1|// Low-level VM code for PowerPC CPUs.
2|// Bytecode interpreter, fast functions and helper functions.
3|// Copyright (C) 2005-2014 Mike Pall. See Copyright Notice in luajit.h
4|
5|.arch ppc
6|.section code_op, code_sub
7|
8|.actionlist build_actionlist
9|.globals GLOB_
10|.globalnames globnames
11|.externnames extnames
12|
13|// Note: The ragged indentation of the instructions is intentional.
14|//       The starting columns indicate data dependencies.
15|
16|//-----------------------------------------------------------------------
17|
18|// DynASM defines used by the PPC port:
19|//
20|// P64     64 bit pointers (only for GPR64 testing).
21|//         Note: a full PPC64 _LP64 port is not planned.
22|// GPR64   64 bit registers (but possibly 32 bit pointers, e.g. PS3).
23|//         Affects reg saves, stack layout, carry/overflow/dot flags etc.
24|// FRAME32 Use 32 bit frame layout, even with GPR64 (Xbox 360).
25|// TOC     Need table of contents (64 bit or 32 bit variant, e.g. PS3).
26|//         Function pointers are really a struct: code, TOC, env (optional).
27|// TOCENV  Function pointers have an environment pointer, too (not on PS3).
28|// PPE     Power Processor Element of Cell (PS3) or Xenon (Xbox 360).
29|//         Must avoid (slow) micro-coded instructions.
30|
31|.if P64
32|.define TOC, 1
33|.define TOCENV, 1
34|.macro lpx, a, b, c; ldx a, b, c; .endmacro
35|.macro lp, a, b; ld a, b; .endmacro
36|.macro stp, a, b; std a, b; .endmacro
37|.define decode_OPP, decode_OP8
38|.if FFI
39|// Missing: Calling conventions, 64 bit regs, TOC.
40|.error lib_ffi not yet implemented for PPC64
41|.endif
42|.else
43|.macro lpx, a, b, c; lwzx a, b, c; .endmacro
44|.macro lp, a, b; lwz a, b; .endmacro
45|.macro stp, a, b; stw a, b; .endmacro
46|.define decode_OPP, decode_OP4
47|.endif
48|
49|// Convenience macros for TOC handling.
50|.if TOC
51|// Linker needs a TOC patch area for every external call relocation.
52|.macro blex, target; bl extern target@plt; nop; .endmacro
53|.macro .toc, a, b; a, b; .endmacro
54|.if P64
55|.define TOC_OFS,	 8
56|.define ENV_OFS,	16
57|.else
58|.define TOC_OFS,	4
59|.define ENV_OFS,	8
60|.endif
61|.else  // No TOC.
62|.macro blex, target; bl extern target@plt; .endmacro
63|.macro .toc, a, b; .endmacro
64|.endif
65|.macro .tocenv, a, b; .if TOCENV; a, b; .endif; .endmacro
66|
67|.macro .gpr64, a, b; .if GPR64; a, b; .endif; .endmacro
68|
69|.macro andix., y, a, i
70|.if PPE
71|  rlwinm y, a, 0, 31-lj_fls(i), 31-lj_ffs(i)
72|  cmpwi y, 0
73|.else
74|  andi. y, a, i
75|.endif
76|.endmacro
77|
78|//-----------------------------------------------------------------------
79|
80|// Fixed register assignments for the interpreter.
81|// Don't use: r1 = sp, r2 and r13 = reserved (TOC, TLS or SDATA)
82|
83|// The following must be C callee-save (but BASE is often refetched).
84|.define BASE,		r14	// Base of current Lua stack frame.
85|.define KBASE,		r15	// Constants of current Lua function.
86|.define PC,		r16	// Next PC.
87|.define DISPATCH,	r17	// Opcode dispatch table.
88|.define LREG,		r18	// Register holding lua_State (also in SAVE_L).
89|.define MULTRES,	r19	// Size of multi-result: (nresults+1)*8.
90|.define JGL,		r31	// On-trace: global_State + 32768.
91|
92|// Constants for type-comparisons, stores and conversions. C callee-save.
93|.define TISNUM,	r22
94|.define TISNIL,	r23
95|.define ZERO,		r24
96|.define TOBIT,		f30	// 2^52 + 2^51.
97|.define TONUM,		f31	// 2^52 + 2^51 + 2^31.
98|
99|// The following temporaries are not saved across C calls, except for RA.
100|.define RA,		r20	// Callee-save.
101|.define RB,		r10
102|.define RC,		r11
103|.define RD,		r12
104|.define INS,		r7	// Overlaps CARG5.
105|
106|.define TMP0,		r0
107|.define TMP1,		r8
108|.define TMP2,		r9
109|.define TMP3,		r6	// Overlaps CARG4.
110|
111|// Saved temporaries.
112|.define SAVE0,		r21
113|
114|// Calling conventions.
115|.define CARG1,		r3
116|.define CARG2,		r4
117|.define CARG3,		r5
118|.define CARG4,		r6	// Overlaps TMP3.
119|.define CARG5,		r7	// Overlaps INS.
120|
121|.define FARG1,		f1
122|.define FARG2,		f2
123|
124|.define CRET1,		r3
125|.define CRET2,		r4
126|
127|.define TOCREG,	r2	// TOC register (only used by C code).
128|.define ENVREG,	r11	// Environment pointer (nested C functions).
129|
130|// Stack layout while in interpreter. Must match with lj_frame.h.
131|.if GPR64
132|.if FRAME32
133|
134|//			456(sp) // \ 32/64 bit C frame info
135|.define TONUM_LO,	452(sp) // |
136|.define TONUM_HI,	448(sp) // |
137|.define TMPD_LO,	444(sp) // |
138|.define TMPD_HI,	440(sp) // |
139|.define SAVE_CR,	432(sp) // | 64 bit CR save.
140|.define SAVE_ERRF,	424(sp) //  > Parameter save area.
141|.define SAVE_NRES,	420(sp) // |
142|.define SAVE_L,	416(sp) // |
143|.define SAVE_PC,	412(sp) // |
144|.define SAVE_MULTRES,	408(sp) // |
145|.define SAVE_CFRAME,	400(sp) // / 64 bit C frame chain.
146|//			392(sp) // Reserved.
147|.define CFRAME_SPACE,	384     // Delta for sp.
148|// Back chain for sp:	384(sp) <-- sp entering interpreter
149|.define SAVE_LR,	376(sp) // 32 bit LR stored in hi-part.
150|.define SAVE_GPR_,	232     // .. 232+18*8: 64 bit GPR saves.
151|.define SAVE_FPR_,	88      // .. 88+18*8: 64 bit FPR saves.
152|//			80(sp) // Needed for 16 byte stack frame alignment.
153|//			16(sp)  // Callee parameter save area (ABI mandated).
154|//			8(sp)   // Reserved
155|// Back chain for sp:	0(sp)   <-- sp while in interpreter
156|// 32 bit sp stored in hi-part of 0(sp).
157|
158|.define TMPD_BLO,	447(sp)
159|.define TMPD,		TMPD_HI
160|.define TONUM_D,	TONUM_HI
161|
162|.else
163|
164|//			508(sp) // \ 32 bit C frame info.
165|.define SAVE_ERRF,	472(sp) // |
166|.define SAVE_NRES,	468(sp) // |
167|.define SAVE_L,	464(sp) //  > Parameter save area.
168|.define SAVE_PC,	460(sp) // |
169|.define SAVE_MULTRES,	456(sp) // |
170|.define SAVE_CFRAME,	448(sp) // / 64 bit C frame chain.
171|.define SAVE_LR,	416(sp)
172|.define CFRAME_SPACE,	400     // Delta for sp.
173|// Back chain for sp:	400(sp) <-- sp entering interpreter
174|.define SAVE_FPR_,	256     // .. 256+18*8: 64 bit FPR saves.
175|.define SAVE_GPR_,	112     // .. 112+18*8: 64 bit GPR saves.
176|//			48(sp)  // Callee parameter save area (ABI mandated).
177|.define SAVE_TOC,	40(sp)  // TOC save area.
178|.define TMPD_LO,	36(sp)  // \ Link editor temp (ABI mandated).
179|.define TMPD_HI,	32(sp)  // /
180|.define TONUM_LO,	28(sp)  // \ Compiler temp (ABI mandated).
181|.define TONUM_HI,	24(sp)  // /
182|// Next frame lr:	16(sp)
183|.define SAVE_CR,	8(sp)  // 64 bit CR save.
184|// Back chain for sp:	0(sp)	<-- sp while in interpreter
185|
186|.define TMPD_BLO,	39(sp)
187|.define TMPD,		TMPD_HI
188|.define TONUM_D,	TONUM_HI
189|
190|.endif
191|.else
192|
193|.define SAVE_LR,	276(sp)
194|.define CFRAME_SPACE,	272     // Delta for sp.
195|// Back chain for sp:	272(sp) <-- sp entering interpreter
196|.define SAVE_FPR_,	128     // .. 128+18*8: 64 bit FPR saves.
197|.define SAVE_GPR_,	56      // .. 56+18*4: 32 bit GPR saves.
198|.define SAVE_CR,	52(sp)  // 32 bit CR save.
199|.define SAVE_ERRF,	48(sp)  // 32 bit C frame info.
200|.define SAVE_NRES,	44(sp)
201|.define SAVE_CFRAME,	40(sp)
202|.define SAVE_L,	36(sp)
203|.define SAVE_PC,	32(sp)
204|.define SAVE_MULTRES,	28(sp)
205|.define UNUSED1,	24(sp)
206|.define TMPD_LO,	20(sp)
207|.define TMPD_HI,	16(sp)
208|.define TONUM_LO,	12(sp)
209|.define TONUM_HI,	8(sp)
210|// Next frame lr:	4(sp)
211|// Back chain for sp:	0(sp)	<-- sp while in interpreter
212|
213|.define TMPD_BLO,	23(sp)
214|.define TMPD,		TMPD_HI
215|.define TONUM_D,	TONUM_HI
216|
217|.endif
218|
219|.macro save_, reg
220|.if GPR64
221|  std r..reg, SAVE_GPR_+(reg-14)*8(sp)
222|.else
223|  stw r..reg, SAVE_GPR_+(reg-14)*4(sp)
224|.endif
225|  stfd f..reg, SAVE_FPR_+(reg-14)*8(sp)
226|.endmacro
227|.macro rest_, reg
228|.if GPR64
229|  ld r..reg, SAVE_GPR_+(reg-14)*8(sp)
230|.else
231|  lwz r..reg, SAVE_GPR_+(reg-14)*4(sp)
232|.endif
233|  lfd f..reg, SAVE_FPR_+(reg-14)*8(sp)
234|.endmacro
235|
236|.macro saveregs
237|.if GPR64 and not FRAME32
238|  stdu sp, -CFRAME_SPACE(sp)
239|.else
240|  stwu sp, -CFRAME_SPACE(sp)
241|.endif
242|  save_ 14; save_ 15; save_ 16
243|  mflr r0
244|  save_ 17; save_ 18; save_ 19; save_ 20; save_ 21; save_ 22
245|.if GPR64 and not FRAME32
246|  std r0, SAVE_LR
247|.else
248|  stw r0, SAVE_LR
249|.endif
250|  save_ 23; save_ 24; save_ 25
251|  mfcr r0
252|  save_ 26; save_ 27; save_ 28; save_ 29; save_ 30; save_ 31
253|.if GPR64
254|  std r0, SAVE_CR
255|.else
256|  stw r0, SAVE_CR
257|.endif
258|  .toc std TOCREG, SAVE_TOC
259|.endmacro
260|
261|.macro restoreregs
262|.if GPR64 and not FRAME32
263|  ld r0, SAVE_LR
264|.else
265|  lwz r0, SAVE_LR
266|.endif
267|.if GPR64
268|  ld r12, SAVE_CR
269|.else
270|  lwz r12, SAVE_CR
271|.endif
272|  rest_ 14; rest_ 15; rest_ 16; rest_ 17; rest_ 18; rest_ 19
273|  mtlr r0;
274|.if PPE; mtocrf 0x20, r12; .else; mtcrf 0x38, r12; .endif
275|  rest_ 20; rest_ 21; rest_ 22; rest_ 23; rest_ 24; rest_ 25
276|.if PPE; mtocrf 0x10, r12; .endif
277|  rest_ 26; rest_ 27; rest_ 28; rest_ 29; rest_ 30; rest_ 31
278|.if PPE; mtocrf 0x08, r12; .endif
279|  addi sp, sp, CFRAME_SPACE
280|.endmacro
281|
282|// Type definitions. Some of these are only used for documentation.
283|.type L,		lua_State,	LREG
284|.type GL,		global_State
285|.type TVALUE,		TValue
286|.type GCOBJ,		GCobj
287|.type STR,		GCstr
288|.type TAB,		GCtab
289|.type LFUNC,		GCfuncL
290|.type CFUNC,		GCfuncC
291|.type PROTO,		GCproto
292|.type UPVAL,		GCupval
293|.type NODE,		Node
294|.type NARGS8,		int
295|.type TRACE,		GCtrace
296|
297|//-----------------------------------------------------------------------
298|
299|// These basic macros should really be part of DynASM.
300|.macro srwi, rx, ry, n; rlwinm rx, ry, 32-n, n, 31; .endmacro
301|.macro slwi, rx, ry, n; rlwinm rx, ry, n, 0, 31-n; .endmacro
302|.macro rotlwi, rx, ry, n; rlwinm rx, ry, n, 0, 31; .endmacro
303|.macro rotlw, rx, ry, rn; rlwnm rx, ry, rn, 0, 31; .endmacro
304|.macro subi, rx, ry, i; addi rx, ry, -i; .endmacro
305|
306|// Trap for not-yet-implemented parts.
307|.macro NYI; tw 4, sp, sp; .endmacro
308|
309|// int/FP conversions.
310|.macro tonum_i, freg, reg
311|  xoris reg, reg, 0x8000
312|  stw reg, TONUM_LO
313|  lfd freg, TONUM_D
314|  fsub freg, freg, TONUM
315|.endmacro
316|
317|.macro tonum_u, freg, reg
318|  stw reg, TONUM_LO
319|  lfd freg, TONUM_D
320|  fsub freg, freg, TOBIT
321|.endmacro
322|
323|.macro toint, reg, freg, tmpfreg
324|  fctiwz tmpfreg, freg
325|  stfd tmpfreg, TMPD
326|  lwz reg, TMPD_LO
327|.endmacro
328|
329|.macro toint, reg, freg
330|  toint reg, freg, freg
331|.endmacro
332|
333|//-----------------------------------------------------------------------
334|
335|// Access to frame relative to BASE.
336|.define FRAME_PC,	-8
337|.define FRAME_FUNC,	-4
338|
339|// Instruction decode.
340|.macro decode_OP4, dst, ins; rlwinm dst, ins, 2, 22, 29; .endmacro
341|.macro decode_OP8, dst, ins; rlwinm dst, ins, 3, 21, 28; .endmacro
342|.macro decode_RA8, dst, ins; rlwinm dst, ins, 27, 21, 28; .endmacro
343|.macro decode_RB8, dst, ins; rlwinm dst, ins, 11, 21, 28; .endmacro
344|.macro decode_RC8, dst, ins; rlwinm dst, ins, 19, 21, 28; .endmacro
345|.macro decode_RD8, dst, ins; rlwinm dst, ins, 19, 13, 28; .endmacro
346|
347|.macro decode_OP1, dst, ins; rlwinm dst, ins, 0, 24, 31; .endmacro
348|.macro decode_RD4, dst, ins; rlwinm dst, ins, 18, 14, 29; .endmacro
349|
350|// Instruction fetch.
351|.macro ins_NEXT1
352|  lwz INS, 0(PC)
353|   addi PC, PC, 4
354|.endmacro
355|// Instruction decode+dispatch. Note: optimized for e300!
356|.macro ins_NEXT2
357|  decode_OPP TMP1, INS
358|  lpx TMP0, DISPATCH, TMP1
359|  mtctr TMP0
360|   decode_RB8 RB, INS
361|   decode_RD8 RD, INS
362|   decode_RA8 RA, INS
363|   decode_RC8 RC, INS
364|  bctr
365|.endmacro
366|.macro ins_NEXT
367|  ins_NEXT1
368|  ins_NEXT2
369|.endmacro
370|
371|// Instruction footer.
372|.if 1
373|  // Replicated dispatch. Less unpredictable branches, but higher I-Cache use.
374|  .define ins_next, ins_NEXT
375|  .define ins_next_, ins_NEXT
376|  .define ins_next1, ins_NEXT1
377|  .define ins_next2, ins_NEXT2
378|.else
379|  // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch.
380|  // Affects only certain kinds of benchmarks (and only with -j off).
381|  .macro ins_next
382|    b ->ins_next
383|  .endmacro
384|  .macro ins_next1
385|  .endmacro
386|  .macro ins_next2
387|    b ->ins_next
388|  .endmacro
389|  .macro ins_next_
390|  ->ins_next:
391|    ins_NEXT
392|  .endmacro
393|.endif
394|
395|// Call decode and dispatch.
396|.macro ins_callt
397|  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
398|  lwz PC, LFUNC:RB->pc
399|  lwz INS, 0(PC)
400|   addi PC, PC, 4
401|  decode_OPP TMP1, INS
402|   decode_RA8 RA, INS
403|  lpx TMP0, DISPATCH, TMP1
404|   add RA, RA, BASE
405|  mtctr TMP0
406|  bctr
407|.endmacro
408|
409|.macro ins_call
410|  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC
411|  stw PC, FRAME_PC(BASE)
412|  ins_callt
413|.endmacro
414|
415|//-----------------------------------------------------------------------
416|
417|// Macros to test operand types.
418|.macro checknum, reg; cmplw reg, TISNUM; .endmacro
419|.macro checknum, cr, reg; cmplw cr, reg, TISNUM; .endmacro
420|.macro checkstr, reg; cmpwi reg, LJ_TSTR; .endmacro
421|.macro checktab, reg; cmpwi reg, LJ_TTAB; .endmacro
422|.macro checkfunc, reg; cmpwi reg, LJ_TFUNC; .endmacro
423|.macro checknil, reg; cmpwi reg, LJ_TNIL; .endmacro
424|
425|.macro branch_RD
426|  srwi TMP0, RD, 1
427|  addis PC, PC, -(BCBIAS_J*4 >> 16)
428|  add PC, PC, TMP0
429|.endmacro
430|
431|// Assumes DISPATCH is relative to GL.
432#define DISPATCH_GL(field)	(GG_DISP2G + (int)offsetof(global_State, field))
433#define DISPATCH_J(field)	(GG_DISP2J + (int)offsetof(jit_State, field))
434|
435#define PC2PROTO(field)  ((int)offsetof(GCproto, field)-(int)sizeof(GCproto))
436|
437|.macro hotcheck, delta, target
438|  rlwinm TMP1, PC, 31, 25, 30
439|  addi TMP1, TMP1, GG_DISP2HOT
440|  lhzx TMP2, DISPATCH, TMP1
441|  addic. TMP2, TMP2, -delta
442|  sthx TMP2, DISPATCH, TMP1
443|  blt target
444|.endmacro
445|
446|.macro hotloop
447|  hotcheck HOTCOUNT_LOOP, ->vm_hotloop
448|.endmacro
449|
450|.macro hotcall
451|  hotcheck HOTCOUNT_CALL, ->vm_hotcall
452|.endmacro
453|
454|// Set current VM state. Uses TMP0.
455|.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro
456|.macro st_vmstate; stw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro
457|
458|// Move table write barrier back. Overwrites mark and tmp.
459|.macro barrierback, tab, mark, tmp
460|  lwz tmp, DISPATCH_GL(gc.grayagain)(DISPATCH)
461|  // Assumes LJ_GC_BLACK is 0x04.
462|   rlwinm mark, mark, 0, 30, 28		// black2gray(tab)
463|  stw tab, DISPATCH_GL(gc.grayagain)(DISPATCH)
464|   stb mark, tab->marked
465|  stw tmp, tab->gclist
466|.endmacro
467|
468|//-----------------------------------------------------------------------
469
470/* Generate subroutines used by opcodes and other parts of the VM. */
471/* The .code_sub section should be last to help static branch prediction. */
472static void build_subroutines(BuildCtx *ctx)
473{
474  |.code_sub
475  |
476  |//-----------------------------------------------------------------------
477  |//-- Return handling ----------------------------------------------------
478  |//-----------------------------------------------------------------------
479  |
480  |->vm_returnp:
481  |  // See vm_return. Also: TMP2 = previous base.
482  |  andix. TMP0, PC, FRAME_P
483  |   li TMP1, LJ_TTRUE
484  |  beq ->cont_dispatch
485  |
486  |  // Return from pcall or xpcall fast func.
487  |  lwz PC, FRAME_PC(TMP2)		// Fetch PC of previous frame.
488  |  mr BASE, TMP2			// Restore caller base.
489  |  // Prepending may overwrite the pcall frame, so do it at the end.
490  |   stwu TMP1, FRAME_PC(RA)		// Prepend true to results.
491  |
492  |->vm_returnc:
493  |  addi RD, RD, 8			// RD = (nresults+1)*8.
494  |   andix. TMP0, PC, FRAME_TYPE
495  |  cmpwi cr1, RD, 0
496  |  li CRET1, LUA_YIELD
497  |  beq cr1, ->vm_unwind_c_eh
498  |  mr MULTRES, RD
499  |   beq ->BC_RET_Z			// Handle regular return to Lua.
500  |
501  |->vm_return:
502  |  // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return
503  |  // TMP0 = PC & FRAME_TYPE
504  |  cmpwi TMP0, FRAME_C
505  |   rlwinm TMP2, PC, 0, 0, 28
506  |    li_vmstate C
507  |   sub TMP2, BASE, TMP2		// TMP2 = previous base.
508  |  bney ->vm_returnp
509  |
510  |  addic. TMP1, RD, -8
511  |   stp TMP2, L->base
512  |   lwz TMP2, SAVE_NRES
513  |    subi BASE, BASE, 8
514  |    st_vmstate
515  |   slwi TMP2, TMP2, 3
516  |  beq >2
517  |1:
518  |  addic. TMP1, TMP1, -8
519  |   lfd f0, 0(RA)
520  |    addi RA, RA, 8
521  |   stfd f0, 0(BASE)
522  |    addi BASE, BASE, 8
523  |  bney <1
524  |
525  |2:
526  |  cmpw TMP2, RD			// More/less results wanted?
527  |  bne >6
528  |3:
529  |  stp BASE, L->top			// Store new top.
530  |
531  |->vm_leave_cp:
532  |  lp TMP0, SAVE_CFRAME		// Restore previous C frame.
533  |   li CRET1, 0			// Ok return status for vm_pcall.
534  |  stp TMP0, L->cframe
535  |
536  |->vm_leave_unw:
537  |  restoreregs
538  |  blr
539  |
540  |6:
541  |  ble >7				// Less results wanted?
542  |  // More results wanted. Check stack size and fill up results with nil.
543  |  lwz TMP1, L->maxstack
544  |  cmplw BASE, TMP1
545  |  bge >8
546  |  stw TISNIL, 0(BASE)
547  |  addi RD, RD, 8
548  |  addi BASE, BASE, 8
549  |  b <2
550  |
551  |7:  // Less results wanted.
552  |  subfic TMP3, TMP2, 0		// LUA_MULTRET+1 case?
553  |   sub TMP0, RD, TMP2
554  |  subfe TMP1, TMP1, TMP1		// TMP1 = TMP2 == 0 ? 0 : -1
555  |   and TMP0, TMP0, TMP1
556  |  sub BASE, BASE, TMP0		// Either keep top or shrink it.
557  |  b <3
558  |
559  |8:  // Corner case: need to grow stack for filling up results.
560  |  // This can happen if:
561  |  // - A C function grows the stack (a lot).
562  |  // - The GC shrinks the stack in between.
563  |  // - A return back from a lua_call() with (high) nresults adjustment.
564  |  stp BASE, L->top			// Save current top held in BASE (yes).
565  |   mr SAVE0, RD
566  |  mr CARG2, TMP2
567  |  mr CARG1, L
568  |  bl extern lj_state_growstack	// (lua_State *L, int n)
569  |    lwz TMP2, SAVE_NRES
570  |   mr RD, SAVE0
571  |    slwi TMP2, TMP2, 3
572  |  lp BASE, L->top			// Need the (realloced) L->top in BASE.
573  |  b <2
574  |
575  |->vm_unwind_c:			// Unwind C stack, return from vm_pcall.
576  |  // (void *cframe, int errcode)
577  |  mr sp, CARG1
578  |  mr CRET1, CARG2
579  |->vm_unwind_c_eh:			// Landing pad for external unwinder.
580  |  lwz L, SAVE_L
581  |  .toc ld TOCREG, SAVE_TOC
582  |   li TMP0, ~LJ_VMST_C
583  |  lwz GL:TMP1, L->glref
584  |   stw TMP0, GL:TMP1->vmstate
585  |  b ->vm_leave_unw
586  |
587  |->vm_unwind_ff:			// Unwind C stack, return from ff pcall.
588  |  // (void *cframe)
589  |.if GPR64
590  |  rldicr sp, CARG1, 0, 61
591  |.else
592  |  rlwinm sp, CARG1, 0, 0, 29
593  |.endif
594  |->vm_unwind_ff_eh:			// Landing pad for external unwinder.
595  |  lwz L, SAVE_L
596  |  .toc ld TOCREG, SAVE_TOC
597  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
598  |  lp BASE, L->base
599  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
600  |   lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
601  |     li ZERO, 0
602  |     stw TMP3, TMPD
603  |  li TMP1, LJ_TFALSE
604  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
605  |     li TISNIL, LJ_TNIL
606  |    li_vmstate INTERP
607  |     lfs TOBIT, TMPD
608  |  lwz PC, FRAME_PC(BASE)		// Fetch PC of previous frame.
609  |  la RA, -8(BASE)			// Results start at BASE-8.
610  |     stw TMP3, TMPD
611  |   addi DISPATCH, DISPATCH, GG_G2DISP
612  |  stw TMP1, 0(RA)			// Prepend false to error message.
613  |  li RD, 16				// 2 results: false + error message.
614  |    st_vmstate
615  |     lfs TONUM, TMPD
616  |  b ->vm_returnc
617  |
618  |//-----------------------------------------------------------------------
619  |//-- Grow stack for calls -----------------------------------------------
620  |//-----------------------------------------------------------------------
621  |
622  |->vm_growstack_c:			// Grow stack for C function.
623  |  li CARG2, LUA_MINSTACK
624  |  b >2
625  |
626  |->vm_growstack_l:			// Grow stack for Lua function.
627  |  // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC
628  |  add RC, BASE, RC
629  |   sub RA, RA, BASE
630  |  stp BASE, L->base
631  |   addi PC, PC, 4			// Must point after first instruction.
632  |  stp RC, L->top
633  |   srwi CARG2, RA, 3
634  |2:
635  |  // L->base = new base, L->top = top
636  |   stw PC, SAVE_PC
637  |  mr CARG1, L
638  |  bl extern lj_state_growstack	// (lua_State *L, int n)
639  |  lp BASE, L->base
640  |  lp RC, L->top
641  |  lwz LFUNC:RB, FRAME_FUNC(BASE)
642  |  sub RC, RC, BASE
643  |  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
644  |  ins_callt				// Just retry the call.
645  |
646  |//-----------------------------------------------------------------------
647  |//-- Entry points into the assembler VM ---------------------------------
648  |//-----------------------------------------------------------------------
649  |
650  |->vm_resume:				// Setup C frame and resume thread.
651  |  // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0)
652  |  saveregs
653  |  mr L, CARG1
654  |    lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
655  |  mr BASE, CARG2
656  |    lbz TMP1, L->status
657  |   stw L, SAVE_L
658  |  li PC, FRAME_CP
659  |  addi TMP0, sp, CFRAME_RESUME
660  |    addi DISPATCH, DISPATCH, GG_G2DISP
661  |   stw CARG3, SAVE_NRES
662  |    cmplwi TMP1, 0
663  |   stw CARG3, SAVE_ERRF
664  |  stp TMP0, L->cframe
665  |   stp CARG3, SAVE_CFRAME
666  |   stw CARG1, SAVE_PC		// Any value outside of bytecode is ok.
667  |    beq >3
668  |
669  |  // Resume after yield (like a return).
670  |  mr RA, BASE
671  |   lp BASE, L->base
672  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
673  |   lp TMP1, L->top
674  |  lwz PC, FRAME_PC(BASE)
675  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
676  |    stb CARG3, L->status
677  |     stw TMP3, TMPD
678  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
679  |     lfs TOBIT, TMPD
680  |   sub RD, TMP1, BASE
681  |     stw TMP3, TMPD
682  |     lus TMP0, 0x4338		// Hiword of 2^52 + 2^51 (double)
683  |   addi RD, RD, 8
684  |     stw TMP0, TONUM_HI
685  |    li_vmstate INTERP
686  |     li ZERO, 0
687  |    st_vmstate
688  |  andix. TMP0, PC, FRAME_TYPE
689  |   mr MULTRES, RD
690  |     lfs TONUM, TMPD
691  |     li TISNIL, LJ_TNIL
692  |  beq ->BC_RET_Z
693  |  b ->vm_return
694  |
695  |->vm_pcall:				// Setup protected C frame and enter VM.
696  |  // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef)
697  |  saveregs
698  |  li PC, FRAME_CP
699  |  stw CARG4, SAVE_ERRF
700  |  b >1
701  |
702  |->vm_call:				// Setup C frame and enter VM.
703  |  // (lua_State *L, TValue *base, int nres1)
704  |  saveregs
705  |  li PC, FRAME_C
706  |
707  |1:  // Entry point for vm_pcall above (PC = ftype).
708  |  lp TMP1, L:CARG1->cframe
709  |   stw CARG3, SAVE_NRES
710  |    mr L, CARG1
711  |   stw CARG1, SAVE_L
712  |    mr BASE, CARG2
713  |  stp sp, L->cframe			// Add our C frame to cframe chain.
714  |    lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
715  |   stw CARG1, SAVE_PC		// Any value outside of bytecode is ok.
716  |  stp TMP1, SAVE_CFRAME
717  |    addi DISPATCH, DISPATCH, GG_G2DISP
718  |
719  |3:  // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype).
720  |  lp TMP2, L->base			// TMP2 = old base (used in vmeta_call).
721  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
722  |   lp TMP1, L->top
723  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
724  |  add PC, PC, BASE
725  |     stw TMP3, TMPD
726  |     li ZERO, 0
727  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
728  |     lfs TOBIT, TMPD
729  |  sub PC, PC, TMP2			// PC = frame delta + frame type
730  |     stw TMP3, TMPD
731  |     lus TMP0, 0x4338		// Hiword of 2^52 + 2^51 (double)
732  |   sub NARGS8:RC, TMP1, BASE
733  |     stw TMP0, TONUM_HI
734  |    li_vmstate INTERP
735  |     lfs TONUM, TMPD
736  |     li TISNIL, LJ_TNIL
737  |    st_vmstate
738  |
739  |->vm_call_dispatch:
740  |  // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC
741  |  lwz TMP0, FRAME_PC(BASE)
742  |   lwz LFUNC:RB, FRAME_FUNC(BASE)
743  |  checkfunc TMP0; bne ->vmeta_call
744  |
745  |->vm_call_dispatch_f:
746  |  ins_call
747  |  // BASE = new base, RB = func, RC = nargs*8, PC = caller PC
748  |
749  |->vm_cpcall:				// Setup protected C frame, call C.
750  |  // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp)
751  |  saveregs
752  |  mr L, CARG1
753  |   lwz TMP0, L:CARG1->stack
754  |  stw CARG1, SAVE_L
755  |   lp TMP1, L->top
756  |  stw CARG1, SAVE_PC			// Any value outside of bytecode is ok.
757  |   sub TMP0, TMP0, TMP1		// Compute -savestack(L, L->top).
758  |    lp TMP1, L->cframe
759  |    stp sp, L->cframe		// Add our C frame to cframe chain.
760  |  .toc lp CARG4, 0(CARG4)
761  |  li TMP2, 0
762  |   stw TMP0, SAVE_NRES		// Neg. delta means cframe w/o frame.
763  |  stw TMP2, SAVE_ERRF		// No error function.
764  |    stp TMP1, SAVE_CFRAME
765  |  mtctr CARG4
766  |  bctrl			// (lua_State *L, lua_CFunction func, void *ud)
767  |.if PPE
768  |  mr BASE, CRET1
769  |  cmpwi CRET1, 0
770  |.else
771  |  mr. BASE, CRET1
772  |.endif
773  |   lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
774  |    li PC, FRAME_CP
775  |   addi DISPATCH, DISPATCH, GG_G2DISP
776  |  bne <3				// Else continue with the call.
777  |  b ->vm_leave_cp			// No base? Just remove C frame.
778  |
779  |//-----------------------------------------------------------------------
780  |//-- Metamethod handling ------------------------------------------------
781  |//-----------------------------------------------------------------------
782  |
783  |// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the
784  |// stack, so BASE doesn't need to be reloaded across these calls.
785  |
786  |//-- Continuation dispatch ----------------------------------------------
787  |
788  |->cont_dispatch:
789  |  // BASE = meta base, RA = resultptr, RD = (nresults+1)*8
790  |  lwz TMP0, -12(BASE)		// Continuation.
791  |   mr RB, BASE
792  |   mr BASE, TMP2			// Restore caller BASE.
793  |    lwz LFUNC:TMP1, FRAME_FUNC(TMP2)
794  |.if FFI
795  |  cmplwi TMP0, 1
796  |.endif
797  |     lwz PC, -16(RB)			// Restore PC from [cont|PC].
798  |   subi TMP2, RD, 8
799  |    lwz TMP1, LFUNC:TMP1->pc
800  |   stwx TISNIL, RA, TMP2		// Ensure one valid arg.
801  |.if FFI
802  |  ble >1
803  |.endif
804  |    lwz KBASE, PC2PROTO(k)(TMP1)
805  |  // BASE = base, RA = resultptr, RB = meta base
806  |  mtctr TMP0
807  |  bctr				// Jump to continuation.
808  |
809  |.if FFI
810  |1:
811  |  beq ->cont_ffi_callback		// cont = 1: return from FFI callback.
812  |  // cont = 0: tailcall from C function.
813  |  subi TMP1, RB, 16
814  |  sub RC, TMP1, BASE
815  |  b ->vm_call_tail
816  |.endif
817  |
818  |->cont_cat:				// RA = resultptr, RB = meta base
819  |  lwz INS, -4(PC)
820  |   subi CARG2, RB, 16
821  |  decode_RB8 SAVE0, INS
822  |   lfd f0, 0(RA)
823  |  add TMP1, BASE, SAVE0
824  |   stp BASE, L->base
825  |  cmplw TMP1, CARG2
826  |   sub CARG3, CARG2, TMP1
827  |  decode_RA8 RA, INS
828  |   stfd f0, 0(CARG2)
829  |  bney ->BC_CAT_Z
830  |   stfdx f0, BASE, RA
831  |  b ->cont_nop
832  |
833  |//-- Table indexing metamethods -----------------------------------------
834  |
835  |->vmeta_tgets1:
836  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
837  |  li TMP0, LJ_TSTR
838  |   decode_RB8 RB, INS
839  |  stw STR:RC, 4(CARG3)
840  |   add CARG2, BASE, RB
841  |  stw TMP0, 0(CARG3)
842  |  b >1
843  |
844  |->vmeta_tgets:
845  |  la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
846  |  li TMP0, LJ_TTAB
847  |  stw TAB:RB, 4(CARG2)
848  |   la CARG3, DISPATCH_GL(tmptv2)(DISPATCH)
849  |  stw TMP0, 0(CARG2)
850  |   li TMP1, LJ_TSTR
851  |   stw STR:RC, 4(CARG3)
852  |   stw TMP1, 0(CARG3)
853  |  b >1
854  |
855  |->vmeta_tgetb:			// TMP0 = index
856  |.if not DUALNUM
857  |  tonum_u f0, TMP0
858  |.endif
859  |   decode_RB8 RB, INS
860  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
861  |   add CARG2, BASE, RB
862  |.if DUALNUM
863  |  stw TISNUM, 0(CARG3)
864  |  stw TMP0, 4(CARG3)
865  |.else
866  |  stfd f0, 0(CARG3)
867  |.endif
868  |  b >1
869  |
870  |->vmeta_tgetv:
871  |  decode_RB8 RB, INS
872  |   decode_RC8 RC, INS
873  |  add CARG2, BASE, RB
874  |   add CARG3, BASE, RC
875  |1:
876  |  stp BASE, L->base
877  |  mr CARG1, L
878  |  stw PC, SAVE_PC
879  |  bl extern lj_meta_tget		// (lua_State *L, TValue *o, TValue *k)
880  |  // Returns TValue * (finished) or NULL (metamethod).
881  |  cmplwi CRET1, 0
882  |  beq >3
883  |   lfd f0, 0(CRET1)
884  |  ins_next1
885  |   stfdx f0, BASE, RA
886  |  ins_next2
887  |
888  |3:  // Call __index metamethod.
889  |  // BASE = base, L->top = new base, stack = cont/func/t/k
890  |  subfic TMP1, BASE, FRAME_CONT
891  |  lp BASE, L->top
892  |  stw PC, -16(BASE)			// [cont|PC]
893  |   add PC, TMP1, BASE
894  |  lwz LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
895  |   li NARGS8:RC, 16			// 2 args for func(t, k).
896  |  b ->vm_call_dispatch_f
897  |
898  |//-----------------------------------------------------------------------
899  |
900  |->vmeta_tsets1:
901  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
902  |  li TMP0, LJ_TSTR
903  |   decode_RB8 RB, INS
904  |  stw STR:RC, 4(CARG3)
905  |   add CARG2, BASE, RB
906  |  stw TMP0, 0(CARG3)
907  |  b >1
908  |
909  |->vmeta_tsets:
910  |  la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
911  |  li TMP0, LJ_TTAB
912  |  stw TAB:RB, 4(CARG2)
913  |   la CARG3, DISPATCH_GL(tmptv2)(DISPATCH)
914  |  stw TMP0, 0(CARG2)
915  |   li TMP1, LJ_TSTR
916  |   stw STR:RC, 4(CARG3)
917  |   stw TMP1, 0(CARG3)
918  |  b >1
919  |
920  |->vmeta_tsetb:			// TMP0 = index
921  |.if not DUALNUM
922  |  tonum_u f0, TMP0
923  |.endif
924  |   decode_RB8 RB, INS
925  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
926  |   add CARG2, BASE, RB
927  |.if DUALNUM
928  |  stw TISNUM, 0(CARG3)
929  |  stw TMP0, 4(CARG3)
930  |.else
931  |  stfd f0, 0(CARG3)
932  |.endif
933  |  b >1
934  |
935  |->vmeta_tsetv:
936  |  decode_RB8 RB, INS
937  |   decode_RC8 RC, INS
938  |  add CARG2, BASE, RB
939  |   add CARG3, BASE, RC
940  |1:
941  |  stp BASE, L->base
942  |  mr CARG1, L
943  |  stw PC, SAVE_PC
944  |  bl extern lj_meta_tset		// (lua_State *L, TValue *o, TValue *k)
945  |  // Returns TValue * (finished) or NULL (metamethod).
946  |  cmplwi CRET1, 0
947  |   lfdx f0, BASE, RA
948  |  beq >3
949  |  // NOBARRIER: lj_meta_tset ensures the table is not black.
950  |  ins_next1
951  |   stfd f0, 0(CRET1)
952  |  ins_next2
953  |
954  |3:  // Call __newindex metamethod.
955  |  // BASE = base, L->top = new base, stack = cont/func/t/k/(v)
956  |  subfic TMP1, BASE, FRAME_CONT
957  |  lp BASE, L->top
958  |  stw PC, -16(BASE)			// [cont|PC]
959  |   add PC, TMP1, BASE
960  |  lwz LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
961  |   li NARGS8:RC, 24			// 3 args for func(t, k, v)
962  |  stfd f0, 16(BASE)			// Copy value to third argument.
963  |  b ->vm_call_dispatch_f
964  |
965  |//-- Comparison metamethods ---------------------------------------------
966  |
967  |->vmeta_comp:
968  |  mr CARG1, L
969  |   subi PC, PC, 4
970  |.if DUALNUM
971  |  mr CARG2, RA
972  |.else
973  |  add CARG2, BASE, RA
974  |.endif
975  |   stw PC, SAVE_PC
976  |.if DUALNUM
977  |  mr CARG3, RD
978  |.else
979  |  add CARG3, BASE, RD
980  |.endif
981  |   stp BASE, L->base
982  |  decode_OP1 CARG4, INS
983  |  bl extern lj_meta_comp  // (lua_State *L, TValue *o1, *o2, int op)
984  |  // Returns 0/1 or TValue * (metamethod).
985  |3:
986  |  cmplwi CRET1, 1
987  |  bgt ->vmeta_binop
988  |  subfic CRET1, CRET1, 0
989  |4:
990  |  lwz INS, 0(PC)
991  |   addi PC, PC, 4
992  |  decode_RD4 TMP2, INS
993  |  addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
994  |  and TMP2, TMP2, CRET1
995  |  add PC, PC, TMP2
996  |->cont_nop:
997  |  ins_next
998  |
999  |->cont_ra:				// RA = resultptr
1000  |  lwz INS, -4(PC)
1001  |   lfd f0, 0(RA)
1002  |  decode_RA8 TMP1, INS
1003  |   stfdx f0, BASE, TMP1
1004  |  b ->cont_nop
1005  |
1006  |->cont_condt:			// RA = resultptr
1007  |  lwz TMP0, 0(RA)
1008  |  .gpr64 extsw TMP0, TMP0
1009  |  subfic TMP0, TMP0, LJ_TTRUE	// Branch if result is true.
1010  |  subfe CRET1, CRET1, CRET1
1011  |  not CRET1, CRET1
1012  |  b <4
1013  |
1014  |->cont_condf:			// RA = resultptr
1015  |  lwz TMP0, 0(RA)
1016  |  .gpr64 extsw TMP0, TMP0
1017  |  subfic TMP0, TMP0, LJ_TTRUE	// Branch if result is false.
1018  |  subfe CRET1, CRET1, CRET1
1019  |  b <4
1020  |
1021  |->vmeta_equal:
1022  |  // CARG2, CARG3, CARG4 are already set by BC_ISEQV/BC_ISNEV.
1023  |  subi PC, PC, 4
1024  |   stp BASE, L->base
1025  |  mr CARG1, L
1026  |   stw PC, SAVE_PC
1027  |  bl extern lj_meta_equal  // (lua_State *L, GCobj *o1, *o2, int ne)
1028  |  // Returns 0/1 or TValue * (metamethod).
1029  |  b <3
1030  |
1031  |->vmeta_equal_cd:
1032  |.if FFI
1033  |  mr CARG2, INS
1034  |  subi PC, PC, 4
1035  |   stp BASE, L->base
1036  |  mr CARG1, L
1037  |   stw PC, SAVE_PC
1038  |  bl extern lj_meta_equal_cd		// (lua_State *L, BCIns op)
1039  |  // Returns 0/1 or TValue * (metamethod).
1040  |  b <3
1041  |.endif
1042  |
1043  |//-- Arithmetic metamethods ---------------------------------------------
1044  |
1045  |->vmeta_arith_nv:
1046  |  add CARG3, KBASE, RC
1047  |  add CARG4, BASE, RB
1048  |  b >1
1049  |->vmeta_arith_nv2:
1050  |.if DUALNUM
1051  |  mr CARG3, RC
1052  |  mr CARG4, RB
1053  |  b >1
1054  |.endif
1055  |
1056  |->vmeta_unm:
1057  |  mr CARG3, RD
1058  |  mr CARG4, RD
1059  |  b >1
1060  |
1061  |->vmeta_arith_vn:
1062  |  add CARG3, BASE, RB
1063  |  add CARG4, KBASE, RC
1064  |  b >1
1065  |
1066  |->vmeta_arith_vv:
1067  |  add CARG3, BASE, RB
1068  |  add CARG4, BASE, RC
1069  |.if DUALNUM
1070  |  b >1
1071  |.endif
1072  |->vmeta_arith_vn2:
1073  |->vmeta_arith_vv2:
1074  |.if DUALNUM
1075  |  mr CARG3, RB
1076  |  mr CARG4, RC
1077  |.endif
1078  |1:
1079  |  add CARG2, BASE, RA
1080  |   stp BASE, L->base
1081  |  mr CARG1, L
1082  |   stw PC, SAVE_PC
1083  |  decode_OP1 CARG5, INS		// Caveat: CARG5 overlaps INS.
1084  |  bl extern lj_meta_arith  // (lua_State *L, TValue *ra,*rb,*rc, BCReg op)
1085  |  // Returns NULL (finished) or TValue * (metamethod).
1086  |  cmplwi CRET1, 0
1087  |  beq ->cont_nop
1088  |
1089  |  // Call metamethod for binary op.
1090  |->vmeta_binop:
1091  |  // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2
1092  |  sub TMP1, CRET1, BASE
1093  |   stw PC, -16(CRET1)		// [cont|PC]
1094  |   mr TMP2, BASE
1095  |  addi PC, TMP1, FRAME_CONT
1096  |   mr BASE, CRET1
1097  |  li NARGS8:RC, 16			// 2 args for func(o1, o2).
1098  |  b ->vm_call_dispatch
1099  |
1100  |->vmeta_len:
1101#if LJ_52
1102  |  mr SAVE0, CARG1
1103#endif
1104  |  mr CARG2, RD
1105  |   stp BASE, L->base
1106  |  mr CARG1, L
1107  |   stw PC, SAVE_PC
1108  |  bl extern lj_meta_len		// (lua_State *L, TValue *o)
1109  |  // Returns NULL (retry) or TValue * (metamethod base).
1110#if LJ_52
1111  |  cmplwi CRET1, 0
1112  |  bne ->vmeta_binop			// Binop call for compatibility.
1113  |  mr CARG1, SAVE0
1114  |  b ->BC_LEN_Z
1115#else
1116  |  b ->vmeta_binop			// Binop call for compatibility.
1117#endif
1118  |
1119  |//-- Call metamethod ----------------------------------------------------
1120  |
1121  |->vmeta_call:			// Resolve and call __call metamethod.
1122  |  // TMP2 = old base, BASE = new base, RC = nargs*8
1123  |  mr CARG1, L
1124  |   stp TMP2, L->base			// This is the callers base!
1125  |  subi CARG2, BASE, 8
1126  |   stw PC, SAVE_PC
1127  |  add CARG3, BASE, RC
1128  |   mr SAVE0, NARGS8:RC
1129  |  bl extern lj_meta_call	// (lua_State *L, TValue *func, TValue *top)
1130  |  lwz LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
1131  |   addi NARGS8:RC, SAVE0, 8		// Got one more argument now.
1132  |  ins_call
1133  |
1134  |->vmeta_callt:			// Resolve __call for BC_CALLT.
1135  |  // BASE = old base, RA = new base, RC = nargs*8
1136  |  mr CARG1, L
1137  |   stp BASE, L->base
1138  |  subi CARG2, RA, 8
1139  |   stw PC, SAVE_PC
1140  |  add CARG3, RA, RC
1141  |   mr SAVE0, NARGS8:RC
1142  |  bl extern lj_meta_call	// (lua_State *L, TValue *func, TValue *top)
1143  |  lwz TMP1, FRAME_PC(BASE)
1144  |   addi NARGS8:RC, SAVE0, 8		// Got one more argument now.
1145  |   lwz LFUNC:RB, FRAME_FUNC(RA)	// Guaranteed to be a function here.
1146  |  b ->BC_CALLT_Z
1147  |
1148  |//-- Argument coercion for 'for' statement ------------------------------
1149  |
1150  |->vmeta_for:
1151  |  mr CARG1, L
1152  |   stp BASE, L->base
1153  |  mr CARG2, RA
1154  |   stw PC, SAVE_PC
1155  |  mr SAVE0, INS
1156  |  bl extern lj_meta_for	// (lua_State *L, TValue *base)
1157  |.if JIT
1158  |   decode_OP1 TMP0, SAVE0
1159  |.endif
1160  |  decode_RA8 RA, SAVE0
1161  |.if JIT
1162  |   cmpwi TMP0, BC_JFORI
1163  |.endif
1164  |  decode_RD8 RD, SAVE0
1165  |.if JIT
1166  |   beqy =>BC_JFORI
1167  |.endif
1168  |  b =>BC_FORI
1169  |
1170  |//-----------------------------------------------------------------------
1171  |//-- Fast functions -----------------------------------------------------
1172  |//-----------------------------------------------------------------------
1173  |
1174  |.macro .ffunc, name
1175  |->ff_ .. name:
1176  |.endmacro
1177  |
1178  |.macro .ffunc_1, name
1179  |->ff_ .. name:
1180  |  cmplwi NARGS8:RC, 8
1181  |   lwz CARG3, 0(BASE)
1182  |    lwz CARG1, 4(BASE)
1183  |  blt ->fff_fallback
1184  |.endmacro
1185  |
1186  |.macro .ffunc_2, name
1187  |->ff_ .. name:
1188  |  cmplwi NARGS8:RC, 16
1189  |   lwz CARG3, 0(BASE)
1190  |    lwz CARG4, 8(BASE)
1191  |   lwz CARG1, 4(BASE)
1192  |    lwz CARG2, 12(BASE)
1193  |  blt ->fff_fallback
1194  |.endmacro
1195  |
1196  |.macro .ffunc_n, name
1197  |->ff_ .. name:
1198  |  cmplwi NARGS8:RC, 8
1199  |   lwz CARG3, 0(BASE)
1200  |    lfd FARG1, 0(BASE)
1201  |  blt ->fff_fallback
1202  |  checknum CARG3; bge ->fff_fallback
1203  |.endmacro
1204  |
1205  |.macro .ffunc_nn, name
1206  |->ff_ .. name:
1207  |  cmplwi NARGS8:RC, 16
1208  |   lwz CARG3, 0(BASE)
1209  |    lfd FARG1, 0(BASE)
1210  |   lwz CARG4, 8(BASE)
1211  |    lfd FARG2, 8(BASE)
1212  |  blt ->fff_fallback
1213  |  checknum CARG3; bge ->fff_fallback
1214  |  checknum CARG4; bge ->fff_fallback
1215  |.endmacro
1216  |
1217  |// Inlined GC threshold check. Caveat: uses TMP0 and TMP1.
1218  |.macro ffgccheck
1219  |  lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH)
1220  |  lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
1221  |  cmplw TMP0, TMP1
1222  |  bgel ->fff_gcstep
1223  |.endmacro
1224  |
1225  |//-- Base library: checks -----------------------------------------------
1226  |
1227  |.ffunc_1 assert
1228  |  li TMP1, LJ_TFALSE
1229  |   la RA, -8(BASE)
1230  |  cmplw cr1, CARG3, TMP1
1231  |    lwz PC, FRAME_PC(BASE)
1232  |  bge cr1, ->fff_fallback
1233  |   stw CARG3, 0(RA)
1234  |  addi RD, NARGS8:RC, 8		// Compute (nresults+1)*8.
1235  |   stw CARG1, 4(RA)
1236  |  beq ->fff_res			// Done if exactly 1 argument.
1237  |  li TMP1, 8
1238  |  subi RC, RC, 8
1239  |1:
1240  |  cmplw TMP1, RC
1241  |   lfdx f0, BASE, TMP1
1242  |   stfdx f0, RA, TMP1
1243  |    addi TMP1, TMP1, 8
1244  |  bney <1
1245  |  b ->fff_res
1246  |
1247  |.ffunc type
1248  |  cmplwi NARGS8:RC, 8
1249  |   lwz CARG1, 0(BASE)
1250  |  blt ->fff_fallback
1251  |  .gpr64 extsw CARG1, CARG1
1252  |  subfc TMP0, TISNUM, CARG1
1253  |  subfe TMP2, CARG1, CARG1
1254  |  orc TMP1, TMP2, TMP0
1255  |  addi TMP1, TMP1, ~LJ_TISNUM+1
1256  |  slwi TMP1, TMP1, 3
1257  |   la TMP2, CFUNC:RB->upvalue
1258  |  lfdx FARG1, TMP2, TMP1
1259  |  b ->fff_resn
1260  |
1261  |//-- Base library: getters and setters ---------------------------------
1262  |
1263  |.ffunc_1 getmetatable
1264  |  checktab CARG3; bne >6
1265  |1:  // Field metatable must be at same offset for GCtab and GCudata!
1266  |  lwz TAB:CARG1, TAB:CARG1->metatable
1267  |2:
1268  |  li CARG3, LJ_TNIL
1269  |   cmplwi TAB:CARG1, 0
1270  |  lwz STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH)
1271  |   beq ->fff_restv
1272  |  lwz TMP0, TAB:CARG1->hmask
1273  |   li CARG3, LJ_TTAB			// Use metatable as default result.
1274  |  lwz TMP1, STR:RC->hash
1275  |  lwz NODE:TMP2, TAB:CARG1->node
1276  |  and TMP1, TMP1, TMP0		// idx = str->hash & tab->hmask
1277  |  slwi TMP0, TMP1, 5
1278  |  slwi TMP1, TMP1, 3
1279  |  sub TMP1, TMP0, TMP1
1280  |  add NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
1281  |3:  // Rearranged logic, because we expect _not_ to find the key.
1282  |  lwz CARG4, NODE:TMP2->key
1283  |   lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
1284  |    lwz CARG2, NODE:TMP2->val
1285  |     lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2)
1286  |  checkstr CARG4; bne >4
1287  |   cmpw TMP0, STR:RC; beq >5
1288  |4:
1289  |  lwz NODE:TMP2, NODE:TMP2->next
1290  |  cmplwi NODE:TMP2, 0
1291  |  beq ->fff_restv			// Not found, keep default result.
1292  |  b <3
1293  |5:
1294  |  checknil CARG2
1295  |  beq ->fff_restv			// Ditto for nil value.
1296  |  mr CARG3, CARG2			// Return value of mt.__metatable.
1297  |  mr CARG1, TMP1
1298  |  b ->fff_restv
1299  |
1300  |6:
1301  |  cmpwi CARG3, LJ_TUDATA; beq <1
1302  |  .gpr64 extsw CARG3, CARG3
1303  |  subfc TMP0, TISNUM, CARG3
1304  |  subfe TMP2, CARG3, CARG3
1305  |  orc TMP1, TMP2, TMP0
1306  |  addi TMP1, TMP1, ~LJ_TISNUM+1
1307  |  slwi TMP1, TMP1, 2
1308  |   la TMP2, DISPATCH_GL(gcroot[GCROOT_BASEMT])(DISPATCH)
1309  |  lwzx TAB:CARG1, TMP2, TMP1
1310  |  b <2
1311  |
1312  |.ffunc_2 setmetatable
1313  |  // Fast path: no mt for table yet and not clearing the mt.
1314  |   checktab CARG3; bne ->fff_fallback
1315  |  lwz TAB:TMP1, TAB:CARG1->metatable
1316  |   checktab CARG4; bne ->fff_fallback
1317  |  cmplwi TAB:TMP1, 0
1318  |   lbz TMP3, TAB:CARG1->marked
1319  |  bne ->fff_fallback
1320  |   andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
1321  |    stw TAB:CARG2, TAB:CARG1->metatable
1322  |   beq ->fff_restv
1323  |  barrierback TAB:CARG1, TMP3, TMP0
1324  |  b ->fff_restv
1325  |
1326  |.ffunc rawget
1327  |  cmplwi NARGS8:RC, 16
1328  |   lwz CARG4, 0(BASE)
1329  |    lwz TAB:CARG2, 4(BASE)
1330  |  blt ->fff_fallback
1331  |  checktab CARG4; bne ->fff_fallback
1332  |   la CARG3, 8(BASE)
1333  |   mr CARG1, L
1334  |  bl extern lj_tab_get  // (lua_State *L, GCtab *t, cTValue *key)
1335  |  // Returns cTValue *.
1336  |  lfd FARG1, 0(CRET1)
1337  |  b ->fff_resn
1338  |
1339  |//-- Base library: conversions ------------------------------------------
1340  |
1341  |.ffunc tonumber
1342  |  // Only handles the number case inline (without a base argument).
1343  |  cmplwi NARGS8:RC, 8
1344  |   lwz CARG1, 0(BASE)
1345  |    lfd FARG1, 0(BASE)
1346  |  bne ->fff_fallback			// Exactly one argument.
1347  |   checknum CARG1; bgt ->fff_fallback
1348  |  b ->fff_resn
1349  |
1350  |.ffunc_1 tostring
1351  |  // Only handles the string or number case inline.
1352  |  checkstr CARG3
1353  |  // A __tostring method in the string base metatable is ignored.
1354  |  beq ->fff_restv			// String key?
1355  |  // Handle numbers inline, unless a number base metatable is present.
1356  |  lwz TMP0, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH)
1357  |  checknum CARG3
1358  |  cmplwi cr1, TMP0, 0
1359  |   stp BASE, L->base			// Add frame since C call can throw.
1360  |  crorc 4*cr0+eq, 4*cr0+gt, 4*cr1+eq
1361  |   stw PC, SAVE_PC			// Redundant (but a defined value).
1362  |  beq ->fff_fallback
1363  |  ffgccheck
1364  |  mr CARG1, L
1365  |  mr CARG2, BASE
1366  |.if DUALNUM
1367  |  bl extern lj_str_fromnumber	// (lua_State *L, cTValue *o)
1368  |.else
1369  |  bl extern lj_str_fromnum		// (lua_State *L, lua_Number *np)
1370  |.endif
1371  |  // Returns GCstr *.
1372  |  li CARG3, LJ_TSTR
1373  |  b ->fff_restv
1374  |
1375  |//-- Base library: iterators -------------------------------------------
1376  |
1377  |.ffunc next
1378  |  cmplwi NARGS8:RC, 8
1379  |   lwz CARG1, 0(BASE)
1380  |    lwz TAB:CARG2, 4(BASE)
1381  |  blt ->fff_fallback
1382  |   stwx TISNIL, BASE, NARGS8:RC	// Set missing 2nd arg to nil.
1383  |  checktab CARG1
1384  |   lwz PC, FRAME_PC(BASE)
1385  |  bne ->fff_fallback
1386  |   stp BASE, L->base			// Add frame since C call can throw.
1387  |  mr CARG1, L
1388  |   stp BASE, L->top			// Dummy frame length is ok.
1389  |  la CARG3, 8(BASE)
1390  |   stw PC, SAVE_PC
1391  |  bl extern lj_tab_next	// (lua_State *L, GCtab *t, TValue *key)
1392  |  // Returns 0 at end of traversal.
1393  |  cmplwi CRET1, 0
1394  |   li CARG3, LJ_TNIL
1395  |  beq ->fff_restv			// End of traversal: return nil.
1396  |  lfd f0, 8(BASE)			// Copy key and value to results.
1397  |   la RA, -8(BASE)
1398  |  lfd f1, 16(BASE)
1399  |  stfd f0, 0(RA)
1400  |   li RD, (2+1)*8
1401  |  stfd f1, 8(RA)
1402  |  b ->fff_res
1403  |
1404  |.ffunc_1 pairs
1405  |  checktab CARG3
1406  |   lwz PC, FRAME_PC(BASE)
1407  |  bne ->fff_fallback
1408#if LJ_52
1409  |   lwz TAB:TMP2, TAB:CARG1->metatable
1410  |  lfd f0, CFUNC:RB->upvalue[0]
1411  |   cmplwi TAB:TMP2, 0
1412  |  la RA, -8(BASE)
1413  |   bne ->fff_fallback
1414#else
1415  |  lfd f0, CFUNC:RB->upvalue[0]
1416  |  la RA, -8(BASE)
1417#endif
1418  |   stw TISNIL, 8(BASE)
1419  |  li RD, (3+1)*8
1420  |  stfd f0, 0(RA)
1421  |  b ->fff_res
1422  |
1423  |.ffunc ipairs_aux
1424  |  cmplwi NARGS8:RC, 16
1425  |   lwz CARG3, 0(BASE)
1426  |    lwz TAB:CARG1, 4(BASE)
1427  |   lwz CARG4, 8(BASE)
1428  |.if DUALNUM
1429  |    lwz TMP2, 12(BASE)
1430  |.else
1431  |    lfd FARG2, 8(BASE)
1432  |.endif
1433  |  blt ->fff_fallback
1434  |  checktab CARG3
1435  |  checknum cr1, CARG4
1436  |   lwz PC, FRAME_PC(BASE)
1437  |.if DUALNUM
1438  |  bne ->fff_fallback
1439  |  bne cr1, ->fff_fallback
1440  |.else
1441  |    lus TMP0, 0x3ff0
1442  |    stw ZERO, TMPD_LO
1443  |  bne ->fff_fallback
1444  |    stw TMP0, TMPD_HI
1445  |  bge cr1, ->fff_fallback
1446  |    lfd FARG1, TMPD
1447  |  toint TMP2, FARG2, f0
1448  |.endif
1449  |   lwz TMP0, TAB:CARG1->asize
1450  |   lwz TMP1, TAB:CARG1->array
1451  |.if not DUALNUM
1452  |  fadd FARG2, FARG2, FARG1
1453  |.endif
1454  |  addi TMP2, TMP2, 1
1455  |   la RA, -8(BASE)
1456  |  cmplw TMP0, TMP2
1457  |.if DUALNUM
1458  |  stw TISNUM, 0(RA)
1459  |   slwi TMP3, TMP2, 3
1460  |  stw TMP2, 4(RA)
1461  |.else
1462  |   slwi TMP3, TMP2, 3
1463  |  stfd FARG2, 0(RA)
1464  |.endif
1465  |  ble >2				// Not in array part?
1466  |  lwzx TMP2, TMP1, TMP3
1467  |  lfdx f0, TMP1, TMP3
1468  |1:
1469  |  checknil TMP2
1470  |   li RD, (0+1)*8
1471  |  beq ->fff_res			// End of iteration, return 0 results.
1472  |   li RD, (2+1)*8
1473  |  stfd f0, 8(RA)
1474  |  b ->fff_res
1475  |2:  // Check for empty hash part first. Otherwise call C function.
1476  |  lwz TMP0, TAB:CARG1->hmask
1477  |  cmplwi TMP0, 0
1478  |   li RD, (0+1)*8
1479  |  beq ->fff_res
1480  |   mr CARG2, TMP2
1481  |  bl extern lj_tab_getinth		// (GCtab *t, int32_t key)
1482  |  // Returns cTValue * or NULL.
1483  |  cmplwi CRET1, 0
1484  |   li RD, (0+1)*8
1485  |  beq ->fff_res
1486  |  lwz TMP2, 0(CRET1)
1487  |  lfd f0, 0(CRET1)
1488  |  b <1
1489  |
1490  |.ffunc_1 ipairs
1491  |  checktab CARG3
1492  |   lwz PC, FRAME_PC(BASE)
1493  |  bne ->fff_fallback
1494#if LJ_52
1495  |   lwz TAB:TMP2, TAB:CARG1->metatable
1496  |  lfd f0, CFUNC:RB->upvalue[0]
1497  |   cmplwi TAB:TMP2, 0
1498  |  la RA, -8(BASE)
1499  |   bne ->fff_fallback
1500#else
1501  |  lfd f0, CFUNC:RB->upvalue[0]
1502  |  la RA, -8(BASE)
1503#endif
1504  |.if DUALNUM
1505  |  stw TISNUM, 8(BASE)
1506  |.else
1507  |  stw ZERO, 8(BASE)
1508  |.endif
1509  |   stw ZERO, 12(BASE)
1510  |  li RD, (3+1)*8
1511  |  stfd f0, 0(RA)
1512  |  b ->fff_res
1513  |
1514  |//-- Base library: catch errors ----------------------------------------
1515  |
1516  |.ffunc pcall
1517  |  cmplwi NARGS8:RC, 8
1518  |   lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
1519  |  blt ->fff_fallback
1520  |   mr TMP2, BASE
1521  |   la BASE, 8(BASE)
1522  |  // Remember active hook before pcall.
1523  |  rlwinm TMP3, TMP3, 32-HOOK_ACTIVE_SHIFT, 31, 31
1524  |   subi NARGS8:RC, NARGS8:RC, 8
1525  |  addi PC, TMP3, 8+FRAME_PCALL
1526  |  b ->vm_call_dispatch
1527  |
1528  |.ffunc xpcall
1529  |  cmplwi NARGS8:RC, 16
1530  |   lwz CARG4, 8(BASE)
1531  |    lfd FARG2, 8(BASE)
1532  |    lfd FARG1, 0(BASE)
1533  |  blt ->fff_fallback
1534  |  lbz TMP1, DISPATCH_GL(hookmask)(DISPATCH)
1535  |   mr TMP2, BASE
1536  |  checkfunc CARG4; bne ->fff_fallback  // Traceback must be a function.
1537  |   la BASE, 16(BASE)
1538  |  // Remember active hook before pcall.
1539  |  rlwinm TMP1, TMP1, 32-HOOK_ACTIVE_SHIFT, 31, 31
1540  |    stfd FARG2, 0(TMP2)		// Swap function and traceback.
1541  |  subi NARGS8:RC, NARGS8:RC, 16
1542  |    stfd FARG1, 8(TMP2)
1543  |  addi PC, TMP1, 16+FRAME_PCALL
1544  |  b ->vm_call_dispatch
1545  |
1546  |//-- Coroutine library --------------------------------------------------
1547  |
1548  |.macro coroutine_resume_wrap, resume
1549  |.if resume
1550  |.ffunc_1 coroutine_resume
1551  |  cmpwi CARG3, LJ_TTHREAD; bne ->fff_fallback
1552  |.else
1553  |.ffunc coroutine_wrap_aux
1554  |  lwz L:CARG1, CFUNC:RB->upvalue[0].gcr
1555  |.endif
1556  |  lbz TMP0, L:CARG1->status
1557  |   lp TMP1, L:CARG1->cframe
1558  |    lp CARG2, L:CARG1->top
1559  |  cmplwi cr0, TMP0, LUA_YIELD
1560  |    lp TMP2, L:CARG1->base
1561  |   cmplwi cr1, TMP1, 0
1562  |   lwz TMP0, L:CARG1->maxstack
1563  |    cmplw cr7, CARG2, TMP2
1564  |   lwz PC, FRAME_PC(BASE)
1565  |  crorc 4*cr6+lt, 4*cr0+gt, 4*cr1+eq		// st>LUA_YIELD || cframe!=0
1566  |   add TMP2, CARG2, NARGS8:RC
1567  |  crandc 4*cr6+gt, 4*cr7+eq, 4*cr0+eq	// base==top && st!=LUA_YIELD
1568  |   cmplw cr1, TMP2, TMP0
1569  |  cror 4*cr6+lt, 4*cr6+lt, 4*cr6+gt
1570  |   stw PC, SAVE_PC
1571  |  cror 4*cr6+lt, 4*cr6+lt, 4*cr1+gt		// cond1 || cond2 || stackov
1572  |   stp BASE, L->base
1573  |  blt cr6, ->fff_fallback
1574  |1:
1575  |.if resume
1576  |  addi BASE, BASE, 8			// Keep resumed thread in stack for GC.
1577  |  subi NARGS8:RC, NARGS8:RC, 8
1578  |  subi TMP2, TMP2, 8
1579  |.endif
1580  |  stp TMP2, L:CARG1->top
1581  |  li TMP1, 0
1582  |  stp BASE, L->top
1583  |2:  // Move args to coroutine.
1584  |  cmpw TMP1, NARGS8:RC
1585  |   lfdx f0, BASE, TMP1
1586  |  beq >3
1587  |   stfdx f0, CARG2, TMP1
1588  |  addi TMP1, TMP1, 8
1589  |  b <2
1590  |3:
1591  |  li CARG3, 0
1592  |   mr L:SAVE0, L:CARG1
1593  |  li CARG4, 0
1594  |  bl ->vm_resume			// (lua_State *L, TValue *base, 0, 0)
1595  |  // Returns thread status.
1596  |4:
1597  |  lp TMP2, L:SAVE0->base
1598  |   cmplwi CRET1, LUA_YIELD
1599  |  lp TMP3, L:SAVE0->top
1600  |    li_vmstate INTERP
1601  |  lp BASE, L->base
1602  |    st_vmstate
1603  |   bgt >8
1604  |  sub RD, TMP3, TMP2
1605  |   lwz TMP0, L->maxstack
1606  |  cmplwi RD, 0
1607  |   add TMP1, BASE, RD
1608  |  beq >6				// No results?
1609  |  cmplw TMP1, TMP0
1610  |   li TMP1, 0
1611  |  bgt >9				// Need to grow stack?
1612  |
1613  |  subi TMP3, RD, 8
1614  |   stp TMP2, L:SAVE0->top		// Clear coroutine stack.
1615  |5:  // Move results from coroutine.
1616  |  cmplw TMP1, TMP3
1617  |   lfdx f0, TMP2, TMP1
1618  |   stfdx f0, BASE, TMP1
1619  |    addi TMP1, TMP1, 8
1620  |  bne <5
1621  |6:
1622  |  andix. TMP0, PC, FRAME_TYPE
1623  |.if resume
1624  |  li TMP1, LJ_TTRUE
1625  |   la RA, -8(BASE)
1626  |  stw TMP1, -8(BASE)			// Prepend true to results.
1627  |  addi RD, RD, 16
1628  |.else
1629  |  mr RA, BASE
1630  |  addi RD, RD, 8
1631  |.endif
1632  |7:
1633  |    stw PC, SAVE_PC
1634  |   mr MULTRES, RD
1635  |  beq ->BC_RET_Z
1636  |  b ->vm_return
1637  |
1638  |8:  // Coroutine returned with error (at co->top-1).
1639  |.if resume
1640  |  andix. TMP0, PC, FRAME_TYPE
1641  |  la TMP3, -8(TMP3)
1642  |   li TMP1, LJ_TFALSE
1643  |  lfd f0, 0(TMP3)
1644  |   stp TMP3, L:SAVE0->top		// Remove error from coroutine stack.
1645  |    li RD, (2+1)*8
1646  |   stw TMP1, -8(BASE)		// Prepend false to results.
1647  |    la RA, -8(BASE)
1648  |  stfd f0, 0(BASE)			// Copy error message.
1649  |  b <7
1650  |.else
1651  |  mr CARG1, L
1652  |  mr CARG2, L:SAVE0
1653  |  bl extern lj_ffh_coroutine_wrap_err  // (lua_State *L, lua_State *co)
1654  |.endif
1655  |
1656  |9:  // Handle stack expansion on return from yield.
1657  |  mr CARG1, L
1658  |  srwi CARG2, RD, 3
1659  |  bl extern lj_state_growstack	// (lua_State *L, int n)
1660  |  li CRET1, 0
1661  |  b <4
1662  |.endmacro
1663  |
1664  |  coroutine_resume_wrap 1		// coroutine.resume
1665  |  coroutine_resume_wrap 0		// coroutine.wrap
1666  |
1667  |.ffunc coroutine_yield
1668  |  lp TMP0, L->cframe
1669  |   add TMP1, BASE, NARGS8:RC
1670  |   stp BASE, L->base
1671  |  andix. TMP0, TMP0, CFRAME_RESUME
1672  |   stp TMP1, L->top
1673  |    li CRET1, LUA_YIELD
1674  |  beq ->fff_fallback
1675  |   stp ZERO, L->cframe
1676  |    stb CRET1, L->status
1677  |  b ->vm_leave_unw
1678  |
1679  |//-- Math library -------------------------------------------------------
1680  |
1681  |.ffunc_1 math_abs
1682  |  checknum CARG3
1683  |.if DUALNUM
1684  |  bne >2
1685  |  srawi TMP1, CARG1, 31
1686  |  xor TMP2, TMP1, CARG1
1687  |.if GPR64
1688  |  lus TMP0, 0x8000
1689  |  sub CARG1, TMP2, TMP1
1690  |  cmplw CARG1, TMP0
1691  |  beq >1
1692  |.else
1693  |  sub. CARG1, TMP2, TMP1
1694  |  blt >1
1695  |.endif
1696  |->fff_resi:
1697  |  lwz PC, FRAME_PC(BASE)
1698  |  la RA, -8(BASE)
1699  |  stw TISNUM, -8(BASE)
1700  |  stw CRET1, -4(BASE)
1701  |  b ->fff_res1
1702  |1:
1703  |  lus CARG3, 0x41e0	// 2^31.
1704  |  li CARG1, 0
1705  |  b ->fff_restv
1706  |2:
1707  |.endif
1708  |  bge ->fff_fallback
1709  |  rlwinm CARG3, CARG3, 0, 1, 31
1710  |  // Fallthrough.
1711  |
1712  |->fff_restv:
1713  |  // CARG3/CARG1 = TValue result.
1714  |  lwz PC, FRAME_PC(BASE)
1715  |   stw CARG3, -8(BASE)
1716  |  la RA, -8(BASE)
1717  |   stw CARG1, -4(BASE)
1718  |->fff_res1:
1719  |  // RA = results, PC = return.
1720  |  li RD, (1+1)*8
1721  |->fff_res:
1722  |  // RA = results, RD = (nresults+1)*8, PC = return.
1723  |  andix. TMP0, PC, FRAME_TYPE
1724  |   mr MULTRES, RD
1725  |  bney ->vm_return
1726  |  lwz INS, -4(PC)
1727  |  decode_RB8 RB, INS
1728  |5:
1729  |  cmplw RB, RD			// More results expected?
1730  |   decode_RA8 TMP0, INS
1731  |  bgt >6
1732  |  ins_next1
1733  |  // Adjust BASE. KBASE is assumed to be set for the calling frame.
1734  |   sub BASE, RA, TMP0
1735  |  ins_next2
1736  |
1737  |6:  // Fill up results with nil.
1738  |  subi TMP1, RD, 8
1739  |   addi RD, RD, 8
1740  |  stwx TISNIL, RA, TMP1
1741  |  b <5
1742  |
1743  |.macro math_extern, func
1744  |  .ffunc_n math_ .. func
1745  |  blex func
1746  |  b ->fff_resn
1747  |.endmacro
1748  |
1749  |.macro math_extern2, func
1750  |  .ffunc_nn math_ .. func
1751  |  blex func
1752  |  b ->fff_resn
1753  |.endmacro
1754  |
1755  |.macro math_round, func
1756  |  .ffunc_1 math_ .. func
1757  |   checknum CARG3; beqy ->fff_restv
1758  |  rlwinm TMP2, CARG3, 12, 21, 31
1759  |   bge ->fff_fallback
1760  |  addic. TMP2, TMP2, -1023		// exp = exponent(x) - 1023
1761  |  cmplwi cr1, TMP2, 31		// 0 <= exp < 31?
1762  |   subfic TMP0, TMP2, 31
1763  |  blt >3
1764  |  slwi TMP1, CARG3, 11
1765  |   srwi TMP3, CARG1, 21
1766  |  oris TMP1, TMP1, 0x8000
1767  |   addi TMP2, TMP2, 1
1768  |  or TMP1, TMP1, TMP3
1769  |   slwi CARG2, CARG1, 11
1770  |  bge cr1, >4
1771  |   slw TMP3, TMP1, TMP2
1772  |  srw RD, TMP1, TMP0
1773  |   or TMP3, TMP3, CARG2
1774  |  srawi TMP2, CARG3, 31
1775  |.if "func" == "floor"
1776  |  and TMP1, TMP3, TMP2
1777  |  addic TMP0, TMP1, -1
1778  |  subfe TMP1, TMP0, TMP1
1779  |  add CARG1, RD, TMP1
1780  |  xor CARG1, CARG1, TMP2
1781  |  sub CARG1, CARG1, TMP2
1782  |  b ->fff_resi
1783  |.else
1784  |  andc TMP1, TMP3, TMP2
1785  |  addic TMP0, TMP1, -1
1786  |  subfe TMP1, TMP0, TMP1
1787  |  add CARG1, RD, TMP1
1788  |  cmpw CARG1, RD
1789  |  xor CARG1, CARG1, TMP2
1790  |  sub CARG1, CARG1, TMP2
1791  |  bge ->fff_resi
1792  |  // Overflow to 2^31.
1793  |  lus CARG3, 0x41e0			// 2^31.
1794  |  li CARG1, 0
1795  |  b ->fff_restv
1796  |.endif
1797  |3:  // |x| < 1
1798  |  slwi TMP2, CARG3, 1
1799  |   srawi TMP1, CARG3, 31
1800  |  or TMP2, CARG1, TMP2		// ztest = (hi+hi) | lo
1801  |.if "func" == "floor"
1802  |  and TMP1, TMP2, TMP1		// (ztest & sign) == 0 ? 0 : -1
1803  |  subfic TMP2, TMP1, 0
1804  |  subfe CARG1, CARG1, CARG1
1805  |.else
1806  |  andc TMP1, TMP2, TMP1		// (ztest & ~sign) == 0 ? 0 : 1
1807  |  addic TMP2, TMP1, -1
1808  |  subfe CARG1, TMP2, TMP1
1809  |.endif
1810  |  b ->fff_resi
1811  |4:  // exp >= 31. Check for -(2^31).
1812  |  xoris TMP1, TMP1, 0x8000
1813  |  srawi TMP2, CARG3, 31
1814  |.if "func" == "floor"
1815  |  or TMP1, TMP1, CARG2
1816  |.endif
1817  |.if PPE
1818  |  orc TMP1, TMP1, TMP2
1819  |  cmpwi TMP1, 0
1820  |.else
1821  |  orc. TMP1, TMP1, TMP2
1822  |.endif
1823  |  crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
1824  |  lus CARG1, 0x8000			// -(2^31).
1825  |  beqy ->fff_resi
1826  |5:
1827  |  lfd FARG1, 0(BASE)
1828  |  blex func
1829  |  b ->fff_resn
1830  |.endmacro
1831  |
1832  |.if DUALNUM
1833  |  math_round floor
1834  |  math_round ceil
1835  |.else
1836  |  // NYI: use internal implementation.
1837  |  math_extern floor
1838  |  math_extern ceil
1839  |.endif
1840  |
1841  |.if SQRT
1842  |.ffunc_n math_sqrt
1843  |  fsqrt FARG1, FARG1
1844  |  b ->fff_resn
1845  |.else
1846  |  math_extern sqrt
1847  |.endif
1848  |
1849  |.ffunc math_log
1850  |  cmplwi NARGS8:RC, 8
1851  |   lwz CARG3, 0(BASE)
1852  |    lfd FARG1, 0(BASE)
1853  |  bne ->fff_fallback			// Need exactly 1 argument.
1854  |  checknum CARG3; bge ->fff_fallback
1855  |  blex log
1856  |  b ->fff_resn
1857  |
1858  |  math_extern log10
1859  |  math_extern exp
1860  |  math_extern sin
1861  |  math_extern cos
1862  |  math_extern tan
1863  |  math_extern asin
1864  |  math_extern acos
1865  |  math_extern atan
1866  |  math_extern sinh
1867  |  math_extern cosh
1868  |  math_extern tanh
1869  |  math_extern2 pow
1870  |  math_extern2 atan2
1871  |  math_extern2 fmod
1872  |
1873  |->ff_math_deg:
1874  |.ffunc_n math_rad
1875  |  lfd FARG2, CFUNC:RB->upvalue[0]
1876  |  fmul FARG1, FARG1, FARG2
1877  |  b ->fff_resn
1878  |
1879  |.if DUALNUM
1880  |.ffunc math_ldexp
1881  |  cmplwi NARGS8:RC, 16
1882  |   lwz CARG3, 0(BASE)
1883  |    lfd FARG1, 0(BASE)
1884  |   lwz CARG4, 8(BASE)
1885  |.if GPR64
1886  |    lwz CARG2, 12(BASE)
1887  |.else
1888  |    lwz CARG1, 12(BASE)
1889  |.endif
1890  |  blt ->fff_fallback
1891  |  checknum CARG3; bge ->fff_fallback
1892  |  checknum CARG4; bne ->fff_fallback
1893  |.else
1894  |.ffunc_nn math_ldexp
1895  |.if GPR64
1896  |  toint CARG2, FARG2
1897  |.else
1898  |  toint CARG1, FARG2
1899  |.endif
1900  |.endif
1901  |  blex ldexp
1902  |  b ->fff_resn
1903  |
1904  |.ffunc_n math_frexp
1905  |.if GPR64
1906  |  la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
1907  |.else
1908  |  la CARG1, DISPATCH_GL(tmptv)(DISPATCH)
1909  |.endif
1910  |   lwz PC, FRAME_PC(BASE)
1911  |  blex frexp
1912  |   lwz TMP1, DISPATCH_GL(tmptv)(DISPATCH)
1913  |   la RA, -8(BASE)
1914  |.if not DUALNUM
1915  |   tonum_i FARG2, TMP1
1916  |.endif
1917  |  stfd FARG1, 0(RA)
1918  |  li RD, (2+1)*8
1919  |.if DUALNUM
1920  |   stw TISNUM, 8(RA)
1921  |   stw TMP1, 12(RA)
1922  |.else
1923  |   stfd FARG2, 8(RA)
1924  |.endif
1925  |  b ->fff_res
1926  |
1927  |.ffunc_n math_modf
1928  |.if GPR64
1929  |  la CARG2, -8(BASE)
1930  |.else
1931  |  la CARG1, -8(BASE)
1932  |.endif
1933  |   lwz PC, FRAME_PC(BASE)
1934  |  blex modf
1935  |   la RA, -8(BASE)
1936  |  stfd FARG1, 0(BASE)
1937  |  li RD, (2+1)*8
1938  |  b ->fff_res
1939  |
1940  |.macro math_minmax, name, ismax
1941  |.if DUALNUM
1942  |  .ffunc_1 name
1943  |  checknum CARG3
1944  |   addi TMP1, BASE, 8
1945  |   add TMP2, BASE, NARGS8:RC
1946  |  bne >4
1947  |1:  // Handle integers.
1948  |  lwz CARG4, 0(TMP1)
1949  |   cmplw cr1, TMP1, TMP2
1950  |  lwz CARG2, 4(TMP1)
1951  |   bge cr1, ->fff_resi
1952  |  checknum CARG4
1953  |   xoris TMP0, CARG1, 0x8000
1954  |   xoris TMP3, CARG2, 0x8000
1955  |  bne >3
1956  |  subfc TMP3, TMP3, TMP0
1957  |  subfe TMP0, TMP0, TMP0
1958  |.if ismax
1959  |  andc TMP3, TMP3, TMP0
1960  |.else
1961  |  and TMP3, TMP3, TMP0
1962  |.endif
1963  |  add CARG1, TMP3, CARG2
1964  |.if GPR64
1965  |  rldicl CARG1, CARG1, 0, 32
1966  |.endif
1967  |   addi TMP1, TMP1, 8
1968  |  b <1
1969  |3:
1970  |  bge ->fff_fallback
1971  |  // Convert intermediate result to number and continue below.
1972  |  tonum_i FARG1, CARG1
1973  |  lfd FARG2, 0(TMP1)
1974  |  b >6
1975  |4:
1976  |   lfd FARG1, 0(BASE)
1977  |  bge ->fff_fallback
1978  |5:  // Handle numbers.
1979  |  lwz CARG4, 0(TMP1)
1980  |   cmplw cr1, TMP1, TMP2
1981  |  lfd FARG2, 0(TMP1)
1982  |   bge cr1, ->fff_resn
1983  |  checknum CARG4; bge >7
1984  |6:
1985  |  fsub f0, FARG1, FARG2
1986  |   addi TMP1, TMP1, 8
1987  |.if ismax
1988  |  fsel FARG1, f0, FARG1, FARG2
1989  |.else
1990  |  fsel FARG1, f0, FARG2, FARG1
1991  |.endif
1992  |  b <5
1993  |7:  // Convert integer to number and continue above.
1994  |   lwz CARG2, 4(TMP1)
1995  |  bne ->fff_fallback
1996  |  tonum_i FARG2, CARG2
1997  |  b <6
1998  |.else
1999  |  .ffunc_n name
2000  |  li TMP1, 8
2001  |1:
2002  |   lwzx CARG2, BASE, TMP1
2003  |   lfdx FARG2, BASE, TMP1
2004  |  cmplw cr1, TMP1, NARGS8:RC
2005  |   checknum CARG2
2006  |  bge cr1, ->fff_resn
2007  |   bge ->fff_fallback
2008  |  fsub f0, FARG1, FARG2
2009  |   addi TMP1, TMP1, 8
2010  |.if ismax
2011  |  fsel FARG1, f0, FARG1, FARG2
2012  |.else
2013  |  fsel FARG1, f0, FARG2, FARG1
2014  |.endif
2015  |  b <1
2016  |.endif
2017  |.endmacro
2018  |
2019  |  math_minmax math_min, 0
2020  |  math_minmax math_max, 1
2021  |
2022  |//-- String library -----------------------------------------------------
2023  |
2024  |.ffunc_1 string_len
2025  |  checkstr CARG3; bne ->fff_fallback
2026  |  lwz CRET1, STR:CARG1->len
2027  |  b ->fff_resi
2028  |
2029  |.ffunc string_byte			// Only handle the 1-arg case here.
2030  |  cmplwi NARGS8:RC, 8
2031  |   lwz CARG3, 0(BASE)
2032  |    lwz STR:CARG1, 4(BASE)
2033  |  bne ->fff_fallback			// Need exactly 1 argument.
2034  |   checkstr CARG3
2035  |   bne ->fff_fallback
2036  |  lwz TMP0, STR:CARG1->len
2037  |.if DUALNUM
2038  |   lbz CARG1, STR:CARG1[1]		// Access is always ok (NUL at end).
2039  |   li RD, (0+1)*8
2040  |   lwz PC, FRAME_PC(BASE)
2041  |  cmplwi TMP0, 0
2042  |   la RA, -8(BASE)
2043  |  beqy ->fff_res
2044  |  b ->fff_resi
2045  |.else
2046  |   lbz TMP1, STR:CARG1[1]		// Access is always ok (NUL at end).
2047  |  addic TMP3, TMP0, -1		// RD = ((str->len != 0)+1)*8
2048  |  subfe RD, TMP3, TMP0
2049  |   stw TMP1, TONUM_LO		// Inlined tonum_u f0, TMP1.
2050  |  addi RD, RD, 1
2051  |   lfd f0, TONUM_D
2052  |  la RA, -8(BASE)
2053  |  lwz PC, FRAME_PC(BASE)
2054  |   fsub f0, f0, TOBIT
2055  |  slwi RD, RD, 3
2056  |   stfd f0, 0(RA)
2057  |  b ->fff_res
2058  |.endif
2059  |
2060  |.ffunc string_char			// Only handle the 1-arg case here.
2061  |  ffgccheck
2062  |  cmplwi NARGS8:RC, 8
2063  |   lwz CARG3, 0(BASE)
2064  |.if DUALNUM
2065  |    lwz TMP0, 4(BASE)
2066  |  bne ->fff_fallback			// Exactly 1 argument.
2067  |  checknum CARG3; bne ->fff_fallback
2068  |   la CARG2, 7(BASE)
2069  |.else
2070  |    lfd FARG1, 0(BASE)
2071  |  bne ->fff_fallback			// Exactly 1 argument.
2072  |  checknum CARG3; bge ->fff_fallback
2073  |  toint TMP0, FARG1
2074  |   la CARG2, TMPD_BLO
2075  |.endif
2076  |   li CARG3, 1
2077  |  cmplwi TMP0, 255; bgt ->fff_fallback
2078  |->fff_newstr:
2079  |  mr CARG1, L
2080  |  stp BASE, L->base
2081  |  stw PC, SAVE_PC
2082  |  bl extern lj_str_new		// (lua_State *L, char *str, size_t l)
2083  |  // Returns GCstr *.
2084  |  lp BASE, L->base
2085  |  li CARG3, LJ_TSTR
2086  |  b ->fff_restv
2087  |
2088  |.ffunc string_sub
2089  |  ffgccheck
2090  |  cmplwi NARGS8:RC, 16
2091  |   lwz CARG3, 16(BASE)
2092  |.if not DUALNUM
2093  |    lfd f0, 16(BASE)
2094  |.endif
2095  |   lwz TMP0, 0(BASE)
2096  |    lwz STR:CARG1, 4(BASE)
2097  |  blt ->fff_fallback
2098  |   lwz CARG2, 8(BASE)
2099  |.if DUALNUM
2100  |    lwz TMP1, 12(BASE)
2101  |.else
2102  |    lfd f1, 8(BASE)
2103  |.endif
2104  |   li TMP2, -1
2105  |  beq >1
2106  |.if DUALNUM
2107  |  checknum CARG3
2108  |   lwz TMP2, 20(BASE)
2109  |  bne ->fff_fallback
2110  |1:
2111  |  checknum CARG2; bne ->fff_fallback
2112  |.else
2113  |  checknum CARG3; bge ->fff_fallback
2114  |  toint TMP2, f0
2115  |1:
2116  |  checknum CARG2; bge ->fff_fallback
2117  |.endif
2118  |  checkstr TMP0; bne ->fff_fallback
2119  |.if not DUALNUM
2120  |   toint TMP1, f1
2121  |.endif
2122  |   lwz TMP0, STR:CARG1->len
2123  |  cmplw TMP0, TMP2			// len < end? (unsigned compare)
2124  |   addi TMP3, TMP2, 1
2125  |  blt >5
2126  |2:
2127  |  cmpwi TMP1, 0			// start <= 0?
2128  |   add TMP3, TMP1, TMP0
2129  |  ble >7
2130  |3:
2131  |  sub CARG3, TMP2, TMP1
2132  |    addi CARG2, STR:CARG1, #STR-1
2133  |  srawi TMP0, CARG3, 31
2134  |   addi CARG3, CARG3, 1
2135  |    add CARG2, CARG2, TMP1
2136  |  andc CARG3, CARG3, TMP0
2137  |.if GPR64
2138  |  rldicl CARG2, CARG2, 0, 32
2139  |  rldicl CARG3, CARG3, 0, 32
2140  |.endif
2141  |  b ->fff_newstr
2142  |
2143  |5:  // Negative end or overflow.
2144  |  cmpw TMP0, TMP2			// len >= end? (signed compare)
2145  |   add TMP2, TMP0, TMP3		// Negative end: end = end+len+1.
2146  |  bge <2
2147  |   mr TMP2, TMP0			// Overflow: end = len.
2148  |  b <2
2149  |
2150  |7:  // Negative start or underflow.
2151  |  .gpr64 extsw TMP1, TMP1
2152  |  addic CARG3, TMP1, -1
2153  |  subfe CARG3, CARG3, CARG3
2154  |   srawi CARG2, TMP3, 31		// Note: modifies carry.
2155  |  andc TMP3, TMP3, CARG3
2156  |   andc TMP1, TMP3, CARG2
2157  |  addi TMP1, TMP1, 1			// start = 1 + (start ? start+len : 0)
2158  |  b <3
2159  |
2160  |.ffunc string_rep			// Only handle the 1-char case inline.
2161  |  ffgccheck
2162  |  cmplwi NARGS8:RC, 16
2163  |   lwz TMP0, 0(BASE)
2164  |    lwz STR:CARG1, 4(BASE)
2165  |   lwz CARG4, 8(BASE)
2166  |.if DUALNUM
2167  |    lwz CARG3, 12(BASE)
2168  |.else
2169  |    lfd FARG2, 8(BASE)
2170  |.endif
2171  |  bne ->fff_fallback			// Exactly 2 arguments.
2172  |  checkstr TMP0; bne ->fff_fallback
2173  |.if DUALNUM
2174  |  checknum CARG4; bne ->fff_fallback
2175  |.else
2176  |  checknum CARG4; bge ->fff_fallback
2177  |    toint CARG3, FARG2
2178  |.endif
2179  |   lwz TMP0, STR:CARG1->len
2180  |  cmpwi CARG3, 0
2181  |   lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
2182  |  ble >2				// Count <= 0? (or non-int)
2183  |   cmplwi TMP0, 1
2184  |  subi TMP2, CARG3, 1
2185  |   blt >2				// Zero length string?
2186  |  cmplw cr1, TMP1, CARG3
2187  |   bne ->fff_fallback		// Fallback for > 1-char strings.
2188  |   lbz TMP0, STR:CARG1[1]
2189  |   lp CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
2190  |  blt cr1, ->fff_fallback
2191  |1:  // Fill buffer with char. Yes, this is suboptimal code (do you care?).
2192  |  cmplwi TMP2, 0
2193  |   stbx TMP0, CARG2, TMP2
2194  |   subi TMP2, TMP2, 1
2195  |  bne <1
2196  |  b ->fff_newstr
2197  |2:  // Return empty string.
2198  |  la STR:CARG1, DISPATCH_GL(strempty)(DISPATCH)
2199  |  li CARG3, LJ_TSTR
2200  |  b ->fff_restv
2201  |
2202  |.ffunc string_reverse
2203  |  ffgccheck
2204  |  cmplwi NARGS8:RC, 8
2205  |   lwz CARG3, 0(BASE)
2206  |    lwz STR:CARG1, 4(BASE)
2207  |  blt ->fff_fallback
2208  |  checkstr CARG3
2209  |   lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
2210  |  bne ->fff_fallback
2211  |  lwz CARG3, STR:CARG1->len
2212  |   la CARG1, #STR(STR:CARG1)
2213  |   lp CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
2214  |   li TMP2, 0
2215  |  cmplw TMP1, CARG3
2216  |   subi TMP3, CARG3, 1
2217  |  blt ->fff_fallback
2218  |1:  // Reverse string copy.
2219  |  cmpwi TMP3, 0
2220  |   lbzx TMP1, CARG1, TMP2
2221  |  blty ->fff_newstr
2222  |   stbx TMP1, CARG2, TMP3
2223  |  subi TMP3, TMP3, 1
2224  |  addi TMP2, TMP2, 1
2225  |  b <1
2226  |
2227  |.macro ffstring_case, name, lo
2228  |  .ffunc name
2229  |  ffgccheck
2230  |  cmplwi NARGS8:RC, 8
2231  |   lwz CARG3, 0(BASE)
2232  |    lwz STR:CARG1, 4(BASE)
2233  |  blt ->fff_fallback
2234  |  checkstr CARG3
2235  |   lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
2236  |  bne ->fff_fallback
2237  |  lwz CARG3, STR:CARG1->len
2238  |   la CARG1, #STR(STR:CARG1)
2239  |   lp CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
2240  |  cmplw TMP1, CARG3
2241  |   li TMP2, 0
2242  |  blt ->fff_fallback
2243  |1:  // ASCII case conversion.
2244  |  cmplw TMP2, CARG3
2245  |   lbzx TMP1, CARG1, TMP2
2246  |  bgey ->fff_newstr
2247  |   subi TMP0, TMP1, lo
2248  |    xori TMP3, TMP1, 0x20
2249  |   addic TMP0, TMP0, -26
2250  |   subfe TMP3, TMP3, TMP3
2251  |   rlwinm TMP3, TMP3, 0, 26, 26	// x &= 0x20.
2252  |   xor TMP1, TMP1, TMP3
2253  |   stbx TMP1, CARG2, TMP2
2254  |  addi TMP2, TMP2, 1
2255  |  b <1
2256  |.endmacro
2257  |
2258  |ffstring_case string_lower, 65
2259  |ffstring_case string_upper, 97
2260  |
2261  |//-- Table library ------------------------------------------------------
2262  |
2263  |.ffunc_1 table_getn
2264  |  checktab CARG3; bne ->fff_fallback
2265  |  bl extern lj_tab_len		// (GCtab *t)
2266  |  // Returns uint32_t (but less than 2^31).
2267  |  b ->fff_resi
2268  |
2269  |//-- Bit library --------------------------------------------------------
2270  |
2271  |.macro .ffunc_bit, name
2272  |.if DUALNUM
2273  |  .ffunc_1 bit_..name
2274  |  checknum CARG3; bnel ->fff_tobit_fb
2275  |.else
2276  |  .ffunc_n bit_..name
2277  |  fadd FARG1, FARG1, TOBIT
2278  |  stfd FARG1, TMPD
2279  |  lwz CARG1, TMPD_LO
2280  |.endif
2281  |.endmacro
2282  |
2283  |.macro .ffunc_bit_op, name, ins
2284  |  .ffunc_bit name
2285  |  addi TMP1, BASE, 8
2286  |  add TMP2, BASE, NARGS8:RC
2287  |1:
2288  |  lwz CARG4, 0(TMP1)
2289  |   cmplw cr1, TMP1, TMP2
2290  |.if DUALNUM
2291  |  lwz CARG2, 4(TMP1)
2292  |.else
2293  |  lfd FARG1, 0(TMP1)
2294  |.endif
2295  |   bgey cr1, ->fff_resi
2296  |  checknum CARG4
2297  |.if DUALNUM
2298  |  bnel ->fff_bitop_fb
2299  |.else
2300  |  fadd FARG1, FARG1, TOBIT
2301  |  bge ->fff_fallback
2302  |  stfd FARG1, TMPD
2303  |  lwz CARG2, TMPD_LO
2304  |.endif
2305  |  ins CARG1, CARG1, CARG2
2306  |   addi TMP1, TMP1, 8
2307  |  b <1
2308  |.endmacro
2309  |
2310  |.ffunc_bit_op band, and
2311  |.ffunc_bit_op bor, or
2312  |.ffunc_bit_op bxor, xor
2313  |
2314  |.ffunc_bit bswap
2315  |  rotlwi TMP0, CARG1, 8
2316  |  rlwimi TMP0, CARG1, 24, 0, 7
2317  |  rlwimi TMP0, CARG1, 24, 16, 23
2318  |  mr CRET1, TMP0
2319  |  b ->fff_resi
2320  |
2321  |.ffunc_bit bnot
2322  |  not CRET1, CARG1
2323  |  b ->fff_resi
2324  |
2325  |.macro .ffunc_bit_sh, name, ins, shmod
2326  |.if DUALNUM
2327  |  .ffunc_2 bit_..name
2328  |  checknum CARG3; bnel ->fff_tobit_fb
2329  |  // Note: no inline conversion from number for 2nd argument!
2330  |  checknum CARG4; bne ->fff_fallback
2331  |.else
2332  |  .ffunc_nn bit_..name
2333  |  fadd FARG1, FARG1, TOBIT
2334  |  fadd FARG2, FARG2, TOBIT
2335  |  stfd FARG1, TMPD
2336  |  lwz CARG1, TMPD_LO
2337  |  stfd FARG2, TMPD
2338  |  lwz CARG2, TMPD_LO
2339  |.endif
2340  |.if shmod == 1
2341  |  rlwinm CARG2, CARG2, 0, 27, 31
2342  |.elif shmod == 2
2343  |  neg CARG2, CARG2
2344  |.endif
2345  |  ins CRET1, CARG1, CARG2
2346  |  b ->fff_resi
2347  |.endmacro
2348  |
2349  |.ffunc_bit_sh lshift, slw, 1
2350  |.ffunc_bit_sh rshift, srw, 1
2351  |.ffunc_bit_sh arshift, sraw, 1
2352  |.ffunc_bit_sh rol, rotlw, 0
2353  |.ffunc_bit_sh ror, rotlw, 2
2354  |
2355  |.ffunc_bit tobit
2356  |.if DUALNUM
2357  |  b ->fff_resi
2358  |.else
2359  |->fff_resi:
2360  |  tonum_i FARG1, CRET1
2361  |.endif
2362  |->fff_resn:
2363  |  lwz PC, FRAME_PC(BASE)
2364  |  la RA, -8(BASE)
2365  |  stfd FARG1, -8(BASE)
2366  |  b ->fff_res1
2367  |
2368  |// Fallback FP number to bit conversion.
2369  |->fff_tobit_fb:
2370  |.if DUALNUM
2371  |  lfd FARG1, 0(BASE)
2372  |  bgt ->fff_fallback
2373  |  fadd FARG1, FARG1, TOBIT
2374  |  stfd FARG1, TMPD
2375  |  lwz CARG1, TMPD_LO
2376  |  blr
2377  |.endif
2378  |->fff_bitop_fb:
2379  |.if DUALNUM
2380  |  lfd FARG1, 0(TMP1)
2381  |  bgt ->fff_fallback
2382  |  fadd FARG1, FARG1, TOBIT
2383  |  stfd FARG1, TMPD
2384  |  lwz CARG2, TMPD_LO
2385  |  blr
2386  |.endif
2387  |
2388  |//-----------------------------------------------------------------------
2389  |
2390  |->fff_fallback:			// Call fast function fallback handler.
2391  |  // BASE = new base, RB = CFUNC, RC = nargs*8
2392  |  lp TMP3, CFUNC:RB->f
2393  |    add TMP1, BASE, NARGS8:RC
2394  |   lwz PC, FRAME_PC(BASE)		// Fallback may overwrite PC.
2395  |    addi TMP0, TMP1, 8*LUA_MINSTACK
2396  |     lwz TMP2, L->maxstack
2397  |   stw PC, SAVE_PC			// Redundant (but a defined value).
2398  |  .toc lp TMP3, 0(TMP3)
2399  |  cmplw TMP0, TMP2
2400  |     stp BASE, L->base
2401  |    stp TMP1, L->top
2402  |   mr CARG1, L
2403  |  bgt >5				// Need to grow stack.
2404  |  mtctr TMP3
2405  |  bctrl				// (lua_State *L)
2406  |  // Either throws an error, or recovers and returns -1, 0 or nresults+1.
2407  |  lp BASE, L->base
2408  |  cmpwi CRET1, 0
2409  |   slwi RD, CRET1, 3
2410  |   la RA, -8(BASE)
2411  |  bgt ->fff_res			// Returned nresults+1?
2412  |1:  // Returned 0 or -1: retry fast path.
2413  |  lp TMP0, L->top
2414  |   lwz LFUNC:RB, FRAME_FUNC(BASE)
2415  |  sub NARGS8:RC, TMP0, BASE
2416  |  bne ->vm_call_tail			// Returned -1?
2417  |  ins_callt				// Returned 0: retry fast path.
2418  |
2419  |// Reconstruct previous base for vmeta_call during tailcall.
2420  |->vm_call_tail:
2421  |  andix. TMP0, PC, FRAME_TYPE
2422  |   rlwinm TMP1, PC, 0, 0, 28
2423  |  bne >3
2424  |  lwz INS, -4(PC)
2425  |  decode_RA8 TMP1, INS
2426  |  addi TMP1, TMP1, 8
2427  |3:
2428  |  sub TMP2, BASE, TMP1
2429  |  b ->vm_call_dispatch		// Resolve again for tailcall.
2430  |
2431  |5:  // Grow stack for fallback handler.
2432  |  li CARG2, LUA_MINSTACK
2433  |  bl extern lj_state_growstack	// (lua_State *L, int n)
2434  |  lp BASE, L->base
2435  |  cmpw TMP0, TMP0			// Set 4*cr0+eq to force retry.
2436  |  b <1
2437  |
2438  |->fff_gcstep:			// Call GC step function.
2439  |  // BASE = new base, RC = nargs*8
2440  |  mflr SAVE0
2441  |   stp BASE, L->base
2442  |  add TMP0, BASE, NARGS8:RC
2443  |   stw PC, SAVE_PC			// Redundant (but a defined value).
2444  |  stp TMP0, L->top
2445  |  mr CARG1, L
2446  |  bl extern lj_gc_step		// (lua_State *L)
2447  |   lp BASE, L->base
2448  |  mtlr SAVE0
2449  |    lp TMP0, L->top
2450  |   sub NARGS8:RC, TMP0, BASE
2451  |   lwz CFUNC:RB, FRAME_FUNC(BASE)
2452  |  blr
2453  |
2454  |//-----------------------------------------------------------------------
2455  |//-- Special dispatch targets -------------------------------------------
2456  |//-----------------------------------------------------------------------
2457  |
2458  |->vm_record:				// Dispatch target for recording phase.
2459  |.if JIT
2460  |  lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2461  |  andix. TMP0, TMP3, HOOK_VMEVENT	// No recording while in vmevent.
2462  |  bne >5
2463  |  // Decrement the hookcount for consistency, but always do the call.
2464  |   lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2465  |  andix. TMP0, TMP3, HOOK_ACTIVE
2466  |  bne >1
2467  |   subi TMP2, TMP2, 1
2468  |  andi. TMP0, TMP3, LUA_MASKLINE|LUA_MASKCOUNT
2469  |  beqy >1
2470  |   stw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2471  |  b >1
2472  |.endif
2473  |
2474  |->vm_rethook:			// Dispatch target for return hooks.
2475  |  lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2476  |  andix. TMP0, TMP3, HOOK_ACTIVE	// Hook already active?
2477  |  beq >1
2478  |5:  // Re-dispatch to static ins.
2479  |  addi TMP1, TMP1, GG_DISP2STATIC	// Assumes decode_OPP TMP1, INS.
2480  |  lpx TMP0, DISPATCH, TMP1
2481  |  mtctr TMP0
2482  |  bctr
2483  |
2484  |->vm_inshook:			// Dispatch target for instr/line hooks.
2485  |  lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2486  |  lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2487  |  andix. TMP0, TMP3, HOOK_ACTIVE	// Hook already active?
2488  |   rlwinm TMP0, TMP3, 31-LUA_HOOKLINE, 31, 0
2489  |  bne <5
2490  |
2491  |   cmpwi cr1, TMP0, 0
2492  |  addic. TMP2, TMP2, -1
2493  |   beq cr1, <5
2494  |  stw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2495  |  beq >1
2496  |   bge cr1, <5
2497  |1:
2498  |  mr CARG1, L
2499  |   stw MULTRES, SAVE_MULTRES
2500  |  mr CARG2, PC
2501  |   stp BASE, L->base
2502  |  // SAVE_PC must hold the _previous_ PC. The callee updates it with PC.
2503  |  bl extern lj_dispatch_ins		// (lua_State *L, const BCIns *pc)
2504  |3:
2505  |  lp BASE, L->base
2506  |4:  // Re-dispatch to static ins.
2507  |  lwz INS, -4(PC)
2508  |  decode_OPP TMP1, INS
2509  |   decode_RB8 RB, INS
2510  |  addi TMP1, TMP1, GG_DISP2STATIC
2511  |   decode_RD8 RD, INS
2512  |  lpx TMP0, DISPATCH, TMP1
2513  |   decode_RA8 RA, INS
2514  |   decode_RC8 RC, INS
2515  |  mtctr TMP0
2516  |  bctr
2517  |
2518  |->cont_hook:				// Continue from hook yield.
2519  |  addi PC, PC, 4
2520  |  lwz MULTRES, -20(RB)		// Restore MULTRES for *M ins.
2521  |  b <4
2522  |
2523  |->vm_hotloop:			// Hot loop counter underflow.
2524  |.if JIT
2525  |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
2526  |   addi CARG1, DISPATCH, GG_DISP2J
2527  |   stw PC, SAVE_PC
2528  |  lwz TMP1, LFUNC:TMP1->pc
2529  |   mr CARG2, PC
2530  |   stw L, DISPATCH_J(L)(DISPATCH)
2531  |  lbz TMP1, PC2PROTO(framesize)(TMP1)
2532  |   stp BASE, L->base
2533  |  slwi TMP1, TMP1, 3
2534  |  add TMP1, BASE, TMP1
2535  |  stp TMP1, L->top
2536  |  bl extern lj_trace_hot		// (jit_State *J, const BCIns *pc)
2537  |  b <3
2538  |.endif
2539  |
2540  |->vm_callhook:			// Dispatch target for call hooks.
2541  |  mr CARG2, PC
2542  |.if JIT
2543  |  b >1
2544  |.endif
2545  |
2546  |->vm_hotcall:			// Hot call counter underflow.
2547  |.if JIT
2548  |  ori CARG2, PC, 1
2549  |1:
2550  |.endif
2551  |  add TMP0, BASE, RC
2552  |   stw PC, SAVE_PC
2553  |  mr CARG1, L
2554  |   stp BASE, L->base
2555  |  sub RA, RA, BASE
2556  |   stp TMP0, L->top
2557  |  bl extern lj_dispatch_call		// (lua_State *L, const BCIns *pc)
2558  |  // Returns ASMFunction.
2559  |  lp BASE, L->base
2560  |   lp TMP0, L->top
2561  |   stw ZERO, SAVE_PC			// Invalidate for subsequent line hook.
2562  |  sub NARGS8:RC, TMP0, BASE
2563  |  add RA, BASE, RA
2564  |  lwz LFUNC:RB, FRAME_FUNC(BASE)
2565  |  lwz INS, -4(PC)
2566  |  mtctr CRET1
2567  |  bctr
2568  |
2569  |//-----------------------------------------------------------------------
2570  |//-- Trace exit handler -------------------------------------------------
2571  |//-----------------------------------------------------------------------
2572  |
2573  |.macro savex_, a, b, c, d
2574  |  stfd f..a, 16+a*8(sp)
2575  |  stfd f..b, 16+b*8(sp)
2576  |  stfd f..c, 16+c*8(sp)
2577  |  stfd f..d, 16+d*8(sp)
2578  |.endmacro
2579  |
2580  |->vm_exit_handler:
2581  |.if JIT
2582  |  addi sp, sp, -(16+32*8+32*4)
2583  |  stmw r2, 16+32*8+2*4(sp)
2584  |    addi DISPATCH, JGL, -GG_DISP2G-32768
2585  |    li CARG2, ~LJ_VMST_EXIT
2586  |   lwz CARG1, 16+32*8+32*4(sp)	// Get stack chain.
2587  |    stw CARG2, DISPATCH_GL(vmstate)(DISPATCH)
2588  |  savex_ 0,1,2,3
2589  |   stw CARG1, 0(sp)			// Store extended stack chain.
2590  |   mcrxr cr0				// Clear SO flag.
2591  |  savex_ 4,5,6,7
2592  |   addi CARG2, sp, 16+32*8+32*4	// Recompute original value of sp.
2593  |  savex_ 8,9,10,11
2594  |   stw CARG2, 16+32*8+1*4(sp)	// Store sp in RID_SP.
2595  |  savex_ 12,13,14,15
2596  |   mflr CARG3
2597  |   li TMP1, 0
2598  |  savex_ 16,17,18,19
2599  |   stw TMP1, 16+32*8+0*4(sp)		// Clear RID_TMP.
2600  |  savex_ 20,21,22,23
2601  |   lhz CARG4, 2(CARG3)		// Load trace number.
2602  |  savex_ 24,25,26,27
2603  |  lwz L, DISPATCH_GL(jit_L)(DISPATCH)
2604  |  savex_ 28,29,30,31
2605  |   sub CARG3, TMP0, CARG3		// Compute exit number.
2606  |  lp BASE, DISPATCH_GL(jit_base)(DISPATCH)
2607  |   srwi CARG3, CARG3, 2
2608  |  stw L, DISPATCH_J(L)(DISPATCH)
2609  |   subi CARG3, CARG3, 2
2610  |  stw TMP1, DISPATCH_GL(jit_L)(DISPATCH)
2611  |   stw CARG4, DISPATCH_J(parent)(DISPATCH)
2612  |  stp BASE, L->base
2613  |  addi CARG1, DISPATCH, GG_DISP2J
2614  |   stw CARG3, DISPATCH_J(exitno)(DISPATCH)
2615  |  addi CARG2, sp, 16
2616  |  bl extern lj_trace_exit		// (jit_State *J, ExitState *ex)
2617  |  // Returns MULTRES (unscaled) or negated error code.
2618  |  lp TMP1, L->cframe
2619  |  lwz TMP2, 0(sp)
2620  |   lp BASE, L->base
2621  |.if GPR64
2622  |  rldicr sp, TMP1, 0, 61
2623  |.else
2624  |  rlwinm sp, TMP1, 0, 0, 29
2625  |.endif
2626  |   lwz PC, SAVE_PC			// Get SAVE_PC.
2627  |  stw TMP2, 0(sp)
2628  |  stw L, SAVE_L			// Set SAVE_L (on-trace resume/yield).
2629  |  b >1
2630  |.endif
2631  |->vm_exit_interp:
2632  |.if JIT
2633  |  // CARG1 = MULTRES or negated error code, BASE, PC and JGL set.
2634  |  lwz L, SAVE_L
2635  |  addi DISPATCH, JGL, -GG_DISP2G-32768
2636  |1:
2637  |  cmpwi CARG1, 0
2638  |  blt >3				// Check for error from exit.
2639  |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
2640  |   slwi MULTRES, CARG1, 3
2641  |    li TMP2, 0
2642  |   stw MULTRES, SAVE_MULTRES
2643  |  lwz TMP1, LFUNC:TMP1->pc
2644  |    stw TMP2, DISPATCH_GL(jit_L)(DISPATCH)
2645  |  lwz KBASE, PC2PROTO(k)(TMP1)
2646  |  // Setup type comparison constants.
2647  |  li TISNUM, LJ_TISNUM
2648  |  lus TMP3, 0x59c0			// TOBIT = 2^52 + 2^51 (float).
2649  |  stw TMP3, TMPD
2650  |  li ZERO, 0
2651  |  ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
2652  |  lfs TOBIT, TMPD
2653  |  stw TMP3, TMPD
2654  |  lus TMP0, 0x4338			// Hiword of 2^52 + 2^51 (double)
2655  |    li TISNIL, LJ_TNIL
2656  |  stw TMP0, TONUM_HI
2657  |  lfs TONUM, TMPD
2658  |  // Modified copy of ins_next which handles function header dispatch, too.
2659  |  lwz INS, 0(PC)
2660  |   addi PC, PC, 4
2661  |    // Assumes TISNIL == ~LJ_VMST_INTERP == -1.
2662  |    stw TISNIL, DISPATCH_GL(vmstate)(DISPATCH)
2663  |  decode_OPP TMP1, INS
2664  |   decode_RA8 RA, INS
2665  |  lpx TMP0, DISPATCH, TMP1
2666  |  mtctr TMP0
2667  |  cmplwi TMP1, BC_FUNCF*4		// Function header?
2668  |  bge >2
2669  |   decode_RB8 RB, INS
2670  |   decode_RD8 RD, INS
2671  |   decode_RC8 RC, INS
2672  |  bctr
2673  |2:
2674  |   subi RC, MULTRES, 8
2675  |   add RA, RA, BASE
2676  |  bctr
2677  |
2678  |3:  // Rethrow error from the right C frame.
2679  |  neg CARG2, CARG1
2680  |  mr CARG1, L
2681  |  bl extern lj_err_throw		// (lua_State *L, int errcode)
2682  |.endif
2683  |
2684  |//-----------------------------------------------------------------------
2685  |//-- Math helper functions ----------------------------------------------
2686  |//-----------------------------------------------------------------------
2687  |
2688  |// NYI: Use internal implementations of floor, ceil, trunc.
2689  |
2690  |->vm_modi:
2691  |  divwo. TMP0, CARG1, CARG2
2692  |  bso >1
2693  |.if GPR64
2694  |   xor CARG3, CARG1, CARG2
2695  |   cmpwi CARG3, 0
2696  |.else
2697  |   xor. CARG3, CARG1, CARG2
2698  |.endif
2699  |  mullw TMP0, TMP0, CARG2
2700  |  sub CARG1, CARG1, TMP0
2701  |   bgelr
2702  |  cmpwi CARG1, 0; beqlr
2703  |  add CARG1, CARG1, CARG2
2704  |  blr
2705  |1:
2706  |  cmpwi CARG2, 0
2707  |   li CARG1, 0
2708  |  beqlr
2709  |  mcrxr cr0			// Clear SO for -2147483648 % -1 and return 0.
2710  |  blr
2711  |
2712  |//-----------------------------------------------------------------------
2713  |//-- Miscellaneous functions --------------------------------------------
2714  |//-----------------------------------------------------------------------
2715  |
2716  |// void lj_vm_cachesync(void *start, void *end)
2717  |// Flush D-Cache and invalidate I-Cache. Assumes 32 byte cache line size.
2718  |// This is a good lower bound, except for very ancient PPC models.
2719  |->vm_cachesync:
2720  |.if JIT or FFI
2721  |  // Compute start of first cache line and number of cache lines.
2722  |  rlwinm CARG1, CARG1, 0, 0, 26
2723  |  sub CARG2, CARG2, CARG1
2724  |  addi CARG2, CARG2, 31
2725  |  rlwinm. CARG2, CARG2, 27, 5, 31
2726  |  beqlr
2727  |  mtctr CARG2
2728  |  mr CARG3, CARG1
2729  |1:  // Flush D-Cache.
2730  |  dcbst r0, CARG1
2731  |  addi CARG1, CARG1, 32
2732  |  bdnz <1
2733  |  sync
2734  |  mtctr CARG2
2735  |1:  // Invalidate I-Cache.
2736  |  icbi r0, CARG3
2737  |  addi CARG3, CARG3, 32
2738  |  bdnz <1
2739  |  isync
2740  |  blr
2741  |.endif
2742  |
2743  |//-----------------------------------------------------------------------
2744  |//-- FFI helper functions -----------------------------------------------
2745  |//-----------------------------------------------------------------------
2746  |
2747  |// Handler for callback functions. Callback slot number in r11, g in r12.
2748  |->vm_ffi_callback:
2749  |.if FFI
2750  |.type CTSTATE, CTState, PC
2751  |  saveregs
2752  |  lwz CTSTATE, GL:r12->ctype_state
2753  |   addi DISPATCH, r12, GG_G2DISP
2754  |  stw r11, CTSTATE->cb.slot
2755  |  stw r3, CTSTATE->cb.gpr[0]
2756  |   stfd f1, CTSTATE->cb.fpr[0]
2757  |  stw r4, CTSTATE->cb.gpr[1]
2758  |   stfd f2, CTSTATE->cb.fpr[1]
2759  |  stw r5, CTSTATE->cb.gpr[2]
2760  |   stfd f3, CTSTATE->cb.fpr[2]
2761  |  stw r6, CTSTATE->cb.gpr[3]
2762  |   stfd f4, CTSTATE->cb.fpr[3]
2763  |  stw r7, CTSTATE->cb.gpr[4]
2764  |   stfd f5, CTSTATE->cb.fpr[4]
2765  |  stw r8, CTSTATE->cb.gpr[5]
2766  |   stfd f6, CTSTATE->cb.fpr[5]
2767  |  stw r9, CTSTATE->cb.gpr[6]
2768  |   stfd f7, CTSTATE->cb.fpr[6]
2769  |  stw r10, CTSTATE->cb.gpr[7]
2770  |   stfd f8, CTSTATE->cb.fpr[7]
2771  |  addi TMP0, sp, CFRAME_SPACE+8
2772  |  stw TMP0, CTSTATE->cb.stack
2773  |   mr CARG1, CTSTATE
2774  |  stw CTSTATE, SAVE_PC		// Any value outside of bytecode is ok.
2775  |   mr CARG2, sp
2776  |  bl extern lj_ccallback_enter	// (CTState *cts, void *cf)
2777  |  // Returns lua_State *.
2778  |  lp BASE, L:CRET1->base
2779  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
2780  |  lp RC, L:CRET1->top
2781  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
2782  |     li ZERO, 0
2783  |   mr L, CRET1
2784  |     stw TMP3, TMPD
2785  |     lus TMP0, 0x4338		// Hiword of 2^52 + 2^51 (double)
2786  |  lwz LFUNC:RB, FRAME_FUNC(BASE)
2787  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
2788  |     stw TMP0, TONUM_HI
2789  |     li TISNIL, LJ_TNIL
2790  |    li_vmstate INTERP
2791  |     lfs TOBIT, TMPD
2792  |     stw TMP3, TMPD
2793  |  sub RC, RC, BASE
2794  |    st_vmstate
2795  |     lfs TONUM, TMPD
2796  |  ins_callt
2797  |.endif
2798  |
2799  |->cont_ffi_callback:			// Return from FFI callback.
2800  |.if FFI
2801  |  lwz CTSTATE, DISPATCH_GL(ctype_state)(DISPATCH)
2802  |   stp BASE, L->base
2803  |   stp RB, L->top
2804  |  stp L, CTSTATE->L
2805  |  mr CARG1, CTSTATE
2806  |  mr CARG2, RA
2807  |  bl extern lj_ccallback_leave	// (CTState *cts, TValue *o)
2808  |  lwz CRET1, CTSTATE->cb.gpr[0]
2809  |  lfd FARG1, CTSTATE->cb.fpr[0]
2810  |  lwz CRET2, CTSTATE->cb.gpr[1]
2811  |  b ->vm_leave_unw
2812  |.endif
2813  |
2814  |->vm_ffi_call:			// Call C function via FFI.
2815  |  // Caveat: needs special frame unwinding, see below.
2816  |.if FFI
2817  |  .type CCSTATE, CCallState, CARG1
2818  |  lwz TMP1, CCSTATE->spadj
2819  |    mflr TMP0
2820  |   lbz CARG2, CCSTATE->nsp
2821  |   lbz CARG3, CCSTATE->nfpr
2822  |  neg TMP1, TMP1
2823  |    stw TMP0, 4(sp)
2824  |   cmpwi cr1, CARG3, 0
2825  |  mr TMP2, sp
2826  |   addic. CARG2, CARG2, -1
2827  |  stwux sp, sp, TMP1
2828  |   crnot 4*cr1+eq, 4*cr1+eq		// For vararg calls.
2829  |  stw r14, -4(TMP2)
2830  |  stw CCSTATE, -8(TMP2)
2831  |  mr r14, TMP2
2832  |  la TMP1, CCSTATE->stack
2833  |   slwi CARG2, CARG2, 2
2834  |   blty >2
2835  |  la TMP2, 8(sp)
2836  |1:
2837  |  lwzx TMP0, TMP1, CARG2
2838  |  stwx TMP0, TMP2, CARG2
2839  |   addic. CARG2, CARG2, -4
2840  |  bge <1
2841  |2:
2842  |  bney cr1, >3
2843  |  lfd f1, CCSTATE->fpr[0]
2844  |  lfd f2, CCSTATE->fpr[1]
2845  |  lfd f3, CCSTATE->fpr[2]
2846  |  lfd f4, CCSTATE->fpr[3]
2847  |  lfd f5, CCSTATE->fpr[4]
2848  |  lfd f6, CCSTATE->fpr[5]
2849  |  lfd f7, CCSTATE->fpr[6]
2850  |  lfd f8, CCSTATE->fpr[7]
2851  |3:
2852  |   lp TMP0, CCSTATE->func
2853  |  lwz CARG2, CCSTATE->gpr[1]
2854  |  lwz CARG3, CCSTATE->gpr[2]
2855  |  lwz CARG4, CCSTATE->gpr[3]
2856  |  lwz CARG5, CCSTATE->gpr[4]
2857  |   mtctr TMP0
2858  |  lwz r8, CCSTATE->gpr[5]
2859  |  lwz r9, CCSTATE->gpr[6]
2860  |  lwz r10, CCSTATE->gpr[7]
2861  |  lwz CARG1, CCSTATE->gpr[0]		// Do this last, since CCSTATE is CARG1.
2862  |   bctrl
2863  |  lwz CCSTATE:TMP1, -8(r14)
2864  |  lwz TMP2, -4(r14)
2865  |   lwz TMP0, 4(r14)
2866  |  stw CARG1, CCSTATE:TMP1->gpr[0]
2867  |  stfd FARG1, CCSTATE:TMP1->fpr[0]
2868  |  stw CARG2, CCSTATE:TMP1->gpr[1]
2869  |   mtlr TMP0
2870  |  stw CARG3, CCSTATE:TMP1->gpr[2]
2871  |   mr sp, r14
2872  |  stw CARG4, CCSTATE:TMP1->gpr[3]
2873  |   mr r14, TMP2
2874  |  blr
2875  |.endif
2876  |// Note: vm_ffi_call must be the last function in this object file!
2877  |
2878  |//-----------------------------------------------------------------------
2879}
2880
2881/* Generate the code for a single instruction. */
2882static void build_ins(BuildCtx *ctx, BCOp op, int defop)
2883{
2884  int vk = 0;
2885  |=>defop:
2886
2887  switch (op) {
2888
2889  /* -- Comparison ops ---------------------------------------------------- */
2890
2891  /* Remember: all ops branch for a true comparison, fall through otherwise. */
2892
2893  case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT:
2894    |  // RA = src1*8, RD = src2*8, JMP with RD = target
2895    |.if DUALNUM
2896    |  lwzux TMP0, RA, BASE
2897    |    addi PC, PC, 4
2898    |   lwz CARG2, 4(RA)
2899    |  lwzux TMP1, RD, BASE
2900    |    lwz TMP2, -4(PC)
2901    |  checknum cr0, TMP0
2902    |   lwz CARG3, 4(RD)
2903    |    decode_RD4 TMP2, TMP2
2904    |  checknum cr1, TMP1
2905    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
2906    |  bne cr0, >7
2907    |  bne cr1, >8
2908    |   cmpw CARG2, CARG3
2909    if (op == BC_ISLT) {
2910      |  bge >2
2911    } else if (op == BC_ISGE) {
2912      |  blt >2
2913    } else if (op == BC_ISLE) {
2914      |  bgt >2
2915    } else {
2916      |  ble >2
2917    }
2918    |1:
2919    |  add PC, PC, TMP2
2920    |2:
2921    |  ins_next
2922    |
2923    |7:  // RA is not an integer.
2924    |  bgt cr0, ->vmeta_comp
2925    |  // RA is a number.
2926    |   lfd f0, 0(RA)
2927    |  bgt cr1, ->vmeta_comp
2928    |  blt cr1, >4
2929    |  // RA is a number, RD is an integer.
2930    |  tonum_i f1, CARG3
2931    |  b >5
2932    |
2933    |8: // RA is an integer, RD is not an integer.
2934    |  bgt cr1, ->vmeta_comp
2935    |  // RA is an integer, RD is a number.
2936    |  tonum_i f0, CARG2
2937    |4:
2938    |  lfd f1, 0(RD)
2939    |5:
2940    |  fcmpu cr0, f0, f1
2941    if (op == BC_ISLT) {
2942      |  bge <2
2943    } else if (op == BC_ISGE) {
2944      |  blt <2
2945    } else if (op == BC_ISLE) {
2946      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
2947      |  bge <2
2948    } else {
2949      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
2950      |  blt <2
2951    }
2952    |  b <1
2953    |.else
2954    |  lwzx TMP0, BASE, RA
2955    |    addi PC, PC, 4
2956    |   lfdx f0, BASE, RA
2957    |  lwzx TMP1, BASE, RD
2958    |  checknum cr0, TMP0
2959    |    lwz TMP2, -4(PC)
2960    |   lfdx f1, BASE, RD
2961    |  checknum cr1, TMP1
2962    |    decode_RD4 TMP2, TMP2
2963    |  bge cr0, ->vmeta_comp
2964    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
2965    |  bge cr1, ->vmeta_comp
2966    |  fcmpu cr0, f0, f1
2967    if (op == BC_ISLT) {
2968      |  bge >1
2969    } else if (op == BC_ISGE) {
2970      |  blt >1
2971    } else if (op == BC_ISLE) {
2972      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
2973      |  bge >1
2974    } else {
2975      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
2976      |  blt >1
2977    }
2978    |  add PC, PC, TMP2
2979    |1:
2980    |  ins_next
2981    |.endif
2982    break;
2983
2984  case BC_ISEQV: case BC_ISNEV:
2985    vk = op == BC_ISEQV;
2986    |  // RA = src1*8, RD = src2*8, JMP with RD = target
2987    |.if DUALNUM
2988    |  lwzux TMP0, RA, BASE
2989    |    addi PC, PC, 4
2990    |   lwz CARG2, 4(RA)
2991    |  lwzux TMP1, RD, BASE
2992    |  checknum cr0, TMP0
2993    |    lwz TMP2, -4(PC)
2994    |  checknum cr1, TMP1
2995    |    decode_RD4 TMP2, TMP2
2996    |   lwz CARG3, 4(RD)
2997    |  cror 4*cr7+gt, 4*cr0+gt, 4*cr1+gt
2998    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
2999    if (vk) {
3000      |  ble cr7, ->BC_ISEQN_Z
3001    } else {
3002      |  ble cr7, ->BC_ISNEN_Z
3003    }
3004    |.else
3005    |  lwzux TMP0, RA, BASE
3006    |   lwz TMP2, 0(PC)
3007    |    lfd f0, 0(RA)
3008    |   addi PC, PC, 4
3009    |  lwzux TMP1, RD, BASE
3010    |  checknum cr0, TMP0
3011    |   decode_RD4 TMP2, TMP2
3012    |    lfd f1, 0(RD)
3013    |  checknum cr1, TMP1
3014    |   addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3015    |  bge cr0, >5
3016    |  bge cr1, >5
3017    |  fcmpu cr0, f0, f1
3018    if (vk) {
3019      |  bne >1
3020      |  add PC, PC, TMP2
3021    } else {
3022      |  beq >1
3023      |  add PC, PC, TMP2
3024    }
3025    |1:
3026    |  ins_next
3027    |.endif
3028    |5:  // Either or both types are not numbers.
3029    |.if not DUALNUM
3030    |    lwz CARG2, 4(RA)
3031    |    lwz CARG3, 4(RD)
3032    |.endif
3033    |.if FFI
3034    |  cmpwi cr7, TMP0, LJ_TCDATA
3035    |  cmpwi cr5, TMP1, LJ_TCDATA
3036    |.endif
3037    |   not TMP3, TMP0
3038    |  cmplw TMP0, TMP1
3039    |   cmplwi cr1, TMP3, ~LJ_TISPRI		// Primitive?
3040    |.if FFI
3041    |  cror 4*cr7+eq, 4*cr7+eq, 4*cr5+eq
3042    |.endif
3043    |   cmplwi cr6, TMP3, ~LJ_TISTABUD		// Table or userdata?
3044    |.if FFI
3045    |  beq cr7, ->vmeta_equal_cd
3046    |.endif
3047    |    cmplw cr5, CARG2, CARG3
3048    |  crandc 4*cr0+gt, 4*cr0+eq, 4*cr1+gt	// 2: Same type and primitive.
3049    |  crorc 4*cr0+lt, 4*cr5+eq, 4*cr0+eq	// 1: Same tv or different type.
3050    |  crand 4*cr0+eq, 4*cr0+eq, 4*cr5+eq	// 0: Same type and same tv.
3051    |   mr SAVE0, PC
3052    |  cror 4*cr0+eq, 4*cr0+eq, 4*cr0+gt	// 0 or 2.
3053    |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+gt	// 1 or 2.
3054    if (vk) {
3055      |  bne cr0, >6
3056      |  add PC, PC, TMP2
3057      |6:
3058    } else {
3059      |  beq cr0, >6
3060      |  add PC, PC, TMP2
3061      |6:
3062    }
3063    |.if DUALNUM
3064    |  bge cr0, >2			// Done if 1 or 2.
3065    |1:
3066    |  ins_next
3067    |2:
3068    |.else
3069    |  blt cr0, <1			// Done if 1 or 2.
3070    |.endif
3071    |  blt cr6, <1			// Done if not tab/ud.
3072    |
3073    |  // Different tables or userdatas. Need to check __eq metamethod.
3074    |  // Field metatable must be at same offset for GCtab and GCudata!
3075    |  lwz TAB:TMP2, TAB:CARG2->metatable
3076    |   li CARG4, 1-vk			// ne = 0 or 1.
3077    |  cmplwi TAB:TMP2, 0
3078    |  beq <1				// No metatable?
3079    |  lbz TMP2, TAB:TMP2->nomm
3080    |  andix. TMP2, TMP2, 1<<MM_eq
3081    |  bne <1				// Or 'no __eq' flag set?
3082    |  mr PC, SAVE0			// Restore old PC.
3083    |  b ->vmeta_equal			// Handle __eq metamethod.
3084    break;
3085
3086  case BC_ISEQS: case BC_ISNES:
3087    vk = op == BC_ISEQS;
3088    |  // RA = src*8, RD = str_const*8 (~), JMP with RD = target
3089    |  lwzux TMP0, RA, BASE
3090    |   srwi RD, RD, 1
3091    |  lwz STR:TMP3, 4(RA)
3092    |    lwz TMP2, 0(PC)
3093    |   subfic RD, RD, -4
3094    |    addi PC, PC, 4
3095    |.if FFI
3096    |  cmpwi TMP0, LJ_TCDATA
3097    |.endif
3098    |   lwzx STR:TMP1, KBASE, RD	// KBASE-4-str_const*4
3099    |  .gpr64 extsw TMP0, TMP0
3100    |  subfic TMP0, TMP0, LJ_TSTR
3101    |.if FFI
3102    |  beq ->vmeta_equal_cd
3103    |.endif
3104    |  sub TMP1, STR:TMP1, STR:TMP3
3105    |  or TMP0, TMP0, TMP1
3106    |    decode_RD4 TMP2, TMP2
3107    |  subfic TMP0, TMP0, 0
3108    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3109    |  subfe TMP1, TMP1, TMP1
3110    if (vk) {
3111      |  andc TMP2, TMP2, TMP1
3112    } else {
3113      |  and TMP2, TMP2, TMP1
3114    }
3115    |  add PC, PC, TMP2
3116    |  ins_next
3117    break;
3118
3119  case BC_ISEQN: case BC_ISNEN:
3120    vk = op == BC_ISEQN;
3121    |  // RA = src*8, RD = num_const*8, JMP with RD = target
3122    |.if DUALNUM
3123    |  lwzux TMP0, RA, BASE
3124    |    addi PC, PC, 4
3125    |   lwz CARG2, 4(RA)
3126    |  lwzux TMP1, RD, KBASE
3127    |  checknum cr0, TMP0
3128    |    lwz TMP2, -4(PC)
3129    |  checknum cr1, TMP1
3130    |    decode_RD4 TMP2, TMP2
3131    |   lwz CARG3, 4(RD)
3132    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3133    if (vk) {
3134      |->BC_ISEQN_Z:
3135    } else {
3136      |->BC_ISNEN_Z:
3137    }
3138    |  bne cr0, >7
3139    |  bne cr1, >8
3140    |   cmpw CARG2, CARG3
3141    |4:
3142    |.else
3143    if (vk) {
3144      |->BC_ISEQN_Z:  // Dummy label.
3145    } else {
3146      |->BC_ISNEN_Z:  // Dummy label.
3147    }
3148    |  lwzx TMP0, BASE, RA
3149    |    addi PC, PC, 4
3150    |   lfdx f0, BASE, RA
3151    |    lwz TMP2, -4(PC)
3152    |  lfdx f1, KBASE, RD
3153    |    decode_RD4 TMP2, TMP2
3154    |  checknum TMP0
3155    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3156    |  bge >3
3157    |  fcmpu cr0, f0, f1
3158    |.endif
3159    if (vk) {
3160      |  bne >1
3161      |  add PC, PC, TMP2
3162      |1:
3163      |.if not FFI
3164      |3:
3165      |.endif
3166    } else {
3167      |  beq >2
3168      |1:
3169      |.if not FFI
3170      |3:
3171      |.endif
3172      |  add PC, PC, TMP2
3173      |2:
3174    }
3175    |  ins_next
3176    |.if FFI
3177    |3:
3178    |  cmpwi TMP0, LJ_TCDATA
3179    |  beq ->vmeta_equal_cd
3180    |  b <1
3181    |.endif
3182    |.if DUALNUM
3183    |7:  // RA is not an integer.
3184    |  bge cr0, <3
3185    |  // RA is a number.
3186    |   lfd f0, 0(RA)
3187    |  blt cr1, >1
3188    |  // RA is a number, RD is an integer.
3189    |  tonum_i f1, CARG3
3190    |  b >2
3191    |
3192    |8: // RA is an integer, RD is a number.
3193    |  tonum_i f0, CARG2
3194    |1:
3195    |  lfd f1, 0(RD)
3196    |2:
3197    |  fcmpu cr0, f0, f1
3198    |  b <4
3199    |.endif
3200    break;
3201
3202  case BC_ISEQP: case BC_ISNEP:
3203    vk = op == BC_ISEQP;
3204    |  // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target
3205    |  lwzx TMP0, BASE, RA
3206    |   srwi TMP1, RD, 3
3207    |    lwz TMP2, 0(PC)
3208    |   not TMP1, TMP1
3209    |    addi PC, PC, 4
3210    |.if FFI
3211    |  cmpwi TMP0, LJ_TCDATA
3212    |.endif
3213    |  sub TMP0, TMP0, TMP1
3214    |.if FFI
3215    |  beq ->vmeta_equal_cd
3216    |.endif
3217    |    decode_RD4 TMP2, TMP2
3218    |  .gpr64 extsw TMP0, TMP0
3219    |  addic TMP0, TMP0, -1
3220    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3221    |  subfe TMP1, TMP1, TMP1
3222    if (vk) {
3223      |  and TMP2, TMP2, TMP1
3224    } else {
3225      |  andc TMP2, TMP2, TMP1
3226    }
3227    |  add PC, PC, TMP2
3228    |  ins_next
3229    break;
3230
3231  /* -- Unary test and copy ops ------------------------------------------- */
3232
3233  case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF:
3234    |  // RA = dst*8 or unused, RD = src*8, JMP with RD = target
3235    |  lwzx TMP0, BASE, RD
3236    |   lwz INS, 0(PC)
3237    |   addi PC, PC, 4
3238    if (op == BC_IST || op == BC_ISF) {
3239      |  .gpr64 extsw TMP0, TMP0
3240      |  subfic TMP0, TMP0, LJ_TTRUE
3241      |   decode_RD4 TMP2, INS
3242      |  subfe TMP1, TMP1, TMP1
3243      |   addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3244      if (op == BC_IST) {
3245	|  andc TMP2, TMP2, TMP1
3246      } else {
3247	|  and TMP2, TMP2, TMP1
3248      }
3249      |  add PC, PC, TMP2
3250    } else {
3251      |  li TMP1, LJ_TFALSE
3252      |   lfdx f0, BASE, RD
3253      |  cmplw TMP0, TMP1
3254      if (op == BC_ISTC) {
3255	|  bge >1
3256      } else {
3257	|  blt >1
3258      }
3259      |  addis PC, PC, -(BCBIAS_J*4 >> 16)
3260      |  decode_RD4 TMP2, INS
3261      |   stfdx f0, BASE, RA
3262      |  add PC, PC, TMP2
3263      |1:
3264    }
3265    |  ins_next
3266    break;
3267
3268  /* -- Unary ops --------------------------------------------------------- */
3269
3270  case BC_MOV:
3271    |  // RA = dst*8, RD = src*8
3272    |  ins_next1
3273    |  lfdx f0, BASE, RD
3274    |  stfdx f0, BASE, RA
3275    |  ins_next2
3276    break;
3277  case BC_NOT:
3278    |  // RA = dst*8, RD = src*8
3279    |  ins_next1
3280    |  lwzx TMP0, BASE, RD
3281    |  .gpr64 extsw TMP0, TMP0
3282    |  subfic TMP1, TMP0, LJ_TTRUE
3283    |  adde TMP0, TMP0, TMP1
3284    |  stwx TMP0, BASE, RA
3285    |  ins_next2
3286    break;
3287  case BC_UNM:
3288    |  // RA = dst*8, RD = src*8
3289    |  lwzux TMP1, RD, BASE
3290    |   lwz TMP0, 4(RD)
3291    |  checknum TMP1
3292    |.if DUALNUM
3293    |  bne >5
3294    |.if GPR64
3295    |  lus TMP2, 0x8000
3296    |  neg TMP0, TMP0
3297    |  cmplw TMP0, TMP2
3298    |  beq >4
3299    |.else
3300    |  nego. TMP0, TMP0
3301    |  bso >4
3302    |1:
3303    |.endif
3304    |  ins_next1
3305    |  stwux TISNUM, RA, BASE
3306    |   stw TMP0, 4(RA)
3307    |3:
3308    |  ins_next2
3309    |4:
3310    |.if not GPR64
3311    |  // Potential overflow.
3312    |  mcrxr cr0; bley <1		// Ignore unrelated overflow.
3313    |.endif
3314    |  lus TMP1, 0x41e0			// 2^31.
3315    |  li TMP0, 0
3316    |  b >7
3317    |.endif
3318    |5:
3319    |  bge ->vmeta_unm
3320    |  xoris TMP1, TMP1, 0x8000
3321    |7:
3322    |  ins_next1
3323    |  stwux TMP1, RA, BASE
3324    |   stw TMP0, 4(RA)
3325    |.if DUALNUM
3326    |  b <3
3327    |.else
3328    |  ins_next2
3329    |.endif
3330    break;
3331  case BC_LEN:
3332    |  // RA = dst*8, RD = src*8
3333    |  lwzux TMP0, RD, BASE
3334    |   lwz CARG1, 4(RD)
3335    |  checkstr TMP0; bne >2
3336    |  lwz CRET1, STR:CARG1->len
3337    |1:
3338    |.if DUALNUM
3339    |  ins_next1
3340    |  stwux TISNUM, RA, BASE
3341    |   stw CRET1, 4(RA)
3342    |.else
3343    |  tonum_u f0, CRET1		// Result is a non-negative integer.
3344    |  ins_next1
3345    |  stfdx f0, BASE, RA
3346    |.endif
3347    |  ins_next2
3348    |2:
3349    |  checktab TMP0; bne ->vmeta_len
3350#if LJ_52
3351    |  lwz TAB:TMP2, TAB:CARG1->metatable
3352    |  cmplwi TAB:TMP2, 0
3353    |  bne >9
3354    |3:
3355#endif
3356    |->BC_LEN_Z:
3357    |  bl extern lj_tab_len		// (GCtab *t)
3358    |  // Returns uint32_t (but less than 2^31).
3359    |  b <1
3360#if LJ_52
3361    |9:
3362    |  lbz TMP0, TAB:TMP2->nomm
3363    |  andix. TMP0, TMP0, 1<<MM_len
3364    |  bne <3				// 'no __len' flag set: done.
3365    |  b ->vmeta_len
3366#endif
3367    break;
3368
3369  /* -- Binary ops -------------------------------------------------------- */
3370
3371    |.macro ins_arithpre
3372    |  // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8
3373    ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
3374    ||switch (vk) {
3375    ||case 0:
3376    |   lwzx TMP1, BASE, RB
3377    |   .if DUALNUM
3378    |     lwzx TMP2, KBASE, RC
3379    |   .endif
3380    |    lfdx f14, BASE, RB
3381    |    lfdx f15, KBASE, RC
3382    |   .if DUALNUM
3383    |     checknum cr0, TMP1
3384    |     checknum cr1, TMP2
3385    |     crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3386    |     bge ->vmeta_arith_vn
3387    |   .else
3388    |     checknum TMP1; bge ->vmeta_arith_vn
3389    |   .endif
3390    ||  break;
3391    ||case 1:
3392    |   lwzx TMP1, BASE, RB
3393    |   .if DUALNUM
3394    |     lwzx TMP2, KBASE, RC
3395    |   .endif
3396    |    lfdx f15, BASE, RB
3397    |    lfdx f14, KBASE, RC
3398    |   .if DUALNUM
3399    |     checknum cr0, TMP1
3400    |     checknum cr1, TMP2
3401    |     crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3402    |     bge ->vmeta_arith_nv
3403    |   .else
3404    |     checknum TMP1; bge ->vmeta_arith_nv
3405    |   .endif
3406    ||  break;
3407    ||default:
3408    |   lwzx TMP1, BASE, RB
3409    |   lwzx TMP2, BASE, RC
3410    |    lfdx f14, BASE, RB
3411    |    lfdx f15, BASE, RC
3412    |   checknum cr0, TMP1
3413    |   checknum cr1, TMP2
3414    |   crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3415    |   bge ->vmeta_arith_vv
3416    ||  break;
3417    ||}
3418    |.endmacro
3419    |
3420    |.macro ins_arithfallback, ins
3421    ||switch (vk) {
3422    ||case 0:
3423    |   ins ->vmeta_arith_vn2
3424    ||  break;
3425    ||case 1:
3426    |   ins ->vmeta_arith_nv2
3427    ||  break;
3428    ||default:
3429    |   ins ->vmeta_arith_vv2
3430    ||  break;
3431    ||}
3432    |.endmacro
3433    |
3434    |.macro intmod, a, b, c
3435    |  bl ->vm_modi
3436    |.endmacro
3437    |
3438    |.macro fpmod, a, b, c
3439    |->BC_MODVN_Z:
3440    |  fdiv FARG1, b, c
3441    |  // NYI: Use internal implementation of floor.
3442    |  blex floor			// floor(b/c)
3443    |  fmul a, FARG1, c
3444    |  fsub a, b, a			// b - floor(b/c)*c
3445    |.endmacro
3446    |
3447    |.macro ins_arithfp, fpins
3448    |  ins_arithpre
3449    |.if "fpins" == "fpmod_"
3450    |  b ->BC_MODVN_Z			// Avoid 3 copies. It's slow anyway.
3451    |.else
3452    |  fpins f0, f14, f15
3453    |  ins_next1
3454    |  stfdx f0, BASE, RA
3455    |  ins_next2
3456    |.endif
3457    |.endmacro
3458    |
3459    |.macro ins_arithdn, intins, fpins
3460    |  // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8
3461    ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
3462    ||switch (vk) {
3463    ||case 0:
3464    |   lwzux TMP1, RB, BASE
3465    |   lwzux TMP2, RC, KBASE
3466    |    lwz CARG1, 4(RB)
3467    |   checknum cr0, TMP1
3468    |    lwz CARG2, 4(RC)
3469    ||  break;
3470    ||case 1:
3471    |   lwzux TMP1, RB, BASE
3472    |   lwzux TMP2, RC, KBASE
3473    |    lwz CARG2, 4(RB)
3474    |   checknum cr0, TMP1
3475    |    lwz CARG1, 4(RC)
3476    ||  break;
3477    ||default:
3478    |   lwzux TMP1, RB, BASE
3479    |   lwzux TMP2, RC, BASE
3480    |    lwz CARG1, 4(RB)
3481    |   checknum cr0, TMP1
3482    |    lwz CARG2, 4(RC)
3483    ||  break;
3484    ||}
3485    |  checknum cr1, TMP2
3486    |  bne >5
3487    |  bne cr1, >5
3488    |  intins CARG1, CARG1, CARG2
3489    |  bso >4
3490    |1:
3491    |  ins_next1
3492    |  stwux TISNUM, RA, BASE
3493    |  stw CARG1, 4(RA)
3494    |2:
3495    |  ins_next2
3496    |4:  // Overflow.
3497    |  mcrxr cr0; bley <1		// Ignore unrelated overflow.
3498    |  ins_arithfallback b
3499    |5:  // FP variant.
3500    ||if (vk == 1) {
3501    |  lfd f15, 0(RB)
3502    |   crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3503    |  lfd f14, 0(RC)
3504    ||} else {
3505    |  lfd f14, 0(RB)
3506    |   crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3507    |  lfd f15, 0(RC)
3508    ||}
3509    |   ins_arithfallback bge
3510    |.if "fpins" == "fpmod_"
3511    |  b ->BC_MODVN_Z			// Avoid 3 copies. It's slow anyway.
3512    |.else
3513    |  fpins f0, f14, f15
3514    |  ins_next1
3515    |  stfdx f0, BASE, RA
3516    |  b <2
3517    |.endif
3518    |.endmacro
3519    |
3520    |.macro ins_arith, intins, fpins
3521    |.if DUALNUM
3522    |  ins_arithdn intins, fpins
3523    |.else
3524    |  ins_arithfp fpins
3525    |.endif
3526    |.endmacro
3527
3528  case BC_ADDVN: case BC_ADDNV: case BC_ADDVV:
3529    |.if GPR64
3530    |.macro addo32., y, a, b
3531    |  // Need to check overflow for (a<<32) + (b<<32).
3532    |  rldicr TMP0, a, 32, 31
3533    |  rldicr TMP3, b, 32, 31
3534    |  addo. TMP0, TMP0, TMP3
3535    |  add y, a, b
3536    |.endmacro
3537    |  ins_arith addo32., fadd
3538    |.else
3539    |  ins_arith addo., fadd
3540    |.endif
3541    break;
3542  case BC_SUBVN: case BC_SUBNV: case BC_SUBVV:
3543    |.if GPR64
3544    |.macro subo32., y, a, b
3545    |  // Need to check overflow for (a<<32) - (b<<32).
3546    |  rldicr TMP0, a, 32, 31
3547    |  rldicr TMP3, b, 32, 31
3548    |  subo. TMP0, TMP0, TMP3
3549    |  sub y, a, b
3550    |.endmacro
3551    |  ins_arith subo32., fsub
3552    |.else
3553    |  ins_arith subo., fsub
3554    |.endif
3555    break;
3556  case BC_MULVN: case BC_MULNV: case BC_MULVV:
3557    |  ins_arith mullwo., fmul
3558    break;
3559  case BC_DIVVN: case BC_DIVNV: case BC_DIVVV:
3560    |  ins_arithfp fdiv
3561    break;
3562  case BC_MODVN:
3563    |  ins_arith intmod, fpmod
3564    break;
3565  case BC_MODNV: case BC_MODVV:
3566    |  ins_arith intmod, fpmod_
3567    break;
3568  case BC_POW:
3569    |  // NYI: (partial) integer arithmetic.
3570    |  lwzx TMP1, BASE, RB
3571    |   lfdx FARG1, BASE, RB
3572    |  lwzx TMP2, BASE, RC
3573    |   lfdx FARG2, BASE, RC
3574    |  checknum cr0, TMP1
3575    |  checknum cr1, TMP2
3576    |  crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3577    |  bge ->vmeta_arith_vv
3578    |  blex pow
3579    |  ins_next1
3580    |  stfdx FARG1, BASE, RA
3581    |  ins_next2
3582    break;
3583
3584  case BC_CAT:
3585    |  // RA = dst*8, RB = src_start*8, RC = src_end*8
3586    |  sub CARG3, RC, RB
3587    |   stp BASE, L->base
3588    |  add CARG2, BASE, RC
3589    |  mr SAVE0, RB
3590    |->BC_CAT_Z:
3591    |   stw PC, SAVE_PC
3592    |  mr CARG1, L
3593    |  srwi CARG3, CARG3, 3
3594    |  bl extern lj_meta_cat		// (lua_State *L, TValue *top, int left)
3595    |  // Returns NULL (finished) or TValue * (metamethod).
3596    |  cmplwi CRET1, 0
3597    |   lp BASE, L->base
3598    |  bne ->vmeta_binop
3599    |  ins_next1
3600    |  lfdx f0, BASE, SAVE0		// Copy result from RB to RA.
3601    |  stfdx f0, BASE, RA
3602    |  ins_next2
3603    break;
3604
3605  /* -- Constant ops ------------------------------------------------------ */
3606
3607  case BC_KSTR:
3608    |  // RA = dst*8, RD = str_const*8 (~)
3609    |  srwi TMP1, RD, 1
3610    |  subfic TMP1, TMP1, -4
3611    |  ins_next1
3612    |  lwzx TMP0, KBASE, TMP1		// KBASE-4-str_const*4
3613    |  li TMP2, LJ_TSTR
3614    |  stwux TMP2, RA, BASE
3615    |  stw TMP0, 4(RA)
3616    |  ins_next2
3617    break;
3618  case BC_KCDATA:
3619    |.if FFI
3620    |  // RA = dst*8, RD = cdata_const*8 (~)
3621    |  srwi TMP1, RD, 1
3622    |  subfic TMP1, TMP1, -4
3623    |  ins_next1
3624    |  lwzx TMP0, KBASE, TMP1		// KBASE-4-cdata_const*4
3625    |  li TMP2, LJ_TCDATA
3626    |  stwux TMP2, RA, BASE
3627    |  stw TMP0, 4(RA)
3628    |  ins_next2
3629    |.endif
3630    break;
3631  case BC_KSHORT:
3632    |  // RA = dst*8, RD = int16_literal*8
3633    |.if DUALNUM
3634    |  slwi RD, RD, 13
3635    |  srawi RD, RD, 16
3636    |  ins_next1
3637    |   stwux TISNUM, RA, BASE
3638    |   stw RD, 4(RA)
3639    |  ins_next2
3640    |.else
3641    |  // The soft-float approach is faster.
3642    |  slwi RD, RD, 13
3643    |  srawi TMP1, RD, 31
3644    |  xor TMP2, TMP1, RD
3645    |  sub TMP2, TMP2, TMP1		// TMP2 = abs(x)
3646    |  cntlzw TMP3, TMP2
3647    |  subfic TMP1, TMP3, 0x40d		// TMP1 = exponent-1
3648    |   slw TMP2, TMP2, TMP3		// TMP2 = left aligned mantissa
3649    |    subfic TMP3, RD, 0
3650    |  slwi TMP1, TMP1, 20
3651    |   rlwimi RD, TMP2, 21, 1, 31	// hi = sign(x) | (mantissa>>11)
3652    |    subfe TMP0, TMP0, TMP0
3653    |   add RD, RD, TMP1		// hi = hi + exponent-1
3654    |    and RD, RD, TMP0		// hi = x == 0 ? 0 : hi
3655    |  ins_next1
3656    |    stwux RD, RA, BASE
3657    |    stw ZERO, 4(RA)
3658    |  ins_next2
3659    |.endif
3660    break;
3661  case BC_KNUM:
3662    |  // RA = dst*8, RD = num_const*8
3663    |  ins_next1
3664    |  lfdx f0, KBASE, RD
3665    |  stfdx f0, BASE, RA
3666    |  ins_next2
3667    break;
3668  case BC_KPRI:
3669    |  // RA = dst*8, RD = primitive_type*8 (~)
3670    |  srwi TMP1, RD, 3
3671    |  not TMP0, TMP1
3672    |  ins_next1
3673    |  stwx TMP0, BASE, RA
3674    |  ins_next2
3675    break;
3676  case BC_KNIL:
3677    |  // RA = base*8, RD = end*8
3678    |  stwx TISNIL, BASE, RA
3679    |   addi RA, RA, 8
3680    |1:
3681    |  stwx TISNIL, BASE, RA
3682    |  cmpw RA, RD
3683    |   addi RA, RA, 8
3684    |  blt <1
3685    |  ins_next_
3686    break;
3687
3688  /* -- Upvalue and function ops ------------------------------------------ */
3689
3690  case BC_UGET:
3691    |  // RA = dst*8, RD = uvnum*8
3692    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3693    |   srwi RD, RD, 1
3694    |   addi RD, RD, offsetof(GCfuncL, uvptr)
3695    |  lwzx UPVAL:RB, LFUNC:RB, RD
3696    |  ins_next1
3697    |  lwz TMP1, UPVAL:RB->v
3698    |  lfd f0, 0(TMP1)
3699    |  stfdx f0, BASE, RA
3700    |  ins_next2
3701    break;
3702  case BC_USETV:
3703    |  // RA = uvnum*8, RD = src*8
3704    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3705    |    srwi RA, RA, 1
3706    |    addi RA, RA, offsetof(GCfuncL, uvptr)
3707    |   lfdux f0, RD, BASE
3708    |  lwzx UPVAL:RB, LFUNC:RB, RA
3709    |  lbz TMP3, UPVAL:RB->marked
3710    |   lwz CARG2, UPVAL:RB->v
3711    |  andix. TMP3, TMP3, LJ_GC_BLACK	// isblack(uv)
3712    |    lbz TMP0, UPVAL:RB->closed
3713    |   lwz TMP2, 0(RD)
3714    |   stfd f0, 0(CARG2)
3715    |    cmplwi cr1, TMP0, 0
3716    |   lwz TMP1, 4(RD)
3717    |  cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
3718    |   subi TMP2, TMP2, (LJ_TNUMX+1)
3719    |  bne >2				// Upvalue is closed and black?
3720    |1:
3721    |  ins_next
3722    |
3723    |2:  // Check if new value is collectable.
3724    |  cmplwi TMP2, LJ_TISGCV - (LJ_TNUMX+1)
3725    |  bge <1				// tvisgcv(v)
3726    |  lbz TMP3, GCOBJ:TMP1->gch.marked
3727    |  andix. TMP3, TMP3, LJ_GC_WHITES	// iswhite(v)
3728    |   la CARG1, GG_DISP2G(DISPATCH)
3729    |  // Crossed a write barrier. Move the barrier forward.
3730    |  beq <1
3731    |  bl extern lj_gc_barrieruv	// (global_State *g, TValue *tv)
3732    |  b <1
3733    break;
3734  case BC_USETS:
3735    |  // RA = uvnum*8, RD = str_const*8 (~)
3736    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3737    |   srwi TMP1, RD, 1
3738    |    srwi RA, RA, 1
3739    |   subfic TMP1, TMP1, -4
3740    |    addi RA, RA, offsetof(GCfuncL, uvptr)
3741    |   lwzx STR:TMP1, KBASE, TMP1	// KBASE-4-str_const*4
3742    |  lwzx UPVAL:RB, LFUNC:RB, RA
3743    |  lbz TMP3, UPVAL:RB->marked
3744    |   lwz CARG2, UPVAL:RB->v
3745    |  andix. TMP3, TMP3, LJ_GC_BLACK	// isblack(uv)
3746    |   lbz TMP3, STR:TMP1->marked
3747    |   lbz TMP2, UPVAL:RB->closed
3748    |   li TMP0, LJ_TSTR
3749    |   stw STR:TMP1, 4(CARG2)
3750    |   stw TMP0, 0(CARG2)
3751    |  bne >2
3752    |1:
3753    |  ins_next
3754    |
3755    |2:  // Check if string is white and ensure upvalue is closed.
3756    |  andix. TMP3, TMP3, LJ_GC_WHITES	// iswhite(str)
3757    |   cmplwi cr1, TMP2, 0
3758    |  cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
3759    |   la CARG1, GG_DISP2G(DISPATCH)
3760    |  // Crossed a write barrier. Move the barrier forward.
3761    |  beq <1
3762    |  bl extern lj_gc_barrieruv	// (global_State *g, TValue *tv)
3763    |  b <1
3764    break;
3765  case BC_USETN:
3766    |  // RA = uvnum*8, RD = num_const*8
3767    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3768    |   srwi RA, RA, 1
3769    |   addi RA, RA, offsetof(GCfuncL, uvptr)
3770    |    lfdx f0, KBASE, RD
3771    |  lwzx UPVAL:RB, LFUNC:RB, RA
3772    |  ins_next1
3773    |  lwz TMP1, UPVAL:RB->v
3774    |  stfd f0, 0(TMP1)
3775    |  ins_next2
3776    break;
3777  case BC_USETP:
3778    |  // RA = uvnum*8, RD = primitive_type*8 (~)
3779    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3780    |   srwi RA, RA, 1
3781    |    srwi TMP0, RD, 3
3782    |   addi RA, RA, offsetof(GCfuncL, uvptr)
3783    |    not TMP0, TMP0
3784    |  lwzx UPVAL:RB, LFUNC:RB, RA
3785    |  ins_next1
3786    |  lwz TMP1, UPVAL:RB->v
3787    |  stw TMP0, 0(TMP1)
3788    |  ins_next2
3789    break;
3790
3791  case BC_UCLO:
3792    |  // RA = level*8, RD = target
3793    |  lwz TMP1, L->openupval
3794    |  branch_RD			// Do this first since RD is not saved.
3795    |   stp BASE, L->base
3796    |  cmplwi TMP1, 0
3797    |   mr CARG1, L
3798    |  beq >1
3799    |   add CARG2, BASE, RA
3800    |  bl extern lj_func_closeuv	// (lua_State *L, TValue *level)
3801    |  lp BASE, L->base
3802    |1:
3803    |  ins_next
3804    break;
3805
3806  case BC_FNEW:
3807    |  // RA = dst*8, RD = proto_const*8 (~) (holding function prototype)
3808    |  srwi TMP1, RD, 1
3809    |   stp BASE, L->base
3810    |  subfic TMP1, TMP1, -4
3811    |   stw PC, SAVE_PC
3812    |  lwzx CARG2, KBASE, TMP1		// KBASE-4-tab_const*4
3813    |   mr CARG1, L
3814    |  lwz CARG3, FRAME_FUNC(BASE)
3815    |  // (lua_State *L, GCproto *pt, GCfuncL *parent)
3816    |  bl extern lj_func_newL_gc
3817    |  // Returns GCfuncL *.
3818    |  lp BASE, L->base
3819    |   li TMP0, LJ_TFUNC
3820    |  stwux TMP0, RA, BASE
3821    |  stw LFUNC:CRET1, 4(RA)
3822    |  ins_next
3823    break;
3824
3825  /* -- Table ops --------------------------------------------------------- */
3826
3827  case BC_TNEW:
3828  case BC_TDUP:
3829    |  // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~)
3830    |  lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH)
3831    |   mr CARG1, L
3832    |  lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
3833    |   stp BASE, L->base
3834    |  cmplw TMP0, TMP1
3835    |   stw PC, SAVE_PC
3836    |  bge >5
3837    |1:
3838    if (op == BC_TNEW) {
3839      |  rlwinm CARG2, RD, 29, 21, 31
3840      |  rlwinm CARG3, RD, 18, 27, 31
3841      |  cmpwi CARG2, 0x7ff; beq >3
3842      |2:
3843      |  bl extern lj_tab_new  // (lua_State *L, int32_t asize, uint32_t hbits)
3844      |  // Returns Table *.
3845    } else {
3846      |  srwi TMP1, RD, 1
3847      |  subfic TMP1, TMP1, -4
3848      |  lwzx CARG2, KBASE, TMP1		// KBASE-4-tab_const*4
3849      |  bl extern lj_tab_dup  // (lua_State *L, Table *kt)
3850      |  // Returns Table *.
3851    }
3852    |  lp BASE, L->base
3853    |   li TMP0, LJ_TTAB
3854    |  stwux TMP0, RA, BASE
3855    |  stw TAB:CRET1, 4(RA)
3856    |  ins_next
3857    if (op == BC_TNEW) {
3858      |3:
3859      |  li CARG2, 0x801
3860      |  b <2
3861    }
3862    |5:
3863    |  mr SAVE0, RD
3864    |  bl extern lj_gc_step_fixtop  // (lua_State *L)
3865    |  mr RD, SAVE0
3866    |  mr CARG1, L
3867    |  b <1
3868    break;
3869
3870  case BC_GGET:
3871    |  // RA = dst*8, RD = str_const*8 (~)
3872  case BC_GSET:
3873    |  // RA = src*8, RD = str_const*8 (~)
3874    |  lwz LFUNC:TMP2, FRAME_FUNC(BASE)
3875    |   srwi TMP1, RD, 1
3876    |  lwz TAB:RB, LFUNC:TMP2->env
3877    |   subfic TMP1, TMP1, -4
3878    |   lwzx STR:RC, KBASE, TMP1	// KBASE-4-str_const*4
3879    if (op == BC_GGET) {
3880      |  b ->BC_TGETS_Z
3881    } else {
3882      |  b ->BC_TSETS_Z
3883    }
3884    break;
3885
3886  case BC_TGETV:
3887    |  // RA = dst*8, RB = table*8, RC = key*8
3888    |  lwzux CARG1, RB, BASE
3889    |  lwzux CARG2, RC, BASE
3890    |   lwz TAB:RB, 4(RB)
3891    |.if DUALNUM
3892    |   lwz RC, 4(RC)
3893    |.else
3894    |   lfd f0, 0(RC)
3895    |.endif
3896    |  checktab CARG1
3897    |   checknum cr1, CARG2
3898    |  bne ->vmeta_tgetv
3899    |.if DUALNUM
3900    |  lwz TMP0, TAB:RB->asize
3901    |   bne cr1, >5
3902    |   lwz TMP1, TAB:RB->array
3903    |  cmplw TMP0, RC
3904    |   slwi TMP2, RC, 3
3905    |.else
3906    |   bge cr1, >5
3907    |  // Convert number key to integer, check for integerness and range.
3908    |  fctiwz f1, f0
3909    |    fadd f2, f0, TOBIT
3910    |  stfd f1, TMPD
3911    |   lwz TMP0, TAB:RB->asize
3912    |    fsub f2, f2, TOBIT
3913    |  lwz TMP2, TMPD_LO
3914    |   lwz TMP1, TAB:RB->array
3915    |    fcmpu cr1, f0, f2
3916    |  cmplw cr0, TMP0, TMP2
3917    |  crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq
3918    |   slwi TMP2, TMP2, 3
3919    |.endif
3920    |  ble ->vmeta_tgetv		// Integer key and in array part?
3921    |  lwzx TMP0, TMP1, TMP2
3922    |   lfdx f14, TMP1, TMP2
3923    |  checknil TMP0; beq >2
3924    |1:
3925    |  ins_next1
3926    |   stfdx f14, BASE, RA
3927    |  ins_next2
3928    |
3929    |2:  // Check for __index if table value is nil.
3930    |  lwz TAB:TMP2, TAB:RB->metatable
3931    |  cmplwi TAB:TMP2, 0
3932    |  beq <1				// No metatable: done.
3933    |  lbz TMP0, TAB:TMP2->nomm
3934    |  andix. TMP0, TMP0, 1<<MM_index
3935    |  bne <1				// 'no __index' flag set: done.
3936    |  b ->vmeta_tgetv
3937    |
3938    |5:
3939    |  checkstr CARG2; bne ->vmeta_tgetv
3940    |.if not DUALNUM
3941    |  lwz STR:RC, 4(RC)
3942    |.endif
3943    |  b ->BC_TGETS_Z			// String key?
3944    break;
3945  case BC_TGETS:
3946    |  // RA = dst*8, RB = table*8, RC = str_const*8 (~)
3947    |  lwzux CARG1, RB, BASE
3948    |   srwi TMP1, RC, 1
3949    |    lwz TAB:RB, 4(RB)
3950    |   subfic TMP1, TMP1, -4
3951    |  checktab CARG1
3952    |   lwzx STR:RC, KBASE, TMP1	// KBASE-4-str_const*4
3953    |  bne ->vmeta_tgets1
3954    |->BC_TGETS_Z:
3955    |  // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8
3956    |  lwz TMP0, TAB:RB->hmask
3957    |  lwz TMP1, STR:RC->hash
3958    |  lwz NODE:TMP2, TAB:RB->node
3959    |  and TMP1, TMP1, TMP0		// idx = str->hash & tab->hmask
3960    |  slwi TMP0, TMP1, 5
3961    |  slwi TMP1, TMP1, 3
3962    |  sub TMP1, TMP0, TMP1
3963    |  add NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
3964    |1:
3965    |  lwz CARG1, NODE:TMP2->key
3966    |   lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
3967    |    lwz CARG2, NODE:TMP2->val
3968    |     lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2)
3969    |  checkstr CARG1; bne >4
3970    |   cmpw TMP0, STR:RC; bne >4
3971    |    checknil CARG2; beq >5		// Key found, but nil value?
3972    |3:
3973    |    stwux CARG2, RA, BASE
3974    |     stw TMP1, 4(RA)
3975    |  ins_next
3976    |
3977    |4:  // Follow hash chain.
3978    |  lwz NODE:TMP2, NODE:TMP2->next
3979    |  cmplwi NODE:TMP2, 0
3980    |  bne <1
3981    |  // End of hash chain: key not found, nil result.
3982    |   li CARG2, LJ_TNIL
3983    |
3984    |5:  // Check for __index if table value is nil.
3985    |  lwz TAB:TMP2, TAB:RB->metatable
3986    |  cmplwi TAB:TMP2, 0
3987    |  beq <3				// No metatable: done.
3988    |  lbz TMP0, TAB:TMP2->nomm
3989    |  andix. TMP0, TMP0, 1<<MM_index
3990    |  bne <3				// 'no __index' flag set: done.
3991    |  b ->vmeta_tgets
3992    break;
3993  case BC_TGETB:
3994    |  // RA = dst*8, RB = table*8, RC = index*8
3995    |  lwzux CARG1, RB, BASE
3996    |   srwi TMP0, RC, 3
3997    |   lwz TAB:RB, 4(RB)
3998    |  checktab CARG1; bne ->vmeta_tgetb
3999    |  lwz TMP1, TAB:RB->asize
4000    |   lwz TMP2, TAB:RB->array
4001    |  cmplw TMP0, TMP1; bge ->vmeta_tgetb
4002    |  lwzx TMP1, TMP2, RC
4003    |   lfdx f0, TMP2, RC
4004    |  checknil TMP1; beq >5
4005    |1:
4006    |  ins_next1
4007    |   stfdx f0, BASE, RA
4008    |  ins_next2
4009    |
4010    |5:  // Check for __index if table value is nil.
4011    |  lwz TAB:TMP2, TAB:RB->metatable
4012    |  cmplwi TAB:TMP2, 0
4013    |  beq <1				// No metatable: done.
4014    |  lbz TMP2, TAB:TMP2->nomm
4015    |  andix. TMP2, TMP2, 1<<MM_index
4016    |  bne <1				// 'no __index' flag set: done.
4017    |  b ->vmeta_tgetb			// Caveat: preserve TMP0!
4018    break;
4019
4020  case BC_TSETV:
4021    |  // RA = src*8, RB = table*8, RC = key*8
4022    |  lwzux CARG1, RB, BASE
4023    |  lwzux CARG2, RC, BASE
4024    |   lwz TAB:RB, 4(RB)
4025    |.if DUALNUM
4026    |   lwz RC, 4(RC)
4027    |.else
4028    |   lfd f0, 0(RC)
4029    |.endif
4030    |  checktab CARG1
4031    |   checknum cr1, CARG2
4032    |  bne ->vmeta_tsetv
4033    |.if DUALNUM
4034    |  lwz TMP0, TAB:RB->asize
4035    |   bne cr1, >5
4036    |   lwz TMP1, TAB:RB->array
4037    |  cmplw TMP0, RC
4038    |   slwi TMP0, RC, 3
4039    |.else
4040    |   bge cr1, >5
4041    |  // Convert number key to integer, check for integerness and range.
4042    |  fctiwz f1, f0
4043    |    fadd f2, f0, TOBIT
4044    |  stfd f1, TMPD
4045    |   lwz TMP0, TAB:RB->asize
4046    |    fsub f2, f2, TOBIT
4047    |  lwz TMP2, TMPD_LO
4048    |   lwz TMP1, TAB:RB->array
4049    |    fcmpu cr1, f0, f2
4050    |  cmplw cr0, TMP0, TMP2
4051    |  crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq
4052    |   slwi TMP0, TMP2, 3
4053    |.endif
4054    |  ble ->vmeta_tsetv		// Integer key and in array part?
4055    |   lwzx TMP2, TMP1, TMP0
4056    |  lbz TMP3, TAB:RB->marked
4057    |    lfdx f14, BASE, RA
4058    |   checknil TMP2; beq >3
4059    |1:
4060    |  andix. TMP2, TMP3, LJ_GC_BLACK	// isblack(table)
4061    |    stfdx f14, TMP1, TMP0
4062    |  bne >7
4063    |2:
4064    |  ins_next
4065    |
4066    |3:  // Check for __newindex if previous value is nil.
4067    |  lwz TAB:TMP2, TAB:RB->metatable
4068    |  cmplwi TAB:TMP2, 0
4069    |  beq <1				// No metatable: done.
4070    |  lbz TMP2, TAB:TMP2->nomm
4071    |  andix. TMP2, TMP2, 1<<MM_newindex
4072    |  bne <1				// 'no __newindex' flag set: done.
4073    |  b ->vmeta_tsetv
4074    |
4075    |5:
4076    |  checkstr CARG2; bne ->vmeta_tsetv
4077    |.if not DUALNUM
4078    |  lwz STR:RC, 4(RC)
4079    |.endif
4080    |  b ->BC_TSETS_Z			// String key?
4081    |
4082    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4083    |  barrierback TAB:RB, TMP3, TMP0
4084    |  b <2
4085    break;
4086  case BC_TSETS:
4087    |  // RA = src*8, RB = table*8, RC = str_const*8 (~)
4088    |  lwzux CARG1, RB, BASE
4089    |   srwi TMP1, RC, 1
4090    |    lwz TAB:RB, 4(RB)
4091    |   subfic TMP1, TMP1, -4
4092    |  checktab CARG1
4093    |   lwzx STR:RC, KBASE, TMP1	// KBASE-4-str_const*4
4094    |  bne ->vmeta_tsets1
4095    |->BC_TSETS_Z:
4096    |  // TAB:RB = GCtab *, STR:RC = GCstr *, RA = src*8
4097    |  lwz TMP0, TAB:RB->hmask
4098    |  lwz TMP1, STR:RC->hash
4099    |  lwz NODE:TMP2, TAB:RB->node
4100    |    stb ZERO, TAB:RB->nomm		// Clear metamethod cache.
4101    |  and TMP1, TMP1, TMP0		// idx = str->hash & tab->hmask
4102    |    lfdx f14, BASE, RA
4103    |  slwi TMP0, TMP1, 5
4104    |  slwi TMP1, TMP1, 3
4105    |  sub TMP1, TMP0, TMP1
4106    |    lbz TMP3, TAB:RB->marked
4107    |  add NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
4108    |1:
4109    |  lwz CARG1, NODE:TMP2->key
4110    |   lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
4111    |    lwz CARG2, NODE:TMP2->val
4112    |     lwz NODE:TMP1, NODE:TMP2->next
4113    |  checkstr CARG1; bne >5
4114    |   cmpw TMP0, STR:RC; bne >5
4115    |    checknil CARG2; beq >4		// Key found, but nil value?
4116    |2:
4117    |  andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
4118    |    stfd f14, NODE:TMP2->val
4119    |  bne >7
4120    |3:
4121    |  ins_next
4122    |
4123    |4:  // Check for __newindex if previous value is nil.
4124    |  lwz TAB:TMP1, TAB:RB->metatable
4125    |  cmplwi TAB:TMP1, 0
4126    |  beq <2				// No metatable: done.
4127    |  lbz TMP0, TAB:TMP1->nomm
4128    |  andix. TMP0, TMP0, 1<<MM_newindex
4129    |  bne <2				// 'no __newindex' flag set: done.
4130    |  b ->vmeta_tsets
4131    |
4132    |5:  // Follow hash chain.
4133    |  cmplwi NODE:TMP1, 0
4134    |   mr NODE:TMP2, NODE:TMP1
4135    |  bne <1
4136    |  // End of hash chain: key not found, add a new one.
4137    |
4138    |  // But check for __newindex first.
4139    |  lwz TAB:TMP1, TAB:RB->metatable
4140    |   la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
4141    |   stw PC, SAVE_PC
4142    |   mr CARG1, L
4143    |  cmplwi TAB:TMP1, 0
4144    |   stp BASE, L->base
4145    |  beq >6				// No metatable: continue.
4146    |  lbz TMP0, TAB:TMP1->nomm
4147    |  andix. TMP0, TMP0, 1<<MM_newindex
4148    |  beq ->vmeta_tsets		// 'no __newindex' flag NOT set: check.
4149    |6:
4150    |  li TMP0, LJ_TSTR
4151    |   stw STR:RC, 4(CARG3)
4152    |   mr CARG2, TAB:RB
4153    |  stw TMP0, 0(CARG3)
4154    |  bl extern lj_tab_newkey		// (lua_State *L, GCtab *t, TValue *k)
4155    |  // Returns TValue *.
4156    |  lp BASE, L->base
4157    |  stfd f14, 0(CRET1)
4158    |  b <3				// No 2nd write barrier needed.
4159    |
4160    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4161    |  barrierback TAB:RB, TMP3, TMP0
4162    |  b <3
4163    break;
4164  case BC_TSETB:
4165    |  // RA = src*8, RB = table*8, RC = index*8
4166    |  lwzux CARG1, RB, BASE
4167    |   srwi TMP0, RC, 3
4168    |   lwz TAB:RB, 4(RB)
4169    |  checktab CARG1; bne ->vmeta_tsetb
4170    |  lwz TMP1, TAB:RB->asize
4171    |   lwz TMP2, TAB:RB->array
4172    |    lbz TMP3, TAB:RB->marked
4173    |  cmplw TMP0, TMP1
4174    |   lfdx f14, BASE, RA
4175    |  bge ->vmeta_tsetb
4176    |  lwzx TMP1, TMP2, RC
4177    |  checknil TMP1; beq >5
4178    |1:
4179    |  andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
4180    |   stfdx f14, TMP2, RC
4181    |  bne >7
4182    |2:
4183    |  ins_next
4184    |
4185    |5:  // Check for __newindex if previous value is nil.
4186    |  lwz TAB:TMP1, TAB:RB->metatable
4187    |  cmplwi TAB:TMP1, 0
4188    |  beq <1				// No metatable: done.
4189    |  lbz TMP1, TAB:TMP1->nomm
4190    |  andix. TMP1, TMP1, 1<<MM_newindex
4191    |  bne <1				// 'no __newindex' flag set: done.
4192    |  b ->vmeta_tsetb			// Caveat: preserve TMP0!
4193    |
4194    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4195    |  barrierback TAB:RB, TMP3, TMP0
4196    |  b <2
4197    break;
4198
4199  case BC_TSETM:
4200    |  // RA = base*8 (table at base-1), RD = num_const*8 (start index)
4201    |  add RA, BASE, RA
4202    |1:
4203    |   add TMP3, KBASE, RD
4204    |  lwz TAB:CARG2, -4(RA)		// Guaranteed to be a table.
4205    |    addic. TMP0, MULTRES, -8
4206    |   lwz TMP3, 4(TMP3)		// Integer constant is in lo-word.
4207    |    srwi CARG3, TMP0, 3
4208    |    beq >4				// Nothing to copy?
4209    |  add CARG3, CARG3, TMP3
4210    |  lwz TMP2, TAB:CARG2->asize
4211    |   slwi TMP1, TMP3, 3
4212    |    lbz TMP3, TAB:CARG2->marked
4213    |  cmplw CARG3, TMP2
4214    |   add TMP2, RA, TMP0
4215    |   lwz TMP0, TAB:CARG2->array
4216    |  bgt >5
4217    |   add TMP1, TMP1, TMP0
4218    |    andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
4219    |3:  // Copy result slots to table.
4220    |   lfd f0, 0(RA)
4221    |  addi RA, RA, 8
4222    |  cmpw cr1, RA, TMP2
4223    |   stfd f0, 0(TMP1)
4224    |    addi TMP1, TMP1, 8
4225    |  blt cr1, <3
4226    |  bne >7
4227    |4:
4228    |  ins_next
4229    |
4230    |5:  // Need to resize array part.
4231    |   stp BASE, L->base
4232    |  mr CARG1, L
4233    |   stw PC, SAVE_PC
4234    |  mr SAVE0, RD
4235    |  bl extern lj_tab_reasize		// (lua_State *L, GCtab *t, int nasize)
4236    |  // Must not reallocate the stack.
4237    |  mr RD, SAVE0
4238    |  b <1
4239    |
4240    |7:  // Possible table write barrier for any value. Skip valiswhite check.
4241    |  barrierback TAB:CARG2, TMP3, TMP0
4242    |  b <4
4243    break;
4244
4245  /* -- Calls and vararg handling ----------------------------------------- */
4246
4247  case BC_CALLM:
4248    |  // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8
4249    |  add NARGS8:RC, NARGS8:RC, MULTRES
4250    |  // Fall through. Assumes BC_CALL follows.
4251    break;
4252  case BC_CALL:
4253    |  // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8
4254    |  mr TMP2, BASE
4255    |  lwzux TMP0, BASE, RA
4256    |   lwz LFUNC:RB, 4(BASE)
4257    |    subi NARGS8:RC, NARGS8:RC, 8
4258    |   addi BASE, BASE, 8
4259    |  checkfunc TMP0; bne ->vmeta_call
4260    |  ins_call
4261    break;
4262
4263  case BC_CALLMT:
4264    |  // RA = base*8, (RB = 0,) RC = extra_nargs*8
4265    |  add NARGS8:RC, NARGS8:RC, MULTRES
4266    |  // Fall through. Assumes BC_CALLT follows.
4267    break;
4268  case BC_CALLT:
4269    |  // RA = base*8, (RB = 0,) RC = (nargs+1)*8
4270    |  lwzux TMP0, RA, BASE
4271    |   lwz LFUNC:RB, 4(RA)
4272    |    subi NARGS8:RC, NARGS8:RC, 8
4273    |    lwz TMP1, FRAME_PC(BASE)
4274    |  checkfunc TMP0
4275    |   addi RA, RA, 8
4276    |  bne ->vmeta_callt
4277    |->BC_CALLT_Z:
4278    |  andix. TMP0, TMP1, FRAME_TYPE	// Caveat: preserve cr0 until the crand.
4279    |   lbz TMP3, LFUNC:RB->ffid
4280    |    xori TMP2, TMP1, FRAME_VARG
4281    |    cmplwi cr1, NARGS8:RC, 0
4282    |  bne >7
4283    |1:
4284    |  stw LFUNC:RB, FRAME_FUNC(BASE)	// Copy function down, but keep PC.
4285    |  li TMP2, 0
4286    |   cmplwi cr7, TMP3, 1		// (> FF_C) Calling a fast function?
4287    |    beq cr1, >3
4288    |2:
4289    |  addi TMP3, TMP2, 8
4290    |   lfdx f0, RA, TMP2
4291    |  cmplw cr1, TMP3, NARGS8:RC
4292    |   stfdx f0, BASE, TMP2
4293    |  mr TMP2, TMP3
4294    |  bne cr1, <2
4295    |3:
4296    |  crand 4*cr0+eq, 4*cr0+eq, 4*cr7+gt
4297    |  beq >5
4298    |4:
4299    |  ins_callt
4300    |
4301    |5:  // Tailcall to a fast function with a Lua frame below.
4302    |  lwz INS, -4(TMP1)
4303    |  decode_RA8 RA, INS
4304    |  sub TMP1, BASE, RA
4305    |  lwz LFUNC:TMP1, FRAME_FUNC-8(TMP1)
4306    |  lwz TMP1, LFUNC:TMP1->pc
4307    |  lwz KBASE, PC2PROTO(k)(TMP1)	// Need to prepare KBASE.
4308    |  b <4
4309    |
4310    |7:  // Tailcall from a vararg function.
4311    |  andix. TMP0, TMP2, FRAME_TYPEP
4312    |  bne <1				// Vararg frame below?
4313    |  sub BASE, BASE, TMP2		// Relocate BASE down.
4314    |  lwz TMP1, FRAME_PC(BASE)
4315    |  andix. TMP0, TMP1, FRAME_TYPE
4316    |  b <1
4317    break;
4318
4319  case BC_ITERC:
4320    |  // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8))
4321    |  mr TMP2, BASE
4322    |  add BASE, BASE, RA
4323    |  lwz TMP1, -24(BASE)
4324    |   lwz LFUNC:RB, -20(BASE)
4325    |    lfd f1, -8(BASE)
4326    |    lfd f0, -16(BASE)
4327    |  stw TMP1, 0(BASE)		// Copy callable.
4328    |   stw LFUNC:RB, 4(BASE)
4329    |  checkfunc TMP1
4330    |    stfd f1, 16(BASE)		// Copy control var.
4331    |     li NARGS8:RC, 16		// Iterators get 2 arguments.
4332    |    stfdu f0, 8(BASE)		// Copy state.
4333    |  bne ->vmeta_call
4334    |  ins_call
4335    break;
4336
4337  case BC_ITERN:
4338    |  // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8)
4339    |.if JIT
4340    |  // NYI: add hotloop, record BC_ITERN.
4341    |.endif
4342    |  add RA, BASE, RA
4343    |  lwz TAB:RB, -12(RA)
4344    |  lwz RC, -4(RA)			// Get index from control var.
4345    |  lwz TMP0, TAB:RB->asize
4346    |  lwz TMP1, TAB:RB->array
4347    |   addi PC, PC, 4
4348    |1:  // Traverse array part.
4349    |  cmplw RC, TMP0
4350    |   slwi TMP3, RC, 3
4351    |  bge >5				// Index points after array part?
4352    |  lwzx TMP2, TMP1, TMP3
4353    |   lfdx f0, TMP1, TMP3
4354    |  checknil TMP2
4355    |     lwz INS, -4(PC)
4356    |  beq >4
4357    |.if DUALNUM
4358    |   stw RC, 4(RA)
4359    |   stw TISNUM, 0(RA)
4360    |.else
4361    |   tonum_u f1, RC
4362    |.endif
4363    |    addi RC, RC, 1
4364    |     addis TMP3, PC, -(BCBIAS_J*4 >> 16)
4365    |  stfd f0, 8(RA)
4366    |     decode_RD4 TMP1, INS
4367    |    stw RC, -4(RA)			// Update control var.
4368    |     add PC, TMP1, TMP3
4369    |.if not DUALNUM
4370    |   stfd f1, 0(RA)
4371    |.endif
4372    |3:
4373    |  ins_next
4374    |
4375    |4:  // Skip holes in array part.
4376    |  addi RC, RC, 1
4377    |  b <1
4378    |
4379    |5:  // Traverse hash part.
4380    |  lwz TMP1, TAB:RB->hmask
4381    |  sub RC, RC, TMP0
4382    |   lwz TMP2, TAB:RB->node
4383    |6:
4384    |  cmplw RC, TMP1			// End of iteration? Branch to ITERL+1.
4385    |   slwi TMP3, RC, 5
4386    |  bgty <3
4387    |   slwi RB, RC, 3
4388    |   sub TMP3, TMP3, RB
4389    |  lwzx RB, TMP2, TMP3
4390    |  lfdx f0, TMP2, TMP3
4391    |   add NODE:TMP3, TMP2, TMP3
4392    |  checknil RB
4393    |     lwz INS, -4(PC)
4394    |  beq >7
4395    |   lfd f1, NODE:TMP3->key
4396    |     addis TMP2, PC, -(BCBIAS_J*4 >> 16)
4397    |  stfd f0, 8(RA)
4398    |    add RC, RC, TMP0
4399    |     decode_RD4 TMP1, INS
4400    |   stfd f1, 0(RA)
4401    |    addi RC, RC, 1
4402    |     add PC, TMP1, TMP2
4403    |    stw RC, -4(RA)			// Update control var.
4404    |  b <3
4405    |
4406    |7:  // Skip holes in hash part.
4407    |  addi RC, RC, 1
4408    |  b <6
4409    break;
4410
4411  case BC_ISNEXT:
4412    |  // RA = base*8, RD = target (points to ITERN)
4413    |  add RA, BASE, RA
4414    |  lwz TMP0, -24(RA)
4415    |  lwz CFUNC:TMP1, -20(RA)
4416    |   lwz TMP2, -16(RA)
4417    |    lwz TMP3, -8(RA)
4418    |   cmpwi cr0, TMP2, LJ_TTAB
4419    |  cmpwi cr1, TMP0, LJ_TFUNC
4420    |    cmpwi cr6, TMP3, LJ_TNIL
4421    |  bne cr1, >5
4422    |  lbz TMP1, CFUNC:TMP1->ffid
4423    |   crand 4*cr0+eq, 4*cr0+eq, 4*cr6+eq
4424    |  cmpwi cr7, TMP1, FF_next_N
4425    |    srwi TMP0, RD, 1
4426    |  crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq
4427    |    add TMP3, PC, TMP0
4428    |  bne cr0, >5
4429    |  lus TMP1, 0xfffe
4430    |  ori TMP1, TMP1, 0x7fff
4431    |  stw ZERO, -4(RA)			// Initialize control var.
4432    |  stw TMP1, -8(RA)
4433    |    addis PC, TMP3, -(BCBIAS_J*4 >> 16)
4434    |1:
4435    |  ins_next
4436    |5:  // Despecialize bytecode if any of the checks fail.
4437    |  li TMP0, BC_JMP
4438    |   li TMP1, BC_ITERC
4439    |  stb TMP0, -1(PC)
4440    |    addis PC, TMP3, -(BCBIAS_J*4 >> 16)
4441    |   stb TMP1, 3(PC)
4442    |  b <1
4443    break;
4444
4445  case BC_VARG:
4446    |  // RA = base*8, RB = (nresults+1)*8, RC = numparams*8
4447    |  lwz TMP0, FRAME_PC(BASE)
4448    |  add RC, BASE, RC
4449    |   add RA, BASE, RA
4450    |  addi RC, RC, FRAME_VARG
4451    |   add TMP2, RA, RB
4452    |  subi TMP3, BASE, 8		// TMP3 = vtop
4453    |  sub RC, RC, TMP0			// RC = vbase
4454    |  // Note: RC may now be even _above_ BASE if nargs was < numparams.
4455    |  cmplwi cr1, RB, 0
4456    |.if PPE
4457    |   sub TMP1, TMP3, RC
4458    |   cmpwi TMP1, 0
4459    |.else
4460    |   sub. TMP1, TMP3, RC
4461    |.endif
4462    |  beq cr1, >5			// Copy all varargs?
4463    |   subi TMP2, TMP2, 16
4464    |   ble >2				// No vararg slots?
4465    |1:  // Copy vararg slots to destination slots.
4466    |  lfd f0, 0(RC)
4467    |   addi RC, RC, 8
4468    |  stfd f0, 0(RA)
4469    |  cmplw RA, TMP2
4470    |   cmplw cr1, RC, TMP3
4471    |  bge >3				// All destination slots filled?
4472    |    addi RA, RA, 8
4473    |   blt cr1, <1			// More vararg slots?
4474    |2:  // Fill up remainder with nil.
4475    |  stw TISNIL, 0(RA)
4476    |  cmplw RA, TMP2
4477    |   addi RA, RA, 8
4478    |  blt <2
4479    |3:
4480    |  ins_next
4481    |
4482    |5:  // Copy all varargs.
4483    |  lwz TMP0, L->maxstack
4484    |   li MULTRES, 8			// MULTRES = (0+1)*8
4485    |  bley <3				// No vararg slots?
4486    |  add TMP2, RA, TMP1
4487    |  cmplw TMP2, TMP0
4488    |   addi MULTRES, TMP1, 8
4489    |  bgt >7
4490    |6:
4491    |  lfd f0, 0(RC)
4492    |   addi RC, RC, 8
4493    |  stfd f0, 0(RA)
4494    |  cmplw RC, TMP3
4495    |   addi RA, RA, 8
4496    |  blt <6				// More vararg slots?
4497    |  b <3
4498    |
4499    |7:  // Grow stack for varargs.
4500    |  mr CARG1, L
4501    |   stp RA, L->top
4502    |  sub SAVE0, RC, BASE		// Need delta, because BASE may change.
4503    |   stp BASE, L->base
4504    |  sub RA, RA, BASE
4505    |   stw PC, SAVE_PC
4506    |  srwi CARG2, TMP1, 3
4507    |  bl extern lj_state_growstack	// (lua_State *L, int n)
4508    |  lp BASE, L->base
4509    |  add RA, BASE, RA
4510    |  add RC, BASE, SAVE0
4511    |  subi TMP3, BASE, 8
4512    |  b <6
4513    break;
4514
4515  /* -- Returns ----------------------------------------------------------- */
4516
4517  case BC_RETM:
4518    |  // RA = results*8, RD = extra_nresults*8
4519    |  add RD, RD, MULTRES		// MULTRES >= 8, so RD >= 8.
4520    |  // Fall through. Assumes BC_RET follows.
4521    break;
4522
4523  case BC_RET:
4524    |  // RA = results*8, RD = (nresults+1)*8
4525    |  lwz PC, FRAME_PC(BASE)
4526    |   add RA, BASE, RA
4527    |    mr MULTRES, RD
4528    |1:
4529    |  andix. TMP0, PC, FRAME_TYPE
4530    |   xori TMP1, PC, FRAME_VARG
4531    |  bne ->BC_RETV_Z
4532    |
4533    |->BC_RET_Z:
4534    |  // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return
4535    |   lwz INS, -4(PC)
4536    |  cmpwi RD, 8
4537    |   subi TMP2, BASE, 8
4538    |   subi RC, RD, 8
4539    |   decode_RB8 RB, INS
4540    |  beq >3
4541    |   li TMP1, 0
4542    |2:
4543    |  addi TMP3, TMP1, 8
4544    |   lfdx f0, RA, TMP1
4545    |  cmpw TMP3, RC
4546    |   stfdx f0, TMP2, TMP1
4547    |  beq >3
4548    |  addi TMP1, TMP3, 8
4549    |   lfdx f1, RA, TMP3
4550    |  cmpw TMP1, RC
4551    |   stfdx f1, TMP2, TMP3
4552    |  bne <2
4553    |3:
4554    |5:
4555    |  cmplw RB, RD
4556    |   decode_RA8 RA, INS
4557    |  bgt >6
4558    |   sub BASE, TMP2, RA
4559    |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
4560    |  ins_next1
4561    |  lwz TMP1, LFUNC:TMP1->pc
4562    |  lwz KBASE, PC2PROTO(k)(TMP1)
4563    |  ins_next2
4564    |
4565    |6:  // Fill up results with nil.
4566    |  subi TMP1, RD, 8
4567    |   addi RD, RD, 8
4568    |  stwx TISNIL, TMP2, TMP1
4569    |  b <5
4570    |
4571    |->BC_RETV_Z:  // Non-standard return case.
4572    |  andix. TMP2, TMP1, FRAME_TYPEP
4573    |  bne ->vm_return
4574    |  // Return from vararg function: relocate BASE down.
4575    |  sub BASE, BASE, TMP1
4576    |  lwz PC, FRAME_PC(BASE)
4577    |  b <1
4578    break;
4579
4580  case BC_RET0: case BC_RET1:
4581    |  // RA = results*8, RD = (nresults+1)*8
4582    |  lwz PC, FRAME_PC(BASE)
4583    |   add RA, BASE, RA
4584    |    mr MULTRES, RD
4585    |  andix. TMP0, PC, FRAME_TYPE
4586    |   xori TMP1, PC, FRAME_VARG
4587    |  bney ->BC_RETV_Z
4588    |
4589    |  lwz INS, -4(PC)
4590    |   subi TMP2, BASE, 8
4591    |  decode_RB8 RB, INS
4592    if (op == BC_RET1) {
4593      |  lfd f0, 0(RA)
4594      |  stfd f0, 0(TMP2)
4595    }
4596    |5:
4597    |  cmplw RB, RD
4598    |   decode_RA8 RA, INS
4599    |  bgt >6
4600    |   sub BASE, TMP2, RA
4601    |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
4602    |  ins_next1
4603    |  lwz TMP1, LFUNC:TMP1->pc
4604    |  lwz KBASE, PC2PROTO(k)(TMP1)
4605    |  ins_next2
4606    |
4607    |6:  // Fill up results with nil.
4608    |  subi TMP1, RD, 8
4609    |   addi RD, RD, 8
4610    |  stwx TISNIL, TMP2, TMP1
4611    |  b <5
4612    break;
4613
4614  /* -- Loops and branches ------------------------------------------------ */
4615
4616  case BC_FORL:
4617    |.if JIT
4618    |  hotloop
4619    |.endif
4620    |  // Fall through. Assumes BC_IFORL follows.
4621    break;
4622
4623  case BC_JFORI:
4624  case BC_JFORL:
4625#if !LJ_HASJIT
4626    break;
4627#endif
4628  case BC_FORI:
4629  case BC_IFORL:
4630    |  // RA = base*8, RD = target (after end of loop or start of loop)
4631    vk = (op == BC_IFORL || op == BC_JFORL);
4632    |.if DUALNUM
4633    |  // Integer loop.
4634    |  lwzux TMP1, RA, BASE
4635    |   lwz CARG1, FORL_IDX*8+4(RA)
4636    |  cmplw cr0, TMP1, TISNUM
4637    if (vk) {
4638      |   lwz CARG3, FORL_STEP*8+4(RA)
4639      |  bne >9
4640      |.if GPR64
4641      |  // Need to check overflow for (a<<32) + (b<<32).
4642      |  rldicr TMP0, CARG1, 32, 31
4643      |  rldicr TMP2, CARG3, 32, 31
4644      |  add CARG1, CARG1, CARG3
4645      |  addo. TMP0, TMP0, TMP2
4646      |.else
4647      |  addo. CARG1, CARG1, CARG3
4648      |.endif
4649      |    cmpwi cr6, CARG3, 0
4650      |   lwz CARG2, FORL_STOP*8+4(RA)
4651      |  bso >6
4652      |4:
4653      |  stw CARG1, FORL_IDX*8+4(RA)
4654    } else {
4655      |  lwz TMP3, FORL_STEP*8(RA)
4656      |   lwz CARG3, FORL_STEP*8+4(RA)
4657      |  lwz TMP2, FORL_STOP*8(RA)
4658      |   lwz CARG2, FORL_STOP*8+4(RA)
4659      |  cmplw cr7, TMP3, TISNUM
4660      |  cmplw cr1, TMP2, TISNUM
4661      |  crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq
4662      |  crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
4663      |    cmpwi cr6, CARG3, 0
4664      |  bne >9
4665    }
4666    |    blt cr6, >5
4667    |  cmpw CARG1, CARG2
4668    |1:
4669    |   stw TISNUM, FORL_EXT*8(RA)
4670    if (op != BC_JFORL) {
4671      |  srwi RD, RD, 1
4672    }
4673    |   stw CARG1, FORL_EXT*8+4(RA)
4674    if (op != BC_JFORL) {
4675      |  add RD, PC, RD
4676    }
4677    if (op == BC_FORI) {
4678      |  bgt >3  // See FP loop below.
4679    } else if (op == BC_JFORI) {
4680      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4681      |  bley >7
4682    } else if (op == BC_IFORL) {
4683      |  bgt >2
4684      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4685    } else {
4686      |  bley =>BC_JLOOP
4687    }
4688    |2:
4689    |  ins_next
4690    |5:  // Invert check for negative step.
4691    |  cmpw CARG2, CARG1
4692    |  b <1
4693    if (vk) {
4694      |6:  // Potential overflow.
4695      |  mcrxr cr0; bley <4		// Ignore unrelated overflow.
4696      |  b <2
4697    }
4698    |.endif
4699    if (vk) {
4700      |.if DUALNUM
4701      |9:  // FP loop.
4702      |  lfd f1, FORL_IDX*8(RA)
4703      |.else
4704      |  lfdux f1, RA, BASE
4705      |.endif
4706      |  lfd f3, FORL_STEP*8(RA)
4707      |  lfd f2, FORL_STOP*8(RA)
4708      |   lwz TMP3, FORL_STEP*8(RA)
4709      |  fadd f1, f1, f3
4710      |  stfd f1, FORL_IDX*8(RA)
4711    } else {
4712      |.if DUALNUM
4713      |9:  // FP loop.
4714      |.else
4715      |  lwzux TMP1, RA, BASE
4716      |  lwz TMP3, FORL_STEP*8(RA)
4717      |  lwz TMP2, FORL_STOP*8(RA)
4718      |  cmplw cr0, TMP1, TISNUM
4719      |  cmplw cr7, TMP3, TISNUM
4720      |  cmplw cr1, TMP2, TISNUM
4721      |.endif
4722      |   lfd f1, FORL_IDX*8(RA)
4723      |  crand 4*cr0+lt, 4*cr0+lt, 4*cr7+lt
4724      |  crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
4725      |   lfd f2, FORL_STOP*8(RA)
4726      |  bge ->vmeta_for
4727    }
4728    |  cmpwi cr6, TMP3, 0
4729    if (op != BC_JFORL) {
4730      |  srwi RD, RD, 1
4731    }
4732    |   stfd f1, FORL_EXT*8(RA)
4733    if (op != BC_JFORL) {
4734      |  add RD, PC, RD
4735    }
4736    |  fcmpu cr0, f1, f2
4737    if (op == BC_JFORI) {
4738      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4739    }
4740    |  blt cr6, >5
4741    if (op == BC_FORI) {
4742      |  bgt >3
4743    } else if (op == BC_IFORL) {
4744      |.if DUALNUM
4745      |  bgty <2
4746      |.else
4747      |  bgt >2
4748      |.endif
4749      |1:
4750      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4751    } else if (op == BC_JFORI) {
4752      |  bley >7
4753    } else {
4754      |  bley =>BC_JLOOP
4755    }
4756    |.if DUALNUM
4757    |  b <2
4758    |.else
4759    |2:
4760    |  ins_next
4761    |.endif
4762    |5:  // Negative step.
4763    if (op == BC_FORI) {
4764      |  bge <2
4765      |3:  // Used by integer loop, too.
4766      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4767    } else if (op == BC_IFORL) {
4768      |  bgey <1
4769    } else if (op == BC_JFORI) {
4770      |  bgey >7
4771    } else {
4772      |  bgey =>BC_JLOOP
4773    }
4774    |  b <2
4775    if (op == BC_JFORI) {
4776      |7:
4777      |  lwz INS, -4(PC)
4778      |  decode_RD8 RD, INS
4779      |  b =>BC_JLOOP
4780    }
4781    break;
4782
4783  case BC_ITERL:
4784    |.if JIT
4785    |  hotloop
4786    |.endif
4787    |  // Fall through. Assumes BC_IITERL follows.
4788    break;
4789
4790  case BC_JITERL:
4791#if !LJ_HASJIT
4792    break;
4793#endif
4794  case BC_IITERL:
4795    |  // RA = base*8, RD = target
4796    |  lwzux TMP1, RA, BASE
4797    |   lwz TMP2, 4(RA)
4798    |  checknil TMP1; beq >1		// Stop if iterator returned nil.
4799    if (op == BC_JITERL) {
4800      |  stw TMP1, -8(RA)
4801      |   stw TMP2, -4(RA)
4802      |  b =>BC_JLOOP
4803    } else {
4804      |  branch_RD			// Otherwise save control var + branch.
4805      |  stw TMP1, -8(RA)
4806      |   stw TMP2, -4(RA)
4807    }
4808    |1:
4809    |  ins_next
4810    break;
4811
4812  case BC_LOOP:
4813    |  // RA = base*8, RD = target (loop extent)
4814    |  // Note: RA/RD is only used by trace recorder to determine scope/extent
4815    |  // This opcode does NOT jump, it's only purpose is to detect a hot loop.
4816    |.if JIT
4817    |  hotloop
4818    |.endif
4819    |  // Fall through. Assumes BC_ILOOP follows.
4820    break;
4821
4822  case BC_ILOOP:
4823    |  // RA = base*8, RD = target (loop extent)
4824    |  ins_next
4825    break;
4826
4827  case BC_JLOOP:
4828    |.if JIT
4829    |  // RA = base*8 (ignored), RD = traceno*8
4830    |  lwz TMP1, DISPATCH_J(trace)(DISPATCH)
4831    |  srwi RD, RD, 1
4832    |  // Traces on PPC don't store the trace number, so use 0.
4833    |   stw ZERO, DISPATCH_GL(vmstate)(DISPATCH)
4834    |  lwzx TRACE:TMP2, TMP1, RD
4835    |  mcrxr cr0			// Clear SO flag.
4836    |  lp TMP2, TRACE:TMP2->mcode
4837    |   stw BASE, DISPATCH_GL(jit_base)(DISPATCH)
4838    |  mtctr TMP2
4839    |   stw L, DISPATCH_GL(jit_L)(DISPATCH)
4840    |   addi JGL, DISPATCH, GG_DISP2G+32768
4841    |  bctr
4842    |.endif
4843    break;
4844
4845  case BC_JMP:
4846    |  // RA = base*8 (only used by trace recorder), RD = target
4847    |  branch_RD
4848    |  ins_next
4849    break;
4850
4851  /* -- Function headers -------------------------------------------------- */
4852
4853  case BC_FUNCF:
4854    |.if JIT
4855    |  hotcall
4856    |.endif
4857  case BC_FUNCV:  /* NYI: compiled vararg functions. */
4858    |  // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow.
4859    break;
4860
4861  case BC_JFUNCF:
4862#if !LJ_HASJIT
4863    break;
4864#endif
4865  case BC_IFUNCF:
4866    |  // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
4867    |  lwz TMP2, L->maxstack
4868    |   lbz TMP1, -4+PC2PROTO(numparams)(PC)
4869    |    lwz KBASE, -4+PC2PROTO(k)(PC)
4870    |  cmplw RA, TMP2
4871    |   slwi TMP1, TMP1, 3
4872    |  bgt ->vm_growstack_l
4873    if (op != BC_JFUNCF) {
4874      |  ins_next1
4875    }
4876    |2:
4877    |  cmplw NARGS8:RC, TMP1		// Check for missing parameters.
4878    |  blt >3
4879    if (op == BC_JFUNCF) {
4880      |  decode_RD8 RD, INS
4881      |  b =>BC_JLOOP
4882    } else {
4883      |  ins_next2
4884    }
4885    |
4886    |3:  // Clear missing parameters.
4887    |  stwx TISNIL, BASE, NARGS8:RC
4888    |  addi NARGS8:RC, NARGS8:RC, 8
4889    |  b <2
4890    break;
4891
4892  case BC_JFUNCV:
4893#if !LJ_HASJIT
4894    break;
4895#endif
4896    |  NYI  // NYI: compiled vararg functions
4897    break;  /* NYI: compiled vararg functions. */
4898
4899  case BC_IFUNCV:
4900    |  // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
4901    |  lwz TMP2, L->maxstack
4902    |   add TMP1, BASE, RC
4903    |  add TMP0, RA, RC
4904    |   stw LFUNC:RB, 4(TMP1)		// Store copy of LFUNC.
4905    |   addi TMP3, RC, 8+FRAME_VARG
4906    |    lwz KBASE, -4+PC2PROTO(k)(PC)
4907    |  cmplw TMP0, TMP2
4908    |   stw TMP3, 0(TMP1)		// Store delta + FRAME_VARG.
4909    |  bge ->vm_growstack_l
4910    |  lbz TMP2, -4+PC2PROTO(numparams)(PC)
4911    |   mr RA, BASE
4912    |   mr RC, TMP1
4913    |  ins_next1
4914    |  cmpwi TMP2, 0
4915    |   addi BASE, TMP1, 8
4916    |  beq >3
4917    |1:
4918    |  cmplw RA, RC			// Less args than parameters?
4919    |   lwz TMP0, 0(RA)
4920    |   lwz TMP3, 4(RA)
4921    |  bge >4
4922    |    stw TISNIL, 0(RA)		// Clear old fixarg slot (help the GC).
4923    |    addi RA, RA, 8
4924    |2:
4925    |  addic. TMP2, TMP2, -1
4926    |   stw TMP0, 8(TMP1)
4927    |   stw TMP3, 12(TMP1)
4928    |    addi TMP1, TMP1, 8
4929    |  bne <1
4930    |3:
4931    |  ins_next2
4932    |
4933    |4:  // Clear missing parameters.
4934    |  li TMP0, LJ_TNIL
4935    |  b <2
4936    break;
4937
4938  case BC_FUNCC:
4939  case BC_FUNCCW:
4940    |  // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8
4941    if (op == BC_FUNCC) {
4942      |  lp RD, CFUNC:RB->f
4943    } else {
4944      |  lp RD, DISPATCH_GL(wrapf)(DISPATCH)
4945    }
4946    |   add TMP1, RA, NARGS8:RC
4947    |   lwz TMP2, L->maxstack
4948    |  .toc lp TMP3, 0(RD)
4949    |    add RC, BASE, NARGS8:RC
4950    |   stp BASE, L->base
4951    |   cmplw TMP1, TMP2
4952    |    stp RC, L->top
4953    |     li_vmstate C
4954    |.if TOC
4955    |  mtctr TMP3
4956    |.else
4957    |  mtctr RD
4958    |.endif
4959    if (op == BC_FUNCCW) {
4960      |  lp CARG2, CFUNC:RB->f
4961    }
4962    |  mr CARG1, L
4963    |   bgt ->vm_growstack_c		// Need to grow stack.
4964    |  .toc lp TOCREG, TOC_OFS(RD)
4965    |  .tocenv lp ENVREG, ENV_OFS(RD)
4966    |     st_vmstate
4967    |  bctrl				// (lua_State *L [, lua_CFunction f])
4968    |  // Returns nresults.
4969    |  lp BASE, L->base
4970    |  .toc ld TOCREG, SAVE_TOC
4971    |   slwi RD, CRET1, 3
4972    |  lp TMP1, L->top
4973    |    li_vmstate INTERP
4974    |  lwz PC, FRAME_PC(BASE)		// Fetch PC of caller.
4975    |   sub RA, TMP1, RD		// RA = L->top - nresults*8
4976    |    st_vmstate
4977    |  b ->vm_returnc
4978    break;
4979
4980  /* ---------------------------------------------------------------------- */
4981
4982  default:
4983    fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]);
4984    exit(2);
4985    break;
4986  }
4987}
4988
4989static int build_backend(BuildCtx *ctx)
4990{
4991  int op;
4992
4993  dasm_growpc(Dst, BC__MAX);
4994
4995  build_subroutines(ctx);
4996
4997  |.code_op
4998  for (op = 0; op < BC__MAX; op++)
4999    build_ins(ctx, (BCOp)op, op);
5000
5001  return BC__MAX;
5002}
5003
5004/* Emit pseudo frame-info for all assembler functions. */
5005static void emit_asm_debug(BuildCtx *ctx)
5006{
5007  int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code);
5008  int i;
5009  switch (ctx->mode) {
5010  case BUILD_elfasm:
5011    fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n");
5012    fprintf(ctx->fp,
5013	".Lframe0:\n"
5014	"\t.long .LECIE0-.LSCIE0\n"
5015	".LSCIE0:\n"
5016	"\t.long 0xffffffff\n"
5017	"\t.byte 0x1\n"
5018	"\t.string \"\"\n"
5019	"\t.uleb128 0x1\n"
5020	"\t.sleb128 -4\n"
5021	"\t.byte 65\n"
5022	"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
5023	"\t.align 2\n"
5024	".LECIE0:\n\n");
5025    fprintf(ctx->fp,
5026	".LSFDE0:\n"
5027	"\t.long .LEFDE0-.LASFDE0\n"
5028	".LASFDE0:\n"
5029	"\t.long .Lframe0\n"
5030	"\t.long .Lbegin\n"
5031	"\t.long %d\n"
5032	"\t.byte 0xe\n\t.uleb128 %d\n"
5033	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5034	"\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n",
5035	fcofs, CFRAME_SIZE);
5036    for (i = 14; i <= 31; i++)
5037      fprintf(ctx->fp,
5038	"\t.byte %d\n\t.uleb128 %d\n"
5039	"\t.byte %d\n\t.uleb128 %d\n",
5040	0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i));
5041    fprintf(ctx->fp,
5042	"\t.align 2\n"
5043	".LEFDE0:\n\n");
5044#if LJ_HASFFI
5045    fprintf(ctx->fp,
5046	".LSFDE1:\n"
5047	"\t.long .LEFDE1-.LASFDE1\n"
5048	".LASFDE1:\n"
5049	"\t.long .Lframe0\n"
5050#if LJ_TARGET_PS3
5051	"\t.long .lj_vm_ffi_call\n"
5052#else
5053	"\t.long lj_vm_ffi_call\n"
5054#endif
5055	"\t.long %d\n"
5056	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5057	"\t.byte 0x8e\n\t.uleb128 2\n"
5058	"\t.byte 0xd\n\t.uleb128 0xe\n"
5059	"\t.align 2\n"
5060	".LEFDE1:\n\n", (int)ctx->codesz - fcofs);
5061#endif
5062#if !LJ_NO_UNWIND
5063    fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n");
5064    fprintf(ctx->fp,
5065	".Lframe1:\n"
5066	"\t.long .LECIE1-.LSCIE1\n"
5067	".LSCIE1:\n"
5068	"\t.long 0\n"
5069	"\t.byte 0x1\n"
5070	"\t.string \"zPR\"\n"
5071	"\t.uleb128 0x1\n"
5072	"\t.sleb128 -4\n"
5073	"\t.byte 65\n"
5074	"\t.uleb128 6\n"			/* augmentation length */
5075	"\t.byte 0x1b\n"			/* pcrel|sdata4 */
5076	"\t.long lj_err_unwind_dwarf-.\n"
5077	"\t.byte 0x1b\n"			/* pcrel|sdata4 */
5078	"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
5079	"\t.align 2\n"
5080	".LECIE1:\n\n");
5081    fprintf(ctx->fp,
5082	".LSFDE2:\n"
5083	"\t.long .LEFDE2-.LASFDE2\n"
5084	".LASFDE2:\n"
5085	"\t.long .LASFDE2-.Lframe1\n"
5086	"\t.long .Lbegin-.\n"
5087	"\t.long %d\n"
5088	"\t.uleb128 0\n"			/* augmentation length */
5089	"\t.byte 0xe\n\t.uleb128 %d\n"
5090	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5091	"\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n",
5092	fcofs, CFRAME_SIZE);
5093    for (i = 14; i <= 31; i++)
5094      fprintf(ctx->fp,
5095	"\t.byte %d\n\t.uleb128 %d\n"
5096	"\t.byte %d\n\t.uleb128 %d\n",
5097	0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i));
5098    fprintf(ctx->fp,
5099	"\t.align 2\n"
5100	".LEFDE2:\n\n");
5101#if LJ_HASFFI
5102    fprintf(ctx->fp,
5103	".Lframe2:\n"
5104	"\t.long .LECIE2-.LSCIE2\n"
5105	".LSCIE2:\n"
5106	"\t.long 0\n"
5107	"\t.byte 0x1\n"
5108	"\t.string \"zR\"\n"
5109	"\t.uleb128 0x1\n"
5110	"\t.sleb128 -4\n"
5111	"\t.byte 65\n"
5112	"\t.uleb128 1\n"			/* augmentation length */
5113	"\t.byte 0x1b\n"			/* pcrel|sdata4 */
5114	"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
5115	"\t.align 2\n"
5116	".LECIE2:\n\n");
5117    fprintf(ctx->fp,
5118	".LSFDE3:\n"
5119	"\t.long .LEFDE3-.LASFDE3\n"
5120	".LASFDE3:\n"
5121	"\t.long .LASFDE3-.Lframe2\n"
5122	"\t.long lj_vm_ffi_call-.\n"
5123	"\t.long %d\n"
5124	"\t.uleb128 0\n"			/* augmentation length */
5125	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5126	"\t.byte 0x8e\n\t.uleb128 2\n"
5127	"\t.byte 0xd\n\t.uleb128 0xe\n"
5128	"\t.align 2\n"
5129	".LEFDE3:\n\n", (int)ctx->codesz - fcofs);
5130#endif
5131#endif
5132    break;
5133  default:
5134    break;
5135  }
5136}
5137
5138