1 /* $NetBSD: ip_reass.c,v 1.10 2016/04/26 08:44:44 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 */
33
34 /*
35 * IP reassembly.
36 *
37 * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38 * reassembly queue buffer managment.
39 *
40 * We keep a count of total IP fragments (NB: not fragmented packets),
41 * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42 * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43 * fragments in reassembly queues. This AIMD policy avoids repeatedly
44 * deleting single packets under heavy fragmentation load (e.g., from lossy
45 * NFS peers).
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.10 2016/04/26 08:44:44 ozaki-r Exp $");
50
51 #include <sys/param.h>
52 #include <sys/types.h>
53
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/domain.h>
58 #include <sys/protosw.h>
59 #include <sys/pool.h>
60 #include <sys/queue.h>
61 #include <sys/sysctl.h>
62 #include <sys/systm.h>
63
64 #include <net/if.h>
65
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/in_proto.h>
72 #include <netinet/ip_private.h>
73 #include <netinet/in_var.h>
74
75 /*
76 * IP reassembly queue structures. Each fragment being reassembled is
77 * attached to one of these structures. They are timed out after TTL
78 * drops to 0, and may also be reclaimed if memory becomes tight.
79 */
80
81 typedef struct ipfr_qent {
82 TAILQ_ENTRY(ipfr_qent) ipqe_q;
83 struct ip * ipqe_ip;
84 struct mbuf * ipqe_m;
85 bool ipqe_mff;
86 } ipfr_qent_t;
87
88 TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
89
90 typedef struct ipfr_queue {
91 LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
92 struct ipfr_qent_head ipq_fragq; /* queue of fragment entries */
93 uint8_t ipq_ttl; /* time for reass q to live */
94 uint8_t ipq_p; /* protocol of this fragment */
95 uint16_t ipq_id; /* sequence id for reassembly */
96 struct in_addr ipq_src;
97 struct in_addr ipq_dst;
98 uint16_t ipq_nfrags; /* frags in this queue entry */
99 uint8_t ipq_tos; /* TOS of this fragment */
100 } ipfr_queue_t;
101
102 /*
103 * Hash table of IP reassembly queues.
104 */
105 #define IPREASS_HASH_SHIFT 6
106 #define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
107 #define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
108 #define IPREASS_HASH(x, y) \
109 (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
110
111 static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
112 static pool_cache_t ipfren_cache;
113 static kmutex_t ipfr_lock;
114
115 /* Number of packets in reassembly queue and total number of fragments. */
116 static int ip_nfragpackets;
117 static int ip_nfrags;
118
119 /* Limits on packet and fragments. */
120 static int ip_maxfragpackets;
121 static int ip_maxfrags;
122
123 /*
124 * Cached copy of nmbclusters. If nbclusters is different, recalculate
125 * IP parameters derived from nmbclusters.
126 */
127 static int ip_nmbclusters;
128
129 /*
130 * IP reassembly TTL machinery for multiplicative drop.
131 */
132 static u_int fragttl_histo[IPFRAGTTL + 1];
133
134 static struct sysctllog *ip_reass_sysctllog;
135
136 void sysctl_ip_reass_setup(void);
137 static void ip_nmbclusters_changed(void);
138
139 static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
140 static u_int ip_reass_ttl_decr(u_int ticks);
141 static void ip_reass_drophalf(void);
142 static void ip_freef(ipfr_queue_t *);
143
144 /*
145 * ip_reass_init:
146 *
147 * Initialization of IP reassembly mechanism.
148 */
149 void
ip_reass_init(void)150 ip_reass_init(void)
151 {
152 int i;
153
154 ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
155 0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
156 mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
157
158 for (i = 0; i < IPREASS_HASH_SIZE; i++) {
159 LIST_INIT(&ip_frags[i]);
160 }
161 ip_maxfragpackets = 200;
162 ip_maxfrags = 0;
163 ip_nmbclusters_changed();
164
165 sysctl_ip_reass_setup();
166 }
167
168 void
sysctl_ip_reass_setup(void)169 sysctl_ip_reass_setup(void)
170 {
171
172 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
173 CTLFLAG_PERMANENT,
174 CTLTYPE_NODE, "inet",
175 SYSCTL_DESCR("PF_INET related settings"),
176 NULL, 0, NULL, 0,
177 CTL_NET, PF_INET, CTL_EOL);
178 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
179 CTLFLAG_PERMANENT,
180 CTLTYPE_NODE, "ip",
181 SYSCTL_DESCR("IPv4 related settings"),
182 NULL, 0, NULL, 0,
183 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
184
185 sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
186 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
187 CTLTYPE_INT, "maxfragpackets",
188 SYSCTL_DESCR("Maximum number of fragments to retain for "
189 "possible reassembly"),
190 NULL, 0, &ip_maxfragpackets, 0,
191 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
192 }
193
194 #define CHECK_NMBCLUSTER_PARAMS() \
195 do { \
196 if (__predict_false(ip_nmbclusters != nmbclusters)) \
197 ip_nmbclusters_changed(); \
198 } while (/*CONSTCOND*/0)
199
200 /*
201 * Compute IP limits derived from the value of nmbclusters.
202 */
203 static void
ip_nmbclusters_changed(void)204 ip_nmbclusters_changed(void)
205 {
206 ip_maxfrags = nmbclusters / 4;
207 ip_nmbclusters = nmbclusters;
208 }
209
210 /*
211 * ip_reass:
212 *
213 * Take incoming datagram fragment and try to reassemble it into whole
214 * datagram. If a chain for reassembly of this datagram already exists,
215 * then it is given as 'fp'; otherwise have to make a chain.
216 */
217 struct mbuf *
ip_reass(ipfr_qent_t * ipqe,ipfr_queue_t * fp,const u_int hash)218 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
219 {
220 struct ip *ip = ipqe->ipqe_ip, *qip;
221 const int hlen = ip->ip_hl << 2;
222 struct mbuf *m = ipqe->ipqe_m, *t;
223 ipfr_qent_t *nq, *p, *q;
224 int i, next;
225
226 KASSERT(mutex_owned(&ipfr_lock));
227
228 /*
229 * Presence of header sizes in mbufs would confuse code below.
230 */
231 m->m_data += hlen;
232 m->m_len -= hlen;
233
234 #ifdef notyet
235 /* Make sure fragment limit is up-to-date. */
236 CHECK_NMBCLUSTER_PARAMS();
237
238 /* If we have too many fragments, drop the older half. */
239 if (ip_nfrags >= ip_maxfrags) {
240 ip_reass_drophalf(void);
241 }
242 #endif
243
244 /*
245 * We are about to add a fragment; increment frag count.
246 */
247 ip_nfrags++;
248
249 /*
250 * If first fragment to arrive, create a reassembly queue.
251 */
252 if (fp == NULL) {
253 /*
254 * Enforce upper bound on number of fragmented packets
255 * for which we attempt reassembly: a) if maxfrag is 0,
256 * never accept fragments b) if maxfrag is -1, accept
257 * all fragments without limitation.
258 */
259 if (ip_maxfragpackets < 0)
260 ;
261 else if (ip_nfragpackets >= ip_maxfragpackets) {
262 goto dropfrag;
263 }
264 fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
265 if (fp == NULL) {
266 goto dropfrag;
267 }
268 ip_nfragpackets++;
269 TAILQ_INIT(&fp->ipq_fragq);
270 fp->ipq_nfrags = 1;
271 fp->ipq_ttl = IPFRAGTTL;
272 fp->ipq_p = ip->ip_p;
273 fp->ipq_id = ip->ip_id;
274 fp->ipq_tos = ip->ip_tos;
275 fp->ipq_src = ip->ip_src;
276 fp->ipq_dst = ip->ip_dst;
277 LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
278 p = NULL;
279 goto insert;
280 } else {
281 fp->ipq_nfrags++;
282 }
283
284 /*
285 * Find a segment which begins after this one does.
286 */
287 TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
288 if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
289 break;
290 }
291 if (q != NULL) {
292 p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
293 } else {
294 p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
295 }
296
297 /*
298 * If there is a preceding segment, it may provide some of our
299 * data already. If so, drop the data from the incoming segment.
300 * If it provides all of our data, drop us.
301 */
302 if (p != NULL) {
303 i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
304 ntohs(ip->ip_off);
305 if (i > 0) {
306 if (i >= ntohs(ip->ip_len)) {
307 goto dropfrag;
308 }
309 m_adj(ipqe->ipqe_m, i);
310 ip->ip_off = htons(ntohs(ip->ip_off) + i);
311 ip->ip_len = htons(ntohs(ip->ip_len) - i);
312 }
313 }
314
315 /*
316 * While we overlap succeeding segments trim them or, if they are
317 * completely covered, dequeue them.
318 */
319 while (q != NULL) {
320 size_t end;
321
322 qip = q->ipqe_ip;
323 end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
324 if (end <= ntohs(qip->ip_off)) {
325 break;
326 }
327 i = end - ntohs(qip->ip_off);
328 if (i < ntohs(qip->ip_len)) {
329 qip->ip_len = htons(ntohs(qip->ip_len) - i);
330 qip->ip_off = htons(ntohs(qip->ip_off) + i);
331 m_adj(q->ipqe_m, i);
332 break;
333 }
334 nq = TAILQ_NEXT(q, ipqe_q);
335 m_freem(q->ipqe_m);
336 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
337 pool_cache_put(ipfren_cache, q);
338 fp->ipq_nfrags--;
339 ip_nfrags--;
340 q = nq;
341 }
342
343 insert:
344 /*
345 * Stick new segment in its place; check for complete reassembly.
346 */
347 if (p == NULL) {
348 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
349 } else {
350 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
351 }
352 next = 0;
353 TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
354 qip = q->ipqe_ip;
355 if (ntohs(qip->ip_off) != next) {
356 mutex_exit(&ipfr_lock);
357 return NULL;
358 }
359 next += ntohs(qip->ip_len);
360 }
361 p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
362 if (p->ipqe_mff) {
363 mutex_exit(&ipfr_lock);
364 return NULL;
365 }
366
367 /*
368 * Reassembly is complete. Check for a bogus message size.
369 */
370 q = TAILQ_FIRST(&fp->ipq_fragq);
371 ip = q->ipqe_ip;
372 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
373 IP_STATINC(IP_STAT_TOOLONG);
374 ip_freef(fp);
375 mutex_exit(&ipfr_lock);
376 return NULL;
377 }
378 LIST_REMOVE(fp, ipq_q);
379 ip_nfrags -= fp->ipq_nfrags;
380 ip_nfragpackets--;
381 mutex_exit(&ipfr_lock);
382
383 /* Concatenate all fragments. */
384 m = q->ipqe_m;
385 t = m->m_next;
386 m->m_next = NULL;
387 m_cat(m, t);
388 nq = TAILQ_NEXT(q, ipqe_q);
389 pool_cache_put(ipfren_cache, q);
390
391 for (q = nq; q != NULL; q = nq) {
392 t = q->ipqe_m;
393 nq = TAILQ_NEXT(q, ipqe_q);
394 pool_cache_put(ipfren_cache, q);
395 m_cat(m, t);
396 }
397
398 /*
399 * Create header for new packet by modifying header of first
400 * packet. Dequeue and discard fragment reassembly header. Make
401 * header visible.
402 */
403 ip->ip_len = htons((ip->ip_hl << 2) + next);
404 ip->ip_src = fp->ipq_src;
405 ip->ip_dst = fp->ipq_dst;
406 free(fp, M_FTABLE);
407
408 m->m_len += (ip->ip_hl << 2);
409 m->m_data -= (ip->ip_hl << 2);
410
411 /* Fix up mbuf. XXX This should be done elsewhere. */
412 if (m->m_flags & M_PKTHDR) {
413 int plen = 0;
414 for (t = m; t; t = t->m_next) {
415 plen += t->m_len;
416 }
417 m->m_pkthdr.len = plen;
418 m->m_pkthdr.csum_flags = 0;
419 }
420 return m;
421
422 dropfrag:
423 if (fp != NULL) {
424 fp->ipq_nfrags--;
425 }
426 ip_nfrags--;
427 IP_STATINC(IP_STAT_FRAGDROPPED);
428 mutex_exit(&ipfr_lock);
429
430 pool_cache_put(ipfren_cache, ipqe);
431 m_freem(m);
432 return NULL;
433 }
434
435 /*
436 * ip_freef:
437 *
438 * Free a fragment reassembly header and all associated datagrams.
439 */
440 static void
ip_freef(ipfr_queue_t * fp)441 ip_freef(ipfr_queue_t *fp)
442 {
443 ipfr_qent_t *q;
444
445 KASSERT(mutex_owned(&ipfr_lock));
446
447 LIST_REMOVE(fp, ipq_q);
448 ip_nfrags -= fp->ipq_nfrags;
449 ip_nfragpackets--;
450
451 while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
452 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
453 m_freem(q->ipqe_m);
454 pool_cache_put(ipfren_cache, q);
455 }
456 free(fp, M_FTABLE);
457 }
458
459 /*
460 * ip_reass_ttl_decr:
461 *
462 * Decrement TTL of all reasembly queue entries by `ticks'. Count
463 * number of distinct fragments (as opposed to partial, fragmented
464 * datagrams) inthe reassembly queue. While we traverse the entire
465 * reassembly queue, compute and return the median TTL over all
466 * fragments.
467 */
468 static u_int
ip_reass_ttl_decr(u_int ticks)469 ip_reass_ttl_decr(u_int ticks)
470 {
471 u_int nfrags, median, dropfraction, keepfraction;
472 ipfr_queue_t *fp, *nfp;
473 int i;
474
475 nfrags = 0;
476 memset(fragttl_histo, 0, sizeof(fragttl_histo));
477
478 for (i = 0; i < IPREASS_HASH_SIZE; i++) {
479 for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
480 fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
481 0 : fp->ipq_ttl - ticks);
482 nfp = LIST_NEXT(fp, ipq_q);
483 if (fp->ipq_ttl == 0) {
484 IP_STATINC(IP_STAT_FRAGTIMEOUT);
485 ip_freef(fp);
486 } else {
487 nfrags += fp->ipq_nfrags;
488 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
489 }
490 }
491 }
492
493 KASSERT(ip_nfrags == nfrags);
494
495 /* Find median (or other drop fraction) in histogram. */
496 dropfraction = (ip_nfrags / 2);
497 keepfraction = ip_nfrags - dropfraction;
498 for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
499 median += fragttl_histo[i];
500 if (median >= keepfraction)
501 break;
502 }
503
504 /* Return TTL of median (or other fraction). */
505 return (u_int)i;
506 }
507
508 static void
ip_reass_drophalf(void)509 ip_reass_drophalf(void)
510 {
511 u_int median_ticks;
512
513 KASSERT(mutex_owned(&ipfr_lock));
514
515 /*
516 * Compute median TTL of all fragments, and count frags
517 * with that TTL or lower (roughly half of all fragments).
518 */
519 median_ticks = ip_reass_ttl_decr(0);
520
521 /* Drop half. */
522 median_ticks = ip_reass_ttl_decr(median_ticks);
523 }
524
525 /*
526 * ip_reass_drain: drain off all datagram fragments. Do not acquire
527 * softnet_lock as can be called from hardware interrupt context.
528 */
529 void
ip_reass_drain(void)530 ip_reass_drain(void)
531 {
532
533 /*
534 * We may be called from a device's interrupt context. If
535 * the ipq is already busy, just bail out now.
536 */
537 if (mutex_tryenter(&ipfr_lock)) {
538 /*
539 * Drop half the total fragments now. If more mbufs are
540 * needed, we will be called again soon.
541 */
542 ip_reass_drophalf();
543 mutex_exit(&ipfr_lock);
544 }
545 }
546
547 /*
548 * ip_reass_slowtimo:
549 *
550 * If a timer expires on a reassembly queue, discard it.
551 */
552 void
ip_reass_slowtimo(void)553 ip_reass_slowtimo(void)
554 {
555 static u_int dropscanidx = 0;
556 u_int i, median_ttl;
557
558 mutex_enter(&ipfr_lock);
559
560 /* Age TTL of all fragments by 1 tick .*/
561 median_ttl = ip_reass_ttl_decr(1);
562
563 /* Make sure fragment limit is up-to-date. */
564 CHECK_NMBCLUSTER_PARAMS();
565
566 /* If we have too many fragments, drop the older half. */
567 if (ip_nfrags > ip_maxfrags) {
568 ip_reass_ttl_decr(median_ttl);
569 }
570
571 /*
572 * If we are over the maximum number of fragmented packets (due to
573 * the limit being lowered), drain off enough to get down to the
574 * new limit. Start draining from the reassembly hashqueue most
575 * recently drained.
576 */
577 if (ip_maxfragpackets < 0)
578 ;
579 else {
580 int wrapped = 0;
581
582 i = dropscanidx;
583 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
584 while (LIST_FIRST(&ip_frags[i]) != NULL) {
585 ip_freef(LIST_FIRST(&ip_frags[i]));
586 }
587 if (++i >= IPREASS_HASH_SIZE) {
588 i = 0;
589 }
590 /*
591 * Do not scan forever even if fragment counters are
592 * wrong: stop after scanning entire reassembly queue.
593 */
594 if (i == dropscanidx) {
595 wrapped = 1;
596 }
597 }
598 dropscanidx = i;
599 }
600 mutex_exit(&ipfr_lock);
601 }
602
603 /*
604 * ip_reass_packet: generic routine to perform IP reassembly.
605 *
606 * => Passed fragment should have IP_MF flag and/or offset set.
607 * => Fragment should not have other than IP_MF flags set.
608 *
609 * => Returns 0 on success or error otherwise.
610 * => On complete, m0 represents a constructed final packet.
611 */
612 int
ip_reass_packet(struct mbuf ** m0,struct ip * ip)613 ip_reass_packet(struct mbuf **m0, struct ip *ip)
614 {
615 const int hlen = ip->ip_hl << 2;
616 const int len = ntohs(ip->ip_len);
617 struct mbuf *m = *m0;
618 ipfr_queue_t *fp;
619 ipfr_qent_t *ipqe;
620 u_int hash, off, flen;
621 bool mff;
622
623 /*
624 * Prevent TCP blind data attacks by not allowing non-initial
625 * fragments to start at less than 68 bytes (minimal fragment
626 * size) and making sure the first fragment is at least 68
627 * bytes.
628 */
629 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
630 if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
631 IP_STATINC(IP_STAT_BADFRAGS);
632 return EINVAL;
633 }
634
635 /*
636 * Fragment length and MF flag. Make sure that fragments have
637 * a data length which is non-zero and multiple of 8 bytes.
638 */
639 flen = ntohs(ip->ip_len) - hlen;
640 mff = (ip->ip_off & htons(IP_MF)) != 0;
641 if (mff && (flen == 0 || (flen & 0x7) != 0)) {
642 IP_STATINC(IP_STAT_BADFRAGS);
643 return EINVAL;
644 }
645
646 /*
647 * Adjust total IP length to not reflect header and convert
648 * offset of this to bytes. XXX: clobbers struct ip.
649 */
650 ip->ip_len = htons(flen);
651 ip->ip_off = htons(off);
652
653 /* Look for queue of fragments of this datagram. */
654 mutex_enter(&ipfr_lock);
655 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
656 LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
657 if (ip->ip_id != fp->ipq_id)
658 continue;
659 if (!in_hosteq(ip->ip_src, fp->ipq_src))
660 continue;
661 if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
662 continue;
663 if (ip->ip_p != fp->ipq_p)
664 continue;
665 break;
666 }
667
668 /* Make sure that TOS matches previous fragments. */
669 if (fp && fp->ipq_tos != ip->ip_tos) {
670 IP_STATINC(IP_STAT_BADFRAGS);
671 mutex_exit(&ipfr_lock);
672 return EINVAL;
673 }
674
675 /*
676 * Create new entry and attempt to reassembly.
677 */
678 IP_STATINC(IP_STAT_FRAGMENTS);
679 ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
680 if (ipqe == NULL) {
681 IP_STATINC(IP_STAT_RCVMEMDROP);
682 mutex_exit(&ipfr_lock);
683 return ENOMEM;
684 }
685 ipqe->ipqe_mff = mff;
686 ipqe->ipqe_m = m;
687 ipqe->ipqe_ip = ip;
688
689 *m0 = ip_reass(ipqe, fp, hash);
690 if (*m0) {
691 /* Note that finally reassembled. */
692 IP_STATINC(IP_STAT_REASSEMBLED);
693 }
694 return 0;
695 }
696