• Home
  • History
  • Annotate
Name Date Size #Lines LOC

..23-May-2020-

bin/H23-May-2020-1410

cli/H03-May-2022-202155

dist/H03-May-2022-10275

ext/H23-May-2020-278216

google/H23-May-2020-1,7391,618

node_modules/@types/node/H23-May-2020-13,3616,878

scripts/H03-May-2022-

src/H03-May-2022-1614

CHANGELOG.mdH A D26-Oct-1985113.2 KiB935769

LICENSEH A D26-Oct-19851.9 KiB4032

README.mdH A D26-Oct-198536.6 KiB902634

index.d.tsH A D26-Oct-198583.3 KiB2,695626

light.d.tsH A D26-Oct-198555 32

minimal.d.tsH A D26-Oct-198555 32

package-lock.jsonH A D26-Oct-1985251.3 KiB7,4127,411

package.jsonH A D23-May-20204.6 KiB152151

tsconfig.jsonH A D26-Oct-1985137 77

README.md

1<h1><p align="center"><img alt="protobuf.js" src="https://github.com/dcodeIO/protobuf.js/raw/master/pbjs.png" width="120" height="104" /></p></h1>
2<p align="center"><a href="https://npmjs.org/package/protobufjs"><img src="https://img.shields.io/npm/v/protobufjs.svg" alt=""></a> <a href="https://travis-ci.org/dcodeIO/protobuf.js"><img src="https://travis-ci.org/dcodeIO/protobuf.js.svg?branch=master" alt=""></a> <a href="https://npmjs.org/package/protobufjs"><img src="https://img.shields.io/npm/dm/protobufjs.svg" alt=""></a> <a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=dcode%40dcode.io&item_name=Open%20Source%20Software%20Donation&item_number=dcodeIO%2Fprotobuf.js"><img alt="donate ❤" src="https://img.shields.io/badge/donate--ff2244.svg"></a></p>
3
4**Protocol Buffers** are a language-neutral, platform-neutral, extensible way of serializing structured data for use in communications protocols, data storage, and more, originally designed at Google ([see](https://developers.google.com/protocol-buffers/)).
5
6**protobuf.js** is a pure JavaScript implementation with [TypeScript](https://www.typescriptlang.org) support for [node.js](https://nodejs.org) and the browser. It's easy to use, blazingly fast and works out of the box with [.proto](https://developers.google.com/protocol-buffers/docs/proto) files!
7
8Contents
9--------
10
11* [Installation](#installation)<br />
12  How to include protobuf.js in your project.
13
14* [Usage](#usage)<br />
15  A brief introduction to using the toolset.
16
17  * [Valid Message](#valid-message)
18  * [Toolset](#toolset)<br />
19
20* [Examples](#examples)<br />
21  A few examples to get you started.
22
23  * [Using .proto files](#using-proto-files)
24  * [Using JSON descriptors](#using-json-descriptors)
25  * [Using reflection only](#using-reflection-only)
26  * [Using custom classes](#using-custom-classes)
27  * [Using services](#using-services)
28  * [Usage with TypeScript](#usage-with-typescript)<br />
29
30* [Command line](#command-line)<br />
31  How to use the command line utility.
32
33  * [pbjs for JavaScript](#pbjs-for-javascript)
34  * [pbts for TypeScript](#pbts-for-typescript)
35  * [Reflection vs. static code](#reflection-vs-static-code)
36  * [Command line API](#command-line-api)<br />
37
38* [Additional documentation](#additional-documentation)<br />
39  A list of available documentation resources.
40
41* [Performance](#performance)<br />
42  A few internals and a benchmark on performance.
43
44* [Compatibility](#compatibility)<br />
45  Notes on compatibility regarding browsers and optional libraries.
46
47* [Building](#building)<br />
48  How to build the library and its components yourself.
49
50Installation
51---------------
52
53### node.js
54
55```
56$> npm install protobufjs [--save --save-prefix=~]
57```
58
59```js
60var protobuf = require("protobufjs");
61```
62
63**Note** that this library's versioning scheme is not semver-compatible for historical reasons. For guaranteed backward compatibility, always depend on `~6.A.B` instead of `^6.A.B` (hence the `--save-prefix` above).
64
65### Browsers
66
67Development:
68
69```
70<script src="//cdn.rawgit.com/dcodeIO/protobuf.js/6.X.X/dist/protobuf.js"></script>
71```
72
73Production:
74
75```
76<script src="//cdn.rawgit.com/dcodeIO/protobuf.js/6.X.X/dist/protobuf.min.js"></script>
77```
78
79**Remember** to replace the version tag with the exact [release](https://github.com/dcodeIO/protobuf.js/tags) your project depends upon.
80
81The library supports CommonJS and AMD loaders and also exports globally as `protobuf`.
82
83### Distributions
84
85Where bundle size is a factor, there are additional stripped-down versions of the [full library][dist-full] (~19kb gzipped) available that exclude certain functionality:
86
87* When working with JSON descriptors (i.e. generated by [pbjs](#pbjs-for-javascript)) and/or reflection only, see the [light library][dist-light] (~16kb gzipped) that excludes the parser. CommonJS entry point is:
88
89  ```js
90  var protobuf = require("protobufjs/light");
91  ```
92
93* When working with statically generated code only, see the [minimal library][dist-minimal] (~6.5kb gzipped) that also excludes reflection. CommonJS entry point is:
94
95  ```js
96  var protobuf = require("protobufjs/minimal");
97  ```
98
99[dist-full]: https://github.com/dcodeIO/protobuf.js/tree/master/dist
100[dist-light]: https://github.com/dcodeIO/protobuf.js/tree/master/dist/light
101[dist-minimal]: https://github.com/dcodeIO/protobuf.js/tree/master/dist/minimal
102
103Usage
104-----
105
106Because JavaScript is a dynamically typed language, protobuf.js introduces the concept of a **valid message** in order to provide the best possible [performance](#performance) (and, as a side product, proper typings):
107
108### Valid message
109
110> A valid message is an object (1) not missing any required fields and (2) exclusively composed of JS types understood by the wire format writer.
111
112There are two possible types of valid messages and the encoder is able to work with both of these for convenience:
113
114* **Message instances** (explicit instances of message classes with default values on their prototype) always (have to) satisfy the requirements of a valid message by design and
115* **Plain JavaScript objects** that just so happen to be composed in a way satisfying the requirements of a valid message as well.
116
117In a nutshell, the wire format writer understands the following types:
118
119| Field type | Expected JS type (create, encode) | Conversion (fromObject)
120|------------|-----------------------------------|------------------------
121| s-/u-/int32<br />s-/fixed32 | `number` (32 bit integer) | <code>value &#124; 0</code> if signed<br />`value >>> 0` if unsigned
122| s-/u-/int64<br />s-/fixed64 | `Long`-like (optimal)<br />`number` (53 bit integer) | `Long.fromValue(value)` with long.js<br />`parseInt(value, 10)` otherwise
123| float<br />double | `number` | `Number(value)`
124| bool | `boolean` | `Boolean(value)`
125| string | `string` | `String(value)`
126| bytes | `Uint8Array` (optimal)<br />`Buffer` (optimal under node)<br />`Array.<number>` (8 bit integers) | `base64.decode(value)` if a `string`<br />`Object` with non-zero `.length` is assumed to be buffer-like
127| enum | `number` (32 bit integer) | Looks up the numeric id if a `string`
128| message | Valid message | `Message.fromObject(value)`
129
130* Explicit `undefined` and `null` are considered as not set if the field is optional.
131* Repeated fields are `Array.<T>`.
132* Map fields are `Object.<string,T>` with the key being the string representation of the respective value or an 8 characters long binary hash string for `Long`-likes.
133* Types marked as *optimal* provide the best performance because no conversion step (i.e. number to low and high bits or base64 string to buffer) is required.
134
135### Toolset
136
137With that in mind and again for performance reasons, each message class provides a distinct set of methods with each method doing just one thing. This avoids unnecessary assertions / redundant operations where performance is a concern but also forces a user to perform verification (of plain JavaScript objects that *might* just so happen to be a valid message) explicitly where necessary - for example when dealing with user input.
138
139**Note** that `Message` below refers to any message class.
140
141* **Message.verify**(message: `Object`): `null|string`<br />
142  verifies that a **plain JavaScript object** satisfies the requirements of a valid message and thus can be encoded without issues. Instead of throwing, it returns the error message as a string, if any.
143
144  ```js
145  var payload = "invalid (not an object)";
146  var err = AwesomeMessage.verify(payload);
147  if (err)
148    throw Error(err);
149  ```
150
151* **Message.encode**(message: `Message|Object` [, writer: `Writer`]): `Writer`<br />
152  encodes a **message instance** or valid **plain JavaScript object**. This method does not implicitly verify the message and it's up to the user to make sure that the payload is a valid message.
153
154  ```js
155  var buffer = AwesomeMessage.encode(message).finish();
156  ```
157
158* **Message.encodeDelimited**(message: `Message|Object` [, writer: `Writer`]): `Writer`<br />
159  works like `Message.encode` but additionally prepends the length of the message as a varint.
160
161* **Message.decode**(reader: `Reader|Uint8Array`): `Message`<br />
162  decodes a buffer to a **message instance**. If required fields are missing, it throws a `util.ProtocolError` with an `instance` property set to the so far decoded message. If the wire format is invalid, it throws an `Error`.
163
164  ```js
165  try {
166    var decodedMessage = AwesomeMessage.decode(buffer);
167  } catch (e) {
168      if (e instanceof protobuf.util.ProtocolError) {
169        // e.instance holds the so far decoded message with missing required fields
170      } else {
171        // wire format is invalid
172      }
173  }
174  ```
175
176* **Message.decodeDelimited**(reader: `Reader|Uint8Array`): `Message`<br />
177  works like `Message.decode` but additionally reads the length of the message prepended as a varint.
178
179* **Message.create**(properties: `Object`): `Message`<br />
180  creates a new **message instance** from a set of properties that satisfy the requirements of a valid message. Where applicable, it is recommended to prefer `Message.create` over `Message.fromObject` because it doesn't perform possibly redundant conversion.
181
182  ```js
183  var message = AwesomeMessage.create({ awesomeField: "AwesomeString" });
184  ```
185
186* **Message.fromObject**(object: `Object`): `Message`<br />
187  converts any non-valid **plain JavaScript object** to a **message instance** using the conversion steps outlined within the table above.
188
189  ```js
190  var message = AwesomeMessage.fromObject({ awesomeField: 42 });
191  // converts awesomeField to a string
192  ```
193
194* **Message.toObject**(message: `Message` [, options: `ConversionOptions`]): `Object`<br />
195  converts a **message instance** to an arbitrary **plain JavaScript object** for interoperability with other libraries or storage. The resulting plain JavaScript object *might* still satisfy the requirements of a valid message depending on the actual conversion options specified, but most of the time it does not.
196
197  ```js
198  var object = AwesomeMessage.toObject(message, {
199    enums: String,  // enums as string names
200    longs: String,  // longs as strings (requires long.js)
201    bytes: String,  // bytes as base64 encoded strings
202    defaults: true, // includes default values
203    arrays: true,   // populates empty arrays (repeated fields) even if defaults=false
204    objects: true,  // populates empty objects (map fields) even if defaults=false
205    oneofs: true    // includes virtual oneof fields set to the present field's name
206  });
207  ```
208
209For reference, the following diagram aims to display relationships between the different methods and the concept of a valid message:
210
211<p align="center"><img alt="Toolset Diagram" src="https://protobufjs.github.io/protobuf.js/toolset.svg" /></p>
212
213> In other words: `verify` indicates that calling `create` or `encode` directly on the plain object will [result in a valid message respectively] succeed. `fromObject`, on the other hand, does conversion from a broader range of plain objects to create valid messages. ([ref](https://github.com/dcodeIO/protobuf.js/issues/748#issuecomment-291925749))
214
215Examples
216--------
217
218### Using .proto files
219
220It is possible to load existing .proto files using the full library, which parses and compiles the definitions to ready to use (reflection-based) message classes:
221
222```protobuf
223// awesome.proto
224package awesomepackage;
225syntax = "proto3";
226
227message AwesomeMessage {
228    string awesome_field = 1; // becomes awesomeField
229}
230```
231
232```js
233protobuf.load("awesome.proto", function(err, root) {
234    if (err)
235        throw err;
236
237    // Obtain a message type
238    var AwesomeMessage = root.lookupType("awesomepackage.AwesomeMessage");
239
240    // Exemplary payload
241    var payload = { awesomeField: "AwesomeString" };
242
243    // Verify the payload if necessary (i.e. when possibly incomplete or invalid)
244    var errMsg = AwesomeMessage.verify(payload);
245    if (errMsg)
246        throw Error(errMsg);
247
248    // Create a new message
249    var message = AwesomeMessage.create(payload); // or use .fromObject if conversion is necessary
250
251    // Encode a message to an Uint8Array (browser) or Buffer (node)
252    var buffer = AwesomeMessage.encode(message).finish();
253    // ... do something with buffer
254
255    // Decode an Uint8Array (browser) or Buffer (node) to a message
256    var message = AwesomeMessage.decode(buffer);
257    // ... do something with message
258
259    // If the application uses length-delimited buffers, there is also encodeDelimited and decodeDelimited.
260
261    // Maybe convert the message back to a plain object
262    var object = AwesomeMessage.toObject(message, {
263        longs: String,
264        enums: String,
265        bytes: String,
266        // see ConversionOptions
267    });
268});
269```
270
271Additionally, promise syntax can be used by omitting the callback, if preferred:
272
273```js
274protobuf.load("awesome.proto")
275    .then(function(root) {
276       ...
277    });
278```
279
280### Using JSON descriptors
281
282The library utilizes JSON descriptors that are equivalent to a .proto definition. For example, the following is identical to the .proto definition seen above:
283
284```json
285// awesome.json
286{
287  "nested": {
288    "AwesomeMessage": {
289      "fields": {
290        "awesomeField": {
291          "type": "string",
292          "id": 1
293        }
294      }
295    }
296  }
297}
298```
299
300JSON descriptors closely resemble the internal reflection structure:
301
302| Type (T)           | Extends            | Type-specific properties
303|--------------------|--------------------|-------------------------
304| *ReflectionObject* |                    | options
305| *Namespace*        | *ReflectionObject* | nested
306| Root               | *Namespace*        | **nested**
307| Type               | *Namespace*        | **fields**
308| Enum               | *ReflectionObject* | **values**
309| Field              | *ReflectionObject* | rule, **type**, **id**
310| MapField           | Field              | **keyType**
311| OneOf              | *ReflectionObject* | **oneof** (array of field names)
312| Service            | *Namespace*        | **methods**
313| Method             | *ReflectionObject* | type, **requestType**, **responseType**, requestStream, responseStream
314
315* **Bold properties** are required. *Italic types* are abstract.
316* `T.fromJSON(name, json)` creates the respective reflection object from a JSON descriptor
317* `T#toJSON()` creates a JSON descriptor from the respective reflection object (its name is used as the key within the parent)
318
319Exclusively using JSON descriptors instead of .proto files enables the use of just the light library (the parser isn't required in this case).
320
321A JSON descriptor can either be loaded the usual way:
322
323```js
324protobuf.load("awesome.json", function(err, root) {
325    if (err) throw err;
326
327    // Continue at "Obtain a message type" above
328});
329```
330
331Or it can be loaded inline:
332
333```js
334var jsonDescriptor = require("./awesome.json"); // exemplary for node
335
336var root = protobuf.Root.fromJSON(jsonDescriptor);
337
338// Continue at "Obtain a message type" above
339```
340
341### Using reflection only
342
343Both the full and the light library include full reflection support. One could, for example, define the .proto definitions seen in the examples above using just reflection:
344
345```js
346...
347var Root  = protobuf.Root,
348    Type  = protobuf.Type,
349    Field = protobuf.Field;
350
351var AwesomeMessage = new Type("AwesomeMessage").add(new Field("awesomeField", 1, "string"));
352
353var root = new Root().define("awesomepackage").add(AwesomeMessage);
354
355// Continue at "Create a new message" above
356...
357```
358
359Detailed information on the reflection structure is available within the [API documentation](#additional-documentation).
360
361### Using custom classes
362
363Message classes can also be extended with custom functionality and it is also possible to register a custom constructor with a reflected message type:
364
365```js
366...
367
368// Define a custom constructor
369function AwesomeMessage(properties) {
370    // custom initialization code
371    ...
372}
373
374// Register the custom constructor with its reflected type (*)
375root.lookupType("awesomepackage.AwesomeMessage").ctor = AwesomeMessage;
376
377// Define custom functionality
378AwesomeMessage.customStaticMethod = function() { ... };
379AwesomeMessage.prototype.customInstanceMethod = function() { ... };
380
381// Continue at "Create a new message" above
382```
383
384(*) Besides referencing its reflected type through `AwesomeMessage.$type` and `AwesomeMesage#$type`, the respective custom class is automatically populated with:
385
386* `AwesomeMessage.create`
387* `AwesomeMessage.encode` and `AwesomeMessage.encodeDelimited`
388* `AwesomeMessage.decode` and `AwesomeMessage.decodeDelimited`
389* `AwesomeMessage.verify`
390* `AwesomeMessage.fromObject`, `AwesomeMessage.toObject` and `AwesomeMessage#toJSON`
391
392Afterwards, decoded messages of this type are `instanceof AwesomeMessage`.
393
394Alternatively, it is also possible to reuse and extend the internal constructor if custom initialization code is not required:
395
396```js
397...
398
399// Reuse the internal constructor
400var AwesomeMessage = root.lookupType("awesomepackage.AwesomeMessage").ctor;
401
402// Define custom functionality
403AwesomeMessage.customStaticMethod = function() { ... };
404AwesomeMessage.prototype.customInstanceMethod = function() { ... };
405
406// Continue at "Create a new message" above
407```
408
409### Using services
410
411The library also supports consuming services but it doesn't make any assumptions about the actual transport channel. Instead, a user must provide a suitable RPC implementation, which is an asynchronous function that takes the reflected service method, the binary request and a node-style callback as its parameters:
412
413```js
414function rpcImpl(method, requestData, callback) {
415    // perform the request using an HTTP request or a WebSocket for example
416    var responseData = ...;
417    // and call the callback with the binary response afterwards:
418    callback(null, responseData);
419}
420```
421
422Below is a working example with a typescript implementation using grpc npm package.
423```ts
424const grpc = require('grpc')
425
426const Client = grpc.makeGenericClientConstructor({})
427const client = new Client(
428  grpcServerUrl,
429  grpc.credentials.createInsecure()
430)
431
432const rpcImpl = function(method, requestData, callback) {
433  client.makeUnaryRequest(
434    method.name,
435    arg => arg,
436    arg => arg,
437    requestData,
438    callback
439  )
440}
441```
442
443Example:
444
445```protobuf
446// greeter.proto
447syntax = "proto3";
448
449service Greeter {
450    rpc SayHello (HelloRequest) returns (HelloReply) {}
451}
452
453message HelloRequest {
454    string name = 1;
455}
456
457message HelloReply {
458    string message = 1;
459}
460```
461
462```js
463...
464var Greeter = root.lookup("Greeter");
465var greeter = Greeter.create(/* see above */ rpcImpl, /* request delimited? */ false, /* response delimited? */ false);
466
467greeter.sayHello({ name: 'you' }, function(err, response) {
468    console.log('Greeting:', response.message);
469});
470```
471
472Services also support promises:
473
474```js
475greeter.sayHello({ name: 'you' })
476    .then(function(response) {
477        console.log('Greeting:', response.message);
478    });
479```
480
481There is also an [example for streaming RPC](https://github.com/dcodeIO/protobuf.js/blob/master/examples/streaming-rpc.js).
482
483Note that the service API is meant for clients. Implementing a server-side endpoint pretty much always requires transport channel (i.e. http, websocket, etc.) specific code with the only common denominator being that it decodes and encodes messages.
484
485### Usage with TypeScript
486
487The library ships with its own [type definitions](https://github.com/dcodeIO/protobuf.js/blob/master/index.d.ts) and modern editors like [Visual Studio Code](https://code.visualstudio.com/) will automatically detect and use them for code completion.
488
489The npm package depends on [@types/node](https://www.npmjs.com/package/@types/node) because of `Buffer` and [@types/long](https://www.npmjs.com/package/@types/long) because of `Long`. If you are not building for node and/or not using long.js, it should be safe to exclude them manually.
490
491#### Using the JS API
492
493The API shown above works pretty much the same with TypeScript. However, because everything is typed, accessing fields on instances of dynamically generated message classes requires either using bracket-notation (i.e. `message["awesomeField"]`) or explicit casts. Alternatively, it is possible to use a [typings file generated for its static counterpart](#pbts-for-typescript).
494
495```ts
496import { load } from "protobufjs"; // respectively "./node_modules/protobufjs"
497
498load("awesome.proto", function(err, root) {
499  if (err)
500    throw err;
501
502  // example code
503  const AwesomeMessage = root.lookupType("awesomepackage.AwesomeMessage");
504
505  let message = AwesomeMessage.create({ awesomeField: "hello" });
506  console.log(`message = ${JSON.stringify(message)}`);
507
508  let buffer = AwesomeMessage.encode(message).finish();
509  console.log(`buffer = ${Array.prototype.toString.call(buffer)}`);
510
511  let decoded = AwesomeMessage.decode(buffer);
512  console.log(`decoded = ${JSON.stringify(decoded)}`);
513});
514```
515
516#### Using generated static code
517
518If you generated static code to `bundle.js` using the CLI and its type definitions to `bundle.d.ts`, then you can just do:
519
520```ts
521import { AwesomeMessage } from "./bundle.js";
522
523// example code
524let message = AwesomeMessage.create({ awesomeField: "hello" });
525let buffer  = AwesomeMessage.encode(message).finish();
526let decoded = AwesomeMessage.decode(buffer);
527```
528
529#### Using decorators
530
531The library also includes an early implementation of [decorators](https://www.typescriptlang.org/docs/handbook/decorators.html).
532
533**Note** that decorators are an experimental feature in TypeScript and that declaration order is important depending on the JS target. For example, `@Field.d(2, AwesomeArrayMessage)` requires that `AwesomeArrayMessage` has been defined earlier when targeting `ES5`.
534
535```ts
536import { Message, Type, Field, OneOf } from "protobufjs/light"; // respectively "./node_modules/protobufjs/light.js"
537
538export class AwesomeSubMessage extends Message<AwesomeSubMessage> {
539
540  @Field.d(1, "string")
541  public awesomeString: string;
542
543}
544
545export enum AwesomeEnum {
546  ONE = 1,
547  TWO = 2
548}
549
550@Type.d("SuperAwesomeMessage")
551export class AwesomeMessage extends Message<AwesomeMessage> {
552
553  @Field.d(1, "string", "optional", "awesome default string")
554  public awesomeField: string;
555
556  @Field.d(2, AwesomeSubMessage)
557  public awesomeSubMessage: AwesomeSubMessage;
558
559  @Field.d(3, AwesomeEnum, "optional", AwesomeEnum.ONE)
560  public awesomeEnum: AwesomeEnum;
561
562  @OneOf.d("awesomeSubMessage", "awesomeEnum")
563  public which: string;
564
565}
566
567// example code
568let message = new AwesomeMessage({ awesomeField: "hello" });
569let buffer  = AwesomeMessage.encode(message).finish();
570let decoded = AwesomeMessage.decode(buffer);
571```
572
573Supported decorators are:
574
575* **Type.d(typeName?: `string`)** &nbsp; *(optional)*<br />
576  annotates a class as a protobuf message type. If `typeName` is not specified, the constructor's runtime function name is used for the reflected type.
577
578* **Field.d&lt;T>(fieldId: `number`, fieldType: `string | Constructor<T>`, fieldRule?: `"optional" | "required" | "repeated"`, defaultValue?: `T`)**<br />
579  annotates a property as a protobuf field with the specified id and protobuf type.
580
581* **MapField.d&lt;T extends { [key: string]: any }>(fieldId: `number`, fieldKeyType: `string`, fieldValueType. `string | Constructor<{}>`)**<br />
582  annotates a property as a protobuf map field with the specified id, protobuf key and value type.
583
584* **OneOf.d&lt;T extends string>(...fieldNames: `string[]`)**<br />
585  annotates a property as a protobuf oneof covering the specified fields.
586
587Other notes:
588
589* Decorated types reside in `protobuf.roots["decorated"]` using a flat structure, so no duplicate names.
590* Enums are copied to a reflected enum with a generic name on decorator evaluation because referenced enum objects have no runtime name the decorator could use.
591* Default values must be specified as arguments to the decorator instead of using a property initializer for proper prototype behavior.
592* Property names on decorated classes must not be renamed on compile time (i.e. by a minifier) because decorators just receive the original field name as a string.
593
594**ProTip!** Not as pretty, but you can [use decorators in plain JavaScript](https://github.com/dcodeIO/protobuf.js/blob/master/examples/js-decorators.js) as well.
595
596Command line
597------------
598
599**Note** that moving the CLI to [its own package](./cli) is a work in progress. At the moment, it's still part of the main package.
600
601The command line interface (CLI) can be used to translate between file formats and to generate static code as well as TypeScript definitions.
602
603### pbjs for JavaScript
604
605```
606Translates between file formats and generates static code.
607
608  -t, --target     Specifies the target format. Also accepts a path to require a custom target.
609
610                   json          JSON representation
611                   json-module   JSON representation as a module
612                   proto2        Protocol Buffers, Version 2
613                   proto3        Protocol Buffers, Version 3
614                   static        Static code without reflection (non-functional on its own)
615                   static-module Static code without reflection as a module
616
617  -p, --path       Adds a directory to the include path.
618
619  -o, --out        Saves to a file instead of writing to stdout.
620
621  --sparse         Exports only those types referenced from a main file (experimental).
622
623  Module targets only:
624
625  -w, --wrap       Specifies the wrapper to use. Also accepts a path to require a custom wrapper.
626
627                   default   Default wrapper supporting both CommonJS and AMD
628                   commonjs  CommonJS wrapper
629                   amd       AMD wrapper
630                   es6       ES6 wrapper (implies --es6)
631                   closure   A closure adding to protobuf.roots where protobuf is a global
632
633  -r, --root       Specifies an alternative protobuf.roots name.
634
635  -l, --lint       Linter configuration. Defaults to protobuf.js-compatible rules:
636
637                   eslint-disable block-scoped-var, no-redeclare, no-control-regex, no-prototype-builtins
638
639  --es6            Enables ES6 syntax (const/let instead of var)
640
641  Proto sources only:
642
643  --keep-case      Keeps field casing instead of converting to camel case.
644
645  Static targets only:
646
647  --no-create      Does not generate create functions used for reflection compatibility.
648  --no-encode      Does not generate encode functions.
649  --no-decode      Does not generate decode functions.
650  --no-verify      Does not generate verify functions.
651  --no-convert     Does not generate convert functions like from/toObject
652  --no-delimited   Does not generate delimited encode/decode functions.
653  --no-beautify    Does not beautify generated code.
654  --no-comments    Does not output any JSDoc comments.
655
656  --force-long     Enforces the use of 'Long' for s-/u-/int64 and s-/fixed64 fields.
657  --force-number   Enforces the use of 'number' for s-/u-/int64 and s-/fixed64 fields.
658  --force-message  Enforces the use of message instances instead of plain objects.
659
660usage: pbjs [options] file1.proto file2.json ...  (or pipe)  other | pbjs [options] -
661```
662
663For production environments it is recommended to bundle all your .proto files to a single .json file, which minimizes the number of network requests and avoids any parser overhead (hint: works with just the **light** library):
664
665```
666$> pbjs -t json file1.proto file2.proto > bundle.json
667```
668
669Now, either include this file in your final bundle:
670
671```js
672var root = protobuf.Root.fromJSON(require("./bundle.json"));
673```
674
675or load it the usual way:
676
677```js
678protobuf.load("bundle.json", function(err, root) {
679    ...
680});
681```
682
683Generated static code, on the other hand, works with just the **minimal** library. For example
684
685```
686$> pbjs -t static-module -w commonjs -o compiled.js file1.proto file2.proto
687```
688
689will generate static code for definitions within `file1.proto` and `file2.proto` to a CommonJS module `compiled.js`.
690
691**ProTip!** Documenting your .proto files with `/** ... */`-blocks or (trailing) `/// ...` lines translates to generated static code.
692
693
694### pbts for TypeScript
695
696```
697Generates TypeScript definitions from annotated JavaScript files.
698
699  -o, --out       Saves to a file instead of writing to stdout.
700
701  -g, --global    Name of the global object in browser environments, if any.
702
703  --no-comments   Does not output any JSDoc comments.
704
705  Internal flags:
706
707  -n, --name      Wraps everything in a module of the specified name.
708
709  -m, --main      Whether building the main library without any imports.
710
711usage: pbts [options] file1.js file2.js ...  (or)  other | pbts [options] -
712```
713
714Picking up on the example above, the following not only generates static code to a CommonJS module `compiled.js` but also its respective TypeScript definitions to `compiled.d.ts`:
715
716```
717$> pbjs -t static-module -w commonjs -o compiled.js file1.proto file2.proto
718$> pbts -o compiled.d.ts compiled.js
719```
720
721Additionally, TypeScript definitions of static modules are compatible with their reflection-based counterparts (i.e. as exported by JSON modules), as long as the following conditions are met:
722
7231. Instead of using `new SomeMessage(...)`, always use `SomeMessage.create(...)` because reflection objects do not provide a constructor.
7242. Types, services and enums must start with an uppercase letter to become available as properties of the reflected types as well (i.e. to be able to use `MyMessage.MyEnum` instead of `root.lookup("MyMessage.MyEnum")`).
725
726For example, the following generates a JSON module `bundle.js` and a `bundle.d.ts`, but no static code:
727
728```
729$> pbjs -t json-module -w commonjs -o bundle.js file1.proto file2.proto
730$> pbjs -t static-module file1.proto file2.proto | pbts -o bundle.d.ts -
731```
732
733### Reflection vs. static code
734
735While using .proto files directly requires the full library respectively pure reflection/JSON the light library, pretty much all code but the relatively short descriptors is shared.
736
737Static code, on the other hand, requires just the minimal library, but generates additional source code without any reflection features. This also implies that there is a break-even point where statically generated code becomes larger than descriptor-based code once the amount of code generated exceeds the size of the full respectively light library.
738
739There is no significant difference performance-wise as the code generated statically is pretty much the same as generated at runtime and both are largely interchangeable as seen in the previous section.
740
741| Source | Library | Advantages | Tradeoffs
742|--------|---------|------------|-----------
743| .proto | full    | Easily editable<br />Interoperability with other libraries<br />No compile step | Some parsing and possibly network overhead
744| JSON   | light   | Easily editable<br />No parsing overhead<br />Single bundle (no network overhead) | protobuf.js specific<br />Has a compile step
745| static | minimal | Works where `eval` access is restricted<br />Fully documented<br />Small footprint for small protos | Can be hard to edit<br />No reflection<br />Has a compile step
746
747### Command line API
748
749Both utilities can be used programmatically by providing command line arguments and a callback to their respective `main` functions:
750
751```js
752var pbjs = require("protobufjs/cli/pbjs"); // or require("protobufjs/cli").pbjs / .pbts
753
754pbjs.main([ "--target", "json-module", "path/to/myproto.proto" ], function(err, output) {
755    if (err)
756        throw err;
757    // do something with output
758});
759```
760
761Additional documentation
762------------------------
763
764#### Protocol Buffers
765* [Google's Developer Guide](https://developers.google.com/protocol-buffers/docs/overview)
766
767#### protobuf.js
768* [API Documentation](https://protobufjs.github.io/protobuf.js)
769* [CHANGELOG](https://github.com/dcodeIO/protobuf.js/blob/master/CHANGELOG.md)
770* [Frequently asked questions](https://github.com/dcodeIO/protobuf.js/wiki) on our wiki
771
772#### Community
773* [Questions and answers](http://stackoverflow.com/search?tab=newest&q=protobuf.js) on StackOverflow
774
775Performance
776-----------
777The package includes a benchmark that compares protobuf.js performance to native JSON (as far as this is possible) and [Google's JS implementation](https://github.com/google/protobuf/tree/master/js). On an i7-2600K running node 6.9.1 it yields:
778
779```
780benchmarking encoding performance ...
781
782protobuf.js (reflect) x 541,707 ops/sec ±1.13% (87 runs sampled)
783protobuf.js (static) x 548,134 ops/sec ±1.38% (89 runs sampled)
784JSON (string) x 318,076 ops/sec ±0.63% (93 runs sampled)
785JSON (buffer) x 179,165 ops/sec ±2.26% (91 runs sampled)
786google-protobuf x 74,406 ops/sec ±0.85% (86 runs sampled)
787
788   protobuf.js (static) was fastest
789  protobuf.js (reflect) was 0.9% ops/sec slower (factor 1.0)
790          JSON (string) was 41.5% ops/sec slower (factor 1.7)
791          JSON (buffer) was 67.6% ops/sec slower (factor 3.1)
792        google-protobuf was 86.4% ops/sec slower (factor 7.3)
793
794benchmarking decoding performance ...
795
796protobuf.js (reflect) x 1,383,981 ops/sec ±0.88% (93 runs sampled)
797protobuf.js (static) x 1,378,925 ops/sec ±0.81% (93 runs sampled)
798JSON (string) x 302,444 ops/sec ±0.81% (93 runs sampled)
799JSON (buffer) x 264,882 ops/sec ±0.81% (93 runs sampled)
800google-protobuf x 179,180 ops/sec ±0.64% (94 runs sampled)
801
802  protobuf.js (reflect) was fastest
803   protobuf.js (static) was 0.3% ops/sec slower (factor 1.0)
804          JSON (string) was 78.1% ops/sec slower (factor 4.6)
805          JSON (buffer) was 80.8% ops/sec slower (factor 5.2)
806        google-protobuf was 87.0% ops/sec slower (factor 7.7)
807
808benchmarking combined performance ...
809
810protobuf.js (reflect) x 275,900 ops/sec ±0.78% (90 runs sampled)
811protobuf.js (static) x 290,096 ops/sec ±0.96% (90 runs sampled)
812JSON (string) x 129,381 ops/sec ±0.77% (90 runs sampled)
813JSON (buffer) x 91,051 ops/sec ±0.94% (90 runs sampled)
814google-protobuf x 42,050 ops/sec ±0.85% (91 runs sampled)
815
816   protobuf.js (static) was fastest
817  protobuf.js (reflect) was 4.7% ops/sec slower (factor 1.0)
818          JSON (string) was 55.3% ops/sec slower (factor 2.2)
819          JSON (buffer) was 68.6% ops/sec slower (factor 3.2)
820        google-protobuf was 85.5% ops/sec slower (factor 6.9)
821```
822
823These results are achieved by
824
825* generating type-specific encoders, decoders, verifiers and converters at runtime
826* configuring the reader/writer interface according to the environment
827* using node-specific functionality where beneficial and, of course
828* avoiding unnecessary operations through splitting up [the toolset](#toolset).
829
830You can also run [the benchmark](https://github.com/dcodeIO/protobuf.js/blob/master/bench/index.js) ...
831
832```
833$> npm run bench
834```
835
836and [the profiler](https://github.com/dcodeIO/protobuf.js/blob/master/bench/prof.js) yourself (the latter requires a recent version of node):
837
838```
839$> npm run prof <encode|decode|encode-browser|decode-browser> [iterations=10000000]
840```
841
842Note that as of this writing, the benchmark suite performs significantly slower on node 7.2.0 compared to 6.9.1 because moths.
843
844Compatibility
845-------------
846
847* Works in all modern and not-so-modern browsers except IE8.
848* Because the internals of this package do not rely on `google/protobuf/descriptor.proto`, options are parsed and presented literally.
849* If typed arrays are not supported by the environment, plain arrays will be used instead.
850* Support for pre-ES5 environments (except IE8) can be achieved by [using a polyfill](https://github.com/dcodeIO/protobuf.js/blob/master/scripts/polyfill.js).
851* Support for [Content Security Policy](https://w3c.github.io/webappsec-csp/)-restricted environments (like Chrome extensions without [unsafe-eval](https://developer.chrome.com/extensions/contentSecurityPolicy#relaxing-eval)) can be achieved by generating and using static code instead.
852* If a proper way to work with 64 bit values (uint64, int64 etc.) is required, just install [long.js](https://github.com/dcodeIO/long.js) alongside this library. All 64 bit numbers will then be returned as a `Long` instance instead of a possibly unsafe JavaScript number ([see](https://github.com/dcodeIO/long.js)).
853* For descriptor.proto interoperability, see [ext/descriptor](https://github.com/dcodeIO/protobuf.js/tree/master/ext/descriptor)
854
855Building
856--------
857
858To build the library or its components yourself, clone it from GitHub and install the development dependencies:
859
860```
861$> git clone https://github.com/dcodeIO/protobuf.js.git
862$> cd protobuf.js
863$> npm install
864```
865
866Building the respective development and production versions with their respective source maps to `dist/`:
867
868```
869$> npm run build
870```
871
872Building the documentation to `docs/`:
873
874```
875$> npm run docs
876```
877
878Building the TypeScript definition to `index.d.ts`:
879
880```
881$> npm run types
882```
883
884### Browserify integration
885
886By default, protobuf.js integrates into any browserify build-process without requiring any optional modules. Hence:
887
888* If int64 support is required, explicitly require the `long` module somewhere in your project as it will be excluded otherwise. This assumes that a global `require` function is present that protobuf.js can call to obtain the long module.
889
890  If there is no global `require` function present after bundling, it's also possible to assign the long module programmatically:
891
892  ```js
893  var Long = ...;
894
895  protobuf.util.Long = Long;
896  protobuf.configure();
897  ```
898
899* If you have any special requirements, there is [the bundler](https://github.com/dcodeIO/protobuf.js/blob/master/scripts/bundle.js) for reference.
900
901**License:** [BSD 3-Clause License](https://opensource.org/licenses/BSD-3-Clause)
902