1 /*	$NetBSD: altq_subr.c,v 1.32 2016/06/20 08:30:58 knakahara Exp $	*/
2 /*	$KAME: altq_subr.c,v 1.24 2005/04/13 03:44:25 suz Exp $	*/
3 
4 /*
5  * Copyright (C) 1997-2003
6  *	Sony Computer Science Laboratories Inc.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: altq_subr.c,v 1.32 2016/06/20 08:30:58 knakahara Exp $");
32 
33 #ifdef _KERNEL_OPT
34 #include "opt_altq.h"
35 #include "opt_inet.h"
36 #include "pf.h"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/kernel.h>
47 #include <sys/errno.h>
48 #include <sys/syslog.h>
49 #include <sys/sysctl.h>
50 #include <sys/queue.h>
51 
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/ip.h>
59 #ifdef INET6
60 #include <netinet/ip6.h>
61 #endif
62 #include <netinet/tcp.h>
63 #include <netinet/udp.h>
64 
65 #if NPF > 0
66 #include <net/pfvar.h>
67 #endif
68 #include <altq/altq.h>
69 #ifdef ALTQ3_COMPAT
70 #include <altq/altq_conf.h>
71 #endif
72 
73 /*
74  * internal function prototypes
75  */
76 static void	tbr_timeout(void *);
77 int (*altq_input)(struct mbuf *, int) = NULL;
78 static int tbr_timer = 0;	/* token bucket regulator timer */
79 static struct callout tbr_callout;
80 
81 #ifdef ALTQ3_CLFIER_COMPAT
82 static int 	extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
83 #ifdef INET6
84 static int 	extract_ports6(struct mbuf *, struct ip6_hdr *,
85 			       struct flowinfo_in6 *);
86 #endif
87 static int	apply_filter4(u_int32_t, struct flow_filter *,
88 			      struct flowinfo_in *);
89 static int	apply_ppfilter4(u_int32_t, struct flow_filter *,
90 				struct flowinfo_in *);
91 #ifdef INET6
92 static int	apply_filter6(u_int32_t, struct flow_filter6 *,
93 			      struct flowinfo_in6 *);
94 #endif
95 static int	apply_tosfilter4(u_int32_t, struct flow_filter *,
96 				 struct flowinfo_in *);
97 static u_long	get_filt_handle(struct acc_classifier *, int);
98 static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
99 static u_int32_t filt2fibmask(struct flow_filter *);
100 
101 static void 	ip4f_cache(struct ip *, struct flowinfo_in *);
102 static int 	ip4f_lookup(struct ip *, struct flowinfo_in *);
103 static int 	ip4f_init(void);
104 static struct ip4_frag	*ip4f_alloc(void);
105 static void 	ip4f_free(struct ip4_frag *);
106 #endif /* ALTQ3_CLFIER_COMPAT */
107 
108 /*
109  * alternate queueing support routines
110  */
111 
112 /* look up the queue state by the interface name and the queueing type. */
113 void *
altq_lookup(char * name,int type)114 altq_lookup(char *name, int type)
115 {
116 	struct ifnet *ifp;
117 
118 	if ((ifp = ifunit(name)) != NULL) {
119 		if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
120 			return (ifp->if_snd.altq_disc);
121 	}
122 
123 	return NULL;
124 }
125 
126 int
altq_attach(struct ifaltq * ifq,int type,void * discipline,int (* enqueue)(struct ifaltq *,struct mbuf *),struct mbuf * (* dequeue)(struct ifaltq *,int),int (* request)(struct ifaltq *,int,void *),void * clfier,void * (* classify)(void *,struct mbuf *,int))127 altq_attach(struct ifaltq *ifq, int type, void *discipline,
128     int (*enqueue)(struct ifaltq *, struct mbuf *),
129     struct mbuf *(*dequeue)(struct ifaltq *, int),
130     int (*request)(struct ifaltq *, int, void *),
131     void *clfier, void *(*classify)(void *, struct mbuf *, int))
132 {
133 	if (!ALTQ_IS_READY(ifq))
134 		return ENXIO;
135 
136 #ifdef ALTQ3_COMPAT
137 	/*
138 	 * pfaltq can override the existing discipline, but altq3 cannot.
139 	 * check these if clfier is not NULL (which implies altq3).
140 	 */
141 	if (clfier != NULL) {
142 		if (ALTQ_IS_ENABLED(ifq))
143 			return EBUSY;
144 		if (ALTQ_IS_ATTACHED(ifq))
145 			return EEXIST;
146 	}
147 #endif
148 	ifq->altq_type     = type;
149 	ifq->altq_disc     = discipline;
150 	ifq->altq_enqueue  = enqueue;
151 	ifq->altq_dequeue  = dequeue;
152 	ifq->altq_request  = request;
153 	ifq->altq_clfier   = clfier;
154 	ifq->altq_classify = classify;
155 	ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
156 #ifdef ALTQ3_COMPAT
157 #ifdef ALTQ_KLD
158 	altq_module_incref(type);
159 #endif
160 #endif
161 	return 0;
162 }
163 
164 int
altq_detach(struct ifaltq * ifq)165 altq_detach(struct ifaltq *ifq)
166 {
167 	if (!ALTQ_IS_READY(ifq))
168 		return ENXIO;
169 	if (ALTQ_IS_ENABLED(ifq))
170 		return EBUSY;
171 	if (!ALTQ_IS_ATTACHED(ifq))
172 		return (0);
173 #ifdef ALTQ3_COMPAT
174 #ifdef ALTQ_KLD
175 	altq_module_declref(ifq->altq_type);
176 #endif
177 #endif
178 
179 	ifq->altq_type     = ALTQT_NONE;
180 	ifq->altq_disc     = NULL;
181 	ifq->altq_enqueue  = NULL;
182 	ifq->altq_dequeue  = NULL;
183 	ifq->altq_request  = NULL;
184 	ifq->altq_clfier   = NULL;
185 	ifq->altq_classify = NULL;
186 	ifq->altq_flags &= ALTQF_CANTCHANGE;
187 	return 0;
188 }
189 
190 int
altq_enable(struct ifaltq * ifq)191 altq_enable(struct ifaltq *ifq)
192 {
193 	int s;
194 
195 	if (!ALTQ_IS_READY(ifq))
196 		return ENXIO;
197 	if (ALTQ_IS_ENABLED(ifq))
198 		return 0;
199 
200 	s = splnet();
201 	IFQ_PURGE(ifq);
202 	ASSERT(ifq->ifq_len == 0);
203 	ifq->altq_flags |= ALTQF_ENABLED;
204 	if (ifq->altq_clfier != NULL)
205 		ifq->altq_flags |= ALTQF_CLASSIFY;
206 	splx(s);
207 
208 	return 0;
209 }
210 
211 int
altq_disable(struct ifaltq * ifq)212 altq_disable(struct ifaltq *ifq)
213 {
214 	int s;
215 
216 	if (!ALTQ_IS_ENABLED(ifq))
217 		return 0;
218 
219 	s = splnet();
220 	IFQ_PURGE(ifq);
221 	ASSERT(ifq->ifq_len == 0);
222 	ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
223 	splx(s);
224 	return 0;
225 }
226 
227 #ifdef ALTQ_DEBUG
228 void
altq_assert(const char * file,int line,const char * failedexpr)229 altq_assert(const char *file, int line, const char *failedexpr)
230 {
231 	(void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
232 		     failedexpr, file, line);
233 	panic("altq assertion");
234 	/* NOTREACHED */
235 }
236 #endif
237 
238 /*
239  * internal representation of token bucket parameters
240  *	rate:	byte_per_unittime << 32
241  *		(((bits_per_sec) / 8) << 32) / machclk_freq
242  *	depth:	byte << 32
243  *
244  */
245 #define	TBR_SHIFT	32
246 #define	TBR_SCALE(x)	((int64_t)(x) << TBR_SHIFT)
247 #define	TBR_UNSCALE(x)	((x) >> TBR_SHIFT)
248 
249 struct mbuf *
tbr_dequeue(struct ifaltq * ifq,int op)250 tbr_dequeue(struct ifaltq *ifq, int op)
251 {
252 	struct tb_regulator *tbr;
253 	struct mbuf *m;
254 	int64_t interval;
255 	u_int64_t now;
256 
257 	tbr = ifq->altq_tbr;
258 	if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
259 		/* if this is a remove after poll, bypass tbr check */
260 	} else {
261 		/* update token only when it is negative */
262 		if (tbr->tbr_token <= 0) {
263 			now = read_machclk();
264 			interval = now - tbr->tbr_last;
265 			if (interval >= tbr->tbr_filluptime)
266 				tbr->tbr_token = tbr->tbr_depth;
267 			else {
268 				tbr->tbr_token += interval * tbr->tbr_rate;
269 				if (tbr->tbr_token > tbr->tbr_depth)
270 					tbr->tbr_token = tbr->tbr_depth;
271 			}
272 			tbr->tbr_last = now;
273 		}
274 		/* if token is still negative, don't allow dequeue */
275 		if (tbr->tbr_token <= 0)
276 			return (NULL);
277 	}
278 
279 	if (ALTQ_IS_ENABLED(ifq))
280 		m = (*ifq->altq_dequeue)(ifq, op);
281 	else {
282 		if (op == ALTDQ_POLL)
283 			IF_POLL(ifq, m);
284 		else
285 			IF_DEQUEUE(ifq, m);
286 	}
287 
288 	if (m != NULL && op == ALTDQ_REMOVE)
289 		tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
290 	tbr->tbr_lastop = op;
291 	return (m);
292 }
293 
294 /*
295  * set a token bucket regulator.
296  * if the specified rate is zero, the token bucket regulator is deleted.
297  */
298 int
tbr_set(struct ifaltq * ifq,struct tb_profile * profile)299 tbr_set(struct ifaltq *ifq, struct tb_profile *profile)
300 {
301 	struct tb_regulator *tbr, *otbr;
302 
303 	if (machclk_freq == 0)
304 		init_machclk();
305 	if (machclk_freq == 0) {
306 		printf("tbr_set: no CPU clock available!\n");
307 		return (ENXIO);
308 	}
309 
310 	if (profile->rate == 0) {
311 		/* delete this tbr */
312 		if ((tbr = ifq->altq_tbr) == NULL)
313 			return (ENOENT);
314 		ifq->altq_tbr = NULL;
315 		free(tbr, M_DEVBUF);
316 		return (0);
317 	}
318 
319 	tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_WAITOK|M_ZERO);
320 	if (tbr == NULL)
321 		return (ENOMEM);
322 
323 	tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
324 	tbr->tbr_depth = TBR_SCALE(profile->depth);
325 	if (tbr->tbr_rate > 0)
326 		tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
327 	else
328 		tbr->tbr_filluptime = 0xffffffffffffffffLL;
329 	tbr->tbr_token = tbr->tbr_depth;
330 	tbr->tbr_last = read_machclk();
331 	tbr->tbr_lastop = ALTDQ_REMOVE;
332 
333 	otbr = ifq->altq_tbr;
334 	ifq->altq_tbr = tbr;	/* set the new tbr */
335 
336 	if (otbr != NULL) {
337 		free(otbr, M_DEVBUF);
338 	} else {
339 		if (tbr_timer == 0) {
340 			CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
341 			tbr_timer = 1;
342 		}
343 	}
344 	return (0);
345 }
346 
347 /*
348  * tbr_timeout goes through the interface list, and kicks the drivers
349  * if necessary.
350  */
351 static void
tbr_timeout(void * arg)352 tbr_timeout(void *arg)
353 {
354 	struct ifnet *ifp;
355 	int active, s;
356 
357 	active = 0;
358 	s = pserialize_read_enter();
359 	IFNET_READER_FOREACH(ifp) {
360 		struct psref psref;
361 		if (!TBR_IS_ENABLED(&ifp->if_snd))
362 			continue;
363 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
364 		pserialize_read_exit(s);
365 
366 		active++;
367 		if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL) {
368 			int _s = splnet();
369 			if_start_lock(ifp);
370 			splx(_s);
371 		}
372 
373 		s = pserialize_read_enter();
374 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
375 	}
376 	pserialize_read_exit(s);
377 
378 	if (active > 0)
379 		CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
380 	else
381 		tbr_timer = 0;	/* don't need tbr_timer anymore */
382 }
383 
384 /*
385  * get token bucket regulator profile
386  */
387 int
tbr_get(struct ifaltq * ifq,struct tb_profile * profile)388 tbr_get(struct ifaltq *ifq, struct tb_profile *profile)
389 {
390 	struct tb_regulator *tbr;
391 
392 	if ((tbr = ifq->altq_tbr) == NULL) {
393 		profile->rate = 0;
394 		profile->depth = 0;
395 	} else {
396 		profile->rate =
397 		    (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
398 		profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
399 	}
400 	return (0);
401 }
402 
403 #if NPF > 0
404 /*
405  * attach a discipline to the interface.  if one already exists, it is
406  * overridden.
407  */
408 int
altq_pfattach(struct pf_altq * a)409 altq_pfattach(struct pf_altq *a)
410 {
411 	int error = 0;
412 
413 	switch (a->scheduler) {
414 	case ALTQT_NONE:
415 		break;
416 #ifdef ALTQ_CBQ
417 	case ALTQT_CBQ:
418 		error = cbq_pfattach(a);
419 		break;
420 #endif
421 #ifdef ALTQ_PRIQ
422 	case ALTQT_PRIQ:
423 		error = priq_pfattach(a);
424 		break;
425 #endif
426 #ifdef ALTQ_HFSC
427 	case ALTQT_HFSC:
428 		error = hfsc_pfattach(a);
429 		break;
430 #endif
431 	default:
432 		error = ENXIO;
433 	}
434 
435 	return (error);
436 }
437 
438 /*
439  * detach a discipline from the interface.
440  * it is possible that the discipline was already overridden by another
441  * discipline.
442  */
443 int
altq_pfdetach(struct pf_altq * a)444 altq_pfdetach(struct pf_altq *a)
445 {
446 	struct ifnet *ifp;
447 	int s, error = 0;
448 
449 	if ((ifp = ifunit(a->ifname)) == NULL)
450 		return (EINVAL);
451 
452 	/* if this discipline is no longer referenced, just return */
453 	if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
454 		return (0);
455 
456 	s = splnet();
457 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
458 		error = altq_disable(&ifp->if_snd);
459 	if (error == 0)
460 		error = altq_detach(&ifp->if_snd);
461 	splx(s);
462 
463 	return (error);
464 }
465 
466 /*
467  * add a discipline or a queue
468  */
469 int
altq_add(struct pf_altq * a)470 altq_add(struct pf_altq *a)
471 {
472 	int error = 0;
473 
474 	if (a->qname[0] != 0)
475 		return (altq_add_queue(a));
476 
477 	if (machclk_freq == 0)
478 		init_machclk();
479 	if (machclk_freq == 0)
480 		panic("altq_add: no CPU clock");
481 
482 	switch (a->scheduler) {
483 #ifdef ALTQ_CBQ
484 	case ALTQT_CBQ:
485 		error = cbq_add_altq(a);
486 		break;
487 #endif
488 #ifdef ALTQ_PRIQ
489 	case ALTQT_PRIQ:
490 		error = priq_add_altq(a);
491 		break;
492 #endif
493 #ifdef ALTQ_HFSC
494 	case ALTQT_HFSC:
495 		error = hfsc_add_altq(a);
496 		break;
497 #endif
498 	default:
499 		error = ENXIO;
500 	}
501 
502 	return (error);
503 }
504 
505 /*
506  * remove a discipline or a queue
507  */
508 int
altq_remove(struct pf_altq * a)509 altq_remove(struct pf_altq *a)
510 {
511 	int error = 0;
512 
513 	if (a->qname[0] != 0)
514 		return (altq_remove_queue(a));
515 
516 	switch (a->scheduler) {
517 #ifdef ALTQ_CBQ
518 	case ALTQT_CBQ:
519 		error = cbq_remove_altq(a);
520 		break;
521 #endif
522 #ifdef ALTQ_PRIQ
523 	case ALTQT_PRIQ:
524 		error = priq_remove_altq(a);
525 		break;
526 #endif
527 #ifdef ALTQ_HFSC
528 	case ALTQT_HFSC:
529 		error = hfsc_remove_altq(a);
530 		break;
531 #endif
532 	default:
533 		error = ENXIO;
534 	}
535 
536 	return (error);
537 }
538 
539 /*
540  * add a queue to the discipline
541  */
542 int
altq_add_queue(struct pf_altq * a)543 altq_add_queue(struct pf_altq *a)
544 {
545 	int error = 0;
546 
547 	switch (a->scheduler) {
548 #ifdef ALTQ_CBQ
549 	case ALTQT_CBQ:
550 		error = cbq_add_queue(a);
551 		break;
552 #endif
553 #ifdef ALTQ_PRIQ
554 	case ALTQT_PRIQ:
555 		error = priq_add_queue(a);
556 		break;
557 #endif
558 #ifdef ALTQ_HFSC
559 	case ALTQT_HFSC:
560 		error = hfsc_add_queue(a);
561 		break;
562 #endif
563 	default:
564 		error = ENXIO;
565 	}
566 
567 	return (error);
568 }
569 
570 /*
571  * remove a queue from the discipline
572  */
573 int
altq_remove_queue(struct pf_altq * a)574 altq_remove_queue(struct pf_altq *a)
575 {
576 	int error = 0;
577 
578 	switch (a->scheduler) {
579 #ifdef ALTQ_CBQ
580 	case ALTQT_CBQ:
581 		error = cbq_remove_queue(a);
582 		break;
583 #endif
584 #ifdef ALTQ_PRIQ
585 	case ALTQT_PRIQ:
586 		error = priq_remove_queue(a);
587 		break;
588 #endif
589 #ifdef ALTQ_HFSC
590 	case ALTQT_HFSC:
591 		error = hfsc_remove_queue(a);
592 		break;
593 #endif
594 	default:
595 		error = ENXIO;
596 	}
597 
598 	return (error);
599 }
600 
601 /*
602  * get queue statistics
603  */
604 int
altq_getqstats(struct pf_altq * a,void * ubuf,int * nbytes)605 altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
606 {
607 	int error = 0;
608 
609 	switch (a->scheduler) {
610 #ifdef ALTQ_CBQ
611 	case ALTQT_CBQ:
612 		error = cbq_getqstats(a, ubuf, nbytes);
613 		break;
614 #endif
615 #ifdef ALTQ_PRIQ
616 	case ALTQT_PRIQ:
617 		error = priq_getqstats(a, ubuf, nbytes);
618 		break;
619 #endif
620 #ifdef ALTQ_HFSC
621 	case ALTQT_HFSC:
622 		error = hfsc_getqstats(a, ubuf, nbytes);
623 		break;
624 #endif
625 	default:
626 		error = ENXIO;
627 	}
628 
629 	return (error);
630 }
631 #endif /* NPF > 0 */
632 
633 /*
634  * read and write diffserv field in IPv4 or IPv6 header
635  */
636 u_int8_t
read_dsfield(struct mbuf * m,struct altq_pktattr * pktattr)637 read_dsfield(struct mbuf *m, struct altq_pktattr *pktattr)
638 {
639 	struct mbuf *m0;
640 	u_int8_t ds_field = 0;
641 
642 	if (pktattr == NULL ||
643 	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
644 		return ((u_int8_t)0);
645 
646 	/* verify that pattr_hdr is within the mbuf data */
647 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
648 		if (((char *)pktattr->pattr_hdr >= m0->m_data) &&
649 		    ((char *)pktattr->pattr_hdr < m0->m_data + m0->m_len))
650 			break;
651 	if (m0 == NULL) {
652 		/* ick, pattr_hdr is stale */
653 		pktattr->pattr_af = AF_UNSPEC;
654 #ifdef ALTQ_DEBUG
655 		printf("read_dsfield: can't locate header!\n");
656 #endif
657 		return ((u_int8_t)0);
658 	}
659 
660 	if (pktattr->pattr_af == AF_INET) {
661 		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
662 
663 		if (ip->ip_v != 4)
664 			return ((u_int8_t)0);	/* version mismatch! */
665 		ds_field = ip->ip_tos;
666 	}
667 #ifdef INET6
668 	else if (pktattr->pattr_af == AF_INET6) {
669 		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
670 		u_int32_t flowlabel;
671 
672 		flowlabel = ntohl(ip6->ip6_flow);
673 		if ((flowlabel >> 28) != 6)
674 			return ((u_int8_t)0);	/* version mismatch! */
675 		ds_field = (flowlabel >> 20) & 0xff;
676 	}
677 #endif
678 	return (ds_field);
679 }
680 
681 void
write_dsfield(struct mbuf * m,struct altq_pktattr * pktattr,u_int8_t dsfield)682 write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
683 {
684 	struct mbuf *m0;
685 
686 	if (pktattr == NULL ||
687 	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
688 		return;
689 
690 	/* verify that pattr_hdr is within the mbuf data */
691 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
692 		if (((char *)pktattr->pattr_hdr >= m0->m_data) &&
693 		    ((char *)pktattr->pattr_hdr < m0->m_data + m0->m_len))
694 			break;
695 	if (m0 == NULL) {
696 		/* ick, pattr_hdr is stale */
697 		pktattr->pattr_af = AF_UNSPEC;
698 #ifdef ALTQ_DEBUG
699 		printf("write_dsfield: can't locate header!\n");
700 #endif
701 		return;
702 	}
703 
704 	if (pktattr->pattr_af == AF_INET) {
705 		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
706 		u_int8_t old;
707 		int32_t sum;
708 
709 		if (ip->ip_v != 4)
710 			return;		/* version mismatch! */
711 		old = ip->ip_tos;
712 		dsfield |= old & 3;	/* leave CU bits */
713 		if (old == dsfield)
714 			return;
715 		ip->ip_tos = dsfield;
716 		/*
717 		 * update checksum (from RFC1624)
718 		 *	   HC' = ~(~HC + ~m + m')
719 		 */
720 		sum = ~ntohs(ip->ip_sum) & 0xffff;
721 		sum += 0xff00 + (~old & 0xff) + dsfield;
722 		sum = (sum >> 16) + (sum & 0xffff);
723 		sum += (sum >> 16);  /* add carry */
724 
725 		ip->ip_sum = htons(~sum & 0xffff);
726 	}
727 #ifdef INET6
728 	else if (pktattr->pattr_af == AF_INET6) {
729 		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
730 		u_int32_t flowlabel;
731 
732 		flowlabel = ntohl(ip6->ip6_flow);
733 		if ((flowlabel >> 28) != 6)
734 			return;		/* version mismatch! */
735 		flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
736 		ip6->ip6_flow = htonl(flowlabel);
737 	}
738 #endif
739 	return;
740 }
741 
742 #define BINTIME_SHIFT	2
743 
744 u_int32_t machclk_freq = 0;
745 u_int32_t machclk_per_tick = 0;
746 
747 void
init_machclk(void)748 init_machclk(void)
749 {
750 
751 	callout_init(&tbr_callout, 0);
752 
753 	/*
754 	 * Always emulate 1GiHz counter using bintime(9)
755 	 * since it has enough resolution via timecounter(9).
756 	 * Using machine dependent cpu_counter() is not MP safe
757 	 * and it won't work even on UP with Speedstep etc.
758 	 */
759 	machclk_freq = 1024 * 1024 * 1024;	/* 2^30 to emulate ~1GHz */
760 	machclk_per_tick = machclk_freq / hz;
761 #ifdef ALTQ_DEBUG
762 	printf("altq: emulate %uHz CPU clock\n", machclk_freq);
763 #endif
764 }
765 
766 u_int64_t
read_machclk(void)767 read_machclk(void)
768 {
769 	struct bintime bt;
770 	u_int64_t val;
771 
772 	binuptime(&bt);
773 	val = (((u_int64_t)bt.sec << 32) + (bt.frac >> 32)) >> BINTIME_SHIFT;
774 	return (val);
775 }
776 
777 #ifdef ALTQ3_CLFIER_COMPAT
778 
779 #ifndef IPPROTO_ESP
780 #define	IPPROTO_ESP	50		/* encapsulating security payload */
781 #endif
782 #ifndef IPPROTO_AH
783 #define	IPPROTO_AH	51		/* authentication header */
784 #endif
785 
786 /*
787  * extract flow information from a given packet.
788  * filt_mask shows flowinfo fields required.
789  * we assume the ip header is in one mbuf, and addresses and ports are
790  * in network byte order.
791  */
792 int
altq_extractflow(struct mbuf * m,int af,struct flowinfo * flow,u_int32_t filt_bmask)793 altq_extractflow(struct mbuf *m, int af, struct flowinfo *flow,
794     u_int32_t filt_bmask)
795 {
796 
797 	switch (af) {
798 	case PF_INET: {
799 		struct flowinfo_in *fin;
800 		struct ip *ip;
801 
802 		ip = mtod(m, struct ip *);
803 
804 		if (ip->ip_v != 4)
805 			break;
806 
807 		fin = (struct flowinfo_in *)flow;
808 		fin->fi_len = sizeof(struct flowinfo_in);
809 		fin->fi_family = AF_INET;
810 
811 		fin->fi_proto = ip->ip_p;
812 		fin->fi_tos = ip->ip_tos;
813 
814 		fin->fi_src.s_addr = ip->ip_src.s_addr;
815 		fin->fi_dst.s_addr = ip->ip_dst.s_addr;
816 
817 		if (filt_bmask & FIMB4_PORTS)
818 			/* if port info is required, extract port numbers */
819 			extract_ports4(m, ip, fin);
820 		else {
821 			fin->fi_sport = 0;
822 			fin->fi_dport = 0;
823 			fin->fi_gpi = 0;
824 		}
825 		return (1);
826 	}
827 
828 #ifdef INET6
829 	case PF_INET6: {
830 		struct flowinfo_in6 *fin6;
831 		struct ip6_hdr *ip6;
832 
833 		ip6 = mtod(m, struct ip6_hdr *);
834 		/* should we check the ip version? */
835 
836 		fin6 = (struct flowinfo_in6 *)flow;
837 		fin6->fi6_len = sizeof(struct flowinfo_in6);
838 		fin6->fi6_family = AF_INET6;
839 
840 		fin6->fi6_proto = ip6->ip6_nxt;
841 		fin6->fi6_tclass   = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
842 
843 		fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
844 		fin6->fi6_src = ip6->ip6_src;
845 		fin6->fi6_dst = ip6->ip6_dst;
846 
847 		if ((filt_bmask & FIMB6_PORTS) ||
848 		    ((filt_bmask & FIMB6_PROTO)
849 		     && ip6->ip6_nxt > IPPROTO_IPV6))
850 			/*
851 			 * if port info is required, or proto is required
852 			 * but there are option headers, extract port
853 			 * and protocol numbers.
854 			 */
855 			extract_ports6(m, ip6, fin6);
856 		else {
857 			fin6->fi6_sport = 0;
858 			fin6->fi6_dport = 0;
859 			fin6->fi6_gpi = 0;
860 		}
861 		return (1);
862 	}
863 #endif /* INET6 */
864 
865 	default:
866 		break;
867 	}
868 
869 	/* failed */
870 	flow->fi_len = sizeof(struct flowinfo);
871 	flow->fi_family = AF_UNSPEC;
872 	return (0);
873 }
874 
875 /*
876  * helper routine to extract port numbers
877  */
878 /* structure for ipsec and ipv6 option header template */
879 struct _opt6 {
880 	u_int8_t	opt6_nxt;	/* next header */
881 	u_int8_t	opt6_hlen;	/* header extension length */
882 	u_int16_t	_pad;
883 	u_int32_t	ah_spi;		/* security parameter index
884 					   for authentication header */
885 };
886 
887 /*
888  * extract port numbers from a ipv4 packet.
889  */
890 static int
extract_ports4(struct mbuf * m,struct ip * ip,struct flowinfo_in * fin)891 extract_ports4(struct mbuf *m, struct ip *ip, struct flowinfo_in *fin)
892 {
893 	struct mbuf *m0;
894 	u_short ip_off;
895 	u_int8_t proto;
896 	int 	off;
897 
898 	fin->fi_sport = 0;
899 	fin->fi_dport = 0;
900 	fin->fi_gpi = 0;
901 
902 	ip_off = ntohs(ip->ip_off);
903 	/* if it is a fragment, try cached fragment info */
904 	if (ip_off & IP_OFFMASK) {
905 		ip4f_lookup(ip, fin);
906 		return (1);
907 	}
908 
909 	/* locate the mbuf containing the protocol header */
910 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
911 		if (((char *)ip >= m0->m_data) &&
912 		    ((char *)ip < m0->m_data + m0->m_len))
913 			break;
914 	if (m0 == NULL) {
915 #ifdef ALTQ_DEBUG
916 		printf("extract_ports4: can't locate header! ip=%p\n", ip);
917 #endif
918 		return (0);
919 	}
920 	off = ((char *)ip - m0->m_data) + (ip->ip_hl << 2);
921 	proto = ip->ip_p;
922 
923 #ifdef ALTQ_IPSEC
924  again:
925 #endif
926 	while (off >= m0->m_len) {
927 		off -= m0->m_len;
928 		m0 = m0->m_next;
929 		if (m0 == NULL)
930 			return (0);  /* bogus ip_hl! */
931 	}
932 	if (m0->m_len < off + 4)
933 		return (0);
934 
935 	switch (proto) {
936 	case IPPROTO_TCP:
937 	case IPPROTO_UDP: {
938 		struct udphdr *udp;
939 
940 		udp = (struct udphdr *)(mtod(m0, char *) + off);
941 		fin->fi_sport = udp->uh_sport;
942 		fin->fi_dport = udp->uh_dport;
943 		fin->fi_proto = proto;
944 		}
945 		break;
946 
947 #ifdef ALTQ_IPSEC
948 	case IPPROTO_ESP:
949 		if (fin->fi_gpi == 0){
950 			u_int32_t *gpi;
951 
952 			gpi = (u_int32_t *)(mtod(m0, char *) + off);
953 			fin->fi_gpi   = *gpi;
954 		}
955 		fin->fi_proto = proto;
956 		break;
957 
958 	case IPPROTO_AH: {
959 			/* get next header and header length */
960 			struct _opt6 *opt6;
961 
962 			opt6 = (struct _opt6 *)(mtod(m0, char *) + off);
963 			proto = opt6->opt6_nxt;
964 			off += 8 + (opt6->opt6_hlen * 4);
965 			if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
966 				fin->fi_gpi = opt6->ah_spi;
967 		}
968 		/* goto the next header */
969 		goto again;
970 #endif  /* ALTQ_IPSEC */
971 
972 	default:
973 		fin->fi_proto = proto;
974 		return (0);
975 	}
976 
977 	/* if this is a first fragment, cache it. */
978 	if (ip_off & IP_MF)
979 		ip4f_cache(ip, fin);
980 
981 	return (1);
982 }
983 
984 #ifdef INET6
985 static int
extract_ports6(struct mbuf * m,struct ip6_hdr * ip6,struct flowinfo_in6 * fin6)986 extract_ports6(struct mbuf *m, struct ip6_hdr *ip6, struct flowinfo_in6 *fin6)
987 {
988 	struct mbuf *m0;
989 	int	off;
990 	u_int8_t proto;
991 
992 	fin6->fi6_gpi   = 0;
993 	fin6->fi6_sport = 0;
994 	fin6->fi6_dport = 0;
995 
996 	/* locate the mbuf containing the protocol header */
997 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
998 		if (((char *)ip6 >= m0->m_data) &&
999 		    ((char *)ip6 < m0->m_data + m0->m_len))
1000 			break;
1001 	if (m0 == NULL) {
1002 #ifdef ALTQ_DEBUG
1003 		printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
1004 #endif
1005 		return (0);
1006 	}
1007 	off = ((char *)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
1008 
1009 	proto = ip6->ip6_nxt;
1010 	do {
1011 		while (off >= m0->m_len) {
1012 			off -= m0->m_len;
1013 			m0 = m0->m_next;
1014 			if (m0 == NULL)
1015 				return (0);
1016 		}
1017 		if (m0->m_len < off + 4)
1018 			return (0);
1019 
1020 		switch (proto) {
1021 		case IPPROTO_TCP:
1022 		case IPPROTO_UDP: {
1023 			struct udphdr *udp;
1024 
1025 			udp = (struct udphdr *)(mtod(m0, char *) + off);
1026 			fin6->fi6_sport = udp->uh_sport;
1027 			fin6->fi6_dport = udp->uh_dport;
1028 			fin6->fi6_proto = proto;
1029 			}
1030 			return (1);
1031 
1032 		case IPPROTO_ESP:
1033 			if (fin6->fi6_gpi == 0) {
1034 				u_int32_t *gpi;
1035 
1036 				gpi = (u_int32_t *)(mtod(m0, char *) + off);
1037 				fin6->fi6_gpi   = *gpi;
1038 			}
1039 			fin6->fi6_proto = proto;
1040 			return (1);
1041 
1042 		case IPPROTO_AH: {
1043 			/* get next header and header length */
1044 			struct _opt6 *opt6;
1045 
1046 			opt6 = (struct _opt6 *)(mtod(m0, char *) + off);
1047 			if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
1048 				fin6->fi6_gpi = opt6->ah_spi;
1049 			proto = opt6->opt6_nxt;
1050 			off += 8 + (opt6->opt6_hlen * 4);
1051 			/* goto the next header */
1052 			break;
1053 			}
1054 
1055 		case IPPROTO_HOPOPTS:
1056 		case IPPROTO_ROUTING:
1057 		case IPPROTO_DSTOPTS: {
1058 			/* get next header and header length */
1059 			struct _opt6 *opt6;
1060 
1061 			opt6 = (struct _opt6 *)(mtod(m0, char *) + off);
1062 			proto = opt6->opt6_nxt;
1063 			off += (opt6->opt6_hlen + 1) * 8;
1064 			/* goto the next header */
1065 			break;
1066 			}
1067 
1068 		case IPPROTO_FRAGMENT:
1069 			/* ipv6 fragmentations are not supported yet */
1070 		default:
1071 			fin6->fi6_proto = proto;
1072 			return (0);
1073 		}
1074 	} while (1);
1075 	/*NOTREACHED*/
1076 }
1077 #endif /* INET6 */
1078 
1079 /*
1080  * altq common classifier
1081  */
1082 int
acc_add_filter(struct acc_classifier * classifier,struct flow_filter * filter,void * class,u_long * phandle)1083 acc_add_filter(struct acc_classifier *classifier, struct flow_filter *filter,
1084     void *class, u_long *phandle)
1085 {
1086 	struct acc_filter *afp, *prev, *tmp;
1087 	int	i, s;
1088 
1089 #ifdef INET6
1090 	if (filter->ff_flow.fi_family != AF_INET &&
1091 	    filter->ff_flow.fi_family != AF_INET6)
1092 		return (EINVAL);
1093 #else
1094 	if (filter->ff_flow.fi_family != AF_INET)
1095 		return (EINVAL);
1096 #endif
1097 
1098 	afp = malloc(sizeof(struct acc_filter), M_DEVBUF, M_WAITOK|M_ZERO);
1099 	if (afp == NULL)
1100 		return (ENOMEM);
1101 
1102 	afp->f_filter = *filter;
1103 	afp->f_class = class;
1104 
1105 	i = ACC_WILDCARD_INDEX;
1106 	if (filter->ff_flow.fi_family == AF_INET) {
1107 		struct flow_filter *filter4 = &afp->f_filter;
1108 
1109 		/*
1110 		 * if address is 0, it's a wildcard.  if address mask
1111 		 * isn't set, use full mask.
1112 		 */
1113 		if (filter4->ff_flow.fi_dst.s_addr == 0)
1114 			filter4->ff_mask.mask_dst.s_addr = 0;
1115 		else if (filter4->ff_mask.mask_dst.s_addr == 0)
1116 			filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
1117 		if (filter4->ff_flow.fi_src.s_addr == 0)
1118 			filter4->ff_mask.mask_src.s_addr = 0;
1119 		else if (filter4->ff_mask.mask_src.s_addr == 0)
1120 			filter4->ff_mask.mask_src.s_addr = 0xffffffff;
1121 
1122 		/* clear extra bits in addresses  */
1123 		   filter4->ff_flow.fi_dst.s_addr &=
1124 		       filter4->ff_mask.mask_dst.s_addr;
1125 		   filter4->ff_flow.fi_src.s_addr &=
1126 		       filter4->ff_mask.mask_src.s_addr;
1127 
1128 		/*
1129 		 * if dst address is a wildcard, use hash-entry
1130 		 * ACC_WILDCARD_INDEX.
1131 		 */
1132 		if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
1133 			i = ACC_WILDCARD_INDEX;
1134 		else
1135 			i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
1136 	}
1137 #ifdef INET6
1138 	else if (filter->ff_flow.fi_family == AF_INET6) {
1139 		struct flow_filter6 *filter6 =
1140 			(struct flow_filter6 *)&afp->f_filter;
1141 #ifndef IN6MASK0 /* taken from kame ipv6 */
1142 #define	IN6MASK0	{{{ 0, 0, 0, 0 }}}
1143 #define	IN6MASK128	{{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
1144 		const struct in6_addr in6mask0 = IN6MASK0;
1145 		const struct in6_addr in6mask128 = IN6MASK128;
1146 #endif
1147 
1148 		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
1149 			filter6->ff_mask6.mask6_dst = in6mask0;
1150 		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
1151 			filter6->ff_mask6.mask6_dst = in6mask128;
1152 		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
1153 			filter6->ff_mask6.mask6_src = in6mask0;
1154 		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
1155 			filter6->ff_mask6.mask6_src = in6mask128;
1156 
1157 		/* clear extra bits in addresses  */
1158 		for (i = 0; i < 16; i++)
1159 			filter6->ff_flow6.fi6_dst.s6_addr[i] &=
1160 			    filter6->ff_mask6.mask6_dst.s6_addr[i];
1161 		for (i = 0; i < 16; i++)
1162 			filter6->ff_flow6.fi6_src.s6_addr[i] &=
1163 			    filter6->ff_mask6.mask6_src.s6_addr[i];
1164 
1165 		if (filter6->ff_flow6.fi6_flowlabel == 0)
1166 			i = ACC_WILDCARD_INDEX;
1167 		else
1168 			i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
1169 	}
1170 #endif /* INET6 */
1171 
1172 	afp->f_handle = get_filt_handle(classifier, i);
1173 
1174 	/* update filter bitmask */
1175 	afp->f_fbmask = filt2fibmask(filter);
1176 	classifier->acc_fbmask |= afp->f_fbmask;
1177 
1178 	/*
1179 	 * add this filter to the filter list.
1180 	 * filters are ordered from the highest rule number.
1181 	 */
1182 	s = splnet();
1183 	prev = NULL;
1184 	LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
1185 		if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
1186 			prev = tmp;
1187 		else
1188 			break;
1189 	}
1190 	if (prev == NULL)
1191 		LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
1192 	else
1193 		LIST_INSERT_AFTER(prev, afp, f_chain);
1194 	splx(s);
1195 
1196 	*phandle = afp->f_handle;
1197 	return (0);
1198 }
1199 
1200 int
acc_delete_filter(struct acc_classifier * classifier,u_long handle)1201 acc_delete_filter(struct acc_classifier *classifier, u_long handle)
1202 {
1203 	struct acc_filter *afp;
1204 	int	s;
1205 
1206 	if ((afp = filth_to_filtp(classifier, handle)) == NULL)
1207 		return (EINVAL);
1208 
1209 	s = splnet();
1210 	LIST_REMOVE(afp, f_chain);
1211 	splx(s);
1212 
1213 	free(afp, M_DEVBUF);
1214 
1215 	/* todo: update filt_bmask */
1216 
1217 	return (0);
1218 }
1219 
1220 /*
1221  * delete filters referencing to the specified class.
1222  * if the all flag is not 0, delete all the filters.
1223  */
1224 int
acc_discard_filters(struct acc_classifier * classifier,void * class,int all)1225 acc_discard_filters(struct acc_classifier *classifier, void *class, int all)
1226 {
1227 	struct acc_filter *afp;
1228 	int	i, s;
1229 
1230 	s = splnet();
1231 	for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
1232 		do {
1233 			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1234 				if (all || afp->f_class == class) {
1235 					LIST_REMOVE(afp, f_chain);
1236 					free(afp, M_DEVBUF);
1237 					/* start again from the head */
1238 					break;
1239 				}
1240 		} while (afp != NULL);
1241 	}
1242 	splx(s);
1243 
1244 	if (all)
1245 		classifier->acc_fbmask = 0;
1246 
1247 	return (0);
1248 }
1249 
1250 void *
acc_classify(void * clfier,struct mbuf * m,int af)1251 acc_classify(void *clfier, struct mbuf *m, int af)
1252 {
1253 	struct acc_classifier *classifier;
1254 	struct flowinfo flow;
1255 	struct acc_filter *afp;
1256 	int	i;
1257 
1258 	classifier = (struct acc_classifier *)clfier;
1259 	altq_extractflow(m, af, &flow, classifier->acc_fbmask);
1260 
1261 	if (flow.fi_family == AF_INET) {
1262 		struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
1263 
1264 		if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
1265 			/* only tos is used */
1266 			LIST_FOREACH(afp,
1267 				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1268 				 f_chain)
1269 				if (apply_tosfilter4(afp->f_fbmask,
1270 						     &afp->f_filter, fp))
1271 					/* filter matched */
1272 					return (afp->f_class);
1273 		} else if ((classifier->acc_fbmask &
1274 			(~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
1275 		    == 0) {
1276 			/* only proto and ports are used */
1277 			LIST_FOREACH(afp,
1278 				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1279 				 f_chain)
1280 				if (apply_ppfilter4(afp->f_fbmask,
1281 						    &afp->f_filter, fp))
1282 					/* filter matched */
1283 					return (afp->f_class);
1284 		} else {
1285 			/* get the filter hash entry from its dest address */
1286 			i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
1287 			do {
1288 				/*
1289 				 * go through this loop twice.  first for dst
1290 				 * hash, second for wildcards.
1291 				 */
1292 				LIST_FOREACH(afp, &classifier->acc_filters[i],
1293 					     f_chain)
1294 					if (apply_filter4(afp->f_fbmask,
1295 							  &afp->f_filter, fp))
1296 						/* filter matched */
1297 						return (afp->f_class);
1298 
1299 				/*
1300 				 * check again for filters with a dst addr
1301 				 * wildcard.
1302 				 * (daddr == 0 || dmask != 0xffffffff).
1303 				 */
1304 				if (i != ACC_WILDCARD_INDEX)
1305 					i = ACC_WILDCARD_INDEX;
1306 				else
1307 					break;
1308 			} while (1);
1309 		}
1310 	}
1311 #ifdef INET6
1312 	else if (flow.fi_family == AF_INET6) {
1313 		struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
1314 
1315 		/* get the filter hash entry from its flow ID */
1316 		if (fp6->fi6_flowlabel != 0)
1317 			i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
1318 		else
1319 			/* flowlable can be zero */
1320 			i = ACC_WILDCARD_INDEX;
1321 
1322 		/* go through this loop twice.  first for flow hash, second
1323 		   for wildcards. */
1324 		do {
1325 			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1326 				if (apply_filter6(afp->f_fbmask,
1327 					(struct flow_filter6 *)&afp->f_filter,
1328 					fp6))
1329 					/* filter matched */
1330 					return (afp->f_class);
1331 
1332 			/*
1333 			 * check again for filters with a wildcard.
1334 			 */
1335 			if (i != ACC_WILDCARD_INDEX)
1336 				i = ACC_WILDCARD_INDEX;
1337 			else
1338 				break;
1339 		} while (1);
1340 	}
1341 #endif /* INET6 */
1342 
1343 	/* no filter matched */
1344 	return (NULL);
1345 }
1346 
1347 static int
apply_filter4(u_int32_t fbmask,struct flow_filter * filt,struct flowinfo_in * pkt)1348 apply_filter4(u_int32_t fbmask, struct flow_filter *filt,
1349     struct flowinfo_in *pkt)
1350 {
1351 	if (filt->ff_flow.fi_family != AF_INET)
1352 		return (0);
1353 	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1354 		return (0);
1355 	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1356 		return (0);
1357 	if ((fbmask & FIMB4_DADDR) &&
1358 	    filt->ff_flow.fi_dst.s_addr !=
1359 	    (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1360 		return (0);
1361 	if ((fbmask & FIMB4_SADDR) &&
1362 	    filt->ff_flow.fi_src.s_addr !=
1363 	    (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1364 		return (0);
1365 	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1366 		return (0);
1367 	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1368 	    (pkt->fi_tos & filt->ff_mask.mask_tos))
1369 		return (0);
1370 	if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1371 		return (0);
1372 	/* match */
1373 	return (1);
1374 }
1375 
1376 /*
1377  * filter matching function optimized for a common case that checks
1378  * only protocol and port numbers
1379  */
1380 static int
apply_ppfilter4(u_int32_t fbmask,struct flow_filter * filt,struct flowinfo_in * pkt)1381 apply_ppfilter4(u_int32_t fbmask, struct flow_filter *filt,
1382     struct flowinfo_in *pkt)
1383 {
1384 	if (filt->ff_flow.fi_family != AF_INET)
1385 		return (0);
1386 	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1387 		return (0);
1388 	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1389 		return (0);
1390 	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1391 		return (0);
1392 	/* match */
1393 	return (1);
1394 }
1395 
1396 /*
1397  * filter matching function only for tos field.
1398  */
1399 static int
apply_tosfilter4(u_int32_t fbmask,struct flow_filter * filt,struct flowinfo_in * pkt)1400 apply_tosfilter4(u_int32_t fbmask, struct flow_filter *filt,
1401     struct flowinfo_in *pkt)
1402 {
1403 	if (filt->ff_flow.fi_family != AF_INET)
1404 		return (0);
1405 	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1406 	    (pkt->fi_tos & filt->ff_mask.mask_tos))
1407 		return (0);
1408 	/* match */
1409 	return (1);
1410 }
1411 
1412 #ifdef INET6
1413 static int
apply_filter6(u_int32_t fbmask,struct flow_filter6 * filt,struct flowinfo_in6 * pkt)1414 apply_filter6(u_int32_t fbmask, struct flow_filter6 *filt,
1415     struct flowinfo_in6 *pkt)
1416 {
1417 	int i;
1418 
1419 	if (filt->ff_flow6.fi6_family != AF_INET6)
1420 		return (0);
1421 	if ((fbmask & FIMB6_FLABEL) &&
1422 	    filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1423 		return (0);
1424 	if ((fbmask & FIMB6_PROTO) &&
1425 	    filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1426 		return (0);
1427 	if ((fbmask & FIMB6_SPORT) &&
1428 	    filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1429 		return (0);
1430 	if ((fbmask & FIMB6_DPORT) &&
1431 	    filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1432 		return (0);
1433 	if (fbmask & FIMB6_SADDR) {
1434 		for (i = 0; i < 4; i++)
1435 			if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1436 			    (pkt->fi6_src.s6_addr32[i] &
1437 			     filt->ff_mask6.mask6_src.s6_addr32[i]))
1438 				return (0);
1439 	}
1440 	if (fbmask & FIMB6_DADDR) {
1441 		for (i = 0; i < 4; i++)
1442 			if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1443 			    (pkt->fi6_dst.s6_addr32[i] &
1444 			     filt->ff_mask6.mask6_dst.s6_addr32[i]))
1445 				return (0);
1446 	}
1447 	if ((fbmask & FIMB6_TCLASS) &&
1448 	    filt->ff_flow6.fi6_tclass !=
1449 	    (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1450 		return (0);
1451 	if ((fbmask & FIMB6_GPI) &&
1452 	    filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1453 		return (0);
1454 	/* match */
1455 	return (1);
1456 }
1457 #endif /* INET6 */
1458 
1459 /*
1460  *  filter handle:
1461  *	bit 20-28: index to the filter hash table
1462  *	bit  0-19: unique id in the hash bucket.
1463  */
1464 static u_long
get_filt_handle(struct acc_classifier * classifier,int i)1465 get_filt_handle(struct acc_classifier *classifier, int i)
1466 {
1467 	static u_long handle_number = 1;
1468 	u_long 	handle;
1469 	struct acc_filter *afp;
1470 
1471 	while (1) {
1472 		handle = handle_number++ & 0x000fffff;
1473 
1474 		if (LIST_EMPTY(&classifier->acc_filters[i]))
1475 			break;
1476 
1477 		LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1478 			if ((afp->f_handle & 0x000fffff) == handle)
1479 				break;
1480 		if (afp == NULL)
1481 			break;
1482 		/* this handle is already used, try again */
1483 	}
1484 
1485 	return ((i << 20) | handle);
1486 }
1487 
1488 /* convert filter handle to filter pointer */
1489 static struct acc_filter *
filth_to_filtp(struct acc_classifier * classifier,u_long handle)1490 filth_to_filtp(struct acc_classifier *classifier, u_long handle)
1491 {
1492 	struct acc_filter *afp;
1493 	int	i;
1494 
1495 	i = ACC_GET_HINDEX(handle);
1496 
1497 	LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1498 		if (afp->f_handle == handle)
1499 			return (afp);
1500 
1501 	return (NULL);
1502 }
1503 
1504 /* create flowinfo bitmask */
1505 static u_int32_t
filt2fibmask(struct flow_filter * filt)1506 filt2fibmask(struct flow_filter *filt)
1507 {
1508 	u_int32_t mask = 0;
1509 #ifdef INET6
1510 	struct flow_filter6 *filt6;
1511 #endif
1512 
1513 	switch (filt->ff_flow.fi_family) {
1514 	case AF_INET:
1515 		if (filt->ff_flow.fi_proto != 0)
1516 			mask |= FIMB4_PROTO;
1517 		if (filt->ff_flow.fi_tos != 0)
1518 			mask |= FIMB4_TOS;
1519 		if (filt->ff_flow.fi_dst.s_addr != 0)
1520 			mask |= FIMB4_DADDR;
1521 		if (filt->ff_flow.fi_src.s_addr != 0)
1522 			mask |= FIMB4_SADDR;
1523 		if (filt->ff_flow.fi_sport != 0)
1524 			mask |= FIMB4_SPORT;
1525 		if (filt->ff_flow.fi_dport != 0)
1526 			mask |= FIMB4_DPORT;
1527 		if (filt->ff_flow.fi_gpi != 0)
1528 			mask |= FIMB4_GPI;
1529 		break;
1530 #ifdef INET6
1531 	case AF_INET6:
1532 		filt6 = (struct flow_filter6 *)filt;
1533 
1534 		if (filt6->ff_flow6.fi6_proto != 0)
1535 			mask |= FIMB6_PROTO;
1536 		if (filt6->ff_flow6.fi6_tclass != 0)
1537 			mask |= FIMB6_TCLASS;
1538 		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1539 			mask |= FIMB6_DADDR;
1540 		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1541 			mask |= FIMB6_SADDR;
1542 		if (filt6->ff_flow6.fi6_sport != 0)
1543 			mask |= FIMB6_SPORT;
1544 		if (filt6->ff_flow6.fi6_dport != 0)
1545 			mask |= FIMB6_DPORT;
1546 		if (filt6->ff_flow6.fi6_gpi != 0)
1547 			mask |= FIMB6_GPI;
1548 		if (filt6->ff_flow6.fi6_flowlabel != 0)
1549 			mask |= FIMB6_FLABEL;
1550 		break;
1551 #endif /* INET6 */
1552 	}
1553 	return (mask);
1554 }
1555 
1556 
1557 /*
1558  * helper functions to handle IPv4 fragments.
1559  * currently only in-sequence fragments are handled.
1560  *	- fragment info is cached in a LRU list.
1561  *	- when a first fragment is found, cache its flow info.
1562  *	- when a non-first fragment is found, lookup the cache.
1563  */
1564 
1565 struct ip4_frag {
1566     TAILQ_ENTRY(ip4_frag) ip4f_chain;
1567     char    ip4f_valid;
1568     u_short ip4f_id;
1569     struct flowinfo_in ip4f_info;
1570 };
1571 
1572 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1573 
1574 #define	IP4F_TABSIZE		16	/* IPv4 fragment cache size */
1575 
1576 
1577 static void
ip4f_cache(struct ip * ip,struct flowinfo_in * fin)1578 ip4f_cache(struct ip *ip, struct flowinfo_in *fin)
1579 {
1580 	struct ip4_frag *fp;
1581 
1582 	if (TAILQ_EMPTY(&ip4f_list)) {
1583 		/* first time call, allocate fragment cache entries. */
1584 		if (ip4f_init() < 0)
1585 			/* allocation failed! */
1586 			return;
1587 	}
1588 
1589 	fp = ip4f_alloc();
1590 	fp->ip4f_id = ip->ip_id;
1591 	fp->ip4f_info.fi_proto = ip->ip_p;
1592 	fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1593 	fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1594 
1595 	/* save port numbers */
1596 	fp->ip4f_info.fi_sport = fin->fi_sport;
1597 	fp->ip4f_info.fi_dport = fin->fi_dport;
1598 	fp->ip4f_info.fi_gpi   = fin->fi_gpi;
1599 }
1600 
1601 static int
ip4f_lookup(struct ip * ip,struct flowinfo_in * fin)1602 ip4f_lookup(struct ip *ip, struct flowinfo_in *fin)
1603 {
1604 	struct ip4_frag *fp;
1605 
1606 	for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1607 	     fp = TAILQ_NEXT(fp, ip4f_chain))
1608 		if (ip->ip_id == fp->ip4f_id &&
1609 		    ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1610 		    ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1611 		    ip->ip_p == fp->ip4f_info.fi_proto) {
1612 
1613 			/* found the matching entry */
1614 			fin->fi_sport = fp->ip4f_info.fi_sport;
1615 			fin->fi_dport = fp->ip4f_info.fi_dport;
1616 			fin->fi_gpi   = fp->ip4f_info.fi_gpi;
1617 
1618 			if ((ntohs(ip->ip_off) & IP_MF) == 0)
1619 				/* this is the last fragment,
1620 				   release the entry. */
1621 				ip4f_free(fp);
1622 
1623 			return (1);
1624 		}
1625 
1626 	/* no matching entry found */
1627 	return (0);
1628 }
1629 
1630 static int
ip4f_init(void)1631 ip4f_init(void)
1632 {
1633 	struct ip4_frag *fp;
1634 	int i;
1635 
1636 	TAILQ_INIT(&ip4f_list);
1637 	for (i=0; i<IP4F_TABSIZE; i++) {
1638 		fp = malloc(sizeof(struct ip4_frag), M_DEVBUF, M_NOWAIT);
1639 		if (fp == NULL) {
1640 			printf("ip4f_init: can't alloc %dth entry!\n", i);
1641 			if (i == 0)
1642 				return (-1);
1643 			return (0);
1644 		}
1645 		fp->ip4f_valid = 0;
1646 		TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1647 	}
1648 	return (0);
1649 }
1650 
1651 static struct ip4_frag *
ip4f_alloc(void)1652 ip4f_alloc(void)
1653 {
1654 	struct ip4_frag *fp;
1655 
1656 	/* reclaim an entry at the tail, put it at the head */
1657 	fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1658 	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1659 	fp->ip4f_valid = 1;
1660 	TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1661 	return (fp);
1662 }
1663 
1664 static void
ip4f_free(struct ip4_frag * fp)1665 ip4f_free(struct ip4_frag *fp)
1666 {
1667 	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1668 	fp->ip4f_valid = 0;
1669 	TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1670 }
1671 
1672 #endif /* ALTQ3_CLFIER_COMPAT */
1673