1// Copyright 2011 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package template 6 7import ( 8 "fmt" 9 "internal/fmtsort" 10 "io" 11 "reflect" 12 "runtime" 13 "strings" 14 "text/template/parse" 15) 16 17// maxExecDepth specifies the maximum stack depth of templates within 18// templates. This limit is only practically reached by accidentally 19// recursive template invocations. This limit allows us to return 20// an error instead of triggering a stack overflow. 21var maxExecDepth = initMaxExecDepth() 22 23func initMaxExecDepth() int { 24 // For gccgo we make this 1000 rather than 100000 to avoid 25 // stack overflow on non-split-stack systems. 26 if runtime.GOARCH == "wasm" || runtime.Compiler == "gccgo" { 27 return 1000 28 } 29 return 100000 30} 31 32// state represents the state of an execution. It's not part of the 33// template so that multiple executions of the same template 34// can execute in parallel. 35type state struct { 36 tmpl *Template 37 wr io.Writer 38 node parse.Node // current node, for errors 39 vars []variable // push-down stack of variable values. 40 depth int // the height of the stack of executing templates. 41} 42 43// variable holds the dynamic value of a variable such as $, $x etc. 44type variable struct { 45 name string 46 value reflect.Value 47} 48 49// push pushes a new variable on the stack. 50func (s *state) push(name string, value reflect.Value) { 51 s.vars = append(s.vars, variable{name, value}) 52} 53 54// mark returns the length of the variable stack. 55func (s *state) mark() int { 56 return len(s.vars) 57} 58 59// pop pops the variable stack up to the mark. 60func (s *state) pop(mark int) { 61 s.vars = s.vars[0:mark] 62} 63 64// setVar overwrites the last declared variable with the given name. 65// Used by variable assignments. 66func (s *state) setVar(name string, value reflect.Value) { 67 for i := s.mark() - 1; i >= 0; i-- { 68 if s.vars[i].name == name { 69 s.vars[i].value = value 70 return 71 } 72 } 73 s.errorf("undefined variable: %s", name) 74} 75 76// setTopVar overwrites the top-nth variable on the stack. Used by range iterations. 77func (s *state) setTopVar(n int, value reflect.Value) { 78 s.vars[len(s.vars)-n].value = value 79} 80 81// varValue returns the value of the named variable. 82func (s *state) varValue(name string) reflect.Value { 83 for i := s.mark() - 1; i >= 0; i-- { 84 if s.vars[i].name == name { 85 return s.vars[i].value 86 } 87 } 88 s.errorf("undefined variable: %s", name) 89 return zero 90} 91 92var zero reflect.Value 93 94type missingValType struct{} 95 96var missingVal = reflect.ValueOf(missingValType{}) 97 98// at marks the state to be on node n, for error reporting. 99func (s *state) at(node parse.Node) { 100 s.node = node 101} 102 103// doublePercent returns the string with %'s replaced by %%, if necessary, 104// so it can be used safely inside a Printf format string. 105func doublePercent(str string) string { 106 return strings.ReplaceAll(str, "%", "%%") 107} 108 109// TODO: It would be nice if ExecError was more broken down, but 110// the way ErrorContext embeds the template name makes the 111// processing too clumsy. 112 113// ExecError is the custom error type returned when Execute has an 114// error evaluating its template. (If a write error occurs, the actual 115// error is returned; it will not be of type ExecError.) 116type ExecError struct { 117 Name string // Name of template. 118 Err error // Pre-formatted error. 119} 120 121func (e ExecError) Error() string { 122 return e.Err.Error() 123} 124 125func (e ExecError) Unwrap() error { 126 return e.Err 127} 128 129// errorf records an ExecError and terminates processing. 130func (s *state) errorf(format string, args ...interface{}) { 131 name := doublePercent(s.tmpl.Name()) 132 if s.node == nil { 133 format = fmt.Sprintf("template: %s: %s", name, format) 134 } else { 135 location, context := s.tmpl.ErrorContext(s.node) 136 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 137 } 138 panic(ExecError{ 139 Name: s.tmpl.Name(), 140 Err: fmt.Errorf(format, args...), 141 }) 142} 143 144// writeError is the wrapper type used internally when Execute has an 145// error writing to its output. We strip the wrapper in errRecover. 146// Note that this is not an implementation of error, so it cannot escape 147// from the package as an error value. 148type writeError struct { 149 Err error // Original error. 150} 151 152func (s *state) writeError(err error) { 153 panic(writeError{ 154 Err: err, 155 }) 156} 157 158// errRecover is the handler that turns panics into returns from the top 159// level of Parse. 160func errRecover(errp *error) { 161 e := recover() 162 if e != nil { 163 switch err := e.(type) { 164 case runtime.Error: 165 panic(e) 166 case writeError: 167 *errp = err.Err // Strip the wrapper. 168 case ExecError: 169 *errp = err // Keep the wrapper. 170 default: 171 panic(e) 172 } 173 } 174} 175 176// ExecuteTemplate applies the template associated with t that has the given name 177// to the specified data object and writes the output to wr. 178// If an error occurs executing the template or writing its output, 179// execution stops, but partial results may already have been written to 180// the output writer. 181// A template may be executed safely in parallel, although if parallel 182// executions share a Writer the output may be interleaved. 183func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 184 var tmpl *Template 185 if t.common != nil { 186 tmpl = t.tmpl[name] 187 } 188 if tmpl == nil { 189 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 190 } 191 return tmpl.Execute(wr, data) 192} 193 194// Execute applies a parsed template to the specified data object, 195// and writes the output to wr. 196// If an error occurs executing the template or writing its output, 197// execution stops, but partial results may already have been written to 198// the output writer. 199// A template may be executed safely in parallel, although if parallel 200// executions share a Writer the output may be interleaved. 201// 202// If data is a reflect.Value, the template applies to the concrete 203// value that the reflect.Value holds, as in fmt.Print. 204func (t *Template) Execute(wr io.Writer, data interface{}) error { 205 return t.execute(wr, data) 206} 207 208func (t *Template) execute(wr io.Writer, data interface{}) (err error) { 209 defer errRecover(&err) 210 value, ok := data.(reflect.Value) 211 if !ok { 212 value = reflect.ValueOf(data) 213 } 214 state := &state{ 215 tmpl: t, 216 wr: wr, 217 vars: []variable{{"$", value}}, 218 } 219 if t.Tree == nil || t.Root == nil { 220 state.errorf("%q is an incomplete or empty template", t.Name()) 221 } 222 state.walk(value, t.Root) 223 return 224} 225 226// DefinedTemplates returns a string listing the defined templates, 227// prefixed by the string "; defined templates are: ". If there are none, 228// it returns the empty string. For generating an error message here 229// and in html/template. 230func (t *Template) DefinedTemplates() string { 231 if t.common == nil { 232 return "" 233 } 234 var b strings.Builder 235 for name, tmpl := range t.tmpl { 236 if tmpl.Tree == nil || tmpl.Root == nil { 237 continue 238 } 239 if b.Len() == 0 { 240 b.WriteString("; defined templates are: ") 241 } else { 242 b.WriteString(", ") 243 } 244 fmt.Fprintf(&b, "%q", name) 245 } 246 return b.String() 247} 248 249// Walk functions step through the major pieces of the template structure, 250// generating output as they go. 251func (s *state) walk(dot reflect.Value, node parse.Node) { 252 s.at(node) 253 switch node := node.(type) { 254 case *parse.ActionNode: 255 // Do not pop variables so they persist until next end. 256 // Also, if the action declares variables, don't print the result. 257 val := s.evalPipeline(dot, node.Pipe) 258 if len(node.Pipe.Decl) == 0 { 259 s.printValue(node, val) 260 } 261 case *parse.CommentNode: 262 case *parse.IfNode: 263 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 264 case *parse.ListNode: 265 for _, node := range node.Nodes { 266 s.walk(dot, node) 267 } 268 case *parse.RangeNode: 269 s.walkRange(dot, node) 270 case *parse.TemplateNode: 271 s.walkTemplate(dot, node) 272 case *parse.TextNode: 273 if _, err := s.wr.Write(node.Text); err != nil { 274 s.writeError(err) 275 } 276 case *parse.WithNode: 277 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 278 default: 279 s.errorf("unknown node: %s", node) 280 } 281} 282 283// walkIfOrWith walks an 'if' or 'with' node. The two control structures 284// are identical in behavior except that 'with' sets dot. 285func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 286 defer s.pop(s.mark()) 287 val := s.evalPipeline(dot, pipe) 288 truth, ok := isTrue(indirectInterface(val)) 289 if !ok { 290 s.errorf("if/with can't use %v", val) 291 } 292 if truth { 293 if typ == parse.NodeWith { 294 s.walk(val, list) 295 } else { 296 s.walk(dot, list) 297 } 298 } else if elseList != nil { 299 s.walk(dot, elseList) 300 } 301} 302 303// IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 304// and whether the value has a meaningful truth value. This is the definition of 305// truth used by if and other such actions. 306func IsTrue(val interface{}) (truth, ok bool) { 307 return isTrue(reflect.ValueOf(val)) 308} 309 310func isTrue(val reflect.Value) (truth, ok bool) { 311 if !val.IsValid() { 312 // Something like var x interface{}, never set. It's a form of nil. 313 return false, true 314 } 315 switch val.Kind() { 316 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 317 truth = val.Len() > 0 318 case reflect.Bool: 319 truth = val.Bool() 320 case reflect.Complex64, reflect.Complex128: 321 truth = val.Complex() != 0 322 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 323 truth = !val.IsNil() 324 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 325 truth = val.Int() != 0 326 case reflect.Float32, reflect.Float64: 327 truth = val.Float() != 0 328 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 329 truth = val.Uint() != 0 330 case reflect.Struct: 331 truth = true // Struct values are always true. 332 default: 333 return 334 } 335 return truth, true 336} 337 338func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 339 s.at(r) 340 defer s.pop(s.mark()) 341 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 342 // mark top of stack before any variables in the body are pushed. 343 mark := s.mark() 344 oneIteration := func(index, elem reflect.Value) { 345 // Set top var (lexically the second if there are two) to the element. 346 if len(r.Pipe.Decl) > 0 { 347 s.setTopVar(1, elem) 348 } 349 // Set next var (lexically the first if there are two) to the index. 350 if len(r.Pipe.Decl) > 1 { 351 s.setTopVar(2, index) 352 } 353 s.walk(elem, r.List) 354 s.pop(mark) 355 } 356 switch val.Kind() { 357 case reflect.Array, reflect.Slice: 358 if val.Len() == 0 { 359 break 360 } 361 for i := 0; i < val.Len(); i++ { 362 oneIteration(reflect.ValueOf(i), val.Index(i)) 363 } 364 return 365 case reflect.Map: 366 if val.Len() == 0 { 367 break 368 } 369 om := fmtsort.Sort(val) 370 for i, key := range om.Key { 371 oneIteration(key, om.Value[i]) 372 } 373 return 374 case reflect.Chan: 375 if val.IsNil() { 376 break 377 } 378 if val.Type().ChanDir() == reflect.SendDir { 379 s.errorf("range over send-only channel %v", val) 380 break 381 } 382 i := 0 383 for ; ; i++ { 384 elem, ok := val.Recv() 385 if !ok { 386 break 387 } 388 oneIteration(reflect.ValueOf(i), elem) 389 } 390 if i == 0 { 391 break 392 } 393 return 394 case reflect.Invalid: 395 break // An invalid value is likely a nil map, etc. and acts like an empty map. 396 default: 397 s.errorf("range can't iterate over %v", val) 398 } 399 if r.ElseList != nil { 400 s.walk(dot, r.ElseList) 401 } 402} 403 404func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 405 s.at(t) 406 tmpl := s.tmpl.tmpl[t.Name] 407 if tmpl == nil { 408 s.errorf("template %q not defined", t.Name) 409 } 410 if s.depth == maxExecDepth { 411 s.errorf("exceeded maximum template depth (%v)", maxExecDepth) 412 } 413 // Variables declared by the pipeline persist. 414 dot = s.evalPipeline(dot, t.Pipe) 415 newState := *s 416 newState.depth++ 417 newState.tmpl = tmpl 418 // No dynamic scoping: template invocations inherit no variables. 419 newState.vars = []variable{{"$", dot}} 420 newState.walk(dot, tmpl.Root) 421} 422 423// Eval functions evaluate pipelines, commands, and their elements and extract 424// values from the data structure by examining fields, calling methods, and so on. 425// The printing of those values happens only through walk functions. 426 427// evalPipeline returns the value acquired by evaluating a pipeline. If the 428// pipeline has a variable declaration, the variable will be pushed on the 429// stack. Callers should therefore pop the stack after they are finished 430// executing commands depending on the pipeline value. 431func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 432 if pipe == nil { 433 return 434 } 435 s.at(pipe) 436 value = missingVal 437 for _, cmd := range pipe.Cmds { 438 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 439 // If the object has type interface{}, dig down one level to the thing inside. 440 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 441 value = reflect.ValueOf(value.Interface()) // lovely! 442 } 443 } 444 for _, variable := range pipe.Decl { 445 if pipe.IsAssign { 446 s.setVar(variable.Ident[0], value) 447 } else { 448 s.push(variable.Ident[0], value) 449 } 450 } 451 return value 452} 453 454func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 455 if len(args) > 1 || final != missingVal { 456 s.errorf("can't give argument to non-function %s", args[0]) 457 } 458} 459 460func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 461 firstWord := cmd.Args[0] 462 switch n := firstWord.(type) { 463 case *parse.FieldNode: 464 return s.evalFieldNode(dot, n, cmd.Args, final) 465 case *parse.ChainNode: 466 return s.evalChainNode(dot, n, cmd.Args, final) 467 case *parse.IdentifierNode: 468 // Must be a function. 469 return s.evalFunction(dot, n, cmd, cmd.Args, final) 470 case *parse.PipeNode: 471 // Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent. 472 s.notAFunction(cmd.Args, final) 473 return s.evalPipeline(dot, n) 474 case *parse.VariableNode: 475 return s.evalVariableNode(dot, n, cmd.Args, final) 476 } 477 s.at(firstWord) 478 s.notAFunction(cmd.Args, final) 479 switch word := firstWord.(type) { 480 case *parse.BoolNode: 481 return reflect.ValueOf(word.True) 482 case *parse.DotNode: 483 return dot 484 case *parse.NilNode: 485 s.errorf("nil is not a command") 486 case *parse.NumberNode: 487 return s.idealConstant(word) 488 case *parse.StringNode: 489 return reflect.ValueOf(word.Text) 490 } 491 s.errorf("can't evaluate command %q", firstWord) 492 panic("not reached") 493} 494 495// idealConstant is called to return the value of a number in a context where 496// we don't know the type. In that case, the syntax of the number tells us 497// its type, and we use Go rules to resolve. Note there is no such thing as 498// a uint ideal constant in this situation - the value must be of int type. 499func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 500 // These are ideal constants but we don't know the type 501 // and we have no context. (If it was a method argument, 502 // we'd know what we need.) The syntax guides us to some extent. 503 s.at(constant) 504 switch { 505 case constant.IsComplex: 506 return reflect.ValueOf(constant.Complex128) // incontrovertible. 507 508 case constant.IsFloat && 509 !isHexInt(constant.Text) && !isRuneInt(constant.Text) && 510 strings.ContainsAny(constant.Text, ".eEpP"): 511 return reflect.ValueOf(constant.Float64) 512 513 case constant.IsInt: 514 n := int(constant.Int64) 515 if int64(n) != constant.Int64 { 516 s.errorf("%s overflows int", constant.Text) 517 } 518 return reflect.ValueOf(n) 519 520 case constant.IsUint: 521 s.errorf("%s overflows int", constant.Text) 522 } 523 return zero 524} 525 526func isRuneInt(s string) bool { 527 return len(s) > 0 && s[0] == '\'' 528} 529 530func isHexInt(s string) bool { 531 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP") 532} 533 534func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 535 s.at(field) 536 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 537} 538 539func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 540 s.at(chain) 541 if len(chain.Field) == 0 { 542 s.errorf("internal error: no fields in evalChainNode") 543 } 544 if chain.Node.Type() == parse.NodeNil { 545 s.errorf("indirection through explicit nil in %s", chain) 546 } 547 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 548 pipe := s.evalArg(dot, nil, chain.Node) 549 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 550} 551 552func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 553 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 554 s.at(variable) 555 value := s.varValue(variable.Ident[0]) 556 if len(variable.Ident) == 1 { 557 s.notAFunction(args, final) 558 return value 559 } 560 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 561} 562 563// evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 564// dot is the environment in which to evaluate arguments, while 565// receiver is the value being walked along the chain. 566func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 567 n := len(ident) 568 for i := 0; i < n-1; i++ { 569 receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver) 570 } 571 // Now if it's a method, it gets the arguments. 572 return s.evalField(dot, ident[n-1], node, args, final, receiver) 573} 574 575func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 576 s.at(node) 577 name := node.Ident 578 function, ok := findFunction(name, s.tmpl) 579 if !ok { 580 s.errorf("%q is not a defined function", name) 581 } 582 return s.evalCall(dot, function, cmd, name, args, final) 583} 584 585// evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 586// The 'final' argument represents the return value from the preceding 587// value of the pipeline, if any. 588func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 589 if !receiver.IsValid() { 590 if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. 591 s.errorf("nil data; no entry for key %q", fieldName) 592 } 593 return zero 594 } 595 typ := receiver.Type() 596 receiver, isNil := indirect(receiver) 597 if receiver.Kind() == reflect.Interface && isNil { 598 // Calling a method on a nil interface can't work. The 599 // MethodByName method call below would panic. 600 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 601 return zero 602 } 603 604 // Unless it's an interface, need to get to a value of type *T to guarantee 605 // we see all methods of T and *T. 606 ptr := receiver 607 if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() { 608 ptr = ptr.Addr() 609 } 610 if method := ptr.MethodByName(fieldName); method.IsValid() { 611 return s.evalCall(dot, method, node, fieldName, args, final) 612 } 613 hasArgs := len(args) > 1 || final != missingVal 614 // It's not a method; must be a field of a struct or an element of a map. 615 switch receiver.Kind() { 616 case reflect.Struct: 617 tField, ok := receiver.Type().FieldByName(fieldName) 618 if ok { 619 field := receiver.FieldByIndex(tField.Index) 620 if tField.PkgPath != "" { // field is unexported 621 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 622 } 623 // If it's a function, we must call it. 624 if hasArgs { 625 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 626 } 627 return field 628 } 629 case reflect.Map: 630 // If it's a map, attempt to use the field name as a key. 631 nameVal := reflect.ValueOf(fieldName) 632 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 633 if hasArgs { 634 s.errorf("%s is not a method but has arguments", fieldName) 635 } 636 result := receiver.MapIndex(nameVal) 637 if !result.IsValid() { 638 switch s.tmpl.option.missingKey { 639 case mapInvalid: 640 // Just use the invalid value. 641 case mapZeroValue: 642 result = reflect.Zero(receiver.Type().Elem()) 643 case mapError: 644 s.errorf("map has no entry for key %q", fieldName) 645 } 646 } 647 return result 648 } 649 case reflect.Ptr: 650 etyp := receiver.Type().Elem() 651 if etyp.Kind() == reflect.Struct { 652 if _, ok := etyp.FieldByName(fieldName); !ok { 653 // If there's no such field, say "can't evaluate" 654 // instead of "nil pointer evaluating". 655 break 656 } 657 } 658 if isNil { 659 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 660 } 661 } 662 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 663 panic("not reached") 664} 665 666var ( 667 errorType = reflect.TypeOf((*error)(nil)).Elem() 668 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 669 reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem() 670) 671 672// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 673// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 674// as the function itself. 675func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 676 if args != nil { 677 args = args[1:] // Zeroth arg is function name/node; not passed to function. 678 } 679 typ := fun.Type() 680 numIn := len(args) 681 if final != missingVal { 682 numIn++ 683 } 684 numFixed := len(args) 685 if typ.IsVariadic() { 686 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 687 if numIn < numFixed { 688 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 689 } 690 } else if numIn != typ.NumIn() { 691 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn) 692 } 693 if !goodFunc(typ) { 694 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 695 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 696 } 697 // Build the arg list. 698 argv := make([]reflect.Value, numIn) 699 // Args must be evaluated. Fixed args first. 700 i := 0 701 for ; i < numFixed && i < len(args); i++ { 702 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 703 } 704 // Now the ... args. 705 if typ.IsVariadic() { 706 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 707 for ; i < len(args); i++ { 708 argv[i] = s.evalArg(dot, argType, args[i]) 709 } 710 } 711 // Add final value if necessary. 712 if final != missingVal { 713 t := typ.In(typ.NumIn() - 1) 714 if typ.IsVariadic() { 715 if numIn-1 < numFixed { 716 // The added final argument corresponds to a fixed parameter of the function. 717 // Validate against the type of the actual parameter. 718 t = typ.In(numIn - 1) 719 } else { 720 // The added final argument corresponds to the variadic part. 721 // Validate against the type of the elements of the variadic slice. 722 t = t.Elem() 723 } 724 } 725 argv[i] = s.validateType(final, t) 726 } 727 v, err := safeCall(fun, argv) 728 // If we have an error that is not nil, stop execution and return that 729 // error to the caller. 730 if err != nil { 731 s.at(node) 732 s.errorf("error calling %s: %v", name, err) 733 } 734 if v.Type() == reflectValueType { 735 v = v.Interface().(reflect.Value) 736 } 737 return v 738} 739 740// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 741func canBeNil(typ reflect.Type) bool { 742 switch typ.Kind() { 743 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 744 return true 745 case reflect.Struct: 746 return typ == reflectValueType 747 } 748 return false 749} 750 751// validateType guarantees that the value is valid and assignable to the type. 752func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 753 if !value.IsValid() { 754 if typ == nil { 755 // An untyped nil interface{}. Accept as a proper nil value. 756 return reflect.ValueOf(nil) 757 } 758 if canBeNil(typ) { 759 // Like above, but use the zero value of the non-nil type. 760 return reflect.Zero(typ) 761 } 762 s.errorf("invalid value; expected %s", typ) 763 } 764 if typ == reflectValueType && value.Type() != typ { 765 return reflect.ValueOf(value) 766 } 767 if typ != nil && !value.Type().AssignableTo(typ) { 768 if value.Kind() == reflect.Interface && !value.IsNil() { 769 value = value.Elem() 770 if value.Type().AssignableTo(typ) { 771 return value 772 } 773 // fallthrough 774 } 775 // Does one dereference or indirection work? We could do more, as we 776 // do with method receivers, but that gets messy and method receivers 777 // are much more constrained, so it makes more sense there than here. 778 // Besides, one is almost always all you need. 779 switch { 780 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 781 value = value.Elem() 782 if !value.IsValid() { 783 s.errorf("dereference of nil pointer of type %s", typ) 784 } 785 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 786 value = value.Addr() 787 default: 788 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 789 } 790 } 791 return value 792} 793 794func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 795 s.at(n) 796 switch arg := n.(type) { 797 case *parse.DotNode: 798 return s.validateType(dot, typ) 799 case *parse.NilNode: 800 if canBeNil(typ) { 801 return reflect.Zero(typ) 802 } 803 s.errorf("cannot assign nil to %s", typ) 804 case *parse.FieldNode: 805 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ) 806 case *parse.VariableNode: 807 return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ) 808 case *parse.PipeNode: 809 return s.validateType(s.evalPipeline(dot, arg), typ) 810 case *parse.IdentifierNode: 811 return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ) 812 case *parse.ChainNode: 813 return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ) 814 } 815 switch typ.Kind() { 816 case reflect.Bool: 817 return s.evalBool(typ, n) 818 case reflect.Complex64, reflect.Complex128: 819 return s.evalComplex(typ, n) 820 case reflect.Float32, reflect.Float64: 821 return s.evalFloat(typ, n) 822 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 823 return s.evalInteger(typ, n) 824 case reflect.Interface: 825 if typ.NumMethod() == 0 { 826 return s.evalEmptyInterface(dot, n) 827 } 828 case reflect.Struct: 829 if typ == reflectValueType { 830 return reflect.ValueOf(s.evalEmptyInterface(dot, n)) 831 } 832 case reflect.String: 833 return s.evalString(typ, n) 834 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 835 return s.evalUnsignedInteger(typ, n) 836 } 837 s.errorf("can't handle %s for arg of type %s", n, typ) 838 panic("not reached") 839} 840 841func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 842 s.at(n) 843 if n, ok := n.(*parse.BoolNode); ok { 844 value := reflect.New(typ).Elem() 845 value.SetBool(n.True) 846 return value 847 } 848 s.errorf("expected bool; found %s", n) 849 panic("not reached") 850} 851 852func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 853 s.at(n) 854 if n, ok := n.(*parse.StringNode); ok { 855 value := reflect.New(typ).Elem() 856 value.SetString(n.Text) 857 return value 858 } 859 s.errorf("expected string; found %s", n) 860 panic("not reached") 861} 862 863func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 864 s.at(n) 865 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 866 value := reflect.New(typ).Elem() 867 value.SetInt(n.Int64) 868 return value 869 } 870 s.errorf("expected integer; found %s", n) 871 panic("not reached") 872} 873 874func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 875 s.at(n) 876 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 877 value := reflect.New(typ).Elem() 878 value.SetUint(n.Uint64) 879 return value 880 } 881 s.errorf("expected unsigned integer; found %s", n) 882 panic("not reached") 883} 884 885func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 886 s.at(n) 887 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 888 value := reflect.New(typ).Elem() 889 value.SetFloat(n.Float64) 890 return value 891 } 892 s.errorf("expected float; found %s", n) 893 panic("not reached") 894} 895 896func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 897 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 898 value := reflect.New(typ).Elem() 899 value.SetComplex(n.Complex128) 900 return value 901 } 902 s.errorf("expected complex; found %s", n) 903 panic("not reached") 904} 905 906func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 907 s.at(n) 908 switch n := n.(type) { 909 case *parse.BoolNode: 910 return reflect.ValueOf(n.True) 911 case *parse.DotNode: 912 return dot 913 case *parse.FieldNode: 914 return s.evalFieldNode(dot, n, nil, missingVal) 915 case *parse.IdentifierNode: 916 return s.evalFunction(dot, n, n, nil, missingVal) 917 case *parse.NilNode: 918 // NilNode is handled in evalArg, the only place that calls here. 919 s.errorf("evalEmptyInterface: nil (can't happen)") 920 case *parse.NumberNode: 921 return s.idealConstant(n) 922 case *parse.StringNode: 923 return reflect.ValueOf(n.Text) 924 case *parse.VariableNode: 925 return s.evalVariableNode(dot, n, nil, missingVal) 926 case *parse.PipeNode: 927 return s.evalPipeline(dot, n) 928 } 929 s.errorf("can't handle assignment of %s to empty interface argument", n) 930 panic("not reached") 931} 932 933// indirect returns the item at the end of indirection, and a bool to indicate 934// if it's nil. If the returned bool is true, the returned value's kind will be 935// either a pointer or interface. 936func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 937 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 938 if v.IsNil() { 939 return v, true 940 } 941 } 942 return v, false 943} 944 945// indirectInterface returns the concrete value in an interface value, 946// or else the zero reflect.Value. 947// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): 948// the fact that x was an interface value is forgotten. 949func indirectInterface(v reflect.Value) reflect.Value { 950 if v.Kind() != reflect.Interface { 951 return v 952 } 953 if v.IsNil() { 954 return reflect.Value{} 955 } 956 return v.Elem() 957} 958 959// printValue writes the textual representation of the value to the output of 960// the template. 961func (s *state) printValue(n parse.Node, v reflect.Value) { 962 s.at(n) 963 iface, ok := printableValue(v) 964 if !ok { 965 s.errorf("can't print %s of type %s", n, v.Type()) 966 } 967 _, err := fmt.Fprint(s.wr, iface) 968 if err != nil { 969 s.writeError(err) 970 } 971} 972 973// printableValue returns the, possibly indirected, interface value inside v that 974// is best for a call to formatted printer. 975func printableValue(v reflect.Value) (interface{}, bool) { 976 if v.Kind() == reflect.Ptr { 977 v, _ = indirect(v) // fmt.Fprint handles nil. 978 } 979 if !v.IsValid() { 980 return "<no value>", true 981 } 982 983 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 984 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 985 v = v.Addr() 986 } else { 987 switch v.Kind() { 988 case reflect.Chan, reflect.Func: 989 return nil, false 990 } 991 } 992 } 993 return v.Interface(), true 994} 995