1%% BEGIN poster1.tex 2%% 3%% Sample for poster.tex/poster.sty. 4%% Run with LaTeX, with or without the NFSS. 5%% You might have problems with missing fonts. 6%% 7%% See below if using A4 paper. 8 9\documentstyle{article} 10 11\input poster % Input here in case poster.sty not installed. 12 13\mag\magstep5 % Magnification of 1.2^5 (roughly 2.5) 14 % Use "true" dimensions below for magnified values. 15 16\begin{document} 17 18%% Add paperwidth=210mm,paperheight=297mm if using A4 paper: 19 20\begin{Poster}[vcenter=true,hcenter=true] 21\setlength{\fboxsep}{.8truein}% 22\setlength{\fboxrule}{.1truein}% 23\fbox{\begin{minipage}{11.1truein} 24 25\begin{center} 26 \bf ON SOME \boldmath$\Pi$-HEDRAL SURFACES IN QUASI-QUASI SPACE 27\end{center} 28\begin{center} 29 CLAUDE HOPPER, Omnius University 30\end{center} 31 32There is at present a school of mathematicians which holds that the 33explosive growth of jargon within mathematics is a deplorable trend. It 34is our purpose in this note to continue the work of 35Redheffer~\cite{redheffer} in showing how terminology itself can lead to 36results of great elegance. 37 38I first consolidate some results of Baker~\cite{baker} and 39McLelland~\cite{mclelland}. We define a class of connected snarfs as 40follows: $S_\alpha=\Omega(\gamma_\beta)$. Then if 41$B=(\otimes,\rightarrow,\theta)$ is a Boolean left subideal, we have: 42$$ 43\nabla S_\alpha=\int\int\int_{E(\Omega)} 44B(\gamma_{\beta_0},\gamma_{\beta_0})\,d\sigma d\phi d\rho 45-\frac{19}{51}\Omega. 46$$ 47Rearranging, transposing, and collecting terms, we have: 48$\Omega=\Omega_0$. 49 50The significance of this is obvious, for if $\{S_\alpha\}$ be a class of 51connected snarfs, our result shows that its union is an utterly 52disjoint subset of a $\pi$-hedral surface in quasi-quasi space. 53 54We next use a result of Spyrpt~\cite{spyrpt} to derive a property of 55wild cells in door topologies. Let $\xi$ be the null operator on a door 56topology, $\Box$, which is a super-linear space. Let $\{P_\gamma\}$ be 57the collection of all nonvoid, closed, convex, bounded, compact, 58circled, symmetric, connected, central, $Z$-directed, meager sets in 59$\Box$. Then $P=\cup P_\gamma$ is perfect. Moreover, if $P\neq\phi$, 60then $P$ is superb. 61 62\smallskip 63{\it Proof.} The proof uses a lemma due to 64Sriniswamiramanathan~\cite{srinis}. This states that any unbounded 65fantastic set it closed. Hence we have 66$$ 67\Rightarrow P\sim\xi(P_\gamma)-\textstyle\frac{1}{3}. 68$$ 69 70After some manipulation we obtain 71$$ 72\textstyle\frac{1}{3}=\frac{1}{3} 73$$ 74I have reason to believe~\cite{russell} that this implies $P$ is perfect. 75If $P\neq\phi$, $P$ is superb. Moreover, if $\Box$ is a $T_2$ space, $P$ 76is simply superb. This completes the proof. 77 78Our final result is a generalization of a theorem of Tz, and 79encompasses some comments on the work of Beaman~\cite{beaman} on the 80Jolly function. 81 82Let $\Omega$ be any $\pi$-hedral surface in a semi-quasi space. Define 83a nonnegative, nonnegatively homogeneous subadditive linear functional 84$f$ on $X\supset\Omega$ such that $f$ violently suppresses $\Omega$. 85Then $f$ is the Jolly function. 86 87\smallskip 88{\it Proof.} Suppose $f$ is not the Jolly function. Then 89$\{\Lambda,\mbox{@},\xi\}\cap\{\Delta,\Omega,\Rightarrow\}$ is void. Hence 90$f$ is morbid. This is a contradiction, of course. Therefore, $f$ is 91the Jolly function. Moreover, if $\Omega$ is a circled husk, and 92$\Delta$ is a pointed spear, then $f$ is uproarious. 93 94\small 95\begin{center} 96\bf References 97\end{center} 98\def\thebibliography#1{% 99 \list 100 {\bf\arabic{enumi}.}{\settowidth\labelwidth{\bf #1.}\leftmargin\labelwidth 101 \advance\leftmargin\labelsep 102 \usecounter{enumi}} 103 \def\newblock{\hskip .11em plus .33em minus .07em} 104 \sloppy\clubpenalty4000\widowpenalty4000 105 \sfcode`\.=1000\relax} 106\begin{thebibliography}{9} 107\bibitem{redheffer} 108R. M. Redheffer, A real-life application of mathematical symbolism, 109this {\it Magazine}, 38 (1965) 103--4. 110\bibitem{baker} 111J. A. Baker, Locally pulsating manifolds, East Overshoe Math. J., 19 112(1962) 5280--1. 113\bibitem{mclelland} 114J. McLelland, De-ringed pistons in cylindric algebras, 115Vereinigtermathematischerzeitung f\"ur Zilch, 10 (1962) 333--7. 116\bibitem{spyrpt} 117Mrowclaw Spyrpt, A matrix is a matrix is a matrix, Mat. Zburp., 91 118(1959) 28--35. 119\bibitem{srinis} 120Rajagopalachari Sriniswamiramanathan, Some expansions on the Flausgloten 121Theorem on locally congested lutches, J. Math. Soc., North Bombay, 13 122(1964) 72--6. 123\bibitem{russell} 124A. N. Whitehead and B. Russell, Principia Mathematica, Cambridge 125University Press, 1925. 126\bibitem{beaman} 127J. Beaman, Morbidity of the Jolly function, Mathematica Absurdica, 117 128(1965) 338--9. 129\end{thebibliography} 130\end{minipage}}% 131\end{Poster} 132 133\end{document} 134%% END poster1.tex 135 136