1 /*	$NetBSD: uipc_usrreq.c,v 1.180 2016/04/06 19:45:45 roy Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
62  */
63 
64 /*
65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  * 3. All advertising materials mentioning features or use of this software
76  *    must display the following acknowledgement:
77  *	This product includes software developed by the University of
78  *	California, Berkeley and its contributors.
79  * 4. Neither the name of the University nor the names of its contributors
80  *    may be used to endorse or promote products derived from this software
81  *    without specific prior written permission.
82  *
83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93  * SUCH DAMAGE.
94  *
95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
96  */
97 
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.180 2016/04/06 19:45:45 roy Exp $");
100 
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122 
123 #ifdef COMPAT_70
124 #include <compat/sys/socket.h>
125 #endif
126 
127 /*
128  * Unix communications domain.
129  *
130  * TODO:
131  *	RDM
132  *	rethink name space problems
133  *	need a proper out-of-band
134  *
135  * Notes on locking:
136  *
137  * The generic rules noted in uipc_socket2.c apply.  In addition:
138  *
139  * o We have a global lock, uipc_lock.
140  *
141  * o All datagram sockets are locked by uipc_lock.
142  *
143  * o For stream socketpairs, the two endpoints are created sharing the same
144  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
145  *   matching locks.
146  *
147  * o Stream sockets created via socket() start life with their own
148  *   independent lock.
149  *
150  * o Stream connections to a named endpoint are slightly more complicated.
151  *   Sockets that have called listen() have their lock pointer mutated to
152  *   the global uipc_lock.  When establishing a connection, the connecting
153  *   socket also has its lock mutated to uipc_lock, which matches the head
154  *   (listening socket).  We create a new socket for accept() to return, and
155  *   that also shares the head's lock.  Until the connection is completely
156  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
157  *   connection is complete, the association with the head's lock is broken.
158  *   The connecting socket and the socket returned from accept() have their
159  *   lock pointers mutated away from uipc_lock, and back to the connecting
160  *   socket's original, independent lock.  The head continues to be locked
161  *   by uipc_lock.
162  *
163  * o If uipc_lock is determined to be a significant source of contention,
164  *   it could easily be hashed out.  It is difficult to simply make it an
165  *   independent lock because of visibility / garbage collection issues:
166  *   if a socket has been associated with a lock at any point, that lock
167  *   must remain valid until the socket is no longer visible in the system.
168  *   The lock must not be freed or otherwise destroyed until any sockets
169  *   that had referenced it have also been destroyed.
170  */
171 const struct sockaddr_un sun_noname = {
172 	.sun_len = offsetof(struct sockaddr_un, sun_path),
173 	.sun_family = AF_LOCAL,
174 };
175 ino_t	unp_ino;			/* prototype for fake inode numbers */
176 
177 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
178 static void   unp_discard_later(file_t *);
179 static void   unp_discard_now(file_t *);
180 static void   unp_disconnect1(struct unpcb *);
181 static bool   unp_drop(struct unpcb *, int);
182 static int    unp_internalize(struct mbuf **);
183 static void   unp_mark(file_t *);
184 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
185 static void   unp_shutdown1(struct unpcb *);
186 static void   unp_thread(void *);
187 static void   unp_thread_kick(void);
188 
189 static kmutex_t *uipc_lock;
190 
191 static kcondvar_t unp_thread_cv;
192 static lwp_t *unp_thread_lwp;
193 static SLIST_HEAD(,file) unp_thread_discard;
194 static int unp_defer;
195 
196 /*
197  * Initialize Unix protocols.
198  */
199 void
uipc_init(void)200 uipc_init(void)
201 {
202 	int error;
203 
204 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
205 	cv_init(&unp_thread_cv, "unpgc");
206 
207 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
208 	    NULL, &unp_thread_lwp, "unpgc");
209 	if (error != 0)
210 		panic("uipc_init %d", error);
211 }
212 
213 /*
214  * A connection succeeded: disassociate both endpoints from the head's
215  * lock, and make them share their own lock.  There is a race here: for
216  * a very brief time one endpoint will be locked by a different lock
217  * than the other end.  However, since the current thread holds the old
218  * lock (the listening socket's lock, the head) access can still only be
219  * made to one side of the connection.
220  */
221 static void
unp_setpeerlocks(struct socket * so,struct socket * so2)222 unp_setpeerlocks(struct socket *so, struct socket *so2)
223 {
224 	struct unpcb *unp;
225 	kmutex_t *lock;
226 
227 	KASSERT(solocked2(so, so2));
228 
229 	/*
230 	 * Bail out if either end of the socket is not yet fully
231 	 * connected or accepted.  We only break the lock association
232 	 * with the head when the pair of sockets stand completely
233 	 * on their own.
234 	 */
235 	KASSERT(so->so_head == NULL);
236 	if (so2->so_head != NULL)
237 		return;
238 
239 	/*
240 	 * Drop references to old lock.  A third reference (from the
241 	 * queue head) must be held as we still hold its lock.  Bonus:
242 	 * we don't need to worry about garbage collecting the lock.
243 	 */
244 	lock = so->so_lock;
245 	KASSERT(lock == uipc_lock);
246 	mutex_obj_free(lock);
247 	mutex_obj_free(lock);
248 
249 	/*
250 	 * Grab stream lock from the initiator and share between the two
251 	 * endpoints.  Issue memory barrier to ensure all modifications
252 	 * become globally visible before the lock change.  so2 is
253 	 * assumed not to have a stream lock, because it was created
254 	 * purely for the server side to accept this connection and
255 	 * started out life using the domain-wide lock.
256 	 */
257 	unp = sotounpcb(so);
258 	KASSERT(unp->unp_streamlock != NULL);
259 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
260 	lock = unp->unp_streamlock;
261 	unp->unp_streamlock = NULL;
262 	mutex_obj_hold(lock);
263 	membar_exit();
264 	/*
265 	 * possible race if lock is not held - see comment in
266 	 * uipc_usrreq(PRU_ACCEPT).
267 	 */
268 	KASSERT(mutex_owned(lock));
269 	solockreset(so, lock);
270 	solockreset(so2, lock);
271 }
272 
273 /*
274  * Reset a socket's lock back to the domain-wide lock.
275  */
276 static void
unp_resetlock(struct socket * so)277 unp_resetlock(struct socket *so)
278 {
279 	kmutex_t *olock, *nlock;
280 	struct unpcb *unp;
281 
282 	KASSERT(solocked(so));
283 
284 	olock = so->so_lock;
285 	nlock = uipc_lock;
286 	if (olock == nlock)
287 		return;
288 	unp = sotounpcb(so);
289 	KASSERT(unp->unp_streamlock == NULL);
290 	unp->unp_streamlock = olock;
291 	mutex_obj_hold(nlock);
292 	mutex_enter(nlock);
293 	solockreset(so, nlock);
294 	mutex_exit(olock);
295 }
296 
297 static void
unp_free(struct unpcb * unp)298 unp_free(struct unpcb *unp)
299 {
300 	if (unp->unp_addr)
301 		free(unp->unp_addr, M_SONAME);
302 	if (unp->unp_streamlock != NULL)
303 		mutex_obj_free(unp->unp_streamlock);
304 	kmem_free(unp, sizeof(*unp));
305 }
306 
307 static int
unp_output(struct mbuf * m,struct mbuf * control,struct unpcb * unp)308 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
309 {
310 	struct socket *so2;
311 	const struct sockaddr_un *sun;
312 
313 	/* XXX: server side closed the socket */
314 	if (unp->unp_conn == NULL)
315 		return ECONNREFUSED;
316 	so2 = unp->unp_conn->unp_socket;
317 
318 	KASSERT(solocked(so2));
319 
320 	if (unp->unp_addr)
321 		sun = unp->unp_addr;
322 	else
323 		sun = &sun_noname;
324 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
325 		control = unp_addsockcred(curlwp, control);
326 #ifdef COMPAT_SOCKCRED70
327 	if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
328 		control = compat_70_unp_addsockcred(curlwp, control);
329 #endif
330 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
331 	    control) == 0) {
332 		so2->so_rcv.sb_overflowed++;
333 		unp_dispose(control);
334 		m_freem(control);
335 		m_freem(m);
336 		return (ENOBUFS);
337 	} else {
338 		sorwakeup(so2);
339 		return (0);
340 	}
341 }
342 
343 static void
unp_setaddr(struct socket * so,struct sockaddr * nam,bool peeraddr)344 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
345 {
346 	const struct sockaddr_un *sun = NULL;
347 	struct unpcb *unp;
348 
349 	KASSERT(solocked(so));
350 	unp = sotounpcb(so);
351 
352 	if (peeraddr) {
353 		if (unp->unp_conn && unp->unp_conn->unp_addr)
354 			sun = unp->unp_conn->unp_addr;
355 	} else {
356 		if (unp->unp_addr)
357 			sun = unp->unp_addr;
358 	}
359 	if (sun == NULL)
360 		sun = &sun_noname;
361 
362 	memcpy(nam, sun, sun->sun_len);
363 }
364 
365 static int
unp_rcvd(struct socket * so,int flags,struct lwp * l)366 unp_rcvd(struct socket *so, int flags, struct lwp *l)
367 {
368 	struct unpcb *unp = sotounpcb(so);
369 	struct socket *so2;
370 	u_int newhiwat;
371 
372 	KASSERT(solocked(so));
373 	KASSERT(unp != NULL);
374 
375 	switch (so->so_type) {
376 
377 	case SOCK_DGRAM:
378 		panic("uipc 1");
379 		/*NOTREACHED*/
380 
381 	case SOCK_SEQPACKET: /* FALLTHROUGH */
382 	case SOCK_STREAM:
383 #define	rcv (&so->so_rcv)
384 #define snd (&so2->so_snd)
385 		if (unp->unp_conn == 0)
386 			break;
387 		so2 = unp->unp_conn->unp_socket;
388 		KASSERT(solocked2(so, so2));
389 		/*
390 		 * Adjust backpressure on sender
391 		 * and wakeup any waiting to write.
392 		 */
393 		snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
394 		unp->unp_mbcnt = rcv->sb_mbcnt;
395 		newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
396 		(void)chgsbsize(so2->so_uidinfo,
397 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
398 		unp->unp_cc = rcv->sb_cc;
399 		sowwakeup(so2);
400 #undef snd
401 #undef rcv
402 		break;
403 
404 	default:
405 		panic("uipc 2");
406 	}
407 
408 	return 0;
409 }
410 
411 static int
unp_recvoob(struct socket * so,struct mbuf * m,int flags)412 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
413 {
414 	KASSERT(solocked(so));
415 
416 	return EOPNOTSUPP;
417 }
418 
419 static int
unp_send(struct socket * so,struct mbuf * m,struct sockaddr * nam,struct mbuf * control,struct lwp * l)420 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
421     struct mbuf *control, struct lwp *l)
422 {
423 	struct unpcb *unp = sotounpcb(so);
424 	int error = 0;
425 	u_int newhiwat;
426 	struct socket *so2;
427 
428 	KASSERT(solocked(so));
429 	KASSERT(unp != NULL);
430 	KASSERT(m != NULL);
431 
432 	/*
433 	 * Note: unp_internalize() rejects any control message
434 	 * other than SCM_RIGHTS, and only allows one.  This
435 	 * has the side-effect of preventing a caller from
436 	 * forging SCM_CREDS.
437 	 */
438 	if (control) {
439 		sounlock(so);
440 		error = unp_internalize(&control);
441 		solock(so);
442 		if (error != 0) {
443 			m_freem(control);
444 			m_freem(m);
445 			return error;
446 		}
447 	}
448 
449 	switch (so->so_type) {
450 
451 	case SOCK_DGRAM: {
452 		KASSERT(so->so_lock == uipc_lock);
453 		if (nam) {
454 			if ((so->so_state & SS_ISCONNECTED) != 0)
455 				error = EISCONN;
456 			else {
457 				/*
458 				 * Note: once connected, the
459 				 * socket's lock must not be
460 				 * dropped until we have sent
461 				 * the message and disconnected.
462 				 * This is necessary to prevent
463 				 * intervening control ops, like
464 				 * another connection.
465 				 */
466 				error = unp_connect(so, nam, l);
467 			}
468 		} else {
469 			if ((so->so_state & SS_ISCONNECTED) == 0)
470 				error = ENOTCONN;
471 		}
472 		if (error) {
473 			unp_dispose(control);
474 			m_freem(control);
475 			m_freem(m);
476 			return error;
477 		}
478 		error = unp_output(m, control, unp);
479 		if (nam)
480 			unp_disconnect1(unp);
481 		break;
482 	}
483 
484 	case SOCK_SEQPACKET: /* FALLTHROUGH */
485 	case SOCK_STREAM:
486 #define	rcv (&so2->so_rcv)
487 #define	snd (&so->so_snd)
488 		if (unp->unp_conn == NULL) {
489 			error = ENOTCONN;
490 			break;
491 		}
492 		so2 = unp->unp_conn->unp_socket;
493 		KASSERT(solocked2(so, so2));
494 		if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
495 			/*
496 			 * Credentials are passed only once on
497 			 * SOCK_STREAM and SOCK_SEQPACKET.
498 			 */
499 			unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
500 			control = unp_addsockcred(l, control);
501 		}
502 #ifdef COMPAT_SOCKCRED70
503 		if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
504 			/*
505 			 * Credentials are passed only once on
506 			 * SOCK_STREAM and SOCK_SEQPACKET.
507 			 */
508 			unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
509 			control = compat_70_unp_addsockcred(l, control);
510 		}
511 #endif
512 		/*
513 		 * Send to paired receive port, and then reduce
514 		 * send buffer hiwater marks to maintain backpressure.
515 		 * Wake up readers.
516 		 */
517 		if (control) {
518 			if (sbappendcontrol(rcv, m, control) != 0)
519 				control = NULL;
520 		} else {
521 			switch(so->so_type) {
522 			case SOCK_SEQPACKET:
523 				sbappendrecord(rcv, m);
524 				break;
525 			case SOCK_STREAM:
526 				sbappend(rcv, m);
527 				break;
528 			default:
529 				panic("uipc_usrreq");
530 				break;
531 			}
532 		}
533 		snd->sb_mbmax -=
534 		    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
535 		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
536 		newhiwat = snd->sb_hiwat -
537 		    (rcv->sb_cc - unp->unp_conn->unp_cc);
538 		(void)chgsbsize(so->so_uidinfo,
539 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
540 		unp->unp_conn->unp_cc = rcv->sb_cc;
541 		sorwakeup(so2);
542 #undef snd
543 #undef rcv
544 		if (control != NULL) {
545 			unp_dispose(control);
546 			m_freem(control);
547 		}
548 		break;
549 
550 	default:
551 		panic("uipc 4");
552 	}
553 
554 	return error;
555 }
556 
557 static int
unp_sendoob(struct socket * so,struct mbuf * m,struct mbuf * control)558 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
559 {
560 	KASSERT(solocked(so));
561 
562 	m_freem(m);
563 	m_freem(control);
564 
565 	return EOPNOTSUPP;
566 }
567 
568 /*
569  * Unix domain socket option processing.
570  */
571 int
uipc_ctloutput(int op,struct socket * so,struct sockopt * sopt)572 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
573 {
574 	struct unpcb *unp = sotounpcb(so);
575 	int optval = 0, error = 0;
576 
577 	KASSERT(solocked(so));
578 
579 	if (sopt->sopt_level != 0) {
580 		error = ENOPROTOOPT;
581 	} else switch (op) {
582 
583 	case PRCO_SETOPT:
584 		switch (sopt->sopt_name) {
585 		case LOCAL_CREDS:
586 		case LOCAL_CONNWAIT:
587 #ifdef COMPAT_SOCKCRED70
588 		case LOCAL_OCREDS:
589 #endif
590 			error = sockopt_getint(sopt, &optval);
591 			if (error)
592 				break;
593 			switch (sopt->sopt_name) {
594 #define	OPTSET(bit) \
595 	if (optval) \
596 		unp->unp_flags |= (bit); \
597 	else \
598 		unp->unp_flags &= ~(bit);
599 
600 			case LOCAL_CREDS:
601 				OPTSET(UNP_WANTCRED);
602 				break;
603 			case LOCAL_CONNWAIT:
604 				OPTSET(UNP_CONNWAIT);
605 				break;
606 #ifdef COMPAT_SOCKCRED70
607 			case LOCAL_OCREDS:
608 				OPTSET(UNP_OWANTCRED);
609 				break;
610 #endif
611 			}
612 			break;
613 #undef OPTSET
614 
615 		default:
616 			error = ENOPROTOOPT;
617 			break;
618 		}
619 		break;
620 
621 	case PRCO_GETOPT:
622 		sounlock(so);
623 		switch (sopt->sopt_name) {
624 		case LOCAL_PEEREID:
625 			if (unp->unp_flags & UNP_EIDSVALID) {
626 				error = sockopt_set(sopt,
627 				    &unp->unp_connid, sizeof(unp->unp_connid));
628 			} else {
629 				error = EINVAL;
630 			}
631 			break;
632 		case LOCAL_CREDS:
633 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
634 
635 			optval = OPTBIT(UNP_WANTCRED);
636 			error = sockopt_setint(sopt, optval);
637 			break;
638 #ifdef COMPAT_SOCKCRED70
639 		case LOCAL_OCREDS:
640 			optval = OPTBIT(UNP_OWANTCRED);
641 			error = sockopt_setint(sopt, optval);
642 			break;
643 #endif
644 #undef OPTBIT
645 
646 		default:
647 			error = ENOPROTOOPT;
648 			break;
649 		}
650 		solock(so);
651 		break;
652 	}
653 	return (error);
654 }
655 
656 /*
657  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
658  * for stream sockets, although the total for sender and receiver is
659  * actually only PIPSIZ.
660  * Datagram sockets really use the sendspace as the maximum datagram size,
661  * and don't really want to reserve the sendspace.  Their recvspace should
662  * be large enough for at least one max-size datagram plus address.
663  */
664 #define	PIPSIZ	4096
665 u_long	unpst_sendspace = PIPSIZ;
666 u_long	unpst_recvspace = PIPSIZ;
667 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
668 u_long	unpdg_recvspace = 4*1024;
669 
670 u_int	unp_rights;			/* files in flight */
671 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
672 
673 static int
unp_attach(struct socket * so,int proto)674 unp_attach(struct socket *so, int proto)
675 {
676 	struct unpcb *unp = sotounpcb(so);
677 	u_long sndspc, rcvspc;
678 	int error;
679 
680 	KASSERT(unp == NULL);
681 
682 	switch (so->so_type) {
683 	case SOCK_SEQPACKET:
684 		/* FALLTHROUGH */
685 	case SOCK_STREAM:
686 		if (so->so_lock == NULL) {
687 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
688 			solock(so);
689 		}
690 		sndspc = unpst_sendspace;
691 		rcvspc = unpst_recvspace;
692 		break;
693 
694 	case SOCK_DGRAM:
695 		if (so->so_lock == NULL) {
696 			mutex_obj_hold(uipc_lock);
697 			so->so_lock = uipc_lock;
698 			solock(so);
699 		}
700 		sndspc = unpdg_sendspace;
701 		rcvspc = unpdg_recvspace;
702 		break;
703 
704 	default:
705 		panic("unp_attach");
706 	}
707 
708 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
709 		error = soreserve(so, sndspc, rcvspc);
710 		if (error) {
711 			return error;
712 		}
713 	}
714 
715 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
716 	nanotime(&unp->unp_ctime);
717 	unp->unp_socket = so;
718 	so->so_pcb = unp;
719 
720 	KASSERT(solocked(so));
721 	return 0;
722 }
723 
724 static void
unp_detach(struct socket * so)725 unp_detach(struct socket *so)
726 {
727 	struct unpcb *unp;
728 	vnode_t *vp;
729 
730 	unp = sotounpcb(so);
731 	KASSERT(unp != NULL);
732 	KASSERT(solocked(so));
733  retry:
734 	if ((vp = unp->unp_vnode) != NULL) {
735 		sounlock(so);
736 		/* Acquire v_interlock to protect against unp_connect(). */
737 		/* XXXAD racy */
738 		mutex_enter(vp->v_interlock);
739 		vp->v_socket = NULL;
740 		mutex_exit(vp->v_interlock);
741 		vrele(vp);
742 		solock(so);
743 		unp->unp_vnode = NULL;
744 	}
745 	if (unp->unp_conn)
746 		unp_disconnect1(unp);
747 	while (unp->unp_refs) {
748 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
749 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
750 			solock(so);
751 			goto retry;
752 		}
753 	}
754 	soisdisconnected(so);
755 	so->so_pcb = NULL;
756 	if (unp_rights) {
757 		/*
758 		 * Normally the receive buffer is flushed later, in sofree,
759 		 * but if our receive buffer holds references to files that
760 		 * are now garbage, we will enqueue those file references to
761 		 * the garbage collector and kick it into action.
762 		 */
763 		sorflush(so);
764 		unp_free(unp);
765 		unp_thread_kick();
766 	} else
767 		unp_free(unp);
768 }
769 
770 static int
unp_accept(struct socket * so,struct sockaddr * nam)771 unp_accept(struct socket *so, struct sockaddr *nam)
772 {
773 	struct unpcb *unp = sotounpcb(so);
774 	struct socket *so2;
775 
776 	KASSERT(solocked(so));
777 	KASSERT(nam != NULL);
778 
779 	/* XXX code review required to determine if unp can ever be NULL */
780 	if (unp == NULL)
781 		return EINVAL;
782 
783 	KASSERT(so->so_lock == uipc_lock);
784 	/*
785 	 * Mark the initiating STREAM socket as connected *ONLY*
786 	 * after it's been accepted.  This prevents a client from
787 	 * overrunning a server and receiving ECONNREFUSED.
788 	 */
789 	if (unp->unp_conn == NULL) {
790 		/*
791 		 * This will use the empty socket and will not
792 		 * allocate.
793 		 */
794 		unp_setaddr(so, nam, true);
795 		return 0;
796 	}
797 	so2 = unp->unp_conn->unp_socket;
798 	if (so2->so_state & SS_ISCONNECTING) {
799 		KASSERT(solocked2(so, so->so_head));
800 		KASSERT(solocked2(so2, so->so_head));
801 		soisconnected(so2);
802 	}
803 	/*
804 	 * If the connection is fully established, break the
805 	 * association with uipc_lock and give the connected
806 	 * pair a separate lock to share.
807 	 * There is a race here: sotounpcb(so2)->unp_streamlock
808 	 * is not locked, so when changing so2->so_lock
809 	 * another thread can grab it while so->so_lock is still
810 	 * pointing to the (locked) uipc_lock.
811 	 * this should be harmless, except that this makes
812 	 * solocked2() and solocked() unreliable.
813 	 * Another problem is that unp_setaddr() expects the
814 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
815 	 * fixes both issues.
816 	 */
817 	mutex_enter(sotounpcb(so2)->unp_streamlock);
818 	unp_setpeerlocks(so2, so);
819 	/*
820 	 * Only now return peer's address, as we may need to
821 	 * block in order to allocate memory.
822 	 *
823 	 * XXX Minor race: connection can be broken while
824 	 * lock is dropped in unp_setaddr().  We will return
825 	 * error == 0 and sun_noname as the peer address.
826 	 */
827 	unp_setaddr(so, nam, true);
828 	/* so_lock now points to unp_streamlock */
829 	mutex_exit(so2->so_lock);
830 	return 0;
831 }
832 
833 static int
unp_ioctl(struct socket * so,u_long cmd,void * nam,struct ifnet * ifp)834 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
835 {
836 	return EOPNOTSUPP;
837 }
838 
839 static int
unp_stat(struct socket * so,struct stat * ub)840 unp_stat(struct socket *so, struct stat *ub)
841 {
842 	struct unpcb *unp;
843 	struct socket *so2;
844 
845 	KASSERT(solocked(so));
846 
847 	unp = sotounpcb(so);
848 	if (unp == NULL)
849 		return EINVAL;
850 
851 	ub->st_blksize = so->so_snd.sb_hiwat;
852 	switch (so->so_type) {
853 	case SOCK_SEQPACKET: /* FALLTHROUGH */
854 	case SOCK_STREAM:
855 		if (unp->unp_conn == 0)
856 			break;
857 
858 		so2 = unp->unp_conn->unp_socket;
859 		KASSERT(solocked2(so, so2));
860 		ub->st_blksize += so2->so_rcv.sb_cc;
861 		break;
862 	default:
863 		break;
864 	}
865 	ub->st_dev = NODEV;
866 	if (unp->unp_ino == 0)
867 		unp->unp_ino = unp_ino++;
868 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
869 	ub->st_ino = unp->unp_ino;
870 	return (0);
871 }
872 
873 static int
unp_peeraddr(struct socket * so,struct sockaddr * nam)874 unp_peeraddr(struct socket *so, struct sockaddr *nam)
875 {
876 	KASSERT(solocked(so));
877 	KASSERT(sotounpcb(so) != NULL);
878 	KASSERT(nam != NULL);
879 
880 	unp_setaddr(so, nam, true);
881 	return 0;
882 }
883 
884 static int
unp_sockaddr(struct socket * so,struct sockaddr * nam)885 unp_sockaddr(struct socket *so, struct sockaddr *nam)
886 {
887 	KASSERT(solocked(so));
888 	KASSERT(sotounpcb(so) != NULL);
889 	KASSERT(nam != NULL);
890 
891 	unp_setaddr(so, nam, false);
892 	return 0;
893 }
894 
895 /*
896  * we only need to perform this allocation until syscalls other than
897  * bind are adjusted to use sockaddr_big.
898  */
899 static struct sockaddr_un *
makeun_sb(struct sockaddr * nam,size_t * addrlen)900 makeun_sb(struct sockaddr *nam, size_t *addrlen)
901 {
902 	struct sockaddr_un *sun;
903 
904 	*addrlen = nam->sa_len + 1;
905 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
906 	memcpy(sun, nam, nam->sa_len);
907 	*(((char *)sun) + nam->sa_len) = '\0';
908 	return sun;
909 }
910 
911 static int
unp_bind(struct socket * so,struct sockaddr * nam,struct lwp * l)912 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
913 {
914 	struct sockaddr_un *sun;
915 	struct unpcb *unp;
916 	vnode_t *vp;
917 	struct vattr vattr;
918 	size_t addrlen;
919 	int error;
920 	struct pathbuf *pb;
921 	struct nameidata nd;
922 	proc_t *p;
923 
924 	unp = sotounpcb(so);
925 
926 	KASSERT(solocked(so));
927 	KASSERT(unp != NULL);
928 	KASSERT(nam != NULL);
929 
930 	if (unp->unp_vnode != NULL)
931 		return (EINVAL);
932 	if ((unp->unp_flags & UNP_BUSY) != 0) {
933 		/*
934 		 * EALREADY may not be strictly accurate, but since this
935 		 * is a major application error it's hardly a big deal.
936 		 */
937 		return (EALREADY);
938 	}
939 	unp->unp_flags |= UNP_BUSY;
940 	sounlock(so);
941 
942 	p = l->l_proc;
943 	sun = makeun_sb(nam, &addrlen);
944 
945 	pb = pathbuf_create(sun->sun_path);
946 	if (pb == NULL) {
947 		error = ENOMEM;
948 		goto bad;
949 	}
950 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
951 
952 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
953 	if ((error = namei(&nd)) != 0) {
954 		pathbuf_destroy(pb);
955 		goto bad;
956 	}
957 	vp = nd.ni_vp;
958 	if (vp != NULL) {
959 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
960 		if (nd.ni_dvp == vp)
961 			vrele(nd.ni_dvp);
962 		else
963 			vput(nd.ni_dvp);
964 		vrele(vp);
965 		pathbuf_destroy(pb);
966 		error = EADDRINUSE;
967 		goto bad;
968 	}
969 	vattr_null(&vattr);
970 	vattr.va_type = VSOCK;
971 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
972 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
973 	if (error) {
974 		vput(nd.ni_dvp);
975 		pathbuf_destroy(pb);
976 		goto bad;
977 	}
978 	vp = nd.ni_vp;
979 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
980 	solock(so);
981 	vp->v_socket = unp->unp_socket;
982 	unp->unp_vnode = vp;
983 	unp->unp_addrlen = addrlen;
984 	unp->unp_addr = sun;
985 	unp->unp_connid.unp_pid = p->p_pid;
986 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
987 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
988 	unp->unp_flags |= UNP_EIDSBIND;
989 	VOP_UNLOCK(vp);
990 	vput(nd.ni_dvp);
991 	unp->unp_flags &= ~UNP_BUSY;
992 	pathbuf_destroy(pb);
993 	return (0);
994 
995  bad:
996 	free(sun, M_SONAME);
997 	solock(so);
998 	unp->unp_flags &= ~UNP_BUSY;
999 	return (error);
1000 }
1001 
1002 static int
unp_listen(struct socket * so,struct lwp * l)1003 unp_listen(struct socket *so, struct lwp *l)
1004 {
1005 	struct unpcb *unp = sotounpcb(so);
1006 
1007 	KASSERT(solocked(so));
1008 	KASSERT(unp != NULL);
1009 
1010 	/*
1011 	 * If the socket can accept a connection, it must be
1012 	 * locked by uipc_lock.
1013 	 */
1014 	unp_resetlock(so);
1015 	if (unp->unp_vnode == NULL)
1016 		return EINVAL;
1017 
1018 	return 0;
1019 }
1020 
1021 static int
unp_disconnect(struct socket * so)1022 unp_disconnect(struct socket *so)
1023 {
1024 	KASSERT(solocked(so));
1025 	KASSERT(sotounpcb(so) != NULL);
1026 
1027 	unp_disconnect1(sotounpcb(so));
1028 	return 0;
1029 }
1030 
1031 static int
unp_shutdown(struct socket * so)1032 unp_shutdown(struct socket *so)
1033 {
1034 	KASSERT(solocked(so));
1035 	KASSERT(sotounpcb(so) != NULL);
1036 
1037 	socantsendmore(so);
1038 	unp_shutdown1(sotounpcb(so));
1039 	return 0;
1040 }
1041 
1042 static int
unp_abort(struct socket * so)1043 unp_abort(struct socket *so)
1044 {
1045 	KASSERT(solocked(so));
1046 	KASSERT(sotounpcb(so) != NULL);
1047 
1048 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
1049 	KASSERT(so->so_head == NULL);
1050 	KASSERT(so->so_pcb != NULL);
1051 	unp_detach(so);
1052 	return 0;
1053 }
1054 
1055 static int
unp_connect1(struct socket * so,struct socket * so2,struct lwp * l)1056 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1057 {
1058 	struct unpcb *unp = sotounpcb(so);
1059 	struct unpcb *unp2;
1060 
1061 	if (so2->so_type != so->so_type)
1062 		return EPROTOTYPE;
1063 
1064 	/*
1065 	 * All three sockets involved must be locked by same lock:
1066 	 *
1067 	 * local endpoint (so)
1068 	 * remote endpoint (so2)
1069 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1070 	 */
1071 	KASSERT(solocked2(so, so2));
1072 	KASSERT(so->so_head == NULL);
1073 	if (so2->so_head != NULL) {
1074 		KASSERT(so2->so_lock == uipc_lock);
1075 		KASSERT(solocked2(so2, so2->so_head));
1076 	}
1077 
1078 	unp2 = sotounpcb(so2);
1079 	unp->unp_conn = unp2;
1080 
1081 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1082 		unp2->unp_connid.unp_pid = l->l_proc->p_pid;
1083 		unp2->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1084 		unp2->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1085 		unp2->unp_flags |= UNP_EIDSVALID;
1086 		if (unp2->unp_flags & UNP_EIDSBIND) {
1087 			unp->unp_connid = unp2->unp_connid;
1088 			unp->unp_flags |= UNP_EIDSVALID;
1089 		}
1090 	}
1091 
1092 	switch (so->so_type) {
1093 
1094 	case SOCK_DGRAM:
1095 		unp->unp_nextref = unp2->unp_refs;
1096 		unp2->unp_refs = unp;
1097 		soisconnected(so);
1098 		break;
1099 
1100 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1101 	case SOCK_STREAM:
1102 
1103 		/*
1104 		 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1105 		 * which are unp_connect() or unp_connect2().
1106 		 */
1107 
1108 		break;
1109 
1110 	default:
1111 		panic("unp_connect1");
1112 	}
1113 
1114 	return 0;
1115 }
1116 
1117 int
unp_connect(struct socket * so,struct sockaddr * nam,struct lwp * l)1118 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1119 {
1120 	struct sockaddr_un *sun;
1121 	vnode_t *vp;
1122 	struct socket *so2, *so3;
1123 	struct unpcb *unp, *unp2, *unp3;
1124 	size_t addrlen;
1125 	int error;
1126 	struct pathbuf *pb;
1127 	struct nameidata nd;
1128 
1129 	unp = sotounpcb(so);
1130 	if ((unp->unp_flags & UNP_BUSY) != 0) {
1131 		/*
1132 		 * EALREADY may not be strictly accurate, but since this
1133 		 * is a major application error it's hardly a big deal.
1134 		 */
1135 		return (EALREADY);
1136 	}
1137 	unp->unp_flags |= UNP_BUSY;
1138 	sounlock(so);
1139 
1140 	sun = makeun_sb(nam, &addrlen);
1141 	pb = pathbuf_create(sun->sun_path);
1142 	if (pb == NULL) {
1143 		error = ENOMEM;
1144 		goto bad2;
1145 	}
1146 
1147 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1148 
1149 	if ((error = namei(&nd)) != 0) {
1150 		pathbuf_destroy(pb);
1151 		goto bad2;
1152 	}
1153 	vp = nd.ni_vp;
1154 	if (vp->v_type != VSOCK) {
1155 		error = ENOTSOCK;
1156 		goto bad;
1157 	}
1158 	pathbuf_destroy(pb);
1159 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1160 		goto bad;
1161 	/* Acquire v_interlock to protect against unp_detach(). */
1162 	mutex_enter(vp->v_interlock);
1163 	so2 = vp->v_socket;
1164 	if (so2 == NULL) {
1165 		mutex_exit(vp->v_interlock);
1166 		error = ECONNREFUSED;
1167 		goto bad;
1168 	}
1169 	if (so->so_type != so2->so_type) {
1170 		mutex_exit(vp->v_interlock);
1171 		error = EPROTOTYPE;
1172 		goto bad;
1173 	}
1174 	solock(so);
1175 	unp_resetlock(so);
1176 	mutex_exit(vp->v_interlock);
1177 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1178 		/*
1179 		 * This may seem somewhat fragile but is OK: if we can
1180 		 * see SO_ACCEPTCONN set on the endpoint, then it must
1181 		 * be locked by the domain-wide uipc_lock.
1182 		 */
1183 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1184 		    so2->so_lock == uipc_lock);
1185 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1186 		    (so3 = sonewconn(so2, false)) == NULL) {
1187 			error = ECONNREFUSED;
1188 			sounlock(so);
1189 			goto bad;
1190 		}
1191 		unp2 = sotounpcb(so2);
1192 		unp3 = sotounpcb(so3);
1193 		if (unp2->unp_addr) {
1194 			unp3->unp_addr = malloc(unp2->unp_addrlen,
1195 			    M_SONAME, M_WAITOK);
1196 			memcpy(unp3->unp_addr, unp2->unp_addr,
1197 			    unp2->unp_addrlen);
1198 			unp3->unp_addrlen = unp2->unp_addrlen;
1199 		}
1200 		unp3->unp_flags = unp2->unp_flags;
1201 		so2 = so3;
1202 	}
1203 	error = unp_connect1(so, so2, l);
1204 	if (error) {
1205 		sounlock(so);
1206 		goto bad;
1207 	}
1208 	unp2 = sotounpcb(so2);
1209 	switch (so->so_type) {
1210 
1211 	/*
1212 	 * SOCK_DGRAM and default cases are handled in prior call to
1213 	 * unp_connect1(), do not add a default case without fixing
1214 	 * unp_connect1().
1215 	 */
1216 
1217 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1218 	case SOCK_STREAM:
1219 		unp2->unp_conn = unp;
1220 		if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1221 			soisconnecting(so);
1222 		else
1223 			soisconnected(so);
1224 		soisconnected(so2);
1225 		/*
1226 		 * If the connection is fully established, break the
1227 		 * association with uipc_lock and give the connected
1228 		 * pair a seperate lock to share.
1229 		 */
1230 		KASSERT(so2->so_head != NULL);
1231 		unp_setpeerlocks(so, so2);
1232 		break;
1233 
1234 	}
1235 	sounlock(so);
1236  bad:
1237 	vput(vp);
1238  bad2:
1239 	free(sun, M_SONAME);
1240 	solock(so);
1241 	unp->unp_flags &= ~UNP_BUSY;
1242 	return (error);
1243 }
1244 
1245 int
unp_connect2(struct socket * so,struct socket * so2)1246 unp_connect2(struct socket *so, struct socket *so2)
1247 {
1248 	struct unpcb *unp = sotounpcb(so);
1249 	struct unpcb *unp2;
1250 	int error = 0;
1251 
1252 	KASSERT(solocked2(so, so2));
1253 
1254 	error = unp_connect1(so, so2, curlwp);
1255 	if (error)
1256 		return error;
1257 
1258 	unp2 = sotounpcb(so2);
1259 	switch (so->so_type) {
1260 
1261 	/*
1262 	 * SOCK_DGRAM and default cases are handled in prior call to
1263 	 * unp_connect1(), do not add a default case without fixing
1264 	 * unp_connect1().
1265 	 */
1266 
1267 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1268 	case SOCK_STREAM:
1269 		unp2->unp_conn = unp;
1270 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1271 			unp->unp_connid = unp2->unp_connid;
1272 			unp->unp_flags |= UNP_EIDSVALID;
1273 		}
1274 		soisconnected(so);
1275 		soisconnected(so2);
1276 		break;
1277 
1278 	}
1279 	return error;
1280 }
1281 
1282 static void
unp_disconnect1(struct unpcb * unp)1283 unp_disconnect1(struct unpcb *unp)
1284 {
1285 	struct unpcb *unp2 = unp->unp_conn;
1286 	struct socket *so;
1287 
1288 	if (unp2 == 0)
1289 		return;
1290 	unp->unp_conn = 0;
1291 	so = unp->unp_socket;
1292 	switch (so->so_type) {
1293 	case SOCK_DGRAM:
1294 		if (unp2->unp_refs == unp)
1295 			unp2->unp_refs = unp->unp_nextref;
1296 		else {
1297 			unp2 = unp2->unp_refs;
1298 			for (;;) {
1299 				KASSERT(solocked2(so, unp2->unp_socket));
1300 				if (unp2 == 0)
1301 					panic("unp_disconnect1");
1302 				if (unp2->unp_nextref == unp)
1303 					break;
1304 				unp2 = unp2->unp_nextref;
1305 			}
1306 			unp2->unp_nextref = unp->unp_nextref;
1307 		}
1308 		unp->unp_nextref = 0;
1309 		so->so_state &= ~SS_ISCONNECTED;
1310 		break;
1311 
1312 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1313 	case SOCK_STREAM:
1314 		KASSERT(solocked2(so, unp2->unp_socket));
1315 		soisdisconnected(so);
1316 		unp2->unp_conn = 0;
1317 		soisdisconnected(unp2->unp_socket);
1318 		break;
1319 	}
1320 }
1321 
1322 static void
unp_shutdown1(struct unpcb * unp)1323 unp_shutdown1(struct unpcb *unp)
1324 {
1325 	struct socket *so;
1326 
1327 	switch(unp->unp_socket->so_type) {
1328 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1329 	case SOCK_STREAM:
1330 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1331 			socantrcvmore(so);
1332 		break;
1333 	default:
1334 		break;
1335 	}
1336 }
1337 
1338 static bool
unp_drop(struct unpcb * unp,int errno)1339 unp_drop(struct unpcb *unp, int errno)
1340 {
1341 	struct socket *so = unp->unp_socket;
1342 
1343 	KASSERT(solocked(so));
1344 
1345 	so->so_error = errno;
1346 	unp_disconnect1(unp);
1347 	if (so->so_head) {
1348 		so->so_pcb = NULL;
1349 		/* sofree() drops the socket lock */
1350 		sofree(so);
1351 		unp_free(unp);
1352 		return true;
1353 	}
1354 	return false;
1355 }
1356 
1357 #ifdef notdef
unp_drain(void)1358 unp_drain(void)
1359 {
1360 
1361 }
1362 #endif
1363 
1364 int
unp_externalize(struct mbuf * rights,struct lwp * l,int flags)1365 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1366 {
1367 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1368 	struct proc * const p = l->l_proc;
1369 	file_t **rp;
1370 	int error = 0;
1371 
1372 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1373 	    sizeof(file_t *);
1374 	if (nfds == 0)
1375 		goto noop;
1376 
1377 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1378 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1379 
1380 	/* Make sure the recipient should be able to see the files.. */
1381 	rp = (file_t **)CMSG_DATA(cm);
1382 	for (size_t i = 0; i < nfds; i++) {
1383 		file_t * const fp = *rp++;
1384 		if (fp == NULL) {
1385 			error = EINVAL;
1386 			goto out;
1387 		}
1388 		/*
1389 		 * If we are in a chroot'ed directory, and
1390 		 * someone wants to pass us a directory, make
1391 		 * sure it's inside the subtree we're allowed
1392 		 * to access.
1393 		 */
1394 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1395 			vnode_t *vp = fp->f_vnode;
1396 			if ((vp->v_type == VDIR) &&
1397 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1398 				error = EPERM;
1399 				goto out;
1400 			}
1401 		}
1402 	}
1403 
1404  restart:
1405 	/*
1406 	 * First loop -- allocate file descriptor table slots for the
1407 	 * new files.
1408 	 */
1409 	for (size_t i = 0; i < nfds; i++) {
1410 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1411 			/*
1412 			 * Back out what we've done so far.
1413 			 */
1414 			while (i-- > 0) {
1415 				fd_abort(p, NULL, fdp[i]);
1416 			}
1417 			if (error == ENOSPC) {
1418 				fd_tryexpand(p);
1419 				error = 0;
1420 				goto restart;
1421 			}
1422 			/*
1423 			 * This is the error that has historically
1424 			 * been returned, and some callers may
1425 			 * expect it.
1426 			 */
1427 			error = EMSGSIZE;
1428 			goto out;
1429 		}
1430 	}
1431 
1432 	/*
1433 	 * Now that adding them has succeeded, update all of the
1434 	 * file passing state and affix the descriptors.
1435 	 */
1436 	rp = (file_t **)CMSG_DATA(cm);
1437 	int *ofdp = (int *)CMSG_DATA(cm);
1438 	for (size_t i = 0; i < nfds; i++) {
1439 		file_t * const fp = *rp++;
1440 		const int fd = fdp[i];
1441 		atomic_dec_uint(&unp_rights);
1442 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1443 		fd_affix(p, fp, fd);
1444 		/*
1445 		 * Done with this file pointer, replace it with a fd;
1446 		 */
1447 		*ofdp++ = fd;
1448 		mutex_enter(&fp->f_lock);
1449 		fp->f_msgcount--;
1450 		mutex_exit(&fp->f_lock);
1451 		/*
1452 		 * Note that fd_affix() adds a reference to the file.
1453 		 * The file may already have been closed by another
1454 		 * LWP in the process, so we must drop the reference
1455 		 * added by unp_internalize() with closef().
1456 		 */
1457 		closef(fp);
1458 	}
1459 
1460 	/*
1461 	 * Adjust length, in case of transition from large file_t
1462 	 * pointers to ints.
1463 	 */
1464 	if (sizeof(file_t *) != sizeof(int)) {
1465 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1466 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1467 	}
1468  out:
1469 	if (__predict_false(error != 0)) {
1470 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
1471 		for (size_t i = 0; i < nfds; i++)
1472 			unp_discard_now(fpp[i]);
1473 		/*
1474 		 * Truncate the array so that nobody will try to interpret
1475 		 * what is now garbage in it.
1476 		 */
1477 		cm->cmsg_len = CMSG_LEN(0);
1478 		rights->m_len = CMSG_SPACE(0);
1479 	}
1480 	rw_exit(&p->p_cwdi->cwdi_lock);
1481 	kmem_free(fdp, nfds * sizeof(int));
1482 
1483  noop:
1484 	/*
1485 	 * Don't disclose kernel memory in the alignment space.
1486 	 */
1487 	KASSERT(cm->cmsg_len <= rights->m_len);
1488 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1489 	    cm->cmsg_len);
1490 	return error;
1491 }
1492 
1493 static int
unp_internalize(struct mbuf ** controlp)1494 unp_internalize(struct mbuf **controlp)
1495 {
1496 	filedesc_t *fdescp = curlwp->l_fd;
1497 	struct mbuf *control = *controlp;
1498 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1499 	file_t **rp, **files;
1500 	file_t *fp;
1501 	int i, fd, *fdp;
1502 	int nfds, error;
1503 	u_int maxmsg;
1504 
1505 	error = 0;
1506 	newcm = NULL;
1507 
1508 	/* Sanity check the control message header. */
1509 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1510 	    cm->cmsg_len > control->m_len ||
1511 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1512 		return (EINVAL);
1513 
1514 	/*
1515 	 * Verify that the file descriptors are valid, and acquire
1516 	 * a reference to each.
1517 	 */
1518 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1519 	fdp = (int *)CMSG_DATA(cm);
1520 	maxmsg = maxfiles / unp_rights_ratio;
1521 	for (i = 0; i < nfds; i++) {
1522 		fd = *fdp++;
1523 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1524 			atomic_dec_uint(&unp_rights);
1525 			nfds = i;
1526 			error = EAGAIN;
1527 			goto out;
1528 		}
1529 		if ((fp = fd_getfile(fd)) == NULL
1530 		    || fp->f_type == DTYPE_KQUEUE) {
1531 		    	if (fp)
1532 		    		fd_putfile(fd);
1533 			atomic_dec_uint(&unp_rights);
1534 			nfds = i;
1535 			error = EBADF;
1536 			goto out;
1537 		}
1538 	}
1539 
1540 	/* Allocate new space and copy header into it. */
1541 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1542 	if (newcm == NULL) {
1543 		error = E2BIG;
1544 		goto out;
1545 	}
1546 	memcpy(newcm, cm, sizeof(struct cmsghdr));
1547 	files = (file_t **)CMSG_DATA(newcm);
1548 
1549 	/*
1550 	 * Transform the file descriptors into file_t pointers, in
1551 	 * reverse order so that if pointers are bigger than ints, the
1552 	 * int won't get until we're done.  No need to lock, as we have
1553 	 * already validated the descriptors with fd_getfile().
1554 	 */
1555 	fdp = (int *)CMSG_DATA(cm) + nfds;
1556 	rp = files + nfds;
1557 	for (i = 0; i < nfds; i++) {
1558 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1559 		KASSERT(fp != NULL);
1560 		mutex_enter(&fp->f_lock);
1561 		*--rp = fp;
1562 		fp->f_count++;
1563 		fp->f_msgcount++;
1564 		mutex_exit(&fp->f_lock);
1565 	}
1566 
1567  out:
1568  	/* Release descriptor references. */
1569 	fdp = (int *)CMSG_DATA(cm);
1570 	for (i = 0; i < nfds; i++) {
1571 		fd_putfile(*fdp++);
1572 		if (error != 0) {
1573 			atomic_dec_uint(&unp_rights);
1574 		}
1575 	}
1576 
1577 	if (error == 0) {
1578 		if (control->m_flags & M_EXT) {
1579 			m_freem(control);
1580 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
1581 		}
1582 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1583 		    M_MBUF, NULL, NULL);
1584 		cm = newcm;
1585 		/*
1586 		 * Adjust message & mbuf to note amount of space
1587 		 * actually used.
1588 		 */
1589 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1590 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1591 	}
1592 
1593 	return error;
1594 }
1595 
1596 struct mbuf *
unp_addsockcred(struct lwp * l,struct mbuf * control)1597 unp_addsockcred(struct lwp *l, struct mbuf *control)
1598 {
1599 	struct sockcred *sc;
1600 	struct mbuf *m;
1601 	void *p;
1602 
1603 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1604 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
1605 	if (m == NULL)
1606 		return control;
1607 
1608 	sc = p;
1609 	sc->sc_pid = l->l_proc->p_pid;
1610 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
1611 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1612 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
1613 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
1614 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1615 
1616 	for (int i = 0; i < sc->sc_ngroups; i++)
1617 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1618 
1619 	return m_add(control, m);
1620 }
1621 
1622 /*
1623  * Do a mark-sweep GC of files in the system, to free up any which are
1624  * caught in flight to an about-to-be-closed socket.  Additionally,
1625  * process deferred file closures.
1626  */
1627 static void
unp_gc(file_t * dp)1628 unp_gc(file_t *dp)
1629 {
1630 	extern	struct domain unixdomain;
1631 	file_t *fp, *np;
1632 	struct socket *so, *so1;
1633 	u_int i, oflags, rflags;
1634 	bool didwork;
1635 
1636 	KASSERT(curlwp == unp_thread_lwp);
1637 	KASSERT(mutex_owned(&filelist_lock));
1638 
1639 	/*
1640 	 * First, process deferred file closures.
1641 	 */
1642 	while (!SLIST_EMPTY(&unp_thread_discard)) {
1643 		fp = SLIST_FIRST(&unp_thread_discard);
1644 		KASSERT(fp->f_unpcount > 0);
1645 		KASSERT(fp->f_count > 0);
1646 		KASSERT(fp->f_msgcount > 0);
1647 		KASSERT(fp->f_count >= fp->f_unpcount);
1648 		KASSERT(fp->f_count >= fp->f_msgcount);
1649 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
1650 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1651 		i = fp->f_unpcount;
1652 		fp->f_unpcount = 0;
1653 		mutex_exit(&filelist_lock);
1654 		for (; i != 0; i--) {
1655 			unp_discard_now(fp);
1656 		}
1657 		mutex_enter(&filelist_lock);
1658 	}
1659 
1660 	/*
1661 	 * Clear mark bits.  Ensure that we don't consider new files
1662 	 * entering the file table during this loop (they will not have
1663 	 * FSCAN set).
1664 	 */
1665 	unp_defer = 0;
1666 	LIST_FOREACH(fp, &filehead, f_list) {
1667 		for (oflags = fp->f_flag;; oflags = rflags) {
1668 			rflags = atomic_cas_uint(&fp->f_flag, oflags,
1669 			    (oflags | FSCAN) & ~(FMARK|FDEFER));
1670 			if (__predict_true(oflags == rflags)) {
1671 				break;
1672 			}
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * Iterate over the set of sockets, marking ones believed (based on
1678 	 * refcount) to be referenced from a process, and marking for rescan
1679 	 * sockets which are queued on a socket.  Recan continues descending
1680 	 * and searching for sockets referenced by sockets (FDEFER), until
1681 	 * there are no more socket->socket references to be discovered.
1682 	 */
1683 	do {
1684 		didwork = false;
1685 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1686 			KASSERT(mutex_owned(&filelist_lock));
1687 			np = LIST_NEXT(fp, f_list);
1688 			mutex_enter(&fp->f_lock);
1689 			if ((fp->f_flag & FDEFER) != 0) {
1690 				atomic_and_uint(&fp->f_flag, ~FDEFER);
1691 				unp_defer--;
1692 				if (fp->f_count == 0) {
1693 					/*
1694 					 * XXX: closef() doesn't pay attention
1695 					 * to FDEFER
1696 					 */
1697 					mutex_exit(&fp->f_lock);
1698 					continue;
1699 				}
1700 			} else {
1701 				if (fp->f_count == 0 ||
1702 				    (fp->f_flag & FMARK) != 0 ||
1703 				    fp->f_count == fp->f_msgcount ||
1704 				    fp->f_unpcount != 0) {
1705 					mutex_exit(&fp->f_lock);
1706 					continue;
1707 				}
1708 			}
1709 			atomic_or_uint(&fp->f_flag, FMARK);
1710 
1711 			if (fp->f_type != DTYPE_SOCKET ||
1712 			    (so = fp->f_socket) == NULL ||
1713 			    so->so_proto->pr_domain != &unixdomain ||
1714 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1715 				mutex_exit(&fp->f_lock);
1716 				continue;
1717 			}
1718 
1719 			/* Gain file ref, mark our position, and unlock. */
1720 			didwork = true;
1721 			LIST_INSERT_AFTER(fp, dp, f_list);
1722 			fp->f_count++;
1723 			mutex_exit(&fp->f_lock);
1724 			mutex_exit(&filelist_lock);
1725 
1726 			/*
1727 			 * Mark files referenced from sockets queued on the
1728 			 * accept queue as well.
1729 			 */
1730 			solock(so);
1731 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1732 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
1733 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1734 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1735 				}
1736 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1737 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1738 				}
1739 			}
1740 			sounlock(so);
1741 
1742 			/* Re-lock and restart from where we left off. */
1743 			closef(fp);
1744 			mutex_enter(&filelist_lock);
1745 			np = LIST_NEXT(dp, f_list);
1746 			LIST_REMOVE(dp, f_list);
1747 		}
1748 		/*
1749 		 * Bail early if we did nothing in the loop above.  Could
1750 		 * happen because of concurrent activity causing unp_defer
1751 		 * to get out of sync.
1752 		 */
1753 	} while (unp_defer != 0 && didwork);
1754 
1755 	/*
1756 	 * Sweep pass.
1757 	 *
1758 	 * We grab an extra reference to each of the files that are
1759 	 * not otherwise accessible and then free the rights that are
1760 	 * stored in messages on them.
1761 	 */
1762 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1763 		KASSERT(mutex_owned(&filelist_lock));
1764 		np = LIST_NEXT(fp, f_list);
1765 		mutex_enter(&fp->f_lock);
1766 
1767 		/*
1768 		 * Ignore non-sockets.
1769 		 * Ignore dead sockets, or sockets with pending close.
1770 		 * Ignore sockets obviously referenced elsewhere.
1771 		 * Ignore sockets marked as referenced by our scan.
1772 		 * Ignore new sockets that did not exist during the scan.
1773 		 */
1774 		if (fp->f_type != DTYPE_SOCKET ||
1775 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
1776 		    fp->f_count != fp->f_msgcount ||
1777 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1778 			mutex_exit(&fp->f_lock);
1779 			continue;
1780 		}
1781 
1782 		/* Gain file ref, mark our position, and unlock. */
1783 		LIST_INSERT_AFTER(fp, dp, f_list);
1784 		fp->f_count++;
1785 		mutex_exit(&fp->f_lock);
1786 		mutex_exit(&filelist_lock);
1787 
1788 		/*
1789 		 * Flush all data from the socket's receive buffer.
1790 		 * This will cause files referenced only by the
1791 		 * socket to be queued for close.
1792 		 */
1793 		so = fp->f_socket;
1794 		solock(so);
1795 		sorflush(so);
1796 		sounlock(so);
1797 
1798 		/* Re-lock and restart from where we left off. */
1799 		closef(fp);
1800 		mutex_enter(&filelist_lock);
1801 		np = LIST_NEXT(dp, f_list);
1802 		LIST_REMOVE(dp, f_list);
1803 	}
1804 }
1805 
1806 /*
1807  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
1808  * wake once per second to garbage collect.  Run continually while we
1809  * have deferred closes to process.
1810  */
1811 static void
unp_thread(void * cookie)1812 unp_thread(void *cookie)
1813 {
1814 	file_t *dp;
1815 
1816 	/* Allocate a dummy file for our scans. */
1817 	if ((dp = fgetdummy()) == NULL) {
1818 		panic("unp_thread");
1819 	}
1820 
1821 	mutex_enter(&filelist_lock);
1822 	for (;;) {
1823 		KASSERT(mutex_owned(&filelist_lock));
1824 		if (SLIST_EMPTY(&unp_thread_discard)) {
1825 			if (unp_rights != 0) {
1826 				(void)cv_timedwait(&unp_thread_cv,
1827 				    &filelist_lock, hz);
1828 			} else {
1829 				cv_wait(&unp_thread_cv, &filelist_lock);
1830 			}
1831 		}
1832 		unp_gc(dp);
1833 	}
1834 	/* NOTREACHED */
1835 }
1836 
1837 /*
1838  * Kick the garbage collector into action if there is something for
1839  * it to process.
1840  */
1841 static void
unp_thread_kick(void)1842 unp_thread_kick(void)
1843 {
1844 
1845 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1846 		mutex_enter(&filelist_lock);
1847 		cv_signal(&unp_thread_cv);
1848 		mutex_exit(&filelist_lock);
1849 	}
1850 }
1851 
1852 void
unp_dispose(struct mbuf * m)1853 unp_dispose(struct mbuf *m)
1854 {
1855 
1856 	if (m)
1857 		unp_scan(m, unp_discard_later, 1);
1858 }
1859 
1860 void
unp_scan(struct mbuf * m0,void (* op)(file_t *),int discard)1861 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1862 {
1863 	struct mbuf *m;
1864 	file_t **rp, *fp;
1865 	struct cmsghdr *cm;
1866 	int i, qfds;
1867 
1868 	while (m0) {
1869 		for (m = m0; m; m = m->m_next) {
1870 			if (m->m_type != MT_CONTROL ||
1871 			    m->m_len < sizeof(*cm)) {
1872 			    	continue;
1873 			}
1874 			cm = mtod(m, struct cmsghdr *);
1875 			if (cm->cmsg_level != SOL_SOCKET ||
1876 			    cm->cmsg_type != SCM_RIGHTS)
1877 				continue;
1878 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1879 			    / sizeof(file_t *);
1880 			rp = (file_t **)CMSG_DATA(cm);
1881 			for (i = 0; i < qfds; i++) {
1882 				fp = *rp;
1883 				if (discard) {
1884 					*rp = 0;
1885 				}
1886 				(*op)(fp);
1887 				rp++;
1888 			}
1889 		}
1890 		m0 = m0->m_nextpkt;
1891 	}
1892 }
1893 
1894 void
unp_mark(file_t * fp)1895 unp_mark(file_t *fp)
1896 {
1897 
1898 	if (fp == NULL)
1899 		return;
1900 
1901 	/* If we're already deferred, don't screw up the defer count */
1902 	mutex_enter(&fp->f_lock);
1903 	if (fp->f_flag & (FMARK | FDEFER)) {
1904 		mutex_exit(&fp->f_lock);
1905 		return;
1906 	}
1907 
1908 	/*
1909 	 * Minimize the number of deferrals...  Sockets are the only type of
1910 	 * file which can hold references to another file, so just mark
1911 	 * other files, and defer unmarked sockets for the next pass.
1912 	 */
1913 	if (fp->f_type == DTYPE_SOCKET) {
1914 		unp_defer++;
1915 		KASSERT(fp->f_count != 0);
1916 		atomic_or_uint(&fp->f_flag, FDEFER);
1917 	} else {
1918 		atomic_or_uint(&fp->f_flag, FMARK);
1919 	}
1920 	mutex_exit(&fp->f_lock);
1921 }
1922 
1923 static void
unp_discard_now(file_t * fp)1924 unp_discard_now(file_t *fp)
1925 {
1926 
1927 	if (fp == NULL)
1928 		return;
1929 
1930 	KASSERT(fp->f_count > 0);
1931 	KASSERT(fp->f_msgcount > 0);
1932 
1933 	mutex_enter(&fp->f_lock);
1934 	fp->f_msgcount--;
1935 	mutex_exit(&fp->f_lock);
1936 	atomic_dec_uint(&unp_rights);
1937 	(void)closef(fp);
1938 }
1939 
1940 static void
unp_discard_later(file_t * fp)1941 unp_discard_later(file_t *fp)
1942 {
1943 
1944 	if (fp == NULL)
1945 		return;
1946 
1947 	KASSERT(fp->f_count > 0);
1948 	KASSERT(fp->f_msgcount > 0);
1949 
1950 	mutex_enter(&filelist_lock);
1951 	if (fp->f_unpcount++ == 0) {
1952 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1953 	}
1954 	mutex_exit(&filelist_lock);
1955 }
1956 
1957 const struct pr_usrreqs unp_usrreqs = {
1958 	.pr_attach	= unp_attach,
1959 	.pr_detach	= unp_detach,
1960 	.pr_accept	= unp_accept,
1961 	.pr_bind	= unp_bind,
1962 	.pr_listen	= unp_listen,
1963 	.pr_connect	= unp_connect,
1964 	.pr_connect2	= unp_connect2,
1965 	.pr_disconnect	= unp_disconnect,
1966 	.pr_shutdown	= unp_shutdown,
1967 	.pr_abort	= unp_abort,
1968 	.pr_ioctl	= unp_ioctl,
1969 	.pr_stat	= unp_stat,
1970 	.pr_peeraddr	= unp_peeraddr,
1971 	.pr_sockaddr	= unp_sockaddr,
1972 	.pr_rcvd	= unp_rcvd,
1973 	.pr_recvoob	= unp_recvoob,
1974 	.pr_send	= unp_send,
1975 	.pr_sendoob	= unp_sendoob,
1976 };
1977