;
1241   tree decl = builtin_decl_explicit (code);
1242 
1243   addr = gimplify_addr (&gsi, addr);
1244   if (code == BUILT_IN_TM_LOG)
1245     log = gimple_build_call (decl, 2, addr, TYPE_SIZE_UNIT (type));
1246   else
1247     log = gimple_build_call (decl, 1, addr);
1248   gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1249 }
1250 
1251 /* Go through the log and instrument address that must be instrumented
1252    with the logging functions.  Leave the save/restore addresses for
1253    later.  */
1254 static void
tm_log_emit(void)1255 tm_log_emit (void)
1256 {
1257   hash_table<log_entry_hasher>::iterator hi;
1258   struct tm_log_entry *lp;
1259 
1260   FOR_EACH_HASH_TABLE_ELEMENT (*tm_log, lp, tm_log_entry_t, hi)
1261     {
1262       size_t i;
1263       gimple *stmt;
1264 
1265       if (dump_file)
1266 	{
1267 	  fprintf (dump_file, "TM thread private mem logging: ");
1268 	  print_generic_expr (dump_file, lp->addr);
1269 	  fprintf (dump_file, "\n");
1270 	}
1271 
1272       if (lp->save_var)
1273 	{
1274 	  if (dump_file)
1275 	    fprintf (dump_file, "DUMPING to variable\n");
1276 	  continue;
1277 	}
1278       else
1279 	{
1280 	  if (dump_file)
1281 	    fprintf (dump_file, "DUMPING with logging functions\n");
1282 	  for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1283 	    tm_log_emit_stmt (lp->addr, stmt);
1284 	}
1285     }
1286 }
1287 
1288 /* Emit the save sequence for the corresponding addresses in the log.
1289    ENTRY_BLOCK is the entry block for the transaction.
1290    BB is the basic block to insert the code in.  */
1291 static void
tm_log_emit_saves(basic_block entry_block,basic_block bb)1292 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1293 {
1294   size_t i;
1295   gimple_stmt_iterator gsi = gsi_last_bb (bb);
1296   gimple *stmt;
1297   struct tm_log_entry l, *lp;
1298 
1299   for (i = 0; i < tm_log_save_addresses.length (); ++i)
1300     {
1301       l.addr = tm_log_save_addresses[i];
1302       lp = *(tm_log->find_slot (&l, NO_INSERT));
1303       gcc_assert (lp->save_var != NULL);
1304 
1305       /* We only care about variables in the current transaction.  */
1306       if (lp->entry_block != entry_block)
1307 	continue;
1308 
1309       stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1310 
1311       /* Make sure we can create an SSA_NAME for this type.  For
1312 	 instance, aggregates aren't allowed, in which case the system
1313 	 will create a VOP for us and everything will just work.  */
1314       if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1315 	{
1316 	  lp->save_var = make_ssa_name (lp->save_var, stmt);
1317 	  gimple_assign_set_lhs (stmt, lp->save_var);
1318 	}
1319 
1320       gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1321     }
1322 }
1323 
1324 /* Emit the restore sequence for the corresponding addresses in the log.
1325    ENTRY_BLOCK is the entry block for the transaction.
1326    BB is the basic block to insert the code in.  */
1327 static void
tm_log_emit_restores(basic_block entry_block,basic_block bb)1328 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1329 {
1330   int i;
1331   struct tm_log_entry l, *lp;
1332   gimple_stmt_iterator gsi;
1333   gimple *stmt;
1334 
1335   for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1336     {
1337       l.addr = tm_log_save_addresses[i];
1338       lp = *(tm_log->find_slot (&l, NO_INSERT));
1339       gcc_assert (lp->save_var != NULL);
1340 
1341       /* We only care about variables in the current transaction.  */
1342       if (lp->entry_block != entry_block)
1343 	continue;
1344 
1345       /* Restores are in LIFO order from the saves in case we have
1346 	 overlaps.  */
1347       gsi = gsi_start_bb (bb);
1348 
1349       stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1350       gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1351     }
1352 }
1353 
1354 
1355 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1356 			       struct walk_stmt_info *);
1357 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1358 				  struct walk_stmt_info *);
1359 
1360 /* Evaluate an address X being dereferenced and determine if it
1361    originally points to a non aliased new chunk of memory (malloc,
1362    alloca, etc).
1363 
1364    Return MEM_THREAD_LOCAL if it points to a thread-local address.
1365    Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1366    Return MEM_NON_LOCAL otherwise.
1367 
1368    ENTRY_BLOCK is the entry block to the transaction containing the
1369    dereference of X.  */
1370 static enum thread_memory_type
thread_private_new_memory(basic_block entry_block,tree x)1371 thread_private_new_memory (basic_block entry_block, tree x)
1372 {
1373   gimple *stmt = NULL;
1374   enum tree_code code;
1375   tm_new_mem_map **slot;
1376   tm_new_mem_map elt, *elt_p;
1377   tree val = x;
1378   enum thread_memory_type retval = mem_transaction_local;
1379 
1380   if (!entry_block
1381       || TREE_CODE (x) != SSA_NAME
1382       /* Possible uninitialized use, or a function argument.  In
1383 	 either case, we don't care.  */
1384       || SSA_NAME_IS_DEFAULT_DEF (x))
1385     return mem_non_local;
1386 
1387   /* Look in cache first.  */
1388   elt.val = x;
1389   slot = tm_new_mem_hash->find_slot (&elt, INSERT);
1390   elt_p = *slot;
1391   if (elt_p)
1392     return elt_p->local_new_memory;
1393 
1394   /* Optimistically assume the memory is transaction local during
1395      processing.  This catches recursion into this variable.  */
1396   *slot = elt_p = XNEW (tm_new_mem_map);
1397   elt_p->val = val;
1398   elt_p->local_new_memory = mem_transaction_local;
1399 
1400   /* Search DEF chain to find the original definition of this address.  */
1401   do
1402     {
1403       if (ptr_deref_may_alias_global_p (x))
1404 	{
1405 	  /* Address escapes.  This is not thread-private.  */
1406 	  retval = mem_non_local;
1407 	  goto new_memory_ret;
1408 	}
1409 
1410       stmt = SSA_NAME_DEF_STMT (x);
1411 
1412       /* If the malloc call is outside the transaction, this is
1413 	 thread-local.  */
1414       if (retval != mem_thread_local
1415 	  && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1416 	retval = mem_thread_local;
1417 
1418       if (is_gimple_assign (stmt))
1419 	{
1420 	  code = gimple_assign_rhs_code (stmt);
1421 	  /* x = foo ==> foo */
1422 	  if (code == SSA_NAME)
1423 	    x = gimple_assign_rhs1 (stmt);
1424 	  /* x = foo + n ==> foo */
1425 	  else if (code == POINTER_PLUS_EXPR)
1426 	    x = gimple_assign_rhs1 (stmt);
1427 	  /* x = (cast*) foo ==> foo */
1428 	  else if (code == VIEW_CONVERT_EXPR || CONVERT_EXPR_CODE_P (code))
1429 	    x = gimple_assign_rhs1 (stmt);
1430 	  /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1431 	  else if (code == COND_EXPR)
1432 	    {
1433 	      tree op1 = gimple_assign_rhs2 (stmt);
1434 	      tree op2 = gimple_assign_rhs3 (stmt);
1435 	      enum thread_memory_type mem;
1436 	      retval = thread_private_new_memory (entry_block, op1);
1437 	      if (retval == mem_non_local)
1438 		goto new_memory_ret;
1439 	      mem = thread_private_new_memory (entry_block, op2);
1440 	      retval = MIN (retval, mem);
1441 	      goto new_memory_ret;
1442 	    }
1443 	  else
1444 	    {
1445 	      retval = mem_non_local;
1446 	      goto new_memory_ret;
1447 	    }
1448 	}
1449       else
1450 	{
1451 	  if (gimple_code (stmt) == GIMPLE_PHI)
1452 	    {
1453 	      unsigned int i;
1454 	      enum thread_memory_type mem;
1455 	      tree phi_result = gimple_phi_result (stmt);
1456 
1457 	      /* If any of the ancestors are non-local, we are sure to
1458 		 be non-local.  Otherwise we can avoid doing anything
1459 		 and inherit what has already been generated.  */
1460 	      retval = mem_max;
1461 	      for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1462 		{
1463 		  tree op = PHI_ARG_DEF (stmt, i);
1464 
1465 		  /* Exclude self-assignment.  */
1466 		  if (phi_result == op)
1467 		    continue;
1468 
1469 		  mem = thread_private_new_memory (entry_block, op);
1470 		  if (mem == mem_non_local)
1471 		    {
1472 		      retval = mem;
1473 		      goto new_memory_ret;
1474 		    }
1475 		  retval = MIN (retval, mem);
1476 		}
1477 	      goto new_memory_ret;
1478 	    }
1479 	  break;
1480 	}
1481     }
1482   while (TREE_CODE (x) == SSA_NAME);
1483 
1484   if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1485     /* Thread-local or transaction-local.  */
1486     ;
1487   else
1488     retval = mem_non_local;
1489 
1490  new_memory_ret:
1491   elt_p->local_new_memory = retval;
1492   return retval;
1493 }
1494 
1495 /* Determine whether X has to be instrumented using a read
1496    or write barrier.
1497 
1498    ENTRY_BLOCK is the entry block for the region where stmt resides
1499    in.  NULL if unknown.
1500 
1501    STMT is the statement in which X occurs in.  It is used for thread
1502    private memory instrumentation.  If no TPM instrumentation is
1503    desired, STMT should be null.  */
1504 static bool
requires_barrier(basic_block entry_block,tree x,gimple * stmt)1505 requires_barrier (basic_block entry_block, tree x, gimple *stmt)
1506 {
1507   tree orig = x;
1508   while (handled_component_p (x))
1509     x = TREE_OPERAND (x, 0);
1510 
1511   switch (TREE_CODE (x))
1512     {
1513     case INDIRECT_REF:
1514     case MEM_REF:
1515       {
1516 	enum thread_memory_type ret;
1517 
1518 	ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1519 	if (ret == mem_non_local)
1520 	  return true;
1521 	if (stmt && ret == mem_thread_local)
1522 	  /* ?? Should we pass `orig', or the INDIRECT_REF X.  ?? */
1523 	  tm_log_add (entry_block, orig, stmt);
1524 
1525 	/* Transaction-locals require nothing at all.  For malloc, a
1526 	   transaction restart frees the memory and we reallocate.
1527 	   For alloca, the stack pointer gets reset by the retry and
1528 	   we reallocate.  */
1529 	return false;
1530       }
1531 
1532     case TARGET_MEM_REF:
1533       if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1534 	return true;
1535       x = TREE_OPERAND (TMR_BASE (x), 0);
1536       if (TREE_CODE (x) == PARM_DECL)
1537 	return false;
1538       gcc_assert (VAR_P (x));
1539       /* FALLTHRU */
1540 
1541     case PARM_DECL:
1542     case RESULT_DECL:
1543     case VAR_DECL:
1544       if (DECL_BY_REFERENCE (x))
1545 	{
1546 	  /* ??? This value is a pointer, but aggregate_value_p has been
1547 	     jigged to return true which confuses needs_to_live_in_memory.
1548 	     This ought to be cleaned up generically.
1549 
1550 	     FIXME: Verify this still happens after the next mainline
1551 	     merge.  Testcase ie g++.dg/tm/pr47554.C.
1552 	  */
1553 	  return false;
1554 	}
1555 
1556       if (is_global_var (x))
1557 	return !TREE_READONLY (x);
1558       if (/* FIXME: This condition should actually go below in the
1559 	     tm_log_add() call, however is_call_clobbered() depends on
1560 	     aliasing info which is not available during
1561 	     gimplification.  Since requires_barrier() gets called
1562 	     during lower_sequence_tm/gimplification, leave the call
1563 	     to needs_to_live_in_memory until we eliminate
1564 	     lower_sequence_tm altogether.  */
1565 	  needs_to_live_in_memory (x))
1566 	return true;
1567       else
1568 	{
1569 	  /* For local memory that doesn't escape (aka thread private
1570 	     memory), we can either save the value at the beginning of
1571 	     the transaction and restore on restart, or call a tm
1572 	     function to dynamically save and restore on restart
1573 	     (ITM_L*).  */
1574 	  if (stmt)
1575 	    tm_log_add (entry_block, orig, stmt);
1576 	  return false;
1577 	}
1578 
1579     default:
1580       return false;
1581     }
1582 }
1583 
1584 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1585    a transaction region.  */
1586 
1587 static void
examine_assign_tm(unsigned * state,gimple_stmt_iterator * gsi)1588 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1589 {
1590   gimple *stmt = gsi_stmt (*gsi);
1591 
1592   if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1593     *state |= GTMA_HAVE_LOAD;
1594   if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1595     *state |= GTMA_HAVE_STORE;
1596 }
1597 
1598 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction.  */
1599 
1600 static void
examine_call_tm(unsigned * state,gimple_stmt_iterator * gsi)1601 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1602 {
1603   gimple *stmt = gsi_stmt (*gsi);
1604   tree fn;
1605 
1606   if (is_tm_pure_call (stmt))
1607     return;
1608 
1609   /* Check if this call is a transaction abort.  */
1610   fn = gimple_call_fndecl (stmt);
1611   if (is_tm_abort (fn))
1612     *state |= GTMA_HAVE_ABORT;
1613 
1614   /* Note that something may happen.  */
1615   *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1616 }
1617 
1618 /* Iterate through the statements in the sequence, moving labels
1619    (and thus edges) of transactions from "label_norm" to "label_uninst".  */
1620 
1621 static tree
make_tm_uninst(gimple_stmt_iterator * gsi,bool * handled_ops_p,struct walk_stmt_info *)1622 make_tm_uninst (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1623                 struct walk_stmt_info *)
1624 {
1625   gimple *stmt = gsi_stmt (*gsi);
1626 
1627   if (gtransaction *txn = dyn_cast <gtransaction *> (stmt))
1628     {
1629       *handled_ops_p = true;
1630       txn->label_uninst = txn->label_norm;
1631       txn->label_norm = NULL;
1632     }
1633   else
1634     *handled_ops_p = !gimple_has_substatements (stmt);
1635 
1636   return NULL_TREE;
1637 }
1638 
1639 /* Lower a GIMPLE_TRANSACTION statement.  */
1640 
1641 static void
lower_transaction(gimple_stmt_iterator * gsi,struct walk_stmt_info * wi)1642 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1643 {
1644   gimple *g;
1645   gtransaction *stmt = as_a <gtransaction *> (gsi_stmt (*gsi));
1646   unsigned int *outer_state = (unsigned int *) wi->info;
1647   unsigned int this_state = 0;
1648   struct walk_stmt_info this_wi;
1649 
1650   /* First, lower the body.  The scanning that we do inside gives
1651      us some idea of what we're dealing with.  */
1652   memset (&this_wi, 0, sizeof (this_wi));
1653   this_wi.info = (void *) &this_state;
1654   walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1655 		       lower_sequence_tm, NULL, &this_wi);
1656 
1657   /* If there was absolutely nothing transaction related inside the
1658      transaction, we may elide it.  Likewise if this is a nested
1659      transaction and does not contain an abort.  */
1660   if (this_state == 0
1661       || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1662     {
1663       if (outer_state)
1664 	*outer_state |= this_state;
1665 
1666       gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1667 			     GSI_SAME_STMT);
1668       gimple_transaction_set_body (stmt, NULL);
1669 
1670       gsi_remove (gsi, true);
1671       wi->removed_stmt = true;
1672       return;
1673     }
1674 
1675   /* Wrap the body of the transaction in a try-finally node so that
1676      the commit call is always properly called.  */
1677   g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1678   if (flag_exceptions)
1679     {
1680       tree ptr;
1681       gimple_seq n_seq, e_seq;
1682 
1683       n_seq = gimple_seq_alloc_with_stmt (g);
1684       e_seq = NULL;
1685 
1686       g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1687 			     1, integer_zero_node);
1688       ptr = create_tmp_var (ptr_type_node);
1689       gimple_call_set_lhs (g, ptr);
1690       gimple_seq_add_stmt (&e_seq, g);
1691 
1692       g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1693 			     1, ptr);
1694       gimple_seq_add_stmt (&e_seq, g);
1695 
1696       g = gimple_build_eh_else (n_seq, e_seq);
1697     }
1698 
1699   g = gimple_build_try (gimple_transaction_body (stmt),
1700 			gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1701 
1702   /* For a (potentially) outer transaction, create two paths.  */
1703   gimple_seq uninst = NULL;
1704   if (outer_state == NULL)
1705     {
1706       uninst = copy_gimple_seq_and_replace_locals (g);
1707       /* In the uninstrumented copy, reset inner transactions to have only
1708 	 an uninstrumented code path.  */
1709       memset (&this_wi, 0, sizeof (this_wi));
1710       walk_gimple_seq (uninst, make_tm_uninst, NULL, &this_wi);
1711     }
1712 
1713   tree label1 = create_artificial_label (UNKNOWN_LOCATION);
1714   gsi_insert_after (gsi, gimple_build_label (label1), GSI_CONTINUE_LINKING);
1715   gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1716   gimple_transaction_set_label_norm (stmt, label1);
1717 
1718   /* If the transaction calls abort or if this is an outer transaction,
1719      add an "over" label afterwards.  */
1720   tree label3 = NULL;
1721   if ((this_state & GTMA_HAVE_ABORT)
1722       || outer_state == NULL
1723       || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1724     {
1725       label3 = create_artificial_label (UNKNOWN_LOCATION);
1726       gimple_transaction_set_label_over (stmt, label3);
1727     }
1728 
1729   if (uninst != NULL)
1730     {
1731       gsi_insert_after (gsi, gimple_build_goto (label3), GSI_CONTINUE_LINKING);
1732 
1733       tree label2 = create_artificial_label (UNKNOWN_LOCATION);
1734       gsi_insert_after (gsi, gimple_build_label (label2), GSI_CONTINUE_LINKING);
1735       gsi_insert_seq_after (gsi, uninst, GSI_CONTINUE_LINKING);
1736       gimple_transaction_set_label_uninst (stmt, label2);
1737     }
1738 
1739   if (label3 != NULL)
1740     gsi_insert_after (gsi, gimple_build_label (label3), GSI_CONTINUE_LINKING);
1741 
1742   gimple_transaction_set_body (stmt, NULL);
1743 
1744   /* Record the set of operations found for use later.  */
1745   this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1746   gimple_transaction_set_subcode (stmt, this_state);
1747 }
1748 
1749 /* Iterate through the statements in the sequence, lowering them all
1750    as appropriate for being in a transaction.  */
1751 
1752 static tree
lower_sequence_tm(gimple_stmt_iterator * gsi,bool * handled_ops_p,struct walk_stmt_info * wi)1753 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1754 		   struct walk_stmt_info *wi)
1755 {
1756   unsigned int *state = (unsigned int *) wi->info;
1757   gimple *stmt = gsi_stmt (*gsi);
1758 
1759   *handled_ops_p = true;
1760   switch (gimple_code (stmt))
1761     {
1762     case GIMPLE_ASSIGN:
1763       /* Only memory reads/writes need to be instrumented.  */
1764       if (gimple_assign_single_p (stmt))
1765 	examine_assign_tm (state, gsi);
1766       break;
1767 
1768     case GIMPLE_CALL:
1769       examine_call_tm (state, gsi);
1770       break;
1771 
1772     case GIMPLE_ASM:
1773       *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1774       break;
1775 
1776     case GIMPLE_TRANSACTION:
1777       lower_transaction (gsi, wi);
1778       break;
1779 
1780     default:
1781       *handled_ops_p = !gimple_has_substatements (stmt);
1782       break;
1783     }
1784 
1785   return NULL_TREE;
1786 }
1787 
1788 /* Iterate through the statements in the sequence, lowering them all
1789    as appropriate for being outside of a transaction.  */
1790 
1791 static tree
lower_sequence_no_tm(gimple_stmt_iterator * gsi,bool * handled_ops_p,struct walk_stmt_info * wi)1792 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1793 		      struct walk_stmt_info * wi)
1794 {
1795   gimple *stmt = gsi_stmt (*gsi);
1796 
1797   if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1798     {
1799       *handled_ops_p = true;
1800       lower_transaction (gsi, wi);
1801     }
1802   else
1803     *handled_ops_p = !gimple_has_substatements (stmt);
1804 
1805   return NULL_TREE;
1806 }
1807 
1808 /* Main entry point for flattening GIMPLE_TRANSACTION constructs.  After
1809    this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1810    been moved out, and all the data required for constructing a proper
1811    CFG has been recorded.  */
1812 
1813 static unsigned int
execute_lower_tm(void)1814 execute_lower_tm (void)
1815 {
1816   struct walk_stmt_info wi;
1817   gimple_seq body;
1818 
1819   /* Transactional clones aren't created until a later pass.  */
1820   gcc_assert (!decl_is_tm_clone (current_function_decl));
1821 
1822   body = gimple_body (current_function_decl);
1823   memset (&wi, 0, sizeof (wi));
1824   walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1825   gimple_set_body (current_function_decl, body);
1826 
1827   return 0;
1828 }
1829 
1830 namespace {
1831 
1832 const pass_data pass_data_lower_tm =
1833 {
1834   GIMPLE_PASS, /* type */
1835   "tmlower", /* name */
1836   OPTGROUP_NONE, /* optinfo_flags */
1837   TV_TRANS_MEM, /* tv_id */
1838   PROP_gimple_lcf, /* properties_required */
1839   0, /* properties_provided */
1840   0, /* properties_destroyed */
1841   0, /* todo_flags_start */
1842   0, /* todo_flags_finish */
1843 };
1844 
1845 class pass_lower_tm : public gimple_opt_pass
1846 {
1847 public:
pass_lower_tm(gcc::context * ctxt)1848   pass_lower_tm (gcc::context *ctxt)
1849     : gimple_opt_pass (pass_data_lower_tm, ctxt)
1850   {}
1851 
1852   /* opt_pass methods: */
gate(function *)1853   virtual bool gate (function *) { return flag_tm; }
execute(function *)1854   virtual unsigned int execute (function *) { return execute_lower_tm (); }
1855 
1856 }; // class pass_lower_tm
1857 
1858 } // anon namespace
1859 
1860 gimple_opt_pass *
make_pass_lower_tm(gcc::context * ctxt)1861 make_pass_lower_tm (gcc::context *ctxt)
1862 {
1863   return new pass_lower_tm (ctxt);
1864 }
1865 
1866 /* Collect region information for each transaction.  */
1867 
1868 struct tm_region
1869 {
1870 public:
1871 
1872   /* The field "transaction_stmt" is initially a gtransaction *,
1873      but eventually gets lowered to a gcall *(to BUILT_IN_TM_START).
1874 
1875      Helper method to get it as a gtransaction *, with code-checking
1876      in a checked-build.  */
1877 
1878   gtransaction *
get_transaction_stmttm_region1879   get_transaction_stmt () const
1880   {
1881     return as_a <gtransaction *> (transaction_stmt);
1882   }
1883 
1884 public:
1885 
1886   /* Link to the next unnested transaction.  */
1887   struct tm_region *next;
1888 
1889   /* Link to the next inner transaction.  */
1890   struct tm_region *inner;
1891 
1892   /* Link to the next outer transaction.  */
1893   struct tm_region *outer;
1894 
1895   /* The GIMPLE_TRANSACTION statement beginning this transaction.
1896      After TM_MARK, this gets replaced by a call to
1897      BUILT_IN_TM_START.
1898      Hence this will be either a gtransaction *or a gcall *.  */
1899   gimple *transaction_stmt;
1900 
1901   /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1902      BUILT_IN_TM_START, this field is true if the transaction is an
1903      outer transaction.  */
1904   bool original_transaction_was_outer;
1905 
1906   /* Return value from BUILT_IN_TM_START.  */
1907   tree tm_state;
1908 
1909   /* The entry block to this region.  This will always be the first
1910      block of the body of the transaction.  */
1911   basic_block entry_block;
1912 
1913   /* The first block after an expanded call to _ITM_beginTransaction.  */
1914   basic_block restart_block;
1915 
1916   /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1917      These blocks are still a part of the region (i.e., the border is
1918      inclusive). Note that this set is only complete for paths in the CFG
1919      starting at ENTRY_BLOCK, and that there is no exit block recorded for
1920      the edge to the "over" label.  */
1921   bitmap exit_blocks;
1922 
1923   /* The set of all blocks that have an TM_IRREVOCABLE call.  */
1924   bitmap irr_blocks;
1925 };
1926 
1927 /* True if there are pending edge statements to be committed for the
1928    current function being scanned in the tmmark pass.  */
1929 bool pending_edge_inserts_p;
1930 
1931 static struct tm_region *all_tm_regions;
1932 static bitmap_obstack tm_obstack;
1933 
1934 
1935 /* A subroutine of tm_region_init.  Record the existence of the
1936    GIMPLE_TRANSACTION statement in a tree of tm_region elements.  */
1937 
1938 static struct tm_region *
tm_region_init_0(struct tm_region * outer,basic_block bb,gtransaction * stmt)1939 tm_region_init_0 (struct tm_region *outer, basic_block bb,
1940 		  gtransaction *stmt)
1941 {
1942   struct tm_region *region;
1943 
1944   region = (struct tm_region *)
1945     obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1946 
1947   if (outer)
1948     {
1949       region->next = outer->inner;
1950       outer->inner = region;
1951     }
1952   else
1953     {
1954       region->next = all_tm_regions;
1955       all_tm_regions = region;
1956     }
1957   region->inner = NULL;
1958   region->outer = outer;
1959 
1960   region->transaction_stmt = stmt;
1961   region->original_transaction_was_outer = false;
1962   region->tm_state = NULL;
1963 
1964   /* There are either one or two edges out of the block containing
1965      the GIMPLE_TRANSACTION, one to the actual region and one to the
1966      "over" label if the region contains an abort.  The former will
1967      always be the one marked FALLTHRU.  */
1968   region->entry_block = FALLTHRU_EDGE (bb)->dest;
1969 
1970   region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1971   region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1972 
1973   return region;
1974 }
1975 
1976 /* A subroutine of tm_region_init.  Record all the exit and
1977    irrevocable blocks in BB into the region's exit_blocks and
1978    irr_blocks bitmaps.  Returns the new region being scanned.  */
1979 
1980 static struct tm_region *
tm_region_init_1(struct tm_region * region,basic_block bb)1981 tm_region_init_1 (struct tm_region *region, basic_block bb)
1982 {
1983   gimple_stmt_iterator gsi;
1984   gimple *g;
1985 
1986   if (!region
1987       || (!region->irr_blocks && !region->exit_blocks))
1988     return region;
1989 
1990   /* Check to see if this is the end of a region by seeing if it
1991      contains a call to __builtin_tm_commit{,_eh}.  Note that the
1992      outermost region for DECL_IS_TM_CLONE need not collect this.  */
1993   for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1994     {
1995       g = gsi_stmt (gsi);
1996       if (gimple_code (g) == GIMPLE_CALL)
1997 	{
1998 	  tree fn = gimple_call_fndecl (g);
1999 	  if (fn && fndecl_built_in_p (fn, BUILT_IN_NORMAL))
2000 	    {
2001 	      if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
2002 		   || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
2003 		  && region->exit_blocks)
2004 		{
2005 		  bitmap_set_bit (region->exit_blocks, bb->index);
2006 		  region = region->outer;
2007 		  break;
2008 		}
2009 	      if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
2010 		bitmap_set_bit (region->irr_blocks, bb->index);
2011 	    }
2012 	}
2013     }
2014   return region;
2015 }
2016 
2017 /* Collect all of the transaction regions within the current function
2018    and record them in ALL_TM_REGIONS.  The REGION parameter may specify
2019    an "outermost" region for use by tm clones.  */
2020 
2021 static void
tm_region_init(struct tm_region * region)2022 tm_region_init (struct tm_region *region)
2023 {
2024   gimple *g;
2025   edge_iterator ei;
2026   edge e;
2027   basic_block bb;
2028   auto_vec<basic_block> queue;
2029   bitmap visited_blocks = BITMAP_ALLOC (NULL);
2030   struct tm_region *old_region;
2031   auto_vec<tm_region *> bb_regions;
2032 
2033   /* We could store this information in bb->aux, but we may get called
2034      through get_all_tm_blocks() from another pass that may be already
2035      using bb->aux.  */
2036   bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
2037 
2038   all_tm_regions = region;
2039   bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2040   queue.safe_push (bb);
2041   bitmap_set_bit (visited_blocks, bb->index);
2042   bb_regions[bb->index] = region;
2043 
2044   do
2045     {
2046       bb = queue.pop ();
2047       region = bb_regions[bb->index];
2048       bb_regions[bb->index] = NULL;
2049 
2050       /* Record exit and irrevocable blocks.  */
2051       region = tm_region_init_1 (region, bb);
2052 
2053       /* Check for the last statement in the block beginning a new region.  */
2054       g = last_stmt (bb);
2055       old_region = region;
2056       if (g)
2057 	if (gtransaction *trans_stmt = dyn_cast <gtransaction *> (g))
2058 	  region = tm_region_init_0 (region, bb, trans_stmt);
2059 
2060       /* Process subsequent blocks.  */
2061       FOR_EACH_EDGE (e, ei, bb->succs)
2062 	if (!bitmap_bit_p (visited_blocks, e->dest->index))
2063 	  {
2064 	    bitmap_set_bit (visited_blocks, e->dest->index);
2065 	    queue.safe_push (e->dest);
2066 
2067 	    /* If the current block started a new region, make sure that only
2068 	       the entry block of the new region is associated with this region.
2069 	       Other successors are still part of the old region.  */
2070 	    if (old_region != region && e->dest != region->entry_block)
2071 	      bb_regions[e->dest->index] = old_region;
2072 	    else
2073 	      bb_regions[e->dest->index] = region;
2074 	  }
2075     }
2076   while (!queue.is_empty ());
2077   BITMAP_FREE (visited_blocks);
2078 }
2079 
2080 /* The "gate" function for all transactional memory expansion and optimization
2081    passes.  We collect region information for each top-level transaction, and
2082    if we don't find any, we skip all of the TM passes.  Each region will have
2083    all of the exit blocks recorded, and the originating statement.  */
2084 
2085 static bool
gate_tm_init(void)2086 gate_tm_init (void)
2087 {
2088   if (!flag_tm)
2089     return false;
2090 
2091   calculate_dominance_info (CDI_DOMINATORS);
2092   bitmap_obstack_initialize (&tm_obstack);
2093 
2094   /* If the function is a TM_CLONE, then the entire function is the region.  */
2095   if (decl_is_tm_clone (current_function_decl))
2096     {
2097       struct tm_region *region = (struct tm_region *)
2098 	obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2099       memset (region, 0, sizeof (*region));
2100       region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2101       /* For a clone, the entire function is the region.  But even if
2102 	 we don't need to record any exit blocks, we may need to
2103 	 record irrevocable blocks.  */
2104       region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2105 
2106       tm_region_init (region);
2107     }
2108   else
2109     {
2110       tm_region_init (NULL);
2111 
2112       /* If we didn't find any regions, cleanup and skip the whole tree
2113 	 of tm-related optimizations.  */
2114       if (all_tm_regions == NULL)
2115 	{
2116 	  bitmap_obstack_release (&tm_obstack);
2117 	  return false;
2118 	}
2119     }
2120 
2121   return true;
2122 }
2123 
2124 namespace {
2125 
2126 const pass_data pass_data_tm_init =
2127 {
2128   GIMPLE_PASS, /* type */
2129   "*tminit", /* name */
2130   OPTGROUP_NONE, /* optinfo_flags */
2131   TV_TRANS_MEM, /* tv_id */
2132   ( PROP_ssa | PROP_cfg ), /* properties_required */
2133   0, /* properties_provided */
2134   0, /* properties_destroyed */
2135   0, /* todo_flags_start */
2136   0, /* todo_flags_finish */
2137 };
2138 
2139 class pass_tm_init : public gimple_opt_pass
2140 {
2141 public:
pass_tm_init(gcc::context * ctxt)2142   pass_tm_init (gcc::context *ctxt)
2143     : gimple_opt_pass (pass_data_tm_init, ctxt)
2144   {}
2145 
2146   /* opt_pass methods: */
gate(function *)2147   virtual bool gate (function *) { return gate_tm_init (); }
2148 
2149 }; // class pass_tm_init
2150 
2151 } // anon namespace
2152 
2153 gimple_opt_pass *
make_pass_tm_init(gcc::context * ctxt)2154 make_pass_tm_init (gcc::context *ctxt)
2155 {
2156   return new pass_tm_init (ctxt);
2157 }
2158 
2159 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2160    represented by STATE.  */
2161 
2162 static inline void
transaction_subcode_ior(struct tm_region * region,unsigned flags)2163 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2164 {
2165   if (region && region->transaction_stmt)
2166     {
2167       gtransaction *transaction_stmt = region->get_transaction_stmt ();
2168       flags |= gimple_transaction_subcode (transaction_stmt);
2169       gimple_transaction_set_subcode (transaction_stmt, flags);
2170     }
2171 }
2172 
2173 /* Construct a memory load in a transactional context.  Return the
2174    gimple statement performing the load, or NULL if there is no
2175    TM_LOAD builtin of the appropriate size to do the load.
2176 
2177    LOC is the location to use for the new statement(s).  */
2178 
2179 static gcall *
build_tm_load(location_t loc,tree lhs,tree rhs,gimple_stmt_iterator * gsi)2180 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2181 {
2182   tree t, type = TREE_TYPE (rhs);
2183   gcall *gcall;
2184 
2185   built_in_function code;
2186   if (type == float_type_node)
2187     code = BUILT_IN_TM_LOAD_FLOAT;
2188   else if (type == double_type_node)
2189     code = BUILT_IN_TM_LOAD_DOUBLE;
2190   else if (type == long_double_type_node)
2191     code = BUILT_IN_TM_LOAD_LDOUBLE;
2192   else
2193     {
2194       if (TYPE_SIZE (type) == NULL || !tree_fits_uhwi_p (TYPE_SIZE (type)))
2195 	return NULL;
2196       unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
2197 
2198       if (TREE_CODE (type) == VECTOR_TYPE)
2199 	{
2200 	  switch (type_size)
2201 	    {
2202 	    case 64:
2203 	      code = BUILT_IN_TM_LOAD_M64;
2204 	      break;
2205 	    case 128:
2206 	      code = BUILT_IN_TM_LOAD_M128;
2207 	      break;
2208 	    case 256:
2209 	      code = BUILT_IN_TM_LOAD_M256;
2210 	      break;
2211 	    default:
2212 	      goto unhandled_vec;
2213 	    }
2214 	  if (!builtin_decl_explicit_p (code))
2215 	    goto unhandled_vec;
2216 	}
2217       else
2218 	{
2219 	unhandled_vec:
2220 	  switch (type_size)
2221 	    {
2222 	    case 8:
2223 	      code = BUILT_IN_TM_LOAD_1;
2224 	      break;
2225 	    case 16:
2226 	      code = BUILT_IN_TM_LOAD_2;
2227 	      break;
2228 	    case 32:
2229 	      code = BUILT_IN_TM_LOAD_4;
2230 	      break;
2231 	    case 64:
2232 	      code = BUILT_IN_TM_LOAD_8;
2233 	      break;
2234 	    default:
2235 	      return NULL;
2236 	    }
2237 	}
2238     }
2239 
2240   tree decl = builtin_decl_explicit (code);
2241   gcc_assert (decl);
2242 
2243   t = gimplify_addr (gsi, rhs);
2244   gcall = gimple_build_call (decl, 1, t);
2245   gimple_set_location (gcall, loc);
2246 
2247   t = TREE_TYPE (TREE_TYPE (decl));
2248   if (useless_type_conversion_p (type, t))
2249     {
2250       gimple_call_set_lhs (gcall, lhs);
2251       gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2252     }
2253   else
2254     {
2255       gimple *g;
2256       tree temp;
2257 
2258       temp = create_tmp_reg (t);
2259       gimple_call_set_lhs (gcall, temp);
2260       gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2261 
2262       t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2263       g = gimple_build_assign (lhs, t);
2264       gsi_insert_before (gsi, g, GSI_SAME_STMT);
2265     }
2266 
2267   return gcall;
2268 }
2269 
2270 
2271 /* Similarly for storing TYPE in a transactional context.  */
2272 
2273 static gcall *
build_tm_store(location_t loc,tree lhs,tree rhs,gimple_stmt_iterator * gsi)2274 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2275 {
2276   tree t, fn, type = TREE_TYPE (rhs), simple_type;
2277   gcall *gcall;
2278 
2279   built_in_function code;
2280   if (type == float_type_node)
2281     code = BUILT_IN_TM_STORE_FLOAT;
2282   else if (type == double_type_node)
2283     code = BUILT_IN_TM_STORE_DOUBLE;
2284   else if (type == long_double_type_node)
2285     code = BUILT_IN_TM_STORE_LDOUBLE;
2286   else
2287     {
2288       if (TYPE_SIZE (type) == NULL || !tree_fits_uhwi_p (TYPE_SIZE (type)))
2289 	return NULL;
2290       unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
2291 
2292       if (TREE_CODE (type) == VECTOR_TYPE)
2293 	{
2294 	  switch (type_size)
2295 	    {
2296 	    case 64:
2297 	      code = BUILT_IN_TM_STORE_M64;
2298 	      break;
2299 	    case 128:
2300 	      code = BUILT_IN_TM_STORE_M128;
2301 	      break;
2302 	    case 256:
2303 	      code = BUILT_IN_TM_STORE_M256;
2304 	      break;
2305 	    default:
2306 	      goto unhandled_vec;
2307 	    }
2308 	  if (!builtin_decl_explicit_p (code))
2309 	    goto unhandled_vec;
2310 	}
2311       else
2312 	{
2313 	unhandled_vec:
2314 	  switch (type_size)
2315 	    {
2316 	    case 8:
2317 	      code = BUILT_IN_TM_STORE_1;
2318 	      break;
2319 	    case 16:
2320 	      code = BUILT_IN_TM_STORE_2;
2321 	      break;
2322 	    case 32:
2323 	      code = BUILT_IN_TM_STORE_4;
2324 	      break;
2325 	    case 64:
2326 	      code = BUILT_IN_TM_STORE_8;
2327 	      break;
2328 	    default:
2329 	      return NULL;
2330 	    }
2331 	}
2332     }
2333 
2334   fn = builtin_decl_explicit (code);
2335   gcc_assert (fn);
2336 
2337   simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2338 
2339   if (TREE_CODE (rhs) == CONSTRUCTOR)
2340     {
2341       /* Handle the easy initialization to zero.  */
2342       if (!CONSTRUCTOR_ELTS (rhs))
2343 	rhs = build_int_cst (simple_type, 0);
2344       else
2345 	{
2346 	  /* ...otherwise punt to the caller and probably use
2347 	    BUILT_IN_TM_MEMMOVE, because we can't wrap a
2348 	    VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2349 	    valid gimple.  */
2350 	  return NULL;
2351 	}
2352     }
2353   else if (!useless_type_conversion_p (simple_type, type))
2354     {
2355       gimple *g;
2356       tree temp;
2357 
2358       temp = create_tmp_reg (simple_type);
2359       t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2360       g = gimple_build_assign (temp, t);
2361       gimple_set_location (g, loc);
2362       gsi_insert_before (gsi, g, GSI_SAME_STMT);
2363 
2364       rhs = temp;
2365     }
2366 
2367   t = gimplify_addr (gsi, lhs);
2368   gcall = gimple_build_call (fn, 2, t, rhs);
2369   gimple_set_location (gcall, loc);
2370   gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2371 
2372   return gcall;
2373 }
2374 
2375 
2376 /* Expand an assignment statement into transactional builtins.  */
2377 
2378 static void
expand_assign_tm(struct tm_region * region,gimple_stmt_iterator * gsi)2379 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2380 {
2381   gimple *stmt = gsi_stmt (*gsi);
2382   location_t loc = gimple_location (stmt);
2383   tree lhs = gimple_assign_lhs (stmt);
2384   tree rhs = gimple_assign_rhs1 (stmt);
2385   bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2386   bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2387   gimple *gcall = NULL;
2388 
2389   if (!load_p && !store_p)
2390     {
2391       /* Add thread private addresses to log if applicable.  */
2392       requires_barrier (region->entry_block, lhs, stmt);
2393       gsi_next (gsi);
2394       return;
2395     }
2396 
2397   if (load_p)
2398     transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2399   if (store_p)
2400     transaction_subcode_ior (region, GTMA_HAVE_STORE);
2401 
2402   // Remove original load/store statement.
2403   gsi_remove (gsi, true);
2404 
2405   // Attempt to use a simple load/store helper function.
2406   if (load_p && !store_p)
2407     gcall = build_tm_load (loc, lhs, rhs, gsi);
2408   else if (store_p && !load_p)
2409     gcall = build_tm_store (loc, lhs, rhs, gsi);
2410 
2411   // If gcall has not been set, then we do not have a simple helper
2412   // function available for the type.  This may be true of larger
2413   // structures, vectors, and non-standard float types.
2414   if (!gcall)
2415     {
2416       tree lhs_addr, rhs_addr, ltmp = NULL, copy_fn;
2417 
2418       // If this is a type that we couldn't handle above, but it's
2419       // in a register, we must spill it to memory for the copy.
2420       if (is_gimple_reg (lhs))
2421 	{
2422 	  ltmp = create_tmp_var (TREE_TYPE (lhs));
2423 	  lhs_addr = build_fold_addr_expr (ltmp);
2424 	}
2425       else
2426 	lhs_addr = gimplify_addr (gsi, lhs);
2427       if (is_gimple_reg (rhs))
2428 	{
2429 	  tree rtmp = create_tmp_var (TREE_TYPE (rhs));
2430 	  TREE_ADDRESSABLE (rtmp) = 1;
2431 	  rhs_addr = build_fold_addr_expr (rtmp);
2432 	  gcall = gimple_build_assign (rtmp, rhs);
2433 	  gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2434 	}
2435       else
2436 	rhs_addr = gimplify_addr (gsi, rhs);
2437 
2438       // Choose the appropriate memory transfer function.
2439       if (load_p && store_p)
2440 	{
2441 	  // ??? Figure out if there's any possible overlap between
2442 	  // the LHS and the RHS and if not, use MEMCPY.
2443 	  copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
2444 	}
2445       else if (load_p)
2446 	{
2447 	  // Note that the store is non-transactional and cannot overlap.
2448 	  copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMCPY_RTWN);
2449 	}
2450       else
2451 	{
2452 	  // Note that the load is non-transactional and cannot overlap.
2453 	  copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMCPY_RNWT);
2454 	}
2455 
2456       gcall = gimple_build_call (copy_fn, 3, lhs_addr, rhs_addr,
2457 				 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2458       gimple_set_location (gcall, loc);
2459       gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2460 
2461       if (ltmp)
2462 	{
2463 	  gcall = gimple_build_assign (lhs, ltmp);
2464 	  gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2465 	}
2466     }
2467 
2468   // Now that we have the load/store in its instrumented form, add
2469   // thread private addresses to the log if applicable.
2470   if (!store_p)
2471     requires_barrier (region->entry_block, lhs, gcall);
2472 }
2473 
2474 
2475 /* Expand a call statement as appropriate for a transaction.  That is,
2476    either verify that the call does not affect the transaction, or
2477    redirect the call to a clone that handles transactions, or change
2478    the transaction state to IRREVOCABLE.  Return true if the call is
2479    one of the builtins that end a transaction.  */
2480 
2481 static bool
expand_call_tm(struct tm_region * region,gimple_stmt_iterator * gsi)2482 expand_call_tm (struct tm_region *region,
2483 		gimple_stmt_iterator *gsi)
2484 {
2485   gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
2486   tree lhs = gimple_call_lhs (stmt);
2487   tree fn_decl;
2488   struct cgraph_node *node;
2489   bool retval = false;
2490 
2491   fn_decl = gimple_call_fndecl (stmt);
2492 
2493   if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2494       || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2495     transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2496   if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2497     transaction_subcode_ior (region, GTMA_HAVE_STORE);
2498 
2499   if (is_tm_pure_call (stmt))
2500     return false;
2501 
2502   if (fn_decl)
2503     retval = is_tm_ending_fndecl (fn_decl);
2504   if (!retval)
2505     {
2506       /* Assume all non-const/pure calls write to memory, except
2507 	 transaction ending builtins.  */
2508       transaction_subcode_ior (region, GTMA_HAVE_STORE);
2509     }
2510 
2511   /* For indirect calls, we already generated a call into the runtime.  */
2512   if (!fn_decl)
2513     {
2514       tree fn = gimple_call_fn (stmt);
2515 
2516       /* We are guaranteed never to go irrevocable on a safe or pure
2517 	 call, and the pure call was handled above.  */
2518       if (is_tm_safe (fn))
2519 	return false;
2520       else
2521 	transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2522 
2523       return false;
2524     }
2525 
2526   node = cgraph_node::get (fn_decl);
2527   /* All calls should have cgraph here.  */
2528   if (!node)
2529     {
2530       /* We can have a nodeless call here if some pass after IPA-tm
2531 	 added uninstrumented calls.  For example, loop distribution
2532 	 can transform certain loop constructs into __builtin_mem*
2533 	 calls.  In this case, see if we have a suitable TM
2534 	 replacement and fill in the gaps.  */
2535       gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2536       enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2537       gcc_assert (code == BUILT_IN_MEMCPY
2538 		  || code == BUILT_IN_MEMMOVE
2539 		  || code == BUILT_IN_MEMSET);
2540 
2541       tree repl = find_tm_replacement_function (fn_decl);
2542       if (repl)
2543 	{
2544 	  gimple_call_set_fndecl (stmt, repl);
2545 	  update_stmt (stmt);
2546 	  node = cgraph_node::create (repl);
2547 	  node->tm_may_enter_irr = false;
2548 	  return expand_call_tm (region, gsi);
2549 	}
2550       gcc_unreachable ();
2551     }
2552   if (node->tm_may_enter_irr)
2553     transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2554 
2555   if (is_tm_abort (fn_decl))
2556     {
2557       transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2558       return true;
2559     }
2560 
2561   /* Instrument the store if needed.
2562 
2563      If the assignment happens inside the function call (return slot
2564      optimization), there is no instrumentation to be done, since
2565      the callee should have done the right thing.  */
2566   if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2567       && !gimple_call_return_slot_opt_p (stmt))
2568     {
2569       tree tmp = create_tmp_reg (TREE_TYPE (lhs));
2570       location_t loc = gimple_location (stmt);
2571       edge fallthru_edge = NULL;
2572       gassign *assign_stmt;
2573 
2574       /* Remember if the call was going to throw.  */
2575       if (stmt_can_throw_internal (cfun, stmt))
2576 	{
2577 	  edge_iterator ei;
2578 	  edge e;
2579 	  basic_block bb = gimple_bb (stmt);
2580 
2581 	  FOR_EACH_EDGE (e, ei, bb->succs)
2582 	    if (e->flags & EDGE_FALLTHRU)
2583 	      {
2584 		fallthru_edge = e;
2585 		break;
2586 	      }
2587 	}
2588 
2589       gimple_call_set_lhs (stmt, tmp);
2590       update_stmt (stmt);
2591       assign_stmt = gimple_build_assign (lhs, tmp);
2592       gimple_set_location (assign_stmt, loc);
2593 
2594       /* We cannot throw in the middle of a BB.  If the call was going
2595 	 to throw, place the instrumentation on the fallthru edge, so
2596 	 the call remains the last statement in the block.  */
2597       if (fallthru_edge)
2598 	{
2599 	  gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (assign_stmt);
2600 	  gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2601 	  expand_assign_tm (region, &fallthru_gsi);
2602 	  gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2603 	  pending_edge_inserts_p = true;
2604 	}
2605       else
2606 	{
2607 	  gsi_insert_after (gsi, assign_stmt, GSI_CONTINUE_LINKING);
2608 	  expand_assign_tm (region, gsi);
2609 	}
2610 
2611       transaction_subcode_ior (region, GTMA_HAVE_STORE);
2612     }
2613 
2614   return retval;
2615 }
2616 
2617 
2618 /* Expand all statements in BB as appropriate for being inside
2619    a transaction.  */
2620 
2621 static void
expand_block_tm(struct tm_region * region,basic_block bb)2622 expand_block_tm (struct tm_region *region, basic_block bb)
2623 {
2624   gimple_stmt_iterator gsi;
2625 
2626   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2627     {
2628       gimple *stmt = gsi_stmt (gsi);
2629       switch (gimple_code (stmt))
2630 	{
2631 	case GIMPLE_ASSIGN:
2632 	  /* Only memory reads/writes need to be instrumented.  */
2633 	  if (gimple_assign_single_p (stmt)
2634 	      && !gimple_clobber_p (stmt))
2635 	    {
2636 	      expand_assign_tm (region, &gsi);
2637 	      continue;
2638 	    }
2639 	  break;
2640 
2641 	case GIMPLE_CALL:
2642 	  if (expand_call_tm (region, &gsi))
2643 	    return;
2644 	  break;
2645 
2646 	case GIMPLE_ASM:
2647 	  gcc_unreachable ();
2648 
2649 	default:
2650 	  break;
2651 	}
2652       if (!gsi_end_p (gsi))
2653 	gsi_next (&gsi);
2654     }
2655 }
2656 
2657 /* Return the list of basic-blocks in REGION.
2658 
2659    STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2660    following a TM_IRREVOCABLE call.
2661 
2662    INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2663    uninstrumented code path blocks in the list of basic blocks
2664    returned, false otherwise.  */
2665 
2666 static vec<basic_block>
2667 get_tm_region_blocks (basic_block entry_block,
2668 		      bitmap exit_blocks,
2669 		      bitmap irr_blocks,
2670 		      bitmap all_region_blocks,
2671 		      bool stop_at_irrevocable_p,
2672 		      bool include_uninstrumented_p = true)
2673 {
2674   vec<basic_block> bbs = vNULL;
2675   unsigned i;
2676   edge e;
2677   edge_iterator ei;
2678   bitmap visited_blocks = BITMAP_ALLOC (NULL);
2679 
2680   i = 0;
2681   bbs.safe_push (entry_block);
2682   bitmap_set_bit (visited_blocks, entry_block->index);
2683 
2684   do
2685     {
2686       basic_block bb = bbs[i++];
2687 
2688       if (exit_blocks &&
2689 	  bitmap_bit_p (exit_blocks, bb->index))
2690 	continue;
2691 
2692       if (stop_at_irrevocable_p
2693 	  && irr_blocks
2694 	  && bitmap_bit_p (irr_blocks, bb->index))
2695 	continue;
2696 
2697       FOR_EACH_EDGE (e, ei, bb->succs)
2698 	if ((include_uninstrumented_p
2699 	     || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2700 	    && !bitmap_bit_p (visited_blocks, e->dest->index))
2701 	  {
2702 	    bitmap_set_bit (visited_blocks, e->dest->index);
2703 	    bbs.safe_push (e->dest);
2704 	  }
2705     }
2706   while (i < bbs.length ());
2707 
2708   if (all_region_blocks)
2709     bitmap_ior_into (all_region_blocks, visited_blocks);
2710 
2711   BITMAP_FREE (visited_blocks);
2712   return bbs;
2713 }
2714 
2715 // Callback data for collect_bb2reg.
2716 struct bb2reg_stuff
2717 {
2718   vec<tm_region *> *bb2reg;
2719   bool include_uninstrumented_p;
2720 };
2721 
2722 // Callback for expand_regions, collect innermost region data for each bb.
2723 static void *
collect_bb2reg(struct tm_region * region,void * data)2724 collect_bb2reg (struct tm_region *region, void *data)
2725 {
2726   struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2727   vec<tm_region *> *bb2reg = stuff->bb2reg;
2728   vec<basic_block> queue;
2729   unsigned int i;
2730   basic_block bb;
2731 
2732   queue = get_tm_region_blocks (region->entry_block,
2733 				region->exit_blocks,
2734 				region->irr_blocks,
2735 				NULL,
2736 				/*stop_at_irr_p=*/true,
2737 				stuff->include_uninstrumented_p);
2738 
2739   // We expect expand_region to perform a post-order traversal of the region
2740   // tree.  Therefore the last region seen for any bb is the innermost.
2741   FOR_EACH_VEC_ELT (queue, i, bb)
2742     (*bb2reg)[bb->index] = region;
2743 
2744   queue.release ();
2745   return NULL;
2746 }
2747 
2748 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2749 // which a basic block belongs.  Note that we only consider the instrumented
2750 // code paths for the region; the uninstrumented code paths are ignored if
2751 // INCLUDE_UNINSTRUMENTED_P is false.
2752 //
2753 // ??? This data is very similar to the bb_regions array that is collected
2754 // during tm_region_init.  Or, rather, this data is similar to what could
2755 // be used within tm_region_init.  The actual computation in tm_region_init
2756 // begins and ends with bb_regions entirely full of NULL pointers, due to
2757 // the way in which pointers are swapped in and out of the array.
2758 //
2759 // ??? Our callers expect that blocks are not shared between transactions.
2760 // When the optimizers get too smart, and blocks are shared, then during
2761 // the tm_mark phase we'll add log entries to only one of the two transactions,
2762 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2763 // cycles.  The symptom being SSA defs that do not dominate their uses.
2764 // Note that the optimizers were locally correct with their transformation,
2765 // as we have no info within the program that suggests that the blocks cannot
2766 // be shared.
2767 //
2768 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2769 // only known instance of this block sharing.
2770 
2771 static vec<tm_region *>
get_bb_regions_instrumented(bool traverse_clones,bool include_uninstrumented_p)2772 get_bb_regions_instrumented (bool traverse_clones,
2773 			     bool include_uninstrumented_p)
2774 {
2775   unsigned n = last_basic_block_for_fn (cfun);
2776   struct bb2reg_stuff stuff;
2777   vec<tm_region *> ret;
2778 
2779   ret.create (n);
2780   ret.safe_grow_cleared (n, true);
2781   stuff.bb2reg = &ret;
2782   stuff.include_uninstrumented_p = include_uninstrumented_p;
2783   expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2784 
2785   return ret;
2786 }
2787 
2788 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2789    transaction.  */
2790 
2791 void
compute_transaction_bits(void)2792 compute_transaction_bits (void)
2793 {
2794   struct tm_region *region;
2795   vec<basic_block> queue;
2796   unsigned int i;
2797   basic_block bb;
2798 
2799   /* ?? Perhaps we need to abstract gate_tm_init further, because we
2800      certainly don't need it to calculate CDI_DOMINATOR info.  */
2801   gate_tm_init ();
2802 
2803   FOR_EACH_BB_FN (bb, cfun)
2804     bb->flags &= ~BB_IN_TRANSACTION;
2805 
2806   for (region = all_tm_regions; region; region = region->next)
2807     {
2808       queue = get_tm_region_blocks (region->entry_block,
2809 				    region->exit_blocks,
2810 				    region->irr_blocks,
2811 				    NULL,
2812 				    /*stop_at_irr_p=*/true);
2813       for (i = 0; queue.iterate (i, &bb); ++i)
2814 	bb->flags |= BB_IN_TRANSACTION;
2815       queue.release ();
2816     }
2817 
2818   if (all_tm_regions)
2819     bitmap_obstack_release (&tm_obstack);
2820 }
2821 
2822 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2823    call to BUILT_IN_TM_START.  */
2824 
2825 static void *
expand_transaction(struct tm_region * region,void * data ATTRIBUTE_UNUSED)2826 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2827 {
2828   tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2829   basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2830   tree tm_state = region->tm_state;
2831   tree tm_state_type = TREE_TYPE (tm_state);
2832   edge abort_edge = NULL;
2833   edge inst_edge = NULL;
2834   edge uninst_edge = NULL;
2835   edge fallthru_edge = NULL;
2836 
2837   // Identify the various successors of the transaction start.
2838   {
2839     edge_iterator i;
2840     edge e;
2841     FOR_EACH_EDGE (e, i, transaction_bb->succs)
2842       {
2843         if (e->flags & EDGE_TM_ABORT)
2844 	  abort_edge = e;
2845         else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2846 	  uninst_edge = e;
2847 	else
2848 	  inst_edge = e;
2849         if (e->flags & EDGE_FALLTHRU)
2850 	  fallthru_edge = e;
2851       }
2852   }
2853 
2854   /* ??? There are plenty of bits here we're not computing.  */
2855   {
2856     int subcode = gimple_transaction_subcode (region->get_transaction_stmt ());
2857     int flags = 0;
2858     if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2859       flags |= PR_DOESGOIRREVOCABLE;
2860     if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2861       flags |= PR_HASNOIRREVOCABLE;
2862     /* If the transaction does not have an abort in lexical scope and is not
2863        marked as an outer transaction, then it will never abort.  */
2864     if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2865       flags |= PR_HASNOABORT;
2866     if ((subcode & GTMA_HAVE_STORE) == 0)
2867       flags |= PR_READONLY;
2868     if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2869       flags |= PR_INSTRUMENTEDCODE;
2870     if (uninst_edge)
2871       flags |= PR_UNINSTRUMENTEDCODE;
2872     if (subcode & GTMA_IS_OUTER)
2873       region->original_transaction_was_outer = true;
2874     tree t = build_int_cst (tm_state_type, flags);
2875     gcall *call = gimple_build_call (tm_start, 1, t);
2876     gimple_call_set_lhs (call, tm_state);
2877     gimple_set_location (call, gimple_location (region->transaction_stmt));
2878 
2879     // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2880     gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2881     gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2882     gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2883     gsi_remove (&gsi, true);
2884     region->transaction_stmt = call;
2885   }
2886 
2887   // Generate log saves.
2888   if (!tm_log_save_addresses.is_empty ())
2889     tm_log_emit_saves (region->entry_block, transaction_bb);
2890 
2891   // In the beginning, we've no tests to perform on transaction restart.
2892   // Note that after this point, transaction_bb becomes the "most recent
2893   // block containing tests for the transaction".
2894   region->restart_block = region->entry_block;
2895 
2896   // Generate log restores.
2897   if (!tm_log_save_addresses.is_empty ())
2898     {
2899       basic_block test_bb = create_empty_bb (transaction_bb);
2900       basic_block code_bb = create_empty_bb (test_bb);
2901       basic_block join_bb = create_empty_bb (code_bb);
2902       add_bb_to_loop (test_bb, transaction_bb->loop_father);
2903       add_bb_to_loop (code_bb, transaction_bb->loop_father);
2904       add_bb_to_loop (join_bb, transaction_bb->loop_father);
2905       if (region->restart_block == region->entry_block)
2906 	region->restart_block = test_bb;
2907 
2908       tree t1 = create_tmp_reg (tm_state_type);
2909       tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2910       gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2911       gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2912       gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2913 
2914       t2 = build_int_cst (tm_state_type, 0);
2915       stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2916       gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2917 
2918       tm_log_emit_restores (region->entry_block, code_bb);
2919 
2920       edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2921       edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2922       edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2923       redirect_edge_pred (fallthru_edge, join_bb);
2924 
2925       join_bb->count = test_bb->count = transaction_bb->count;
2926 
2927       ei->probability = profile_probability::always ();
2928       et->probability = profile_probability::likely ();
2929       ef->probability = profile_probability::unlikely ();
2930 
2931       code_bb->count = et->count ();
2932 
2933       transaction_bb = join_bb;
2934     }
2935 
2936   // If we have an ABORT edge, create a test to perform the abort.
2937   if (abort_edge)
2938     {
2939       basic_block test_bb = create_empty_bb (transaction_bb);
2940       add_bb_to_loop (test_bb, transaction_bb->loop_father);
2941       if (region->restart_block == region->entry_block)
2942 	region->restart_block = test_bb;
2943 
2944       tree t1 = create_tmp_reg (tm_state_type);
2945       tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2946       gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2947       gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2948       gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2949 
2950       t2 = build_int_cst (tm_state_type, 0);
2951       stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2952       gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2953 
2954       edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2955       test_bb->count = transaction_bb->count;
2956       ei->probability = profile_probability::always ();
2957 
2958       // Not abort edge.  If both are live, chose one at random as we'll
2959       // we'll be fixing that up below.
2960       redirect_edge_pred (fallthru_edge, test_bb);
2961       fallthru_edge->flags = EDGE_FALSE_VALUE;
2962       fallthru_edge->probability = profile_probability::very_likely ();
2963 
2964       // Abort/over edge.
2965       redirect_edge_pred (abort_edge, test_bb);
2966       abort_edge->flags = EDGE_TRUE_VALUE;
2967       abort_edge->probability = profile_probability::unlikely ();
2968 
2969       transaction_bb = test_bb;
2970     }
2971 
2972   // If we have both instrumented and uninstrumented code paths, select one.
2973   if (inst_edge && uninst_edge)
2974     {
2975       basic_block test_bb = create_empty_bb (transaction_bb);
2976       add_bb_to_loop (test_bb, transaction_bb->loop_father);
2977       if (region->restart_block == region->entry_block)
2978 	region->restart_block = test_bb;
2979 
2980       tree t1 = create_tmp_reg (tm_state_type);
2981       tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
2982 
2983       gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2984       gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2985       gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2986 
2987       t2 = build_int_cst (tm_state_type, 0);
2988       stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2989       gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2990 
2991       // Create the edge into test_bb first, as we want to copy values
2992       // out of the fallthru edge.
2993       edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
2994       e->probability = fallthru_edge->probability;
2995       test_bb->count = fallthru_edge->count ();
2996 
2997       // Now update the edges to the inst/uninist implementations.
2998       // For now assume that the paths are equally likely.  When using HTM,
2999       // we'll try the uninst path first and fallback to inst path if htm
3000       // buffers are exceeded.  Without HTM we start with the inst path and
3001       // use the uninst path when falling back to serial mode.
3002       redirect_edge_pred (inst_edge, test_bb);
3003       inst_edge->flags = EDGE_FALSE_VALUE;
3004       inst_edge->probability = profile_probability::even ();
3005 
3006       redirect_edge_pred (uninst_edge, test_bb);
3007       uninst_edge->flags = EDGE_TRUE_VALUE;
3008       uninst_edge->probability = profile_probability::even ();
3009     }
3010 
3011   // If we have no previous special cases, and we have PHIs at the beginning
3012   // of the atomic region, this means we have a loop at the beginning of the
3013   // atomic region that shares the first block.  This can cause problems with
3014   // the transaction restart abnormal edges to be added in the tm_edges pass.
3015   // Solve this by adding a new empty block to receive the abnormal edges.
3016   if (region->restart_block == region->entry_block
3017       && phi_nodes (region->entry_block))
3018     {
3019       basic_block empty_bb = create_empty_bb (transaction_bb);
3020       region->restart_block = empty_bb;
3021       add_bb_to_loop (empty_bb, transaction_bb->loop_father);
3022 
3023       redirect_edge_pred (fallthru_edge, empty_bb);
3024       make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
3025     }
3026 
3027   return NULL;
3028 }
3029 
3030 /* Generate the temporary to be used for the return value of
3031    BUILT_IN_TM_START.  */
3032 
3033 static void *
generate_tm_state(struct tm_region * region,void * data ATTRIBUTE_UNUSED)3034 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
3035 {
3036   tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
3037   region->tm_state =
3038     create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
3039 
3040   // Reset the subcode, post optimizations.  We'll fill this in
3041   // again as we process blocks.
3042   if (region->exit_blocks)
3043     {
3044       gtransaction *transaction_stmt = region->get_transaction_stmt ();
3045       unsigned int subcode = gimple_transaction_subcode (transaction_stmt);
3046 
3047       if (subcode & GTMA_DOES_GO_IRREVOCABLE)
3048 	subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
3049 		    | GTMA_MAY_ENTER_IRREVOCABLE
3050 		    | GTMA_HAS_NO_INSTRUMENTATION);
3051       else
3052 	subcode &= GTMA_DECLARATION_MASK;
3053       gimple_transaction_set_subcode (transaction_stmt, subcode);
3054     }
3055 
3056   return NULL;
3057 }
3058 
3059 // Propagate flags from inner transactions outwards.
3060 static void
propagate_tm_flags_out(struct tm_region * region)3061 propagate_tm_flags_out (struct tm_region *region)
3062 {
3063   if (region == NULL)
3064     return;
3065   propagate_tm_flags_out (region->inner);
3066 
3067   if (region->outer && region->outer->transaction_stmt)
3068     {
3069       unsigned s
3070 	= gimple_transaction_subcode (region->get_transaction_stmt ());
3071       s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
3072             | GTMA_MAY_ENTER_IRREVOCABLE);
3073       s |= gimple_transaction_subcode (region->outer->get_transaction_stmt ());
3074       gimple_transaction_set_subcode (region->outer->get_transaction_stmt (),
3075 				      s);
3076     }
3077 
3078   propagate_tm_flags_out (region->next);
3079 }
3080 
3081 /* Entry point to the MARK phase of TM expansion.  Here we replace
3082    transactional memory statements with calls to builtins, and function
3083    calls with their transactional clones (if available).  But we don't
3084    yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges.  */
3085 
3086 static unsigned int
execute_tm_mark(void)3087 execute_tm_mark (void)
3088 {
3089   pending_edge_inserts_p = false;
3090 
3091   expand_regions (all_tm_regions, generate_tm_state, NULL,
3092 		  /*traverse_clones=*/true);
3093 
3094   tm_log_init ();
3095 
3096   vec<tm_region *> bb_regions
3097     = get_bb_regions_instrumented (/*traverse_clones=*/true,
3098 				   /*include_uninstrumented_p=*/false);
3099   struct tm_region *r;
3100   unsigned i;
3101 
3102   // Expand memory operations into calls into the runtime.
3103   // This collects log entries as well.
3104   FOR_EACH_VEC_ELT (bb_regions, i, r)
3105     {
3106       if (r != NULL)
3107 	{
3108 	  if (r->transaction_stmt)
3109 	    {
3110 	      unsigned sub
3111 		= gimple_transaction_subcode (r->get_transaction_stmt ());
3112 
3113 	      /* If we're sure to go irrevocable, there won't be
3114 		 anything to expand, since the run-time will go
3115 		 irrevocable right away.  */
3116 	      if (sub & GTMA_DOES_GO_IRREVOCABLE
3117 		  && sub & GTMA_MAY_ENTER_IRREVOCABLE)
3118 		continue;
3119 	    }
3120 	  expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
3121 	}
3122     }
3123 
3124   bb_regions.release ();
3125 
3126   // Propagate flags from inner transactions outwards.
3127   propagate_tm_flags_out (all_tm_regions);
3128 
3129   // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
3130   expand_regions (all_tm_regions, expand_transaction, NULL,
3131 		  /*traverse_clones=*/false);
3132 
3133   tm_log_emit ();
3134   tm_log_delete ();
3135 
3136   if (pending_edge_inserts_p)
3137     gsi_commit_edge_inserts ();
3138   free_dominance_info (CDI_DOMINATORS);
3139   return 0;
3140 }
3141 
3142 namespace {
3143 
3144 const pass_data pass_data_tm_mark =
3145 {
3146   GIMPLE_PASS, /* type */
3147   "tmmark", /* name */
3148   OPTGROUP_NONE, /* optinfo_flags */
3149   TV_TRANS_MEM, /* tv_id */
3150   ( PROP_ssa | PROP_cfg ), /* properties_required */
3151   0, /* properties_provided */
3152   0, /* properties_destroyed */
3153   0, /* todo_flags_start */
3154   TODO_update_ssa, /* todo_flags_finish */
3155 };
3156 
3157 class pass_tm_mark : public gimple_opt_pass
3158 {
3159 public:
pass_tm_mark(gcc::context * ctxt)3160   pass_tm_mark (gcc::context *ctxt)
3161     : gimple_opt_pass (pass_data_tm_mark, ctxt)
3162   {}
3163 
3164   /* opt_pass methods: */
execute(function *)3165   virtual unsigned int execute (function *) { return execute_tm_mark (); }
3166 
3167 }; // class pass_tm_mark
3168 
3169 } // anon namespace
3170 
3171 gimple_opt_pass *
make_pass_tm_mark(gcc::context * ctxt)3172 make_pass_tm_mark (gcc::context *ctxt)
3173 {
3174   return new pass_tm_mark (ctxt);
3175 }
3176 
3177 
3178 /* Create an abnormal edge from STMT at iter, splitting the block
3179    as necessary.  Adjust *PNEXT as needed for the split block.  */
3180 
3181 static inline void
split_bb_make_tm_edge(gimple * stmt,basic_block dest_bb,gimple_stmt_iterator iter,gimple_stmt_iterator * pnext)3182 split_bb_make_tm_edge (gimple *stmt, basic_block dest_bb,
3183                        gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3184 {
3185   basic_block bb = gimple_bb (stmt);
3186   if (!gsi_one_before_end_p (iter))
3187     {
3188       edge e = split_block (bb, stmt);
3189       *pnext = gsi_start_bb (e->dest);
3190     }
3191   edge e = make_edge (bb, dest_bb, EDGE_ABNORMAL);
3192   if (e)
3193     e->probability = profile_probability::guessed_never ();
3194 
3195   // Record the need for the edge for the benefit of the rtl passes.
3196   if (cfun->gimple_df->tm_restart == NULL)
3197     cfun->gimple_df->tm_restart
3198       = hash_table<tm_restart_hasher>::create_ggc (31);
3199 
3200   struct tm_restart_node dummy;
3201   dummy.stmt = stmt;
3202   dummy.label_or_list = gimple_block_label (dest_bb);
3203 
3204   tm_restart_node **slot = cfun->gimple_df->tm_restart->find_slot (&dummy,
3205 								   INSERT);
3206   struct tm_restart_node *n = *slot;
3207   if (n == NULL)
3208     {
3209       n = ggc_alloc<tm_restart_node> ();
3210       *n = dummy;
3211     }
3212   else
3213     {
3214       tree old = n->label_or_list;
3215       if (TREE_CODE (old) == LABEL_DECL)
3216         old = tree_cons (NULL, old, NULL);
3217       n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3218     }
3219 }
3220 
3221 /* Split block BB as necessary for every builtin function we added, and
3222    wire up the abnormal back edges implied by the transaction restart.  */
3223 
3224 static void
expand_block_edges(struct tm_region * const region,basic_block bb)3225 expand_block_edges (struct tm_region *const region, basic_block bb)
3226 {
3227   gimple_stmt_iterator gsi, next_gsi;
3228 
3229   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3230     {
3231       gimple *stmt = gsi_stmt (gsi);
3232       gcall *call_stmt;
3233 
3234       next_gsi = gsi;
3235       gsi_next (&next_gsi);
3236 
3237       // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3238       call_stmt = dyn_cast <gcall *> (stmt);
3239       if ((!call_stmt)
3240 	  || (gimple_call_flags (call_stmt) & ECF_TM_BUILTIN) == 0)
3241 	continue;
3242 
3243       if (gimple_call_builtin_p (call_stmt, BUILT_IN_TM_ABORT))
3244 	{
3245 	  // If we have a ``_transaction_cancel [[outer]]'', there is only
3246 	  // one abnormal edge: to the transaction marked OUTER.
3247 	  // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3248 	  // constant argument, which we can examine here.  Users invoking
3249 	  // TM_ABORT directly get what they deserve.
3250 	  tree arg = gimple_call_arg (call_stmt, 0);
3251 	  if (TREE_CODE (arg) == INTEGER_CST
3252 	      && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3253 	      && !decl_is_tm_clone (current_function_decl))
3254 	    {
3255 	      // Find the GTMA_IS_OUTER transaction.
3256 	      for (struct tm_region *o = region; o; o = o->outer)
3257 		if (o->original_transaction_was_outer)
3258 		  {
3259 		    split_bb_make_tm_edge (call_stmt, o->restart_block,
3260 					   gsi, &next_gsi);
3261 		    break;
3262 		  }
3263 
3264 	      // Otherwise, the front-end should have semantically checked
3265 	      // outer aborts, but in either case the target region is not
3266 	      // within this function.
3267 	      continue;
3268 	    }
3269 
3270 	  // Non-outer, TM aborts have an abnormal edge to the inner-most
3271 	  // transaction, the one being aborted;
3272 	  split_bb_make_tm_edge (call_stmt, region->restart_block, gsi,
3273 				 &next_gsi);
3274 	}
3275 
3276       // All TM builtins have an abnormal edge to the outer-most transaction.
3277       // We never restart inner transactions.  For tm clones, we know a-priori
3278       // that the outer-most transaction is outside the function.
3279       if (decl_is_tm_clone (current_function_decl))
3280 	continue;
3281 
3282       if (cfun->gimple_df->tm_restart == NULL)
3283 	cfun->gimple_df->tm_restart
3284 	  = hash_table<tm_restart_hasher>::create_ggc (31);
3285 
3286       // All TM builtins have an abnormal edge to the outer-most transaction.
3287       // We never restart inner transactions.
3288       for (struct tm_region *o = region; o; o = o->outer)
3289 	if (!o->outer)
3290 	  {
3291             split_bb_make_tm_edge (call_stmt, o->restart_block, gsi, &next_gsi);
3292 	    break;
3293 	  }
3294 
3295       // Delete any tail-call annotation that may have been added.
3296       // The tail-call pass may have mis-identified the commit as being
3297       // a candidate because we had not yet added this restart edge.
3298       gimple_call_set_tail (call_stmt, false);
3299     }
3300 }
3301 
3302 /* Entry point to the final expansion of transactional nodes. */
3303 
3304 namespace {
3305 
3306 const pass_data pass_data_tm_edges =
3307 {
3308   GIMPLE_PASS, /* type */
3309   "tmedge", /* name */
3310   OPTGROUP_NONE, /* optinfo_flags */
3311   TV_TRANS_MEM, /* tv_id */
3312   ( PROP_ssa | PROP_cfg ), /* properties_required */
3313   0, /* properties_provided */
3314   0, /* properties_destroyed */
3315   0, /* todo_flags_start */
3316   TODO_update_ssa, /* todo_flags_finish */
3317 };
3318 
3319 class pass_tm_edges : public gimple_opt_pass
3320 {
3321 public:
pass_tm_edges(gcc::context * ctxt)3322   pass_tm_edges (gcc::context *ctxt)
3323     : gimple_opt_pass (pass_data_tm_edges, ctxt)
3324   {}
3325 
3326   /* opt_pass methods: */
3327   virtual unsigned int execute (function *);
3328 
3329 }; // class pass_tm_edges
3330 
3331 unsigned int
execute(function * fun)3332 pass_tm_edges::execute (function *fun)
3333 {
3334   vec<tm_region *> bb_regions
3335     = get_bb_regions_instrumented (/*traverse_clones=*/false,
3336 				   /*include_uninstrumented_p=*/true);
3337   struct tm_region *r;
3338   unsigned i;
3339 
3340   FOR_EACH_VEC_ELT (bb_regions, i, r)
3341     if (r != NULL)
3342       expand_block_edges (r, BASIC_BLOCK_FOR_FN (fun, i));
3343 
3344   bb_regions.release ();
3345 
3346   /* We've got to release the dominance info now, to indicate that it
3347      must be rebuilt completely.  Otherwise we'll crash trying to update
3348      the SSA web in the TODO section following this pass.  */
3349   free_dominance_info (CDI_DOMINATORS);
3350   /* We'ge also wrecked loops badly with inserting of abnormal edges.  */
3351   loops_state_set (LOOPS_NEED_FIXUP);
3352   bitmap_obstack_release (&tm_obstack);
3353   all_tm_regions = NULL;
3354 
3355   return 0;
3356 }
3357 
3358 } // anon namespace
3359 
3360 gimple_opt_pass *
make_pass_tm_edges(gcc::context * ctxt)3361 make_pass_tm_edges (gcc::context *ctxt)
3362 {
3363   return new pass_tm_edges (ctxt);
3364 }
3365 
3366 /* Helper function for expand_regions.  Expand REGION and recurse to
3367    the inner region.  Call CALLBACK on each region.  CALLBACK returns
3368    NULL to continue the traversal, otherwise a non-null value which
3369    this function will return as well.  TRAVERSE_CLONES is true if we
3370    should traverse transactional clones.  */
3371 
3372 static void *
expand_regions_1(struct tm_region * region,void * (* callback)(struct tm_region *,void *),void * data,bool traverse_clones)3373 expand_regions_1 (struct tm_region *region,
3374 		  void *(*callback)(struct tm_region *, void *),
3375 		  void *data,
3376 		  bool traverse_clones)
3377 {
3378   void *retval = NULL;
3379   if (region->exit_blocks
3380       || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3381     {
3382       retval = callback (region, data);
3383       if (retval)
3384 	return retval;
3385     }
3386   if (region->inner)
3387     {
3388       retval = expand_regions (region->inner, callback, data, traverse_clones);
3389       if (retval)
3390 	return retval;
3391     }
3392   return retval;
3393 }
3394 
3395 /* Traverse the regions enclosed and including REGION.  Execute
3396    CALLBACK for each region, passing DATA.  CALLBACK returns NULL to
3397    continue the traversal, otherwise a non-null value which this
3398    function will return as well.  TRAVERSE_CLONES is true if we should
3399    traverse transactional clones.  */
3400 
3401 static void *
expand_regions(struct tm_region * region,void * (* callback)(struct tm_region *,void *),void * data,bool traverse_clones)3402 expand_regions (struct tm_region *region,
3403 		void *(*callback)(struct tm_region *, void *),
3404 		void *data,
3405 		bool traverse_clones)
3406 {
3407   void *retval = NULL;
3408   while (region)
3409     {
3410       retval = expand_regions_1 (region, callback, data, traverse_clones);
3411       if (retval)
3412 	return retval;
3413       region = region->next;
3414     }
3415   return retval;
3416 }
3417 
3418 
3419 /* A unique TM memory operation.  */
3420 struct tm_memop
3421 {
3422   /* Unique ID that all memory operations to the same location have.  */
3423   unsigned int value_id;
3424   /* Address of load/store.  */
3425   tree addr;
3426 };
3427 
3428 /* TM memory operation hashtable helpers.  */
3429 
3430 struct tm_memop_hasher : free_ptr_hash <tm_memop>
3431 {
3432   static inline hashval_t hash (const tm_memop *);
3433   static inline bool equal (const tm_memop *, const tm_memop *);
3434 };
3435 
3436 /* Htab support.  Return a hash value for a `tm_memop'.  */
3437 inline hashval_t
hash(const tm_memop * mem)3438 tm_memop_hasher::hash (const tm_memop *mem)
3439 {
3440   tree addr = mem->addr;
3441   /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3442      actually done with operand_equal_p (see tm_memop_eq).  */
3443   if (TREE_CODE (addr) == ADDR_EXPR)
3444     addr = TREE_OPERAND (addr, 0);
3445   return iterative_hash_expr (addr, 0);
3446 }
3447 
3448 /* Htab support.  Return true if two tm_memop's are the same.  */
3449 inline bool
equal(const tm_memop * mem1,const tm_memop * mem2)3450 tm_memop_hasher::equal (const tm_memop *mem1, const tm_memop *mem2)
3451 {
3452   return operand_equal_p (mem1->addr, mem2->addr, 0);
3453 }
3454 
3455 /* Sets for solving data flow equations in the memory optimization pass.  */
3456 struct tm_memopt_bitmaps
3457 {
3458   /* Stores available to this BB upon entry.  Basically, stores that
3459      dominate this BB.  */
3460   bitmap store_avail_in;
3461   /* Stores available at the end of this BB.  */
3462   bitmap store_avail_out;
3463   bitmap store_antic_in;
3464   bitmap store_antic_out;
3465   /* Reads available to this BB upon entry.  Basically, reads that
3466      dominate this BB.  */
3467   bitmap read_avail_in;
3468   /* Reads available at the end of this BB.  */
3469   bitmap read_avail_out;
3470   /* Reads performed in this BB.  */
3471   bitmap read_local;
3472   /* Writes performed in this BB.  */
3473   bitmap store_local;
3474 
3475   /* Temporary storage for pass.  */
3476   /* Is the current BB in the worklist?  */
3477   bool avail_in_worklist_p;
3478   /* Have we visited this BB?  */
3479   bool visited_p;
3480 };
3481 
3482 static bitmap_obstack tm_memopt_obstack;
3483 
3484 /* Unique counter for TM loads and stores. Loads and stores of the
3485    same address get the same ID.  */
3486 static unsigned int tm_memopt_value_id;
3487 static hash_table<tm_memop_hasher> *tm_memopt_value_numbers;
3488 
3489 #define STORE_AVAIL_IN(BB) \
3490   ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3491 #define STORE_AVAIL_OUT(BB) \
3492   ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3493 #define STORE_ANTIC_IN(BB) \
3494   ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3495 #define STORE_ANTIC_OUT(BB) \
3496   ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3497 #define READ_AVAIL_IN(BB) \
3498   ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3499 #define READ_AVAIL_OUT(BB) \
3500   ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3501 #define READ_LOCAL(BB) \
3502   ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3503 #define STORE_LOCAL(BB) \
3504   ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3505 #define AVAIL_IN_WORKLIST_P(BB) \
3506   ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3507 #define BB_VISITED_P(BB) \
3508   ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3509 
3510 /* Given a TM load/store in STMT, return the value number for the address
3511    it accesses.  */
3512 
3513 static unsigned int
tm_memopt_value_number(gimple * stmt,enum insert_option op)3514 tm_memopt_value_number (gimple *stmt, enum insert_option op)
3515 {
3516   struct tm_memop tmpmem, *mem;
3517   tm_memop **slot;
3518 
3519   gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3520   tmpmem.addr = gimple_call_arg (stmt, 0);
3521   slot = tm_memopt_value_numbers->find_slot (&tmpmem, op);
3522   if (*slot)
3523     mem = *slot;
3524   else if (op == INSERT)
3525     {
3526       mem = XNEW (struct tm_memop);
3527       *slot = mem;
3528       mem->value_id = tm_memopt_value_id++;
3529       mem->addr = tmpmem.addr;
3530     }
3531   else
3532     gcc_unreachable ();
3533   return mem->value_id;
3534 }
3535 
3536 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL.  */
3537 
3538 static void
tm_memopt_accumulate_memops(basic_block bb)3539 tm_memopt_accumulate_memops (basic_block bb)
3540 {
3541   gimple_stmt_iterator gsi;
3542 
3543   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3544     {
3545       gimple *stmt = gsi_stmt (gsi);
3546       bitmap bits;
3547       unsigned int loc;
3548 
3549       if (is_tm_store (stmt))
3550 	bits = STORE_LOCAL (bb);
3551       else if (is_tm_load (stmt))
3552 	bits = READ_LOCAL (bb);
3553       else
3554 	continue;
3555 
3556       loc = tm_memopt_value_number (stmt, INSERT);
3557       bitmap_set_bit (bits, loc);
3558       if (dump_file)
3559 	{
3560 	  fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3561 		   is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3562 		   gimple_bb (stmt)->index);
3563 	  print_generic_expr (dump_file, gimple_call_arg (stmt, 0));
3564 	  fprintf (dump_file, "\n");
3565 	}
3566     }
3567 }
3568 
3569 /* Prettily dump one of the memopt sets.  BITS is the bitmap to dump.  */
3570 
3571 static void
dump_tm_memopt_set(const char * set_name,bitmap bits)3572 dump_tm_memopt_set (const char *set_name, bitmap bits)
3573 {
3574   unsigned i;
3575   bitmap_iterator bi;
3576   const char *comma = "";
3577 
3578   fprintf (dump_file, "TM memopt: %s: [", set_name);
3579   EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3580     {
3581       hash_table<tm_memop_hasher>::iterator hi;
3582       struct tm_memop *mem = NULL;
3583 
3584       /* Yeah, yeah, yeah.  Whatever.  This is just for debugging.  */
3585       FOR_EACH_HASH_TABLE_ELEMENT (*tm_memopt_value_numbers, mem, tm_memop_t, hi)
3586 	if (mem->value_id == i)
3587 	  break;
3588       gcc_assert (mem->value_id == i);
3589       fprintf (dump_file, "%s", comma);
3590       comma = ", ";
3591       print_generic_expr (dump_file, mem->addr);
3592     }
3593   fprintf (dump_file, "]\n");
3594 }
3595 
3596 /* Prettily dump all of the memopt sets in BLOCKS.  */
3597 
3598 static void
dump_tm_memopt_sets(vec<basic_block> blocks)3599 dump_tm_memopt_sets (vec<basic_block> blocks)
3600 {
3601   size_t i;
3602   basic_block bb;
3603 
3604   for (i = 0; blocks.iterate (i, &bb); ++i)
3605     {
3606       fprintf (dump_file, "------------BB %d---------\n", bb->index);
3607       dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3608       dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3609       dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3610       dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3611       dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3612       dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3613     }
3614 }
3615 
3616 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB.  */
3617 
3618 static void
tm_memopt_compute_avin(basic_block bb)3619 tm_memopt_compute_avin (basic_block bb)
3620 {
3621   edge e;
3622   unsigned ix;
3623 
3624   /* Seed with the AVOUT of any predecessor.  */
3625   for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3626     {
3627       e = EDGE_PRED (bb, ix);
3628       /* Make sure we have already visited this BB, and is thus
3629 	 initialized.
3630 
3631 	  If e->src->aux is NULL, this predecessor is actually on an
3632 	  enclosing transaction.  We only care about the current
3633 	  transaction, so ignore it.  */
3634       if (e->src->aux && BB_VISITED_P (e->src))
3635 	{
3636 	  bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3637 	  bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3638 	  break;
3639 	}
3640     }
3641 
3642   for (; ix < EDGE_COUNT (bb->preds); ix++)
3643     {
3644       e = EDGE_PRED (bb, ix);
3645       if (e->src->aux && BB_VISITED_P (e->src))
3646 	{
3647 	  bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3648 	  bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3649 	}
3650     }
3651 
3652   BB_VISITED_P (bb) = true;
3653 }
3654 
3655 /* Compute the STORE_ANTIC_IN for the basic block BB.  */
3656 
3657 static void
tm_memopt_compute_antin(basic_block bb)3658 tm_memopt_compute_antin (basic_block bb)
3659 {
3660   edge e;
3661   unsigned ix;
3662 
3663   /* Seed with the ANTIC_OUT of any successor.  */
3664   for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3665     {
3666       e = EDGE_SUCC (bb, ix);
3667       /* Make sure we have already visited this BB, and is thus
3668 	 initialized.  */
3669       if (BB_VISITED_P (e->dest))
3670 	{
3671 	  bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3672 	  break;
3673 	}
3674     }
3675 
3676   for (; ix < EDGE_COUNT (bb->succs); ix++)
3677     {
3678       e = EDGE_SUCC (bb, ix);
3679       if (BB_VISITED_P  (e->dest))
3680 	bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3681     }
3682 
3683   BB_VISITED_P (bb) = true;
3684 }
3685 
3686 /* Compute the AVAIL sets for every basic block in BLOCKS.
3687 
3688    We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3689 
3690      AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3691      AVAIL_IN[bb]  = intersect (AVAIL_OUT[predecessors])
3692 
3693    This is basically what we do in lcm's compute_available(), but here
3694    we calculate two sets of sets (one for STOREs and one for READs),
3695    and we work on a region instead of the entire CFG.
3696 
3697    REGION is the TM region.
3698    BLOCKS are the basic blocks in the region.  */
3699 
3700 static void
tm_memopt_compute_available(struct tm_region * region,vec<basic_block> blocks)3701 tm_memopt_compute_available (struct tm_region *region,
3702 			     vec<basic_block> blocks)
3703 {
3704   edge e;
3705   basic_block *worklist, *qin, *qout, *qend, bb;
3706   unsigned int qlen, i;
3707   edge_iterator ei;
3708   bool changed;
3709 
3710   /* Allocate a worklist array/queue.  Entries are only added to the
3711      list if they were not already on the list.  So the size is
3712      bounded by the number of basic blocks in the region.  */
3713   gcc_assert (!blocks.is_empty ());
3714   qlen = blocks.length () - 1;
3715   qin = qout = worklist = XNEWVEC (basic_block, qlen);
3716 
3717   /* Put every block in the region on the worklist.  */
3718   for (i = 0; blocks.iterate (i, &bb); ++i)
3719     {
3720       /* Seed AVAIL_OUT with the LOCAL set.  */
3721       bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3722       bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3723 
3724       AVAIL_IN_WORKLIST_P (bb) = true;
3725       /* No need to insert the entry block, since it has an AVIN of
3726 	 null, and an AVOUT that has already been seeded in.  */
3727       if (bb != region->entry_block)
3728 	*qin++ = bb;
3729     }
3730 
3731   /* The entry block has been initialized with the local sets.  */
3732   BB_VISITED_P (region->entry_block) = true;
3733 
3734   qin = worklist;
3735   qend = &worklist[qlen];
3736 
3737   /* Iterate until the worklist is empty.  */
3738   while (qlen)
3739     {
3740       /* Take the first entry off the worklist.  */
3741       bb = *qout++;
3742       qlen--;
3743 
3744       if (qout >= qend)
3745 	qout = worklist;
3746 
3747       /* This block can be added to the worklist again if necessary.  */
3748       AVAIL_IN_WORKLIST_P (bb) = false;
3749       tm_memopt_compute_avin (bb);
3750 
3751       /* Note: We do not add the LOCAL sets here because we already
3752 	 seeded the AVAIL_OUT sets with them.  */
3753       changed  = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3754       changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3755       if (changed
3756 	  && (region->exit_blocks == NULL
3757 	      || !bitmap_bit_p (region->exit_blocks, bb->index)))
3758 	/* If the out state of this block changed, then we need to add
3759 	   its successors to the worklist if they are not already in.  */
3760 	FOR_EACH_EDGE (e, ei, bb->succs)
3761 	  if (!AVAIL_IN_WORKLIST_P (e->dest)
3762 	      && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3763 	    {
3764 	      *qin++ = e->dest;
3765 	      AVAIL_IN_WORKLIST_P (e->dest) = true;
3766 	      qlen++;
3767 
3768 	      if (qin >= qend)
3769 		qin = worklist;
3770 	    }
3771     }
3772 
3773   free (worklist);
3774 
3775   if (dump_file)
3776     dump_tm_memopt_sets (blocks);
3777 }
3778 
3779 /* Compute ANTIC sets for every basic block in BLOCKS.
3780 
3781    We compute STORE_ANTIC_OUT as follows:
3782 
3783 	STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3784 	STORE_ANTIC_IN[bb]  = intersect(STORE_ANTIC_OUT[successors])
3785 
3786    REGION is the TM region.
3787    BLOCKS are the basic blocks in the region.  */
3788 
3789 static void
tm_memopt_compute_antic(struct tm_region * region,vec<basic_block> blocks)3790 tm_memopt_compute_antic (struct tm_region *region,
3791 			 vec<basic_block> blocks)
3792 {
3793   edge e;
3794   basic_block *worklist, *qin, *qout, *qend, bb;
3795   unsigned int qlen;
3796   int i;
3797   edge_iterator ei;
3798 
3799   /* Allocate a worklist array/queue.  Entries are only added to the
3800      list if they were not already on the list.  So the size is
3801      bounded by the number of basic blocks in the region.  */
3802   qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3803 
3804   for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3805     {
3806       bb = blocks[i];
3807 
3808       /* Seed ANTIC_OUT with the LOCAL set.  */
3809       bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3810 
3811       /* Put every block in the region on the worklist.  */
3812       AVAIL_IN_WORKLIST_P (bb) = true;
3813       /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3814 	 and their ANTIC_OUT has already been seeded in.  */
3815       if (region->exit_blocks
3816 	  && !bitmap_bit_p (region->exit_blocks, bb->index))
3817 	{
3818 	  qlen++;
3819 	  *qin++ = bb;
3820 	}
3821     }
3822 
3823   /* The exit blocks have been initialized with the local sets.  */
3824   if (region->exit_blocks)
3825     {
3826       unsigned int i;
3827       bitmap_iterator bi;
3828       EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3829 	BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
3830     }
3831 
3832   qin = worklist;
3833   qend = &worklist[qlen];
3834 
3835   /* Iterate until the worklist is empty.  */
3836   while (qlen)
3837     {
3838       /* Take the first entry off the worklist.  */
3839       bb = *qout++;
3840       qlen--;
3841 
3842       if (qout >= qend)
3843 	qout = worklist;
3844 
3845       /* This block can be added to the worklist again if necessary.  */
3846       AVAIL_IN_WORKLIST_P (bb) = false;
3847       tm_memopt_compute_antin (bb);
3848 
3849       /* Note: We do not add the LOCAL sets here because we already
3850 	 seeded the ANTIC_OUT sets with them.  */
3851       if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3852 	  && bb != region->entry_block)
3853 	/* If the out state of this block changed, then we need to add
3854 	   its predecessors to the worklist if they are not already in.  */
3855 	FOR_EACH_EDGE (e, ei, bb->preds)
3856 	  if (!AVAIL_IN_WORKLIST_P (e->src))
3857 	    {
3858 	      *qin++ = e->src;
3859 	      AVAIL_IN_WORKLIST_P (e->src) = true;
3860 	      qlen++;
3861 
3862 	      if (qin >= qend)
3863 		qin = worklist;
3864 	    }
3865     }
3866 
3867   free (worklist);
3868 
3869   if (dump_file)
3870     dump_tm_memopt_sets (blocks);
3871 }
3872 
3873 /* Offsets of load variants from TM_LOAD.  For example,
3874    BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3875    See gtm-builtins.def.  */
3876 #define TRANSFORM_RAR 1
3877 #define TRANSFORM_RAW 2
3878 #define TRANSFORM_RFW 3
3879 /* Offsets of store variants from TM_STORE.  */
3880 #define TRANSFORM_WAR 1
3881 #define TRANSFORM_WAW 2
3882 
3883 /* Inform about a load/store optimization.  */
3884 
3885 static void
dump_tm_memopt_transform(gimple * stmt)3886 dump_tm_memopt_transform (gimple *stmt)
3887 {
3888   if (dump_file)
3889     {
3890       fprintf (dump_file, "TM memopt: transforming: ");
3891       print_gimple_stmt (dump_file, stmt, 0);
3892       fprintf (dump_file, "\n");
3893     }
3894 }
3895 
3896 /* Perform a read/write optimization.  Replaces the TM builtin in STMT
3897    by a builtin that is OFFSET entries down in the builtins table in
3898    gtm-builtins.def.  */
3899 
3900 static void
tm_memopt_transform_stmt(unsigned int offset,gcall * stmt,gimple_stmt_iterator * gsi)3901 tm_memopt_transform_stmt (unsigned int offset,
3902 			  gcall *stmt,
3903 			  gimple_stmt_iterator *gsi)
3904 {
3905   tree fn = gimple_call_fn (stmt);
3906   gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3907   TREE_OPERAND (fn, 0)
3908     = builtin_decl_explicit ((enum built_in_function)
3909 			     (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3910 			      + offset));
3911   gimple_call_set_fn (stmt, fn);
3912   gsi_replace (gsi, stmt, true);
3913   dump_tm_memopt_transform (stmt);
3914 }
3915 
3916 /* Perform the actual TM memory optimization transformations in the
3917    basic blocks in BLOCKS.  */
3918 
3919 static void
tm_memopt_transform_blocks(vec<basic_block> blocks)3920 tm_memopt_transform_blocks (vec<basic_block> blocks)
3921 {
3922   size_t i;
3923   basic_block bb;
3924   gimple_stmt_iterator gsi;
3925 
3926   for (i = 0; blocks.iterate (i, &bb); ++i)
3927     {
3928       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3929 	{
3930 	  gimple *stmt = gsi_stmt (gsi);
3931 	  bitmap read_avail = READ_AVAIL_IN (bb);
3932 	  bitmap store_avail = STORE_AVAIL_IN (bb);
3933 	  bitmap store_antic = STORE_ANTIC_OUT (bb);
3934 	  unsigned int loc;
3935 
3936 	  if (is_tm_simple_load (stmt))
3937 	    {
3938 	      gcall *call_stmt = as_a <gcall *> (stmt);
3939 	      loc = tm_memopt_value_number (stmt, NO_INSERT);
3940 	      if (store_avail && bitmap_bit_p (store_avail, loc))
3941 		tm_memopt_transform_stmt (TRANSFORM_RAW, call_stmt, &gsi);
3942 	      else if (store_antic && bitmap_bit_p (store_antic, loc))
3943 		{
3944 		  tm_memopt_transform_stmt (TRANSFORM_RFW, call_stmt, &gsi);
3945 		  bitmap_set_bit (store_avail, loc);
3946 		}
3947 	      else if (read_avail && bitmap_bit_p (read_avail, loc))
3948 		tm_memopt_transform_stmt (TRANSFORM_RAR, call_stmt, &gsi);
3949 	      else
3950 		bitmap_set_bit (read_avail, loc);
3951 	    }
3952 	  else if (is_tm_simple_store (stmt))
3953 	    {
3954 	      gcall *call_stmt = as_a <gcall *> (stmt);
3955 	      loc = tm_memopt_value_number (stmt, NO_INSERT);
3956 	      if (store_avail && bitmap_bit_p (store_avail, loc))
3957 		tm_memopt_transform_stmt (TRANSFORM_WAW, call_stmt, &gsi);
3958 	      else
3959 		{
3960 		  if (read_avail && bitmap_bit_p (read_avail, loc))
3961 		    tm_memopt_transform_stmt (TRANSFORM_WAR, call_stmt, &gsi);
3962 		  bitmap_set_bit (store_avail, loc);
3963 		}
3964 	    }
3965 	}
3966     }
3967 }
3968 
3969 /* Return a new set of bitmaps for a BB.  */
3970 
3971 static struct tm_memopt_bitmaps *
tm_memopt_init_sets(void)3972 tm_memopt_init_sets (void)
3973 {
3974   struct tm_memopt_bitmaps *b
3975     = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3976   b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3977   b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3978   b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3979   b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3980   b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3981   b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3982   b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3983   b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3984   b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3985   return b;
3986 }
3987 
3988 /* Free sets computed for each BB.  */
3989 
3990 static void
tm_memopt_free_sets(vec<basic_block> blocks)3991 tm_memopt_free_sets (vec<basic_block> blocks)
3992 {
3993   size_t i;
3994   basic_block bb;
3995 
3996   for (i = 0; blocks.iterate (i, &bb); ++i)
3997     bb->aux = NULL;
3998 }
3999 
4000 /* Clear the visited bit for every basic block in BLOCKS.  */
4001 
4002 static void
tm_memopt_clear_visited(vec<basic_block> blocks)4003 tm_memopt_clear_visited (vec<basic_block> blocks)
4004 {
4005   size_t i;
4006   basic_block bb;
4007 
4008   for (i = 0; blocks.iterate (i, &bb); ++i)
4009     BB_VISITED_P (bb) = false;
4010 }
4011 
4012 /* Replace TM load/stores with hints for the runtime.  We handle
4013    things like read-after-write, write-after-read, read-after-read,
4014    read-for-write, etc.  */
4015 
4016 static unsigned int
execute_tm_memopt(void)4017 execute_tm_memopt (void)
4018 {
4019   struct tm_region *region;
4020   vec<basic_block> bbs;
4021 
4022   tm_memopt_value_id = 0;
4023   tm_memopt_value_numbers = new hash_table<tm_memop_hasher> (10);
4024 
4025   for (region = all_tm_regions; region; region = region->next)
4026     {
4027       /* All the TM stores/loads in the current region.  */
4028       size_t i;
4029       basic_block bb;
4030 
4031       bitmap_obstack_initialize (&tm_memopt_obstack);
4032 
4033       /* Save all BBs for the current region.  */
4034       bbs = get_tm_region_blocks (region->entry_block,
4035 				  region->exit_blocks,
4036 				  region->irr_blocks,
4037 				  NULL,
4038 				  false);
4039 
4040       /* Collect all the memory operations.  */
4041       for (i = 0; bbs.iterate (i, &bb); ++i)
4042 	{
4043 	  bb->aux = tm_memopt_init_sets ();
4044 	  tm_memopt_accumulate_memops (bb);
4045 	}
4046 
4047       /* Solve data flow equations and transform each block accordingly.  */
4048       tm_memopt_clear_visited (bbs);
4049       tm_memopt_compute_available (region, bbs);
4050       tm_memopt_clear_visited (bbs);
4051       tm_memopt_compute_antic (region, bbs);
4052       tm_memopt_transform_blocks (bbs);
4053 
4054       tm_memopt_free_sets (bbs);
4055       bbs.release ();
4056       bitmap_obstack_release (&tm_memopt_obstack);
4057       tm_memopt_value_numbers->empty ();
4058     }
4059 
4060   delete tm_memopt_value_numbers;
4061   tm_memopt_value_numbers = NULL;
4062   return 0;
4063 }
4064 
4065 namespace {
4066 
4067 const pass_data pass_data_tm_memopt =
4068 {
4069   GIMPLE_PASS, /* type */
4070   "tmmemopt", /* name */
4071   OPTGROUP_NONE, /* optinfo_flags */
4072   TV_TRANS_MEM, /* tv_id */
4073   ( PROP_ssa | PROP_cfg ), /* properties_required */
4074   0, /* properties_provided */
4075   0, /* properties_destroyed */
4076   0, /* todo_flags_start */
4077   0, /* todo_flags_finish */
4078 };
4079 
4080 class pass_tm_memopt : public gimple_opt_pass
4081 {
4082 public:
pass_tm_memopt(gcc::context * ctxt)4083   pass_tm_memopt (gcc::context *ctxt)
4084     : gimple_opt_pass (pass_data_tm_memopt, ctxt)
4085   {}
4086 
4087   /* opt_pass methods: */
gate(function *)4088   virtual bool gate (function *) { return flag_tm && optimize > 0; }
execute(function *)4089   virtual unsigned int execute (function *) { return execute_tm_memopt (); }
4090 
4091 }; // class pass_tm_memopt
4092 
4093 } // anon namespace
4094 
4095 gimple_opt_pass *
make_pass_tm_memopt(gcc::context * ctxt)4096 make_pass_tm_memopt (gcc::context *ctxt)
4097 {
4098   return new pass_tm_memopt (ctxt);
4099 }
4100 
4101 
4102 /* Interprocedual analysis for the creation of transactional clones.
4103    The aim of this pass is to find which functions are referenced in
4104    a non-irrevocable transaction context, and for those over which
4105    we have control (or user directive), create a version of the
4106    function which uses only the transactional interface to reference
4107    protected memories.  This analysis proceeds in several steps:
4108 
4109      (1) Collect the set of all possible transactional clones:
4110 
4111 	(a) For all local public functions marked tm_callable, push
4112 	    it onto the tm_callee queue.
4113 
4114 	(b) For all local functions, scan for calls in transaction blocks.
4115 	    Push the caller and callee onto the tm_caller and tm_callee
4116 	    queues.  Count the number of callers for each callee.
4117 
4118 	(c) For each local function on the callee list, assume we will
4119 	    create a transactional clone.  Push *all* calls onto the
4120 	    callee queues; count the number of clone callers separately
4121 	    to the number of original callers.
4122 
4123      (2) Propagate irrevocable status up the dominator tree:
4124 
4125 	(a) Any external function on the callee list that is not marked
4126 	    tm_callable is irrevocable.  Push all callers of such onto
4127 	    a worklist.
4128 
4129 	(b) For each function on the worklist, mark each block that
4130 	    contains an irrevocable call.  Use the AND operator to
4131 	    propagate that mark up the dominator tree.
4132 
4133 	(c) If we reach the entry block for a possible transactional
4134 	    clone, then the transactional clone is irrevocable, and
4135 	    we should not create the clone after all.  Push all
4136 	    callers onto the worklist.
4137 
4138 	(d) Place tm_irrevocable calls at the beginning of the relevant
4139 	    blocks.  Special case here is the entry block for the entire
4140 	    transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
4141 	    the library to begin the region in serial mode.  Decrement
4142 	    the call count for all callees in the irrevocable region.
4143 
4144      (3) Create the transactional clones:
4145 
4146 	Any tm_callee that still has a non-zero call count is cloned.
4147 */
4148 
4149 /* This structure is stored in the AUX field of each cgraph_node.  */
4150 struct tm_ipa_cg_data
4151 {
4152   /* The clone of the function that got created.  */
4153   struct cgraph_node *clone;
4154 
4155   /* The tm regions in the normal function.  */
4156   struct tm_region *all_tm_regions;
4157 
4158   /* The blocks of the normal/clone functions that contain irrevocable
4159      calls, or blocks that are post-dominated by irrevocable calls.  */
4160   bitmap irrevocable_blocks_normal;
4161   bitmap irrevocable_blocks_clone;
4162 
4163   /* The blocks of the normal function that are involved in transactions.  */
4164   bitmap transaction_blocks_normal;
4165 
4166   /* The number of callers to the transactional clone of this function
4167      from normal and transactional clones respectively.  */
4168   unsigned tm_callers_normal;
4169   unsigned tm_callers_clone;
4170 
4171   /* True if all calls to this function's transactional clone
4172      are irrevocable.  Also automatically true if the function
4173      has no transactional clone.  */
4174   bool is_irrevocable;
4175 
4176   /* Flags indicating the presence of this function in various queues.  */
4177   bool in_callee_queue;
4178   bool in_worklist;
4179 
4180   /* Flags indicating the kind of scan desired while in the worklist.  */
4181   bool want_irr_scan_normal;
4182 };
4183 
4184 typedef vec<cgraph_node *> cgraph_node_queue;
4185 
4186 /* Return the ipa data associated with NODE, allocating zeroed memory
4187    if necessary.  TRAVERSE_ALIASES is true if we must traverse aliases
4188    and set *NODE accordingly.  */
4189 
4190 static struct tm_ipa_cg_data *
get_cg_data(struct cgraph_node ** node,bool traverse_aliases)4191 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4192 {
4193   struct tm_ipa_cg_data *d;
4194 
4195   if (traverse_aliases && (*node)->alias)
4196     *node = (*node)->get_alias_target ();
4197 
4198   d = (struct tm_ipa_cg_data *) (*node)->aux;
4199 
4200   if (d == NULL)
4201     {
4202       d = (struct tm_ipa_cg_data *)
4203 	obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4204       (*node)->aux = (void *) d;
4205       memset (d, 0, sizeof (*d));
4206     }
4207 
4208   return d;
4209 }
4210 
4211 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4212    it is already present.  */
4213 
4214 static void
maybe_push_queue(struct cgraph_node * node,cgraph_node_queue * queue_p,bool * in_queue_p)4215 maybe_push_queue (struct cgraph_node *node,
4216 		  cgraph_node_queue *queue_p, bool *in_queue_p)
4217 {
4218   if (!*in_queue_p)
4219     {
4220       *in_queue_p = true;
4221       queue_p->safe_push (node);
4222     }
4223 }
4224 
4225 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4226    Queue all callees within block BB.  */
4227 
4228 static void
ipa_tm_scan_calls_block(cgraph_node_queue * callees_p,basic_block bb,bool for_clone)4229 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4230 			 basic_block bb, bool for_clone)
4231 {
4232   gimple_stmt_iterator gsi;
4233 
4234   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4235     {
4236       gimple *stmt = gsi_stmt (gsi);
4237       if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4238 	{
4239 	  tree fndecl = gimple_call_fndecl (stmt);
4240 	  if (fndecl)
4241 	    {
4242 	      struct tm_ipa_cg_data *d;
4243 	      unsigned *pcallers;
4244 	      struct cgraph_node *node;
4245 
4246 	      if (is_tm_ending_fndecl (fndecl))
4247 		continue;
4248 	      if (find_tm_replacement_function (fndecl))
4249 		continue;
4250 
4251 	      node = cgraph_node::get (fndecl);
4252 	      gcc_assert (node != NULL);
4253 	      d = get_cg_data (&node, true);
4254 
4255 	      pcallers = (for_clone ? &d->tm_callers_clone
4256 			  : &d->tm_callers_normal);
4257 	      *pcallers += 1;
4258 
4259 	      maybe_push_queue (node, callees_p, &d->in_callee_queue);
4260 	    }
4261 	}
4262     }
4263 }
4264 
4265 /* Scan all calls in NODE that are within a transaction region,
4266    and push the resulting nodes into the callee queue.  */
4267 
4268 static void
ipa_tm_scan_calls_transaction(struct tm_ipa_cg_data * d,cgraph_node_queue * callees_p)4269 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4270 			       cgraph_node_queue *callees_p)
4271 {
4272   d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4273   d->all_tm_regions = all_tm_regions;
4274 
4275   for (tm_region *r = all_tm_regions; r; r = r->next)
4276     {
4277       vec<basic_block> bbs;
4278       basic_block bb;
4279       unsigned i;
4280 
4281       bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4282 				  d->transaction_blocks_normal, false, false);
4283 
4284       FOR_EACH_VEC_ELT (bbs, i, bb)
4285 	ipa_tm_scan_calls_block (callees_p, bb, false);
4286 
4287       bbs.release ();
4288     }
4289 }
4290 
4291 /* Scan all calls in NODE as if this is the transactional clone,
4292    and push the destinations into the callee queue.  */
4293 
4294 static void
ipa_tm_scan_calls_clone(struct cgraph_node * node,cgraph_node_queue * callees_p)4295 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4296 			 cgraph_node_queue *callees_p)
4297 {
4298   struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4299   basic_block bb;
4300 
4301   FOR_EACH_BB_FN (bb, fn)
4302     ipa_tm_scan_calls_block (callees_p, bb, true);
4303 }
4304 
4305 /* The function NODE has been detected to be irrevocable.  Push all
4306    of its callers onto WORKLIST for the purpose of re-scanning them.  */
4307 
4308 static void
ipa_tm_note_irrevocable(struct cgraph_node * node,cgraph_node_queue * worklist_p)4309 ipa_tm_note_irrevocable (struct cgraph_node *node,
4310 			 cgraph_node_queue *worklist_p)
4311 {
4312   struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4313   struct cgraph_edge *e;
4314 
4315   d->is_irrevocable = true;
4316 
4317   for (e = node->callers; e ; e = e->next_caller)
4318     {
4319       basic_block bb;
4320       struct cgraph_node *caller;
4321 
4322       /* Don't examine recursive calls.  */
4323       if (e->caller == node)
4324 	continue;
4325       /* Even if we think we can go irrevocable, believe the user
4326 	 above all.  */
4327       if (is_tm_safe_or_pure (e->caller->decl))
4328 	continue;
4329 
4330       caller = e->caller;
4331       d = get_cg_data (&caller, true);
4332 
4333       /* Check if the callee is in a transactional region.  If so,
4334 	 schedule the function for normal re-scan as well.  */
4335       bb = gimple_bb (e->call_stmt);
4336       gcc_assert (bb != NULL);
4337       if (d->transaction_blocks_normal
4338 	  && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4339 	d->want_irr_scan_normal = true;
4340 
4341       maybe_push_queue (caller, worklist_p, &d->in_worklist);
4342     }
4343 }
4344 
4345 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4346    within the block is irrevocable.  */
4347 
4348 static bool
ipa_tm_scan_irr_block(basic_block bb)4349 ipa_tm_scan_irr_block (basic_block bb)
4350 {
4351   gimple_stmt_iterator gsi;
4352   tree fn;
4353 
4354   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4355     {
4356       gimple *stmt = gsi_stmt (gsi);
4357       switch (gimple_code (stmt))
4358 	{
4359 	case GIMPLE_ASSIGN:
4360 	  if (gimple_assign_single_p (stmt))
4361 	    {
4362 	      tree lhs = gimple_assign_lhs (stmt);
4363 	      tree rhs = gimple_assign_rhs1 (stmt);
4364 	      if (volatile_lvalue_p (lhs) || volatile_lvalue_p (rhs))
4365 		return true;
4366 	    }
4367 	  break;
4368 
4369 	case GIMPLE_CALL:
4370 	  {
4371 	    tree lhs = gimple_call_lhs (stmt);
4372 	    if (lhs && volatile_lvalue_p (lhs))
4373 	      return true;
4374 
4375 	    if (is_tm_pure_call (stmt))
4376 	      break;
4377 
4378 	    fn = gimple_call_fn (stmt);
4379 
4380 	    /* Functions with the attribute are by definition irrevocable.  */
4381 	    if (is_tm_irrevocable (fn))
4382 	      return true;
4383 
4384 	    /* For direct function calls, go ahead and check for replacement
4385 	       functions, or transitive irrevocable functions.  For indirect
4386 	       functions, we'll ask the runtime.  */
4387 	    if (TREE_CODE (fn) == ADDR_EXPR)
4388 	      {
4389 		struct tm_ipa_cg_data *d;
4390 		struct cgraph_node *node;
4391 
4392 		fn = TREE_OPERAND (fn, 0);
4393 		if (is_tm_ending_fndecl (fn))
4394 		  break;
4395 		if (find_tm_replacement_function (fn))
4396 		  break;
4397 
4398 		node = cgraph_node::get (fn);
4399 		d = get_cg_data (&node, true);
4400 
4401 		/* Return true if irrevocable, but above all, believe
4402 		   the user.  */
4403 		if (d->is_irrevocable
4404 		    && !is_tm_safe_or_pure (fn))
4405 		  return true;
4406 	      }
4407 	    break;
4408 	  }
4409 
4410 	case GIMPLE_ASM:
4411 	  /* ??? The Approved Method of indicating that an inline
4412 	     assembly statement is not relevant to the transaction
4413 	     is to wrap it in a __tm_waiver block.  This is not
4414 	     yet implemented, so we can't check for it.  */
4415 	  if (is_tm_safe (current_function_decl))
4416 	    {
4417 	      tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4418 	      SET_EXPR_LOCATION (t, gimple_location (stmt));
4419 	      error ("%K%<asm%> not allowed in %<transaction_safe%> function",
4420 		     t);
4421 	    }
4422 	  return true;
4423 
4424 	default:
4425 	  break;
4426 	}
4427     }
4428 
4429   return false;
4430 }
4431 
4432 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4433    for new irrevocable blocks, marking them in NEW_IRR.  Don't bother
4434    scanning past OLD_IRR or EXIT_BLOCKS.  */
4435 
4436 static bool
ipa_tm_scan_irr_blocks(vec<basic_block> * pqueue,bitmap new_irr,bitmap old_irr,bitmap exit_blocks)4437 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4438 			bitmap old_irr, bitmap exit_blocks)
4439 {
4440   bool any_new_irr = false;
4441   edge e;
4442   edge_iterator ei;
4443   bitmap visited_blocks = BITMAP_ALLOC (NULL);
4444 
4445   do
4446     {
4447       basic_block bb = pqueue->pop ();
4448 
4449       /* Don't re-scan blocks we know already are irrevocable.  */
4450       if (old_irr && bitmap_bit_p (old_irr, bb->index))
4451 	continue;
4452 
4453       if (ipa_tm_scan_irr_block (bb))
4454 	{
4455 	  bitmap_set_bit (new_irr, bb->index);
4456 	  any_new_irr = true;
4457 	}
4458       else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4459 	{
4460 	  FOR_EACH_EDGE (e, ei, bb->succs)
4461 	    if (!bitmap_bit_p (visited_blocks, e->dest->index))
4462 	      {
4463 		bitmap_set_bit (visited_blocks, e->dest->index);
4464 		pqueue->safe_push (e->dest);
4465 	      }
4466 	}
4467     }
4468   while (!pqueue->is_empty ());
4469 
4470   BITMAP_FREE (visited_blocks);
4471 
4472   return any_new_irr;
4473 }
4474 
4475 /* Propagate the irrevocable property both up and down the dominator tree.
4476    BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4477    TM regions; OLD_IRR are the results of a previous scan of the dominator
4478    tree which has been fully propagated; NEW_IRR is the set of new blocks
4479    which are gaining the irrevocable property during the current scan.  */
4480 
4481 static void
ipa_tm_propagate_irr(basic_block entry_block,bitmap new_irr,bitmap old_irr,bitmap exit_blocks)4482 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4483 		      bitmap old_irr, bitmap exit_blocks)
4484 {
4485   vec<basic_block> bbs;
4486   bitmap all_region_blocks;
4487 
4488   /* If this block is in the old set, no need to rescan.  */
4489   if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4490     return;
4491 
4492   all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4493   bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4494 			      all_region_blocks, false);
4495   do
4496     {
4497       basic_block bb = bbs.pop ();
4498       bool this_irr = bitmap_bit_p (new_irr, bb->index);
4499       bool all_son_irr = false;
4500       edge_iterator ei;
4501       edge e;
4502 
4503       /* Propagate up.  If my children are, I am too, but we must have
4504 	 at least one child that is.  */
4505       if (!this_irr)
4506 	{
4507 	  FOR_EACH_EDGE (e, ei, bb->succs)
4508 	    {
4509 	      if (!bitmap_bit_p (new_irr, e->dest->index))
4510 		{
4511 		  all_son_irr = false;
4512 		  break;
4513 		}
4514 	      else
4515 		all_son_irr = true;
4516 	    }
4517 	  if (all_son_irr)
4518 	    {
4519 	      /* Add block to new_irr if it hasn't already been processed. */
4520 	      if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4521 		{
4522 		  bitmap_set_bit (new_irr, bb->index);
4523 		  this_irr = true;
4524 		}
4525 	    }
4526 	}
4527 
4528       /* Propagate down to everyone we immediately dominate.  */
4529       if (this_irr)
4530 	{
4531 	  basic_block son;
4532 	  for (son = first_dom_son (CDI_DOMINATORS, bb);
4533 	       son;
4534 	       son = next_dom_son (CDI_DOMINATORS, son))
4535 	    {
4536 	      /* Make sure block is actually in a TM region, and it
4537 		 isn't already in old_irr.  */
4538 	      if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4539 		  && bitmap_bit_p (all_region_blocks, son->index))
4540 		bitmap_set_bit (new_irr, son->index);
4541 	    }
4542 	}
4543     }
4544   while (!bbs.is_empty ());
4545 
4546   BITMAP_FREE (all_region_blocks);
4547   bbs.release ();
4548 }
4549 
4550 static void
ipa_tm_decrement_clone_counts(basic_block bb,bool for_clone)4551 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4552 {
4553   gimple_stmt_iterator gsi;
4554 
4555   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4556     {
4557       gimple *stmt = gsi_stmt (gsi);
4558       if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4559 	{
4560 	  tree fndecl = gimple_call_fndecl (stmt);
4561 	  if (fndecl)
4562 	    {
4563 	      struct tm_ipa_cg_data *d;
4564 	      unsigned *pcallers;
4565 	      struct cgraph_node *tnode;
4566 
4567 	      if (is_tm_ending_fndecl (fndecl))
4568 		continue;
4569 	      if (find_tm_replacement_function (fndecl))
4570 		continue;
4571 
4572 	      tnode = cgraph_node::get (fndecl);
4573 	      d = get_cg_data (&tnode, true);
4574 
4575 	      pcallers = (for_clone ? &d->tm_callers_clone
4576 			  : &d->tm_callers_normal);
4577 
4578 	      gcc_assert (*pcallers > 0);
4579 	      *pcallers -= 1;
4580 	    }
4581 	}
4582     }
4583 }
4584 
4585 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4586    as well as other irrevocable actions such as inline assembly.  Mark all
4587    such blocks as irrevocable and decrement the number of calls to
4588    transactional clones.  Return true if, for the transactional clone, the
4589    entire function is irrevocable.  */
4590 
4591 static bool
ipa_tm_scan_irr_function(struct cgraph_node * node,bool for_clone)4592 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4593 {
4594   struct tm_ipa_cg_data *d;
4595   bitmap new_irr, old_irr;
4596   bool ret = false;
4597 
4598   /* Builtin operators (operator new, and such).  */
4599   if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4600       || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4601     return false;
4602 
4603   push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4604   calculate_dominance_info (CDI_DOMINATORS);
4605 
4606   d = get_cg_data (&node, true);
4607   auto_vec<basic_block, 10> queue;
4608   new_irr = BITMAP_ALLOC (&tm_obstack);
4609 
4610   /* Scan each tm region, propagating irrevocable status through the tree.  */
4611   if (for_clone)
4612     {
4613       old_irr = d->irrevocable_blocks_clone;
4614       queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4615       if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4616 	{
4617 	  ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4618 				new_irr,
4619 				old_irr, NULL);
4620 	  ret = bitmap_bit_p (new_irr,
4621 			      single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4622 	}
4623     }
4624   else
4625     {
4626       struct tm_region *region;
4627 
4628       old_irr = d->irrevocable_blocks_normal;
4629       for (region = d->all_tm_regions; region; region = region->next)
4630 	{
4631 	  queue.quick_push (region->entry_block);
4632 	  if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4633 				      region->exit_blocks))
4634 	    ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4635 				  region->exit_blocks);
4636 	}
4637     }
4638 
4639   /* If we found any new irrevocable blocks, reduce the call count for
4640      transactional clones within the irrevocable blocks.  Save the new
4641      set of irrevocable blocks for next time.  */
4642   if (!bitmap_empty_p (new_irr))
4643     {
4644       bitmap_iterator bmi;
4645       unsigned i;
4646 
4647       EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4648 	ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
4649 				       for_clone);
4650 
4651       if (old_irr)
4652 	{
4653 	  bitmap_ior_into (old_irr, new_irr);
4654 	  BITMAP_FREE (new_irr);
4655 	}
4656       else if (for_clone)
4657 	d->irrevocable_blocks_clone = new_irr;
4658       else
4659 	d->irrevocable_blocks_normal = new_irr;
4660 
4661       if (dump_file && new_irr)
4662 	{
4663 	  const char *dname;
4664 	  bitmap_iterator bmi;
4665 	  unsigned i;
4666 
4667 	  dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4668 	  EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4669 	    fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4670 	}
4671     }
4672   else
4673     BITMAP_FREE (new_irr);
4674 
4675   pop_cfun ();
4676 
4677   return ret;
4678 }
4679 
4680 /* Return true if, for the transactional clone of NODE, any call
4681    may enter irrevocable mode.  */
4682 
4683 static bool
ipa_tm_mayenterirr_function(struct cgraph_node * node)4684 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4685 {
4686   struct tm_ipa_cg_data *d;
4687   tree decl;
4688   unsigned flags;
4689 
4690   d = get_cg_data (&node, true);
4691   decl = node->decl;
4692   flags = flags_from_decl_or_type (decl);
4693 
4694   /* Handle some TM builtins.  Ordinarily these aren't actually generated
4695      at this point, but handling these functions when written in by the
4696      user makes it easier to build unit tests.  */
4697   if (flags & ECF_TM_BUILTIN)
4698     return false;
4699 
4700   /* Filter out all functions that are marked.  */
4701   if (flags & ECF_TM_PURE)
4702     return false;
4703   if (is_tm_safe (decl))
4704     return false;
4705   if (is_tm_irrevocable (decl))
4706     return true;
4707   if (is_tm_callable (decl))
4708     return true;
4709   if (find_tm_replacement_function (decl))
4710     return true;
4711 
4712   /* If we aren't seeing the final version of the function we don't
4713      know what it will contain at runtime.  */
4714   if (node->get_availability () < AVAIL_AVAILABLE)
4715     return true;
4716 
4717   /* If the function must go irrevocable, then of course true.  */
4718   if (d->is_irrevocable)
4719     return true;
4720 
4721   /* If there are any blocks marked irrevocable, then the function
4722      as a whole may enter irrevocable.  */
4723   if (d->irrevocable_blocks_clone)
4724     return true;
4725 
4726   /* We may have previously marked this function as tm_may_enter_irr;
4727      see pass_diagnose_tm_blocks.  */
4728   if (node->tm_may_enter_irr)
4729     return true;
4730 
4731   /* Recurse on the main body for aliases.  In general, this will
4732      result in one of the bits above being set so that we will not
4733      have to recurse next time.  */
4734   if (node->alias)
4735     return ipa_tm_mayenterirr_function
4736 		 (cgraph_node::get (thunk_info::get (node)->alias));
4737 
4738   /* What remains is unmarked local functions without items that force
4739      the function to go irrevocable.  */
4740   return false;
4741 }
4742 
4743 /* Diagnose calls from transaction_safe functions to unmarked
4744    functions that are determined to not be safe.  */
4745 
4746 static void
ipa_tm_diagnose_tm_safe(struct cgraph_node * node)4747 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4748 {
4749   struct cgraph_edge *e;
4750 
4751   for (e = node->callees; e ; e = e->next_callee)
4752     if (!is_tm_callable (e->callee->decl)
4753 	&& e->callee->tm_may_enter_irr)
4754       error_at (gimple_location (e->call_stmt),
4755 		"unsafe function call %qD within "
4756 		"%<transaction_safe%> function", e->callee->decl);
4757 }
4758 
4759 /* Diagnose call from atomic transactions to unmarked functions
4760    that are determined to not be safe.  */
4761 
4762 static void
ipa_tm_diagnose_transaction(struct cgraph_node * node,struct tm_region * all_tm_regions)4763 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4764 			   struct tm_region *all_tm_regions)
4765 {
4766   struct tm_region *r;
4767 
4768   for (r = all_tm_regions; r ; r = r->next)
4769     if (gimple_transaction_subcode (r->get_transaction_stmt ())
4770 	& GTMA_IS_RELAXED)
4771       {
4772 	/* Atomic transactions can be nested inside relaxed.  */
4773 	if (r->inner)
4774 	  ipa_tm_diagnose_transaction (node, r->inner);
4775       }
4776     else
4777       {
4778 	vec<basic_block> bbs;
4779 	gimple_stmt_iterator gsi;
4780 	basic_block bb;
4781 	size_t i;
4782 
4783 	bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4784 				    r->irr_blocks, NULL, false);
4785 
4786 	for (i = 0; bbs.iterate (i, &bb); ++i)
4787 	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4788 	    {
4789 	      gimple *stmt = gsi_stmt (gsi);
4790 	      tree fndecl;
4791 
4792 	      if (gimple_code (stmt) == GIMPLE_ASM)
4793 		{
4794 		  error_at (gimple_location (stmt),
4795 			    "%<asm%> not allowed in atomic transaction");
4796 		  continue;
4797 		}
4798 
4799 	      if (!is_gimple_call (stmt))
4800 		continue;
4801 	      fndecl = gimple_call_fndecl (stmt);
4802 
4803 	      /* Indirect function calls have been diagnosed already.  */
4804 	      if (!fndecl)
4805 		continue;
4806 
4807 	      /* Stop at the end of the transaction.  */
4808 	      if (is_tm_ending_fndecl (fndecl))
4809 		{
4810 		  if (bitmap_bit_p (r->exit_blocks, bb->index))
4811 		    break;
4812 		  continue;
4813 		}
4814 
4815 	      /* Marked functions have been diagnosed already.  */
4816 	      if (is_tm_pure_call (stmt))
4817 		continue;
4818 	      if (is_tm_callable (fndecl))
4819 		continue;
4820 
4821 	      if (cgraph_node::local_info_node (fndecl)->tm_may_enter_irr)
4822 		error_at (gimple_location (stmt),
4823 			  "unsafe function call %qD within "
4824 			  "atomic transaction", fndecl);
4825 	    }
4826 
4827 	bbs.release ();
4828       }
4829 }
4830 
4831 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4832    OLD_DECL.  The returned value is a freshly malloced pointer that
4833    should be freed by the caller.  */
4834 
4835 static tree
tm_mangle(tree old_asm_id)4836 tm_mangle (tree old_asm_id)
4837 {
4838   const char *old_asm_name;
4839   char *tm_name;
4840   void *alloc = NULL;
4841   struct demangle_component *dc;
4842   tree new_asm_id;
4843 
4844   /* Determine if the symbol is already a valid C++ mangled name.  Do this
4845      even for C, which might be interfacing with C++ code via appropriately
4846      ugly identifiers.  */
4847   /* ??? We could probably do just as well checking for "_Z" and be done.  */
4848   old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4849   dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4850 
4851   if (dc == NULL)
4852     {
4853       char length[12];
4854 
4855     do_unencoded:
4856       sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4857       tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4858     }
4859   else
4860     {
4861       old_asm_name += 2;	/* Skip _Z */
4862 
4863       switch (dc->type)
4864 	{
4865 	case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4866 	case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4867 	  /* Don't play silly games, you!  */
4868 	  goto do_unencoded;
4869 
4870 	case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4871 	  /* I'd really like to know if we can ever be passed one of
4872 	     these from the C++ front end.  The Logical Thing would
4873 	     seem that hidden-alias should be outer-most, so that we
4874 	     get hidden-alias of a transaction-clone and not vice-versa.  */
4875 	  old_asm_name += 2;
4876 	  break;
4877 
4878 	default:
4879 	  break;
4880 	}
4881 
4882       tm_name = concat ("_ZGTt", old_asm_name, NULL);
4883     }
4884   free (alloc);
4885 
4886   new_asm_id = get_identifier (tm_name);
4887   free (tm_name);
4888 
4889   return new_asm_id;
4890 }
4891 
4892 static inline void
ipa_tm_mark_force_output_node(struct cgraph_node * node)4893 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4894 {
4895   node->mark_force_output ();
4896   node->analyzed = true;
4897 }
4898 
4899 static inline void
ipa_tm_mark_forced_by_abi_node(struct cgraph_node * node)4900 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4901 {
4902   node->forced_by_abi = true;
4903   node->analyzed = true;
4904 }
4905 
4906 /* Callback data for ipa_tm_create_version_alias.  */
4907 struct create_version_alias_info
4908 {
4909   struct cgraph_node *old_node;
4910   tree new_decl;
4911 };
4912 
4913 /* A subroutine of ipa_tm_create_version, called via
4914    cgraph_for_node_and_aliases.  Create new tm clones for each of
4915    the existing aliases.  */
4916 static bool
ipa_tm_create_version_alias(struct cgraph_node * node,void * data)4917 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4918 {
4919   struct create_version_alias_info *info
4920     = (struct create_version_alias_info *)data;
4921   tree old_decl, new_decl, tm_name;
4922   struct cgraph_node *new_node;
4923 
4924   if (!node->cpp_implicit_alias)
4925     return false;
4926 
4927   old_decl = node->decl;
4928   tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4929   new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4930 			 TREE_CODE (old_decl), tm_name,
4931 			 TREE_TYPE (old_decl));
4932 
4933   SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4934   SET_DECL_RTL (new_decl, NULL);
4935 
4936   /* Based loosely on C++'s make_alias_for().  */
4937   TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4938   DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4939   DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4940   TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4941   DECL_EXTERNAL (new_decl) = 0;
4942   DECL_ARTIFICIAL (new_decl) = 1;
4943   TREE_ADDRESSABLE (new_decl) = 1;
4944   TREE_USED (new_decl) = 1;
4945   TREE_SYMBOL_REFERENCED (tm_name) = 1;
4946 
4947   /* Perform the same remapping to the comdat group.  */
4948   if (DECL_ONE_ONLY (new_decl))
4949     varpool_node::get (new_decl)->set_comdat_group
4950       (tm_mangle (decl_comdat_group_id (old_decl)));
4951 
4952   new_node = cgraph_node::create_same_body_alias (new_decl, info->new_decl);
4953   new_node->tm_clone = true;
4954   new_node->externally_visible = info->old_node->externally_visible;
4955   new_node->no_reorder = info->old_node->no_reorder;
4956   /* ?? Do not traverse aliases here.  */
4957   get_cg_data (&node, false)->clone = new_node;
4958 
4959   record_tm_clone_pair (old_decl, new_decl);
4960 
4961   if (info->old_node->force_output
4962       || info->old_node->ref_list.first_referring ())
4963     ipa_tm_mark_force_output_node (new_node);
4964   if (info->old_node->forced_by_abi)
4965     ipa_tm_mark_forced_by_abi_node (new_node);
4966   return false;
4967 }
4968 
4969 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4970    appropriate for the transactional clone.  */
4971 
4972 static void
ipa_tm_create_version(struct cgraph_node * old_node)4973 ipa_tm_create_version (struct cgraph_node *old_node)
4974 {
4975   tree new_decl, old_decl, tm_name;
4976   struct cgraph_node *new_node;
4977 
4978   old_decl = old_node->decl;
4979   new_decl = copy_node (old_decl);
4980 
4981   /* DECL_ASSEMBLER_NAME needs to be set before we call
4982      cgraph_copy_node_for_versioning below, because cgraph_node will
4983      fill the assembler_name_hash.  */
4984   tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4985   SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4986   SET_DECL_RTL (new_decl, NULL);
4987   TREE_SYMBOL_REFERENCED (tm_name) = 1;
4988 
4989   /* Perform the same remapping to the comdat group.  */
4990   if (DECL_ONE_ONLY (new_decl))
4991     varpool_node::get (new_decl)->set_comdat_group
4992       (tm_mangle (DECL_COMDAT_GROUP (old_decl)));
4993 
4994   gcc_assert (!old_node->ipa_transforms_to_apply.exists ());
4995   new_node = old_node->create_version_clone (new_decl, vNULL, NULL);
4996   new_node->local = false;
4997   new_node->externally_visible = old_node->externally_visible;
4998   new_node->lowered = true;
4999   new_node->tm_clone = 1;
5000   if (!old_node->implicit_section)
5001     new_node->set_section (*old_node);
5002   get_cg_data (&old_node, true)->clone = new_node;
5003 
5004   if (old_node->get_availability () >= AVAIL_INTERPOSABLE)
5005     {
5006       /* Remap extern inline to static inline.  */
5007       /* ??? Is it worth trying to use make_decl_one_only?  */
5008       if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
5009 	{
5010 	  DECL_EXTERNAL (new_decl) = 0;
5011 	  TREE_PUBLIC (new_decl) = 0;
5012 	  DECL_WEAK (new_decl) = 0;
5013 	}
5014 
5015       tree_function_versioning (old_decl, new_decl,
5016 				NULL,  NULL, false, NULL, NULL);
5017     }
5018 
5019   record_tm_clone_pair (old_decl, new_decl);
5020 
5021   symtab->call_cgraph_insertion_hooks (new_node);
5022   if (old_node->force_output
5023       || old_node->ref_list.first_referring ())
5024     ipa_tm_mark_force_output_node (new_node);
5025   if (old_node->forced_by_abi)
5026     ipa_tm_mark_forced_by_abi_node (new_node);
5027 
5028   /* Do the same thing, but for any aliases of the original node.  */
5029   {
5030     struct create_version_alias_info data;
5031     data.old_node = old_node;
5032     data.new_decl = new_decl;
5033     old_node->call_for_symbol_thunks_and_aliases (ipa_tm_create_version_alias,
5034 						&data, true);
5035   }
5036 }
5037 
5038 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB.  */
5039 
5040 static void
ipa_tm_insert_irr_call(struct cgraph_node * node,struct tm_region * region,basic_block bb)5041 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
5042 			basic_block bb)
5043 {
5044   gimple_stmt_iterator gsi;
5045   gcall *g;
5046 
5047   transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5048 
5049   g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
5050 			 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
5051 
5052   split_block_after_labels (bb);
5053   gsi = gsi_after_labels (bb);
5054   gsi_insert_before (&gsi, g, GSI_SAME_STMT);
5055 
5056   node->create_edge (cgraph_node::get_create
5057 		       (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
5058 		     g, gimple_bb (g)->count);
5059 }
5060 
5061 /* Construct a call to TM_GETTMCLONE and insert it before GSI.  */
5062 
5063 static bool
ipa_tm_insert_gettmclone_call(struct cgraph_node * node,struct tm_region * region,gimple_stmt_iterator * gsi,gcall * stmt)5064 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
5065 			       struct tm_region *region,
5066 			       gimple_stmt_iterator *gsi, gcall *stmt)
5067 {
5068   tree gettm_fn, ret, old_fn, callfn;
5069   gcall *g;
5070   gassign *g2;
5071   bool safe;
5072 
5073   old_fn = gimple_call_fn (stmt);
5074 
5075   if (TREE_CODE (old_fn) == ADDR_EXPR)
5076     {
5077       tree fndecl = TREE_OPERAND (old_fn, 0);
5078       tree clone = get_tm_clone_pair (fndecl);
5079 
5080       /* By transforming the call into a TM_GETTMCLONE, we are
5081 	 technically taking the address of the original function and
5082 	 its clone.  Explain this so inlining will know this function
5083 	 is needed.  */
5084       cgraph_node::get (fndecl)->mark_address_taken () ;
5085       if (clone)
5086 	cgraph_node::get (clone)->mark_address_taken ();
5087     }
5088 
5089   safe = is_tm_safe (TREE_TYPE (old_fn));
5090   gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
5091 				    : BUILT_IN_TM_GETTMCLONE_IRR);
5092   ret = create_tmp_var (ptr_type_node);
5093 
5094   if (!safe)
5095     transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5096 
5097   /* Discard OBJ_TYPE_REF, since we weren't able to fold it.  */
5098   if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
5099     old_fn = OBJ_TYPE_REF_EXPR (old_fn);
5100 
5101   g = gimple_build_call (gettm_fn, 1, old_fn);
5102   ret = make_ssa_name (ret, g);
5103   gimple_call_set_lhs (g, ret);
5104 
5105   gsi_insert_before (gsi, g, GSI_SAME_STMT);
5106 
5107   node->create_edge (cgraph_node::get_create (gettm_fn), g, gimple_bb (g)->count);
5108 
5109   /* Cast return value from tm_gettmclone* into appropriate function
5110      pointer.  */
5111   callfn = create_tmp_var (TREE_TYPE (old_fn));
5112   g2 = gimple_build_assign (callfn,
5113 			    fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5114   callfn = make_ssa_name (callfn, g2);
5115   gimple_assign_set_lhs (g2, callfn);
5116   gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5117 
5118   /* ??? This is a hack to preserve the NOTHROW bit on the call,
5119      which we would have derived from the decl.  Failure to save
5120      this bit means we might have to split the basic block.  */
5121   if (gimple_call_nothrow_p (stmt))
5122     gimple_call_set_nothrow (stmt, true);
5123 
5124   gimple_call_set_fn (stmt, callfn);
5125 
5126   /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5127      for a call statement.  Fix it.  */
5128   {
5129     tree lhs = gimple_call_lhs (stmt);
5130     tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5131     if (lhs
5132 	&& !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5133     {
5134       tree temp;
5135 
5136       temp = create_tmp_reg (rettype);
5137       gimple_call_set_lhs (stmt, temp);
5138 
5139       g2 = gimple_build_assign (lhs,
5140 				fold_build1 (VIEW_CONVERT_EXPR,
5141 					     TREE_TYPE (lhs), temp));
5142       gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5143     }
5144   }
5145 
5146   update_stmt (stmt);
5147   cgraph_edge *e = cgraph_node::get (current_function_decl)->get_edge (stmt);
5148   if (e && e->indirect_info)
5149     e->indirect_info->polymorphic = false;
5150 
5151   return true;
5152 }
5153 
5154 /* Helper function for ipa_tm_transform_calls*.  Given a call
5155    statement in GSI which resides inside transaction REGION, redirect
5156    the call to either its wrapper function, or its clone.  */
5157 
5158 static void
ipa_tm_transform_calls_redirect(struct cgraph_node * node,struct tm_region * region,gimple_stmt_iterator * gsi,bool * need_ssa_rename_p)5159 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5160 				 struct tm_region *region,
5161 				 gimple_stmt_iterator *gsi,
5162 				 bool *need_ssa_rename_p)
5163 {
5164   gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
5165   struct cgraph_node *new_node;
5166   struct cgraph_edge *e = node->get_edge (stmt);
5167   tree fndecl = gimple_call_fndecl (stmt);
5168 
5169   /* For indirect calls, pass the address through the runtime.  */
5170   if (fndecl == NULL)
5171     {
5172       *need_ssa_rename_p |=
5173 	ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5174       return;
5175     }
5176 
5177   /* Handle some TM builtins.  Ordinarily these aren't actually generated
5178      at this point, but handling these functions when written in by the
5179      user makes it easier to build unit tests.  */
5180   if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5181     return;
5182 
5183   /* Fixup recursive calls inside clones.  */
5184   /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5185      for recursion but not update the call statements themselves?  */
5186   if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5187     {
5188       gimple_call_set_fndecl (stmt, current_function_decl);
5189       return;
5190     }
5191 
5192   /* If there is a replacement, use it.  */
5193   fndecl = find_tm_replacement_function (fndecl);
5194   if (fndecl)
5195     {
5196       new_node = cgraph_node::get_create (fndecl);
5197 
5198       /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5199 
5200 	 We can't do this earlier in record_tm_replacement because
5201 	 cgraph_remove_unreachable_nodes is called before we inject
5202 	 references to the node.  Further, we can't do this in some
5203 	 nice central place in ipa_tm_execute because we don't have
5204 	 the exact list of wrapper functions that would be used.
5205 	 Marking more wrappers than necessary results in the creation
5206 	 of unnecessary cgraph_nodes, which can cause some of the
5207 	 other IPA passes to crash.
5208 
5209 	 We do need to mark these nodes so that we get the proper
5210 	 result in expand_call_tm.  */
5211       /* ??? This seems broken.  How is it that we're marking the
5212 	 CALLEE as may_enter_irr?  Surely we should be marking the
5213 	 CALLER.  Also note that find_tm_replacement_function also
5214 	 contains mappings into the TM runtime, e.g. memcpy.  These
5215 	 we know won't go irrevocable.  */
5216       new_node->tm_may_enter_irr = 1;
5217     }
5218   else
5219     {
5220       struct tm_ipa_cg_data *d;
5221       struct cgraph_node *tnode = e->callee;
5222 
5223       d = get_cg_data (&tnode, true);
5224       new_node = d->clone;
5225 
5226       /* As we've already skipped pure calls and appropriate builtins,
5227 	 and we've already marked irrevocable blocks, if we can't come
5228 	 up with a static replacement, then ask the runtime.  */
5229       if (new_node == NULL)
5230 	{
5231 	  *need_ssa_rename_p |=
5232 	    ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5233 	  return;
5234 	}
5235 
5236       fndecl = new_node->decl;
5237     }
5238 
5239   e->redirect_callee (new_node);
5240   gimple_call_set_fndecl (stmt, fndecl);
5241 }
5242 
5243 /* Helper function for ipa_tm_transform_calls.  For a given BB,
5244    install calls to tm_irrevocable when IRR_BLOCKS are reached,
5245    redirect other calls to the generated transactional clone.  */
5246 
5247 static bool
ipa_tm_transform_calls_1(struct cgraph_node * node,struct tm_region * region,basic_block bb,bitmap irr_blocks)5248 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5249 			  basic_block bb, bitmap irr_blocks)
5250 {
5251   gimple_stmt_iterator gsi;
5252   bool need_ssa_rename = false;
5253 
5254   if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5255     {
5256       ipa_tm_insert_irr_call (node, region, bb);
5257       return true;
5258     }
5259 
5260   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5261     {
5262       gimple *stmt = gsi_stmt (gsi);
5263 
5264       if (!is_gimple_call (stmt))
5265 	continue;
5266       if (is_tm_pure_call (stmt))
5267 	continue;
5268 
5269       /* Redirect edges to the appropriate replacement or clone.  */
5270       ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5271     }
5272 
5273   return need_ssa_rename;
5274 }
5275 
5276 /* Walk the CFG for REGION, beginning at BB.  Install calls to
5277    tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5278    the generated transactional clone.  */
5279 
5280 static bool
ipa_tm_transform_calls(struct cgraph_node * node,struct tm_region * region,basic_block bb,bitmap irr_blocks)5281 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5282 			basic_block bb, bitmap irr_blocks)
5283 {
5284   bool need_ssa_rename = false;
5285   edge e;
5286   edge_iterator ei;
5287   auto_vec<basic_block> queue;
5288   bitmap visited_blocks = BITMAP_ALLOC (NULL);
5289 
5290   queue.safe_push (bb);
5291   do
5292     {
5293       bb = queue.pop ();
5294 
5295       need_ssa_rename |=
5296 	ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5297 
5298       if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5299 	continue;
5300 
5301       if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5302 	continue;
5303 
5304       FOR_EACH_EDGE (e, ei, bb->succs)
5305 	if (!bitmap_bit_p (visited_blocks, e->dest->index))
5306 	  {
5307 	    bitmap_set_bit (visited_blocks, e->dest->index);
5308 	    queue.safe_push (e->dest);
5309 	  }
5310     }
5311   while (!queue.is_empty ());
5312 
5313   BITMAP_FREE (visited_blocks);
5314 
5315   return need_ssa_rename;
5316 }
5317 
5318 /* Transform the calls within the TM regions within NODE.  */
5319 
5320 static void
ipa_tm_transform_transaction(struct cgraph_node * node)5321 ipa_tm_transform_transaction (struct cgraph_node *node)
5322 {
5323   struct tm_ipa_cg_data *d;
5324   struct tm_region *region;
5325   bool need_ssa_rename = false;
5326 
5327   d = get_cg_data (&node, true);
5328 
5329   push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5330   calculate_dominance_info (CDI_DOMINATORS);
5331 
5332   for (region = d->all_tm_regions; region; region = region->next)
5333     {
5334       /* If we're sure to go irrevocable, don't transform anything.  */
5335       if (d->irrevocable_blocks_normal
5336 	  && bitmap_bit_p (d->irrevocable_blocks_normal,
5337 			   region->entry_block->index))
5338 	{
5339 	  transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5340 				           | GTMA_MAY_ENTER_IRREVOCABLE
5341 				   	   | GTMA_HAS_NO_INSTRUMENTATION);
5342 	  continue;
5343 	}
5344 
5345       need_ssa_rename |=
5346 	ipa_tm_transform_calls (node, region, region->entry_block,
5347 				d->irrevocable_blocks_normal);
5348     }
5349 
5350   if (need_ssa_rename)
5351     update_ssa (TODO_update_ssa_only_virtuals);
5352 
5353   pop_cfun ();
5354 }
5355 
5356 /* Transform the calls within the transactional clone of NODE.  */
5357 
5358 static void
ipa_tm_transform_clone(struct cgraph_node * node)5359 ipa_tm_transform_clone (struct cgraph_node *node)
5360 {
5361   struct tm_ipa_cg_data *d;
5362   bool need_ssa_rename;
5363 
5364   d = get_cg_data (&node, true);
5365 
5366   /* If this function makes no calls and has no irrevocable blocks,
5367      then there's nothing to do.  */
5368   /* ??? Remove non-aborting top-level transactions.  */
5369   if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5370     return;
5371 
5372   push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5373   calculate_dominance_info (CDI_DOMINATORS);
5374 
5375   need_ssa_rename =
5376     ipa_tm_transform_calls (d->clone, NULL,
5377 			    single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5378 			    d->irrevocable_blocks_clone);
5379 
5380   if (need_ssa_rename)
5381     update_ssa (TODO_update_ssa_only_virtuals);
5382 
5383   pop_cfun ();
5384 }
5385 
5386 /* Main entry point for the transactional memory IPA pass.  */
5387 
5388 static unsigned int
ipa_tm_execute(void)5389 ipa_tm_execute (void)
5390 {
5391   cgraph_node_queue tm_callees = cgraph_node_queue ();
5392   /* List of functions that will go irrevocable.  */
5393   cgraph_node_queue irr_worklist = cgraph_node_queue ();
5394 
5395   struct cgraph_node *node;
5396   struct tm_ipa_cg_data *d;
5397   enum availability a;
5398   unsigned int i;
5399 
5400   cgraph_node::checking_verify_cgraph_nodes ();
5401 
5402   bitmap_obstack_initialize (&tm_obstack);
5403   initialize_original_copy_tables ();
5404 
5405   /* For all local functions marked tm_callable, queue them.  */
5406   FOR_EACH_DEFINED_FUNCTION (node)
5407     if (is_tm_callable (node->decl)
5408 	&& node->get_availability () >= AVAIL_INTERPOSABLE)
5409       {
5410 	d = get_cg_data (&node, true);
5411 	maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5412       }
5413 
5414   /* For all local reachable functions...  */
5415   FOR_EACH_DEFINED_FUNCTION (node)
5416     if (node->lowered
5417 	&& node->get_availability () >= AVAIL_INTERPOSABLE)
5418       {
5419 	/* ... marked tm_pure, record that fact for the runtime by
5420 	   indicating that the pure function is its own tm_callable.
5421 	   No need to do this if the function's address can't be taken.  */
5422 	if (is_tm_pure (node->decl))
5423 	  {
5424 	    if (!node->local)
5425 	      record_tm_clone_pair (node->decl, node->decl);
5426 	    continue;
5427 	  }
5428 
5429 	push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5430 	calculate_dominance_info (CDI_DOMINATORS);
5431 
5432 	tm_region_init (NULL);
5433 	if (all_tm_regions)
5434 	  {
5435 	    d = get_cg_data (&node, true);
5436 
5437 	    /* Scan for calls that are in each transaction, and
5438 	       generate the uninstrumented code path.  */
5439 	    ipa_tm_scan_calls_transaction (d, &tm_callees);
5440 
5441 	    /* Put it in the worklist so we can scan the function
5442 	       later (ipa_tm_scan_irr_function) and mark the
5443 	       irrevocable blocks.  */
5444 	    maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5445 	    d->want_irr_scan_normal = true;
5446 	  }
5447 
5448 	pop_cfun ();
5449       }
5450 
5451   /* For every local function on the callee list, scan as if we will be
5452      creating a transactional clone, queueing all new functions we find
5453      along the way.  */
5454   for (i = 0; i < tm_callees.length (); ++i)
5455     {
5456       node = tm_callees[i];
5457       a = node->get_availability ();
5458       d = get_cg_data (&node, true);
5459 
5460       /* Put it in the worklist so we can scan the function later
5461 	 (ipa_tm_scan_irr_function) and mark the irrevocable
5462 	 blocks.  */
5463       maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5464 
5465       /* Some callees cannot be arbitrarily cloned.  These will always be
5466 	 irrevocable.  Mark these now, so that we need not scan them.  */
5467       if (is_tm_irrevocable (node->decl))
5468 	ipa_tm_note_irrevocable (node, &irr_worklist);
5469       else if (a <= AVAIL_NOT_AVAILABLE
5470 	       && !is_tm_safe_or_pure (node->decl))
5471 	ipa_tm_note_irrevocable (node, &irr_worklist);
5472       else if (a >= AVAIL_INTERPOSABLE)
5473 	{
5474 	  if (!tree_versionable_function_p (node->decl))
5475 	    ipa_tm_note_irrevocable (node, &irr_worklist);
5476 	  else if (!d->is_irrevocable)
5477 	    {
5478 	      /* If this is an alias, make sure its base is queued as well.
5479 		 we need not scan the callees now, as the base will do.  */
5480 	      if (node->alias)
5481 		{
5482 		  node = cgraph_node::get (thunk_info::get (node)->alias);
5483 		  d = get_cg_data (&node, true);
5484 		  maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5485 		  continue;
5486 		}
5487 
5488 	      /* Add all nodes called by this function into
5489 		 tm_callees as well.  */
5490 	      ipa_tm_scan_calls_clone (node, &tm_callees);
5491 	    }
5492 	}
5493     }
5494 
5495   /* Iterate scans until no more work to be done.  Prefer not to use
5496      vec::pop because the worklist tends to follow a breadth-first
5497      search of the callgraph, which should allow convergance with a
5498      minimum number of scans.  But we also don't want the worklist
5499      array to grow without bound, so we shift the array up periodically.  */
5500   for (i = 0; i < irr_worklist.length (); ++i)
5501     {
5502       if (i > 256 && i == irr_worklist.length () / 8)
5503 	{
5504 	  irr_worklist.block_remove (0, i);
5505 	  i = 0;
5506 	}
5507 
5508       node = irr_worklist[i];
5509       d = get_cg_data (&node, true);
5510       d->in_worklist = false;
5511 
5512       if (d->want_irr_scan_normal)
5513 	{
5514 	  d->want_irr_scan_normal = false;
5515 	  ipa_tm_scan_irr_function (node, false);
5516 	}
5517       if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5518 	ipa_tm_note_irrevocable (node, &irr_worklist);
5519     }
5520 
5521   /* For every function on the callee list, collect the tm_may_enter_irr
5522      bit on the node.  */
5523   irr_worklist.truncate (0);
5524   for (i = 0; i < tm_callees.length (); ++i)
5525     {
5526       node = tm_callees[i];
5527       if (ipa_tm_mayenterirr_function (node))
5528 	{
5529 	  d = get_cg_data (&node, true);
5530 	  gcc_assert (d->in_worklist == false);
5531 	  maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5532 	}
5533     }
5534 
5535   /* Propagate the tm_may_enter_irr bit to callers until stable.  */
5536   for (i = 0; i < irr_worklist.length (); ++i)
5537     {
5538       struct cgraph_node *caller;
5539       struct cgraph_edge *e;
5540       struct ipa_ref *ref;
5541 
5542       if (i > 256 && i == irr_worklist.length () / 8)
5543 	{
5544 	  irr_worklist.block_remove (0, i);
5545 	  i = 0;
5546 	}
5547 
5548       node = irr_worklist[i];
5549       d = get_cg_data (&node, true);
5550       d->in_worklist = false;
5551       node->tm_may_enter_irr = true;
5552 
5553       /* Propagate back to normal callers.  */
5554       for (e = node->callers; e ; e = e->next_caller)
5555 	{
5556 	  caller = e->caller;
5557 	  if (!is_tm_safe_or_pure (caller->decl)
5558 	      && !caller->tm_may_enter_irr)
5559 	    {
5560 	      d = get_cg_data (&caller, true);
5561 	      maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5562 	    }
5563 	}
5564 
5565       /* Propagate back to referring aliases as well.  */
5566       FOR_EACH_ALIAS (node, ref)
5567 	{
5568 	  caller = dyn_cast<cgraph_node *> (ref->referring);
5569 	  if (!caller->tm_may_enter_irr)
5570 	    {
5571 	      /* ?? Do not traverse aliases here.  */
5572 	      d = get_cg_data (&caller, false);
5573 	      maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5574 	    }
5575 	}
5576     }
5577 
5578   /* Now validate all tm_safe functions, and all atomic regions in
5579      other functions.  */
5580   FOR_EACH_DEFINED_FUNCTION (node)
5581     if (node->lowered
5582 	&& node->get_availability () >= AVAIL_INTERPOSABLE)
5583       {
5584 	d = get_cg_data (&node, true);
5585 	if (is_tm_safe (node->decl))
5586 	  ipa_tm_diagnose_tm_safe (node);
5587 	else if (d->all_tm_regions)
5588 	  ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5589       }
5590 
5591   /* Create clones.  Do those that are not irrevocable and have a
5592      positive call count.  Do those publicly visible functions that
5593      the user directed us to clone.  */
5594   for (i = 0; i < tm_callees.length (); ++i)
5595     {
5596       bool doit = false;
5597 
5598       node = tm_callees[i];
5599       if (node->cpp_implicit_alias)
5600 	continue;
5601 
5602       a = node->get_availability ();
5603       d = get_cg_data (&node, true);
5604 
5605       if (a <= AVAIL_NOT_AVAILABLE)
5606 	doit = is_tm_callable (node->decl);
5607       else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5608 	doit = true;
5609       else if (!d->is_irrevocable
5610 	       && d->tm_callers_normal + d->tm_callers_clone > 0)
5611 	doit = true;
5612 
5613       if (doit)
5614 	ipa_tm_create_version (node);
5615     }
5616 
5617   /* Redirect calls to the new clones, and insert irrevocable marks.  */
5618   for (i = 0; i < tm_callees.length (); ++i)
5619     {
5620       node = tm_callees[i];
5621       if (node->analyzed)
5622 	{
5623 	  d = get_cg_data (&node, true);
5624 	  if (d->clone)
5625 	    ipa_tm_transform_clone (node);
5626 	}
5627     }
5628   FOR_EACH_DEFINED_FUNCTION (node)
5629     if (node->lowered
5630 	&& node->get_availability () >= AVAIL_INTERPOSABLE)
5631       {
5632 	d = get_cg_data (&node, true);
5633 	if (d->all_tm_regions)
5634 	  ipa_tm_transform_transaction (node);
5635       }
5636 
5637   /* Free and clear all data structures.  */
5638   tm_callees.release ();
5639   irr_worklist.release ();
5640   bitmap_obstack_release (&tm_obstack);
5641   free_original_copy_tables ();
5642 
5643   FOR_EACH_FUNCTION (node)
5644     node->aux = NULL;
5645 
5646   cgraph_node::checking_verify_cgraph_nodes ();
5647 
5648   return 0;
5649 }
5650 
5651 namespace {
5652 
5653 const pass_data pass_data_ipa_tm =
5654 {
5655   SIMPLE_IPA_PASS, /* type */
5656   "tmipa", /* name */
5657   OPTGROUP_NONE, /* optinfo_flags */
5658   TV_TRANS_MEM, /* tv_id */
5659   ( PROP_ssa | PROP_cfg ), /* properties_required */
5660   0, /* properties_provided */
5661   0, /* properties_destroyed */
5662   0, /* todo_flags_start */
5663   0, /* todo_flags_finish */
5664 };
5665 
5666 class pass_ipa_tm : public simple_ipa_opt_pass
5667 {
5668 public:
pass_ipa_tm(gcc::context * ctxt)5669   pass_ipa_tm (gcc::context *ctxt)
5670     : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5671   {}
5672 
5673   /* opt_pass methods: */
gate(function *)5674   virtual bool gate (function *) { return flag_tm; }
execute(function *)5675   virtual unsigned int execute (function *) { return ipa_tm_execute (); }
5676 
5677 }; // class pass_ipa_tm
5678 
5679 } // anon namespace
5680 
5681 simple_ipa_opt_pass *
make_pass_ipa_tm(gcc::context * ctxt)5682 make_pass_ipa_tm (gcc::context *ctxt)
5683 {
5684   return new pass_ipa_tm (ctxt);
5685 }
5686 
5687 #include "gt-trans-mem.h"
5688