1 /*	$NetBSD: pmap.h,v 1.92 2013/10/19 19:40:23 mrg Exp $ */
2 
3 /*
4  * Copyright (c) 1996
5  * 	The President and Fellows of Harvard College. All rights reserved.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by Aaron Brown and
16  *	Harvard University.
17  *	This product includes software developed by the University of
18  *	California, Lawrence Berkeley Laboratory.
19  *
20  * @InsertRedistribution@
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Aaron Brown and
24  *	Harvard University.
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	@(#)pmap.h	8.1 (Berkeley) 6/11/93
44  */
45 
46 #ifndef	_SPARC_PMAP_H_
47 #define _SPARC_PMAP_H_
48 
49 #if defined(_KERNEL_OPT)
50 #include "opt_sparc_arch.h"
51 #endif
52 
53 #include <sparc/pte.h>
54 
55 /*
56  * Pmap structure.
57  *
58  * The pmap structure really comes in two variants, one---a single
59  * instance---for kernel virtual memory and the other---up to nproc
60  * instances---for user virtual memory.  Unfortunately, we have to mash
61  * both into the same structure.  Fortunately, they are almost the same.
62  *
63  * The kernel begins at 0xf8000000 and runs to 0xffffffff (although
64  * some of this is not actually used).  Kernel space, including DVMA
65  * space (for now?), is mapped identically into all user contexts.
66  * There is no point in duplicating this mapping in each user process
67  * so they do not appear in the user structures.
68  *
69  * User space begins at 0x00000000 and runs through 0x1fffffff,
70  * then has a `hole', then resumes at 0xe0000000 and runs until it
71  * hits the kernel space at 0xf8000000.  This can be mapped
72  * contiguously by ignorning the top two bits and pretending the
73  * space goes from 0 to 37ffffff.  Typically the lower range is
74  * used for text+data and the upper for stack, but the code here
75  * makes no such distinction.
76  *
77  * Since each virtual segment covers 256 kbytes, the user space
78  * requires 3584 segments, while the kernel (including DVMA) requires
79  * only 512 segments.
80  *
81  *
82  ** FOR THE SUN4/SUN4C
83  *
84  * The segment map entry for virtual segment vseg is offset in
85  * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by
86  * NUSEG if it is.  We keep a pointer called pmap->pm_segmap
87  * pre-offset by this value.  pmap->pm_segmap thus contains the
88  * values to be loaded into the user portion of the hardware segment
89  * map so as to reach the proper PMEGs within the MMU.  The kernel
90  * mappings are `set early' and are always valid in every context
91  * (every change is always propagated immediately).
92  *
93  * The PMEGs within the MMU are loaded `on demand'; when a PMEG is
94  * taken away from context `c', the pmap for context c has its
95  * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment
96  * map entry is also made invalid at the same time).  Thus
97  * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever
98  * the corresponding PTEs are not actually in the MMU.  On the other
99  * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment
100  * are in core; otherwise it points to a copy of the 32 or 64 PTEs that
101  * must be loaded in the MMU in order to reach those pages.
102  * pm_npte[vseg] counts the number of valid pages in each vseg.
103  *
104  * XXX performance: faster to count valid bits?
105  *
106  * The kernel pmap cannot malloc() PTEs since malloc() will sometimes
107  * allocate a new virtual segment.  Since kernel mappings are never
108  * `stolen' out of the MMU, we just keep all its PTEs there, and have
109  * no software copies.  Its mmu entries are nonetheless kept on lists
110  * so that the code that fiddles with mmu lists has something to fiddle.
111  *
112  ** FOR THE SUN4M/SUN4D
113  *
114  * On this architecture, the virtual-to-physical translation (page) tables
115  * are *not* stored within the MMU as they are in the earlier Sun architect-
116  * ures; instead, they are maintained entirely within physical memory (there
117  * is a TLB cache to prevent the high performance hit from keeping all page
118  * tables in core). Thus there is no need to dynamically allocate PMEGs or
119  * SMEGs; only contexts must be shared.
120  *
121  * We maintain two parallel sets of tables: one is the actual MMU-edible
122  * hierarchy of page tables in allocated kernel memory; these tables refer
123  * to each other by physical address pointers in SRMMU format (thus they
124  * are not very useful to the kernel's management routines). The other set
125  * of tables is similar to those used for the Sun4/100's 3-level MMU; it
126  * is a hierarchy of regmap and segmap structures which contain kernel virtual
127  * pointers to each other. These must (unfortunately) be kept in sync.
128  *
129  */
130 #define NKREG	((int)((-(unsigned)KERNBASE) / NBPRG))	/* i.e., 8 */
131 #define NUREG	(256 - NKREG)				/* i.e., 248 */
132 
133 TAILQ_HEAD(mmuhd,mmuentry);
134 
135 /*
136  * data appearing in both user and kernel pmaps
137  *
138  * note: if we want the same binaries to work on the 4/4c and 4m, we have to
139  *       include the fields for both to make sure that the struct kproc
140  * 	 is the same size.
141  */
142 struct pmap {
143 	union	ctxinfo *pm_ctx;	/* current context, if any */
144 	int	pm_ctxnum;		/* current context's number */
145 	u_int	pm_cpuset;		/* CPU's this pmap has context on */
146 	int	pm_refcount;		/* just what it says */
147 
148 	struct mmuhd	pm_reglist;	/* MMU regions on this pmap (4/4c) */
149 	struct mmuhd	pm_seglist;	/* MMU segments on this pmap (4/4c) */
150 
151 	struct regmap	*pm_regmap;
152 
153 	int		**pm_reg_ptps;	/* SRMMU-edible region tables for 4m */
154 	int		*pm_reg_ptps_pa;/* _Physical_ address of pm_reg_ptps */
155 
156 	int		pm_gap_start;	/* Starting with this vreg there's */
157 	int		pm_gap_end;	/* no valid mapping until here */
158 
159 	struct pmap_statistics	pm_stats;	/* pmap statistics */
160 	u_int		pm_flags;
161 #define PMAP_USERCACHECLEAN	1
162 };
163 
164 struct regmap {
165 	struct segmap	*rg_segmap;	/* point to NSGPRG PMEGs */
166 	int		*rg_seg_ptps; 	/* SRMMU-edible segment tables (NULL
167 					 * indicates invalid region (4m) */
168 	smeg_t		rg_smeg;	/* the MMU region number (4c) */
169 	u_char		rg_nsegmap;	/* number of valid PMEGS */
170 };
171 
172 struct segmap {
173 	uint64_t sg_wiremap;		/* per-page wire bits (4m) */
174 	int	*sg_pte;		/* points to NPTESG PTEs */
175 	pmeg_t	sg_pmeg;		/* the MMU segment number (4c) */
176 	u_char	sg_npte;		/* number of valid PTEs in sg_pte
177 					 * (not used for 4m/4d kernel_map) */
178 	int8_t	sg_nwired;		/* number of wired pages */
179 };
180 
181 #if 0
182 struct kvm_cpustate {
183 	int		kvm_npmemarr;
184 	struct memarr	kvm_pmemarr[MA_SIZE];
185 	int		kvm_seginval;			/* [4,4c] */
186 	struct segmap	kvm_segmap_store[NKREG*NSEGRG];	/* [4,4c] */
187 }/*not yet used*/;
188 #endif
189 
190 #ifdef _KERNEL
191 
192 #define PMAP_NULL	((pmap_t)0)
193 
194 /*
195  * Bounds on managed physical addresses. Used by (MD) users
196  * of uvm_pglistalloc() to provide search hints.
197  */
198 extern paddr_t		vm_first_phys, vm_last_phys;
199 extern psize_t		vm_num_phys;
200 
201 /*
202  * Since PTEs also contain type bits, we have to have some way
203  * to tell pmap_enter `this is an IO page' or `this is not to
204  * be cached'.  Since physical addresses are always aligned, we
205  * can do this with the low order bits.
206  *
207  * The ordering below is important: PMAP_PGTYPE << PG_TNC must give
208  * exactly the PG_NC and PG_TYPE bits.
209  */
210 #define	PMAP_OBIO	1		/* tells pmap_enter to use PG_OBIO */
211 #define	PMAP_VME16	2		/* etc */
212 #define	PMAP_VME32	3		/* etc */
213 #define	PMAP_NC		4		/* tells pmap_enter to set PG_NC */
214 #define	PMAP_TNC_4	7		/* mask to get PG_TYPE & PG_NC */
215 
216 #define	PMAP_T2PTE_4(x)		(((x) & PMAP_TNC_4) << PG_TNC_SHIFT)
217 #define	PMAP_IOENC_4(io)	(io)
218 
219 /*
220  * On a SRMMU machine, the iospace is encoded in bits [3-6] of the
221  * physical address passed to pmap_enter().
222  */
223 #define PMAP_TYPE_SRMMU		0x78	/* mask to get 4m page type */
224 #define PMAP_PTESHFT_SRMMU	25	/* right shift to put type in pte */
225 #define PMAP_SHFT_SRMMU		3	/* left shift to extract iospace */
226 #define	PMAP_TNC_SRMMU		127	/* mask to get PG_TYPE & PG_NC */
227 
228 /*#define PMAP_IOC      0x00800000      -* IO cacheable, NOT shifted */
229 
230 #define PMAP_T2PTE_SRMMU(x)	(((x) & PMAP_TYPE_SRMMU) << PMAP_PTESHFT_SRMMU)
231 #define PMAP_IOENC_SRMMU(io)	((io) << PMAP_SHFT_SRMMU)
232 
233 /* Encode IO space for pmap_enter() */
234 #define PMAP_IOENC(io)	(CPU_HAS_SRMMU ? PMAP_IOENC_SRMMU(io) \
235 				       : PMAP_IOENC_4(io))
236 
237 int	pmap_dumpsize(void);
238 int	pmap_dumpmmu(int (*)(dev_t, daddr_t, void *, size_t), daddr_t);
239 
240 #define	pmap_resident_count(pm)	((pm)->pm_stats.resident_count)
241 #define	pmap_wired_count(pm)	((pm)->pm_stats.wired_count)
242 
243 #define PMAP_PREFER(fo, ap, sz, td)	pmap_prefer((fo), (ap), (sz), (td))
244 
245 #define PMAP_EXCLUDE_DECLS	/* tells MI pmap.h *not* to include decls */
246 
247 /* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */
248 
249 void		pmap_activate(struct lwp *);
250 void		pmap_deactivate(struct lwp *);
251 void		pmap_bootstrap(int nmmu, int nctx, int nregion);
252 void		pmap_prefer(vaddr_t, vaddr_t *, size_t, int);
253 int		pmap_pa_exists(paddr_t);
254 void		pmap_unwire(pmap_t, vaddr_t);
255 void		pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
256 pmap_t		pmap_create(void);
257 void		pmap_destroy(pmap_t);
258 void		pmap_init(void);
259 vaddr_t		pmap_map(vaddr_t, paddr_t, paddr_t, int);
260 #define		pmap_phys_address(x) (x)
261 void		pmap_reference(pmap_t);
262 void		pmap_remove(pmap_t, vaddr_t, vaddr_t);
263 #define		pmap_update(pmap)		__USE(pmap)
264 void		pmap_virtual_space(vaddr_t *, vaddr_t *);
265 #ifdef PMAP_GROWKERNEL
266 vaddr_t		pmap_growkernel(vaddr_t);
267 #endif
268 void		pmap_redzone(void);
269 void		kvm_uncache(char *, int);
270 int		mmu_pagein(struct pmap *pm, vaddr_t, int);
271 void		pmap_writetext(unsigned char *, int);
272 void		pmap_globalize_boot_cpuinfo(struct cpu_info *);
273 void		pmap_remove_all(struct pmap *pm);
274 #define 	pmap_mmap_flags(x)	0	/* dummy so far */
275 
276 /* SUN4/SUN4C SPECIFIC DECLARATIONS */
277 
278 #if defined(SUN4) || defined(SUN4C)
279 bool		pmap_clear_modify4_4c(struct vm_page *);
280 bool		pmap_clear_reference4_4c(struct vm_page *);
281 void		pmap_copy_page4_4c(paddr_t, paddr_t);
282 int		pmap_enter4_4c(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
283 bool		pmap_extract4_4c(pmap_t, vaddr_t, paddr_t *);
284 bool		pmap_is_modified4_4c(struct vm_page *);
285 bool		pmap_is_referenced4_4c(struct vm_page *);
286 void		pmap_kenter_pa4_4c(vaddr_t, paddr_t, vm_prot_t, u_int);
287 void		pmap_kremove4_4c(vaddr_t, vsize_t);
288 void		pmap_kprotect4_4c(vaddr_t, vsize_t, vm_prot_t);
289 void		pmap_page_protect4_4c(struct vm_page *, vm_prot_t);
290 void		pmap_protect4_4c(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
291 void		pmap_zero_page4_4c(paddr_t);
292 #endif /* defined SUN4 || defined SUN4C */
293 
294 /* SIMILAR DECLARATIONS FOR SUN4M/SUN4D MODULE */
295 
296 #if defined(SUN4M) || defined(SUN4D)
297 bool		pmap_clear_modify4m(struct vm_page *);
298 bool		pmap_clear_reference4m(struct vm_page *);
299 void		pmap_copy_page4m(paddr_t, paddr_t);
300 void		pmap_copy_page_viking_mxcc(paddr_t, paddr_t);
301 void		pmap_copy_page_hypersparc(paddr_t, paddr_t);
302 int		pmap_enter4m(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
303 bool		pmap_extract4m(pmap_t, vaddr_t, paddr_t *);
304 bool		pmap_is_modified4m(struct vm_page *);
305 bool		pmap_is_referenced4m(struct vm_page *);
306 void		pmap_kenter_pa4m(vaddr_t, paddr_t, vm_prot_t, u_int);
307 void		pmap_kremove4m(vaddr_t, vsize_t);
308 void		pmap_kprotect4m(vaddr_t, vsize_t, vm_prot_t);
309 void		pmap_page_protect4m(struct vm_page *, vm_prot_t);
310 void		pmap_protect4m(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
311 void		pmap_zero_page4m(paddr_t);
312 void		pmap_zero_page_viking_mxcc(paddr_t);
313 void		pmap_zero_page_hypersparc(paddr_t);
314 #endif /* defined SUN4M || defined SUN4D */
315 
316 #if !(defined(SUN4M) || defined(SUN4D)) && (defined(SUN4) || defined(SUN4C))
317 
318 #define		pmap_clear_modify	pmap_clear_modify4_4c
319 #define		pmap_clear_reference	pmap_clear_reference4_4c
320 #define		pmap_enter		pmap_enter4_4c
321 #define		pmap_extract		pmap_extract4_4c
322 #define		pmap_is_modified	pmap_is_modified4_4c
323 #define		pmap_is_referenced	pmap_is_referenced4_4c
324 #define		pmap_kenter_pa		pmap_kenter_pa4_4c
325 #define		pmap_kremove		pmap_kremove4_4c
326 #define		pmap_kprotect		pmap_kprotect4_4c
327 #define		pmap_page_protect	pmap_page_protect4_4c
328 #define		pmap_protect		pmap_protect4_4c
329 
330 #elif (defined(SUN4M) || defined(SUN4D)) && !(defined(SUN4) || defined(SUN4C))
331 
332 #define		pmap_clear_modify	pmap_clear_modify4m
333 #define		pmap_clear_reference	pmap_clear_reference4m
334 #define		pmap_enter		pmap_enter4m
335 #define		pmap_extract		pmap_extract4m
336 #define		pmap_is_modified	pmap_is_modified4m
337 #define		pmap_is_referenced	pmap_is_referenced4m
338 #define		pmap_kenter_pa		pmap_kenter_pa4m
339 #define		pmap_kremove		pmap_kremove4m
340 #define		pmap_kprotect		pmap_kprotect4m
341 #define		pmap_page_protect	pmap_page_protect4m
342 #define		pmap_protect		pmap_protect4m
343 
344 #else  /* must use function pointers */
345 
346 extern bool	(*pmap_clear_modify_p)(struct vm_page *);
347 extern bool	(*pmap_clear_reference_p)(struct vm_page *);
348 extern int	(*pmap_enter_p)(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
349 extern bool	 (*pmap_extract_p)(pmap_t, vaddr_t, paddr_t *);
350 extern bool	(*pmap_is_modified_p)(struct vm_page *);
351 extern bool	(*pmap_is_referenced_p)(struct vm_page *);
352 extern void	(*pmap_kenter_pa_p)(vaddr_t, paddr_t, vm_prot_t, u_int);
353 extern void	(*pmap_kremove_p)(vaddr_t, vsize_t);
354 extern void	(*pmap_kprotect_p)(vaddr_t, vsize_t, vm_prot_t);
355 extern void	(*pmap_page_protect_p)(struct vm_page *, vm_prot_t);
356 extern void	(*pmap_protect_p)(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
357 
358 #define		pmap_clear_modify	(*pmap_clear_modify_p)
359 #define		pmap_clear_reference	(*pmap_clear_reference_p)
360 #define		pmap_enter		(*pmap_enter_p)
361 #define		pmap_extract		(*pmap_extract_p)
362 #define		pmap_is_modified	(*pmap_is_modified_p)
363 #define		pmap_is_referenced	(*pmap_is_referenced_p)
364 #define		pmap_kenter_pa		(*pmap_kenter_pa_p)
365 #define		pmap_kremove		(*pmap_kremove_p)
366 #define		pmap_kprotect		(*pmap_kprotect_p)
367 #define		pmap_page_protect	(*pmap_page_protect_p)
368 #define		pmap_protect		(*pmap_protect_p)
369 
370 #endif
371 
372 /* pmap_{zero,copy}_page() may be assisted by specialized hardware */
373 #define		pmap_zero_page		(*cpuinfo.zero_page)
374 #define		pmap_copy_page		(*cpuinfo.copy_page)
375 
376 #if defined(SUN4M) || defined(SUN4D)
377 /*
378  * Macros which implement SRMMU TLB flushing/invalidation
379  */
380 #define tlb_flush_page_real(va)    \
381 	sta(((vaddr_t)(va) & 0xfffff000) | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0)
382 
383 #define tlb_flush_segment_real(va) \
384 	sta(((vaddr_t)(va) & 0xfffc0000) | ASI_SRMMUFP_L2, ASI_SRMMUFP, 0)
385 
386 #define tlb_flush_region_real(va) \
387 	sta(((vaddr_t)(va) & 0xff000000) | ASI_SRMMUFP_L1, ASI_SRMMUFP, 0)
388 
389 #define tlb_flush_context_real()	sta(ASI_SRMMUFP_L0, ASI_SRMMUFP, 0)
390 #define tlb_flush_all_real()		sta(ASI_SRMMUFP_LN, ASI_SRMMUFP, 0)
391 
392 #endif /* SUN4M || SUN4D */
393 
394 #define __HAVE_VM_PAGE_MD
395 
396 /*
397  * For each managed physical page, there is a list of all currently
398  * valid virtual mappings of that page.  Since there is usually one
399  * (or zero) mapping per page, the table begins with an initial entry,
400  * rather than a pointer; this head entry is empty iff its pv_pmap
401  * field is NULL.
402  */
403 struct vm_page_md {
404 	struct pvlist {
405 		struct	pvlist *pv_next;	/* next pvlist, if any */
406 		struct	pmap *pv_pmap;		/* pmap of this va */
407 		vaddr_t	pv_va;			/* virtual address */
408 		int	pv_flags;		/* flags (below) */
409 	} pvlisthead;
410 };
411 #define VM_MDPAGE_PVHEAD(pg)	(&(pg)->mdpage.pvlisthead)
412 
413 #define VM_MDPAGE_INIT(pg) do {				\
414 	(pg)->mdpage.pvlisthead.pv_next = NULL;		\
415 	(pg)->mdpage.pvlisthead.pv_pmap = NULL;		\
416 	(pg)->mdpage.pvlisthead.pv_va = 0;		\
417 	(pg)->mdpage.pvlisthead.pv_flags = 0;		\
418 } while(/*CONSTCOND*/0)
419 
420 #endif /* _KERNEL */
421 
422 #endif /* _SPARC_PMAP_H_ */
423