1 /*
2  * This code implements the MD5 message-digest algorithm.
3  * The algorithm is due to Ron Rivest.  This code was
4  * written by Colin Plumb in 1993, no copyright is claimed.
5  * This code is in the public domain; do with it what you wish.
6  *
7  * Equivalent code is available from RSA Data Security, Inc.
8  * This code has been tested against that, and is equivalent,
9  * except that you don't need to include two pages of legalese
10  * with every copy.
11  *
12  * To compute the message digest of a chunk of bytes, declare an
13  * MD5Context structure, pass it to MD5Init, call MD5Update as
14  * needed on buffers full of bytes, and then call MD5Final, which
15  * will fill a supplied 16-byte array with the digest.
16  */
17 
18 /* This code was modified in 1997 by Jim Kingdon of Cyclic Software to
19    not require an integer type which is exactly 32 bits.  This work
20    draws on the changes for the same purpose by Tatu Ylonen
21    <ylo@cs.hut.fi> as part of SSH, but since I didn't actually use
22    that code, there is no copyright issue.  I hereby disclaim
23    copyright in any changes I have made; this code remains in the
24    public domain.  */
25 
26 #ifdef HAVE_CONFIG_H
27 #include <config.h>
28 #endif
29 
30 #include "defs.h"
31 #include "md5.h"
32 
33 /* Little-endian byte-swapping routines.  Note that these do not
34    depend on the size of datatypes such as uint32, nor do they require
35    us to detect the endianness of the machine we are running on.  It
36    is possible they should be macros for speed, but I would be
37    surprised if they were a performance bottleneck for MD5.  */
38 
39 static uint32
getu32(addr)40 getu32 (addr)
41      const unsigned char *addr;
42 {
43 	return (((((unsigned long)addr[3] << 8) | addr[2]) << 8)
44 		| addr[1]) << 8 | addr[0];
45 }
46 
47 static void
putu32(data,addr)48 putu32 (data, addr)
49      uint32 data;
50      unsigned char *addr;
51 {
52 	addr[0] = (unsigned char)data;
53 	addr[1] = (unsigned char)(data >> 8);
54 	addr[2] = (unsigned char)(data >> 16);
55 	addr[3] = (unsigned char)(data >> 24);
56 }
57 
58 /*
59  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
60  * initialization constants.
61  */
62 void
MD5Init(ctx)63 MD5Init(ctx)
64      struct MD5Context *ctx;
65 {
66 	ctx->buf[0] = 0x67452301;
67 	ctx->buf[1] = 0xefcdab89;
68 	ctx->buf[2] = 0x98badcfe;
69 	ctx->buf[3] = 0x10325476;
70 
71 	ctx->bits[0] = 0;
72 	ctx->bits[1] = 0;
73 }
74 
75 /*
76  * Update context to reflect the concatenation of another buffer full
77  * of bytes.
78  */
79 void
MD5Update(ctx,buf,len)80 MD5Update(ctx, buf, len)
81      struct MD5Context *ctx;
82      unsigned char const *buf;
83      unsigned len;
84 {
85 	uint32 t;
86 
87 	/* Update bitcount */
88 
89 	t = ctx->bits[0];
90 	if ((ctx->bits[0] = (t + ((uint32)len << 3)) & 0xffffffff) < t)
91 		ctx->bits[1]++; /* Carry from low to high */
92 	ctx->bits[1] += len >> 29;
93 
94 	t = (t >> 3) & 0x3f;    /* Bytes already in shsInfo->data */
95 
96 	/* Handle any leading odd-sized chunks */
97 
98 	if ( t ) {
99 		unsigned char *p = ctx->in + t;
100 
101 		t = 64-t;
102 		if (len < t) {
103 			memcpy(p, buf, len);
104 			return;
105 		}
106 		memcpy(p, buf, t);
107 		MD5Transform(ctx->buf, ctx->in);
108 		buf += t;
109 		len -= t;
110 	}
111 
112 	/* Process data in 64-byte chunks */
113 
114 	while (len >= 64) {
115 		memcpy(ctx->in, buf, 64);
116 		MD5Transform(ctx->buf, ctx->in);
117 		buf += 64;
118 		len -= 64;
119 	}
120 
121 	/* Handle any remaining bytes of data. */
122 
123 	memcpy(ctx->in, buf, len);
124 }
125 
126 /*
127  * Final wrapup - pad to 64-byte boundary with the bit pattern
128  * 1 0* (64-bit count of bits processed, MSB-first)
129  */
130 void
MD5Final(digest,ctx)131 MD5Final(digest, ctx)
132      unsigned char digest[16];
133      struct MD5Context *ctx;
134 {
135 	unsigned count;
136 	unsigned char *p;
137 
138 	/* Compute number of bytes mod 64 */
139 	count = (ctx->bits[0] >> 3) & 0x3F;
140 
141 	/* Set the first char of padding to 0x80.  This is safe since there is
142 	   always at least one byte free */
143 	p = ctx->in + count;
144 	*p++ = 0x80;
145 
146 	/* Bytes of padding needed to make 64 bytes */
147 	count = 64 - 1 - count;
148 
149 	/* Pad out to 56 mod 64 */
150 	if (count < 8) {
151 		/* Two lots of padding:  Pad the first block to 64 bytes */
152 		memset(p, 0, count);
153 		MD5Transform(ctx->buf, ctx->in);
154 
155 		/* Now fill the next block with 56 bytes */
156 		memset(ctx->in, 0, 56);
157 	} else {
158 		/* Pad block to 56 bytes */
159 		memset(p, 0, count-8);
160 	}
161 
162 	/* Append length in bits and transform */
163 	putu32(ctx->bits[0], ctx->in + 56);
164 	putu32(ctx->bits[1], ctx->in + 60);
165 
166 	MD5Transform(ctx->buf, ctx->in);
167 	putu32(ctx->buf[0], digest);
168 	putu32(ctx->buf[1], digest + 4);
169 	putu32(ctx->buf[2], digest + 8);
170 	putu32(ctx->buf[3], digest + 12);
171 	memset(ctx, 0, sizeof(ctx));    /* In case it's sensitive */
172 }
173 
174 #ifndef ASM_MD5
175 
176 /* The four core functions - F1 is optimized somewhat */
177 
178 /* #define F1(x, y, z) (x & y | ~x & z) */
179 #define F1(x, y, z) (z ^ (x & (y ^ z)))
180 #define F2(x, y, z) F1(z, x, y)
181 #define F3(x, y, z) (x ^ y ^ z)
182 #define F4(x, y, z) (y ^ (x | ~z))
183 
184 /* This is the central step in the MD5 algorithm. */
185 #define MD5STEP(f, w, x, y, z, data, s) \
186 	( w += f(x, y, z) + data, w &= 0xffffffff, w = w<<s | w>>(32-s), w += x )
187 
188 /*
189  * The core of the MD5 algorithm, this alters an existing MD5 hash to
190  * reflect the addition of 16 longwords of new data.  MD5Update blocks
191  * the data and converts bytes into longwords for this routine.
192  */
193 void
MD5Transform(buf,inraw)194 MD5Transform(buf, inraw)
195      uint32 buf[4];
196      const unsigned char inraw[64];
197 {
198 	register uint32 a, b, c, d;
199 	uint32 in[16];
200 	int i;
201 
202 	for (i = 0; i < 16; ++i)
203 		in[i] = getu32 (inraw + 4 * i);
204 
205 	a = buf[0];
206 	b = buf[1];
207 	c = buf[2];
208 	d = buf[3];
209 
210 	MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478,  7);
211 	MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
212 	MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
213 	MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
214 	MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf,  7);
215 	MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
216 	MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
217 	MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
218 	MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8,  7);
219 	MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
220 	MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
221 	MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
222 	MD5STEP(F1, a, b, c, d, in[12]+0x6b901122,  7);
223 	MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
224 	MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
225 	MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
226 
227 	MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562,  5);
228 	MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340,  9);
229 	MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
230 	MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
231 	MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d,  5);
232 	MD5STEP(F2, d, a, b, c, in[10]+0x02441453,  9);
233 	MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
234 	MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
235 	MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6,  5);
236 	MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6,  9);
237 	MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
238 	MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
239 	MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905,  5);
240 	MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8,  9);
241 	MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
242 	MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
243 
244 	MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942,  4);
245 	MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
246 	MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
247 	MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
248 	MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44,  4);
249 	MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
250 	MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
251 	MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
252 	MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6,  4);
253 	MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
254 	MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
255 	MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
256 	MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039,  4);
257 	MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
258 	MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
259 	MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
260 
261 	MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244,  6);
262 	MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
263 	MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
264 	MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
265 	MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3,  6);
266 	MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
267 	MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
268 	MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
269 	MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f,  6);
270 	MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
271 	MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
272 	MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
273 	MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82,  6);
274 	MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
275 	MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
276 	MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
277 
278 	buf[0] += a;
279 	buf[1] += b;
280 	buf[2] += c;
281 	buf[3] += d;
282 }
283 #endif
284 
285 #ifdef TEST
286 /* Simple test program.  Can use it to manually run the tests from
287    RFC1321 for example.  */
288 #include <stdio.h>
289 
290 int
main(int argc,char ** argv)291 main (int argc, char **argv)
292 {
293 	struct MD5Context context;
294 	unsigned char checksum[16];
295 	int i;
296 	int j;
297 
298 	if (argc < 2)
299 	{
300 		fprintf (stderr, "usage: %s string-to-hash\n", argv[0]);
301 		exit (1);
302 	}
303 	for (j = 1; j < argc; ++j)
304 	{
305 		printf ("MD5 (\"%s\") = ", argv[j]);
306 		MD5Init (&context);
307 		MD5Update (&context, argv[j], strlen (argv[j]));
308 		MD5Final (checksum, &context);
309 		for (i = 0; i < 16; i++)
310 		{
311 			printf ("%02x", (unsigned int) checksum[i]);
312 		}
313 		printf ("\n");
314 	}
315 	return 0;
316 }
317 #endif /* TEST */
318