1 /*
2  * Copyright (c) 2019, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <float.h>
13 
14 #include "av1/encoder/encodeframe_utils.h"
15 #include "config/aom_dsp_rtcd.h"
16 
17 #include "av1/common/enums.h"
18 #include "av1/common/reconinter.h"
19 
20 #if !CONFIG_REALTIME_ONLY
21 #include "av1/encoder/cnn.h"
22 #include "av1/encoder/partition_model_weights.h"
23 #include "av1/encoder/partition_cnn_weights.h"
24 #endif
25 #include "av1/encoder/encoder.h"
26 
27 #include "av1/encoder/motion_search_facade.h"
28 #include "av1/encoder/partition_strategy.h"
29 #include "av1/encoder/partition_search.h"
30 #include "av1/encoder/rdopt.h"
31 
32 #if !CONFIG_REALTIME_ONLY
33 static AOM_INLINE void simple_motion_search_prune_part_features(
34     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
35     int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
36     int features_to_get);
37 
38 static bool ext_ml_model_decision_before_none(
39     AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
40     int *partition_none_allowed, int *partition_horz_allowed,
41     int *partition_vert_allowed, int *do_rectangular_split,
42     int *do_square_split);
43 
44 static bool ext_ml_model_decision_before_none_part2(
45     AV1_COMP *cpi,
46     const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
47     int *prune_horz, int *prune_vert);
48 
49 static bool ext_ml_model_decision_after_none(
50     ExtPartController *const ext_part_controller, const int is_intra_frame,
51     const float *const features_after_none, int *do_square_split,
52     int *do_rectangular_split);
53 
54 static bool ext_ml_model_decision_after_none_part2(
55     AV1_COMP *const cpi, const float *const features_terminate,
56     int *terminate_partition_search);
57 
58 static bool ext_ml_model_decision_after_split(
59     AV1_COMP *const cpi, const float *const features_terminate,
60     int *terminate_partition_search);
61 
62 static bool ext_ml_model_decision_after_split_part2(
63     ExtPartController *const ext_part_controller, const int is_intra_frame,
64     const float *const features_prune, int *prune_rect_part_horz,
65     int *prune_rect_part_vert);
66 
67 static bool ext_ml_model_decision_after_rect(
68     ExtPartController *const ext_part_controller, const int is_intra_frame,
69     const float *const features_after_rect, int *horza_partition_allowed,
70     int *horzb_partition_allowed, int *verta_partition_allowed,
71     int *vertb_partition_allowed);
72 
73 static bool ext_ml_model_decision_after_part_ab(
74     AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
75     int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
76     int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
77     int *const partition_vert4_allowed, unsigned int pb_source_variance,
78     int mi_row, int mi_col);
79 
convert_bsize_to_idx(BLOCK_SIZE bsize)80 static INLINE int convert_bsize_to_idx(BLOCK_SIZE bsize) {
81   switch (bsize) {
82     case BLOCK_128X128: return 0;
83     case BLOCK_64X64: return 1;
84     case BLOCK_32X32: return 2;
85     case BLOCK_16X16: return 3;
86     case BLOCK_8X8: return 4;
87     default: assert(0 && "Invalid bsize"); return -1;
88   }
89 }
90 
get_feature_file_name(int id)91 static char *get_feature_file_name(int id) {
92   static char *feature_file_names[] = {
93     "feature_before_partition_none",
94     "feature_before_partition_none_prune_rect",
95     "feature_after_partition_none_prune",
96     "feature_after_partition_none_terminate",
97     "feature_after_partition_split_terminate",
98     "feature_after_partition_split_prune_rect",
99     "feature_after_partition_rect",
100     "feature_after_partition_ab",
101   };
102 
103   return feature_file_names[id];
104 }
105 
write_features_to_file(const char * const path,const bool is_test_mode,const float * features,const int feature_size,const int id,const int bsize,const int mi_row,const int mi_col)106 static void write_features_to_file(const char *const path,
107                                    const bool is_test_mode,
108                                    const float *features,
109                                    const int feature_size, const int id,
110                                    const int bsize, const int mi_row,
111                                    const int mi_col) {
112   if (!WRITE_FEATURE_TO_FILE && !is_test_mode) return;
113 
114   char filename[256];
115   snprintf(filename, sizeof(filename), "%s/%s", path,
116            get_feature_file_name(id));
117   FILE *pfile = fopen(filename, "a");
118   if (!is_test_mode) {
119     fprintf(pfile, "%d,%d,%d,%d,%d\n", id, bsize, mi_row, mi_col, feature_size);
120   }
121   for (int i = 0; i < feature_size; ++i) {
122     fprintf(pfile, "%.6f", features[i]);
123     if (i < feature_size - 1) fprintf(pfile, ",");
124   }
125   fprintf(pfile, "\n");
126   fclose(pfile);
127 }
128 
129 // TODO(chiyotsai@google.com): This is very much a work in progress. We still
130 // need to the following:
131 //   -- add support for hdres
132 //   -- add support for pruning rectangular partitions
133 //   -- use reconstructed pixels instead of source pixels for padding
134 //   -- use chroma pixels in addition to luma pixels
av1_intra_mode_cnn_partition(const AV1_COMMON * const cm,MACROBLOCK * x,int quad_tree_idx,int intra_cnn_based_part_prune_level,PartitionSearchState * part_state)135 void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x,
136                                   int quad_tree_idx,
137                                   int intra_cnn_based_part_prune_level,
138                                   PartitionSearchState *part_state) {
139   assert(cm->seq_params->sb_size >= BLOCK_64X64 &&
140          "Invalid sb_size for intra_cnn!");
141   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
142   const BLOCK_SIZE bsize = blk_params->bsize;
143 
144   const int bsize_idx = convert_bsize_to_idx(bsize);
145 
146   if (bsize == BLOCK_128X128) {
147     return;
148   }
149 
150   PartitionSearchInfo *part_info = &x->part_search_info;
151 
152   // Precompute the CNN part and cache the result in MACROBLOCK
153   if (bsize == BLOCK_64X64 && !part_info->cnn_output_valid) {
154     const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config;
155 
156     // Prepare the output
157     const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL };
158     const int num_outputs = 4;
159     const int output_dims[4] = { 1, 2, 4, 8 };
160     const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH,
161                              CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH };
162     float *output_buffer[CNN_TOT_OUT_CH];
163 
164     float **cur_output_buf = output_buffer;
165     float *curr_buf_ptr = part_info->cnn_buffer;
166     for (int output_idx = 0; output_idx < num_outputs; output_idx++) {
167       const int num_chs = out_chs[output_idx];
168       const int ch_size = output_dims[output_idx] * output_dims[output_idx];
169       for (int ch = 0; ch < num_chs; ch++) {
170         cur_output_buf[ch] = curr_buf_ptr;
171         curr_buf_ptr += ch_size;
172       }
173       cur_output_buf += num_chs;
174     }
175 
176     CNN_MULTI_OUT output = {
177       .num_outputs = 4,
178       .output_channels = out_chs,
179       .output_strides = output_dims,
180       .output_buffer = output_buffer,
181     };
182 
183     // Prepare the input
184     const MACROBLOCKD *xd = &x->e_mbd;
185     const int bit_depth = xd->bd;
186     const int dc_q =
187         av1_dc_quant_QTX(x->qindex, 0, bit_depth) >> (bit_depth - 8);
188     part_info->log_q = logf(1.0f + (float)(dc_q * dc_q) / 256.0f);
189     part_info->log_q =
190         (part_info->log_q - av1_intra_mode_cnn_partition_mean[0]) /
191         av1_intra_mode_cnn_partition_std[0];
192 
193     const int width = 65, height = 65,
194               stride = x->plane[AOM_PLANE_Y].src.stride;
195 
196     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
197       uint16_t *image[1] = {
198         CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1
199       };
200 
201       av1_cnn_predict_img_multi_out_highbd(image, width, height, stride,
202                                            cnn_config, &thread_data, bit_depth,
203                                            &output);
204     } else {
205       uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 };
206 
207       av1_cnn_predict_img_multi_out(image, width, height, stride, cnn_config,
208                                     &thread_data, &output);
209     }
210 
211     part_info->cnn_output_valid = 1;
212   }
213 
214   if (!part_info->cnn_output_valid) {
215     return;
216   }
217 
218   const NN_CONFIG *dnn_configs[5] = {
219     NULL,
220     &av1_intra_mode_cnn_partition_branch_0_dnn_config,
221     &av1_intra_mode_cnn_partition_branch_1_dnn_config,
222     &av1_intra_mode_cnn_partition_branch_2_dnn_config,
223     &av1_intra_mode_cnn_partition_branch_3_dnn_config,
224   };
225 
226   const NN_CONFIG *dnn_config = dnn_configs[bsize_idx];
227 
228   float dnn_features[100];
229   float logits[4] = { 0.0f };
230 
231   const float *branch_0 = part_info->cnn_buffer;
232   const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE;
233   const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE;
234   const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE;
235 
236   if (bsize == BLOCK_64X64) {
237     int f_idx = 0;
238     for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) {
239       dnn_features[f_idx++] = branch_0[ch_idx];
240     }
241 
242     const int spa_stride = 2 * 2;
243     for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) {
244       for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
245         dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride];
246       }
247     }
248     dnn_features[f_idx++] = part_info->log_q;
249   } else if (bsize == BLOCK_32X32) {
250     int f_idx = 0;
251     for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) {
252       dnn_features[f_idx++] = branch_0[idx];
253     }
254 
255     const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1];
256     const int spa_stride = 2 * 2;
257     for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
258       dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride];
259     }
260     dnn_features[f_idx++] = part_info->log_q;
261   } else if (bsize == BLOCK_16X16) {
262     int f_idx = 0;
263     const int prev_quad_idx = (quad_tree_idx - 1) / 4;
264     const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1];
265     const int prev_spa_stride = 2 * 2;
266     for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
267       dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride];
268     }
269 
270     const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5];
271     const int spa_stride = 4 * 4;
272     for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
273       dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride];
274     }
275     dnn_features[f_idx++] = part_info->log_q;
276   } else if (bsize == BLOCK_8X8) {
277     int f_idx = 0;
278     const int prev_quad_idx = (quad_tree_idx - 1) / 4;
279     const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5];
280     const int prev_spa_stride = 4 * 4;
281     for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
282       dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride];
283     }
284 
285     const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21];
286     const int spa_stride = 8 * 8;
287     for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) {
288       dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride];
289     }
290     dnn_features[f_idx++] = part_info->log_q;
291   } else {
292     assert(0 && "Invalid bsize in intra_cnn partition");
293   }
294 
295   // Make decision
296   av1_nn_predict(dnn_features, dnn_config, 1, logits);
297 
298   const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
299   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
300   float split_only_thresh = 100.0f, no_split_thresh = -100.0f;
301   if (is_720p_or_larger) {
302     split_only_thresh =
303         av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx];
304     no_split_thresh =
305         av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx];
306   } else if (is_480p_or_larger) {
307     split_only_thresh =
308         av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx];
309     no_split_thresh =
310         av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx];
311   } else {
312     split_only_thresh =
313         av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx];
314     no_split_thresh =
315         av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx];
316   }
317 
318   if (logits[0] > split_only_thresh) {
319     // As screen contents tend to choose larger partitions, do not prune
320     // PARTITION_NONE when intra_cnn_based_part_prune_level=1.
321     if (intra_cnn_based_part_prune_level != 1) {
322       part_state->partition_none_allowed = 0;
323     }
324     part_state->do_square_split = 1;
325     av1_disable_rect_partitions(part_state);
326   }
327 
328   if (logits[0] < no_split_thresh) {
329     av1_disable_square_split_partition(part_state);
330   }
331 }
332 
av1_simple_motion_search_based_split(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,PartitionSearchState * part_state)333 void av1_simple_motion_search_based_split(AV1_COMP *const cpi, MACROBLOCK *x,
334                                           SIMPLE_MOTION_DATA_TREE *sms_tree,
335                                           PartitionSearchState *part_state) {
336   const AV1_COMMON *const cm = &cpi->common;
337   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
338   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
339   const BLOCK_SIZE bsize = blk_params->bsize;
340 
341   const int bsize_idx = convert_bsize_to_idx(bsize);
342   const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
343   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
344   // res_idx is 0 for res < 480p, 1 for 480p, 2 for 720p+
345   const int res_idx = is_480p_or_larger + is_720p_or_larger;
346 
347   assert(bsize_idx >= 0 && bsize_idx <= 4 &&
348          "Invalid bsize in simple_motion_search_based_split");
349 
350   const float *ml_mean = av1_simple_motion_search_split_mean[bsize_idx];
351   const float *ml_std = av1_simple_motion_search_split_std[bsize_idx];
352   const NN_CONFIG *nn_config =
353       av1_simple_motion_search_split_nn_config[bsize_idx];
354   const int agg = cpi->sf.part_sf.simple_motion_search_prune_agg;
355 
356   if (agg < 0) {
357     return;
358   }
359 
360   const float split_only_thresh =
361       av1_simple_motion_search_split_thresh[agg][res_idx][bsize_idx];
362   const float no_split_thresh =
363       av1_simple_motion_search_no_split_thresh[agg][res_idx][bsize_idx];
364 
365   float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f };
366   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
367                                            bsize, features,
368                                            FEATURE_SMS_SPLIT_MODEL_FLAG);
369 
370   // Write features to file
371   write_features_to_file(cpi->oxcf.partition_info_path,
372                          cpi->ext_part_controller.test_mode, features,
373                          FEATURE_SIZE_SMS_SPLIT, 0, bsize, mi_row, mi_col);
374 
375   // Note: it is intended to not normalize the features here, to keep it
376   // consistent for all features collected and passed to the external model.
377   if (ext_ml_model_decision_before_none(
378           cpi, features, &part_state->partition_none_allowed,
379           &part_state->partition_rect_allowed[HORZ],
380           &part_state->partition_rect_allowed[VERT],
381           &part_state->do_rectangular_split, &part_state->do_square_split)) {
382     return;
383   }
384 
385   for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) {
386     features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx];
387   }
388 
389   float score = 0.0f;
390 
391   av1_nn_predict(features, nn_config, 1, &score);
392 
393   if (score > split_only_thresh) {
394     av1_set_square_split_only(part_state);
395   }
396 
397   if (cpi->sf.part_sf.simple_motion_search_split >= 2 &&
398       score < no_split_thresh) {
399     av1_disable_square_split_partition(part_state);
400   }
401 
402   // If the score is very low, prune rectangular split since it is unlikely to
403   // occur.
404   if (cpi->sf.part_sf.simple_motion_search_rect_split) {
405     const float scale = res_idx >= 2 ? 3.0f : 2.0f;
406     const float rect_split_thresh =
407         scale * av1_simple_motion_search_no_split_thresh
408                     [cpi->sf.part_sf.simple_motion_search_rect_split][res_idx]
409                     [bsize_idx];
410     if (score < rect_split_thresh) {
411       part_state->do_rectangular_split = 0;
412     }
413   }
414 }
415 
416 // Given a list of ref frames in refs, performs simple_motion_search on each of
417 // the refs and returns the ref with the smallest sse. Returns -1 if none of the
418 // ref in the list is available. Also stores the best sse and var in best_sse,
419 // best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in
420 // sms_tree. If save_mv is 1, update mv_ref_fulls under sms_tree and the
421 // subtrees.
simple_motion_search_get_best_ref(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,int mi_row,int mi_col,BLOCK_SIZE bsize,const int * const refs,int num_refs,int use_subpixel,int save_mv,unsigned int * best_sse,unsigned int * best_var)422 static int simple_motion_search_get_best_ref(
423     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
424     int mi_row, int mi_col, BLOCK_SIZE bsize, const int *const refs,
425     int num_refs, int use_subpixel, int save_mv, unsigned int *best_sse,
426     unsigned int *best_var) {
427   const AV1_COMMON *const cm = &cpi->common;
428   int best_ref = -1;
429 
430   if (mi_col >= cm->mi_params.mi_cols || mi_row >= cm->mi_params.mi_rows) {
431     // If the whole block is outside of the image, set the var and sse to 0.
432     *best_var = 0;
433     *best_sse = 0;
434 
435     return best_ref;
436   }
437 
438   // Otherwise do loop through the reference frames and find the one with the
439   // minimum SSE
440   const MACROBLOCKD *xd = &x->e_mbd;
441 
442   const int num_planes = 1;
443 
444   *best_sse = INT_MAX;
445 
446   for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) {
447     const int ref = refs[ref_idx];
448 
449     if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) {
450       const FULLPEL_MV *start_mvs = sms_tree->start_mvs;
451       unsigned int curr_sse = 0, curr_var = 0;
452       int_mv best_mv =
453           av1_simple_motion_search(cpi, x, mi_row, mi_col, bsize, ref,
454                                    start_mvs[ref], num_planes, use_subpixel);
455       curr_var = cpi->ppi->fn_ptr[bsize].vf(
456           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].dst.buf,
457           xd->plane[0].dst.stride, &curr_sse);
458       if (curr_sse < *best_sse) {
459         *best_sse = curr_sse;
460         *best_var = curr_var;
461         best_ref = ref;
462       }
463 
464       if (save_mv) {
465         sms_tree->start_mvs[ref].row = best_mv.as_mv.row / 8;
466         sms_tree->start_mvs[ref].col = best_mv.as_mv.col / 8;
467 
468         if (bsize >= BLOCK_8X8) {
469           for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
470             // Propagate the new motion vectors to a lower level
471             SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
472             sub_tree->start_mvs[ref] = sms_tree->start_mvs[ref];
473           }
474         }
475       }
476     }
477   }
478 
479   return best_ref;
480 }
481 
482 // Collects features using simple_motion_search and store them in features. The
483 // features are also cached in SIMPLE_MOTION_DATA_TREE. By default, the features
484 // collected are the sse and var from the subblocks flagged by features_to_get.
485 // Furthermore, if features is not NULL, then 7 more features are appended to
486 // the end of features:
487 //  - log(1.0 + dc_q ** 2)
488 //  - whether an above macroblock exists
489 //  - width of above macroblock
490 //  - height of above macroblock
491 //  - whether a left marcoblock exists
492 //  - width of left macroblock
493 //  - height of left macroblock
simple_motion_search_prune_part_features(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,int mi_row,int mi_col,BLOCK_SIZE bsize,float * features,int features_to_get)494 static AOM_INLINE void simple_motion_search_prune_part_features(
495     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
496     int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
497     int features_to_get) {
498   const int w_mi = mi_size_wide[bsize];
499   const int h_mi = mi_size_high[bsize];
500   assert(mi_size_wide[bsize] == mi_size_high[bsize]);
501   assert(bsize >= BLOCK_8X8);
502   assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] ||
503          cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]);
504 
505   // Setting up motion search
506   const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
507                                                         : LAST_FRAME };
508   const int num_refs = 1;
509   const int use_subpixel = 1;
510 
511   // Doing whole block first to update the mv
512   if (!sms_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) {
513     simple_motion_search_get_best_ref(cpi, x, sms_tree, mi_row, mi_col, bsize,
514                                       ref_list, num_refs, use_subpixel, 1,
515                                       &sms_tree->sms_none_feat[0],
516                                       &sms_tree->sms_none_feat[1]);
517     sms_tree->sms_none_valid = 1;
518   }
519 
520   // Split subblocks
521   if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
522     const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
523     for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
524       const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2;
525       const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2;
526       SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
527 
528       if (!sub_tree->sms_none_valid) {
529         simple_motion_search_get_best_ref(
530             cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list,
531             num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0],
532             &sub_tree->sms_none_feat[1]);
533         sub_tree->sms_none_valid = 1;
534       }
535     }
536   }
537 
538   // Rectangular subblocks
539   if (!sms_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) {
540     // Horz subblock
541     BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
542     for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
543       const int sub_mi_col = mi_col + 0;
544       const int sub_mi_row = mi_row + r_idx * h_mi / 2;
545 
546       simple_motion_search_get_best_ref(
547           cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
548           use_subpixel, 0, &sms_tree->sms_rect_feat[2 * r_idx],
549           &sms_tree->sms_rect_feat[2 * r_idx + 1]);
550     }
551 
552     // Vert subblock
553     subsize = get_partition_subsize(bsize, PARTITION_VERT);
554     for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
555       const int sub_mi_col = mi_col + r_idx * w_mi / 2;
556       const int sub_mi_row = mi_row + 0;
557 
558       simple_motion_search_get_best_ref(
559           cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
560           use_subpixel, 0, &sms_tree->sms_rect_feat[4 + 2 * r_idx],
561           &sms_tree->sms_rect_feat[4 + 2 * r_idx + 1]);
562     }
563     sms_tree->sms_rect_valid = 1;
564   }
565 
566   if (!features) return;
567 
568   int f_idx = 0;
569   if (features_to_get & FEATURE_SMS_NONE_FLAG) {
570     for (int sub_idx = 0; sub_idx < 2; sub_idx++) {
571       features[f_idx++] = logf(1.0f + sms_tree->sms_none_feat[sub_idx]);
572     }
573   }
574 
575   if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
576     for (int sub_idx = 0; sub_idx < SUB_PARTITIONS_SPLIT; sub_idx++) {
577       SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[sub_idx];
578       features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[0]);
579       features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[1]);
580     }
581   }
582 
583   if (features_to_get & FEATURE_SMS_RECT_FLAG) {
584     for (int sub_idx = 0; sub_idx < 8; sub_idx++) {
585       features[f_idx++] = logf(1.0f + sms_tree->sms_rect_feat[sub_idx]);
586     }
587   }
588 
589   const MACROBLOCKD *xd = &x->e_mbd;
590   set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize);
591 
592   // Q_INDEX
593   const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
594   features[f_idx++] = logf(1.0f + (float)(dc_q * dc_q) / 256.0f);
595 
596   // Neighbor stuff
597   const int has_above = !!xd->above_mbmi;
598   const int has_left = !!xd->left_mbmi;
599   const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->bsize : bsize;
600   const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->bsize : bsize;
601   features[f_idx++] = (float)has_above;
602   features[f_idx++] = (float)mi_size_wide_log2[above_bsize];
603   features[f_idx++] = (float)mi_size_high_log2[above_bsize];
604   features[f_idx++] = (float)has_left;
605   features[f_idx++] = (float)mi_size_wide_log2[left_bsize];
606   features[f_idx++] = (float)mi_size_high_log2[left_bsize];
607 }
608 
av1_simple_motion_search_prune_rect(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,PartitionSearchState * part_state)609 void av1_simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x,
610                                          SIMPLE_MOTION_DATA_TREE *sms_tree,
611                                          PartitionSearchState *part_state) {
612   const AV1_COMMON *const cm = &cpi->common;
613   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
614   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
615   const BLOCK_SIZE bsize = blk_params->bsize;
616 
617   const int bsize_idx = convert_bsize_to_idx(bsize);
618   const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
619   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
620   // res_idx is 0 for lowres, 1 for 48p, 2 for 720p+
621   const int res_idx = is_480p_or_larger + is_720p_or_larger;
622 
623   // Get model parameters
624   const NN_CONFIG *nn_config =
625       av1_simple_motion_search_prune_rect_nn_config[bsize_idx];
626   const float *ml_mean = av1_simple_motion_search_prune_rect_mean[bsize_idx],
627               *ml_std = av1_simple_motion_search_prune_rect_std[bsize_idx];
628 
629   const int agg = cpi->sf.part_sf.simple_motion_search_prune_agg;
630 
631   if (agg < 0) {
632     return;
633   }
634 
635   const float prune_thresh =
636       av1_simple_motion_search_prune_rect_thresh[agg][res_idx][bsize_idx];
637 
638   // If there is no valid threshold, return immediately.
639   if (!nn_config || prune_thresh == 0.0f) {
640     return;
641   }
642 
643   // Get features
644   float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f };
645   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
646                                            bsize, features,
647                                            FEATURE_SMS_PRUNE_PART_FLAG);
648 
649   // Note: it is intended to not normalize the features here, to keep it
650   // consistent for all features collected and passed to the external model.
651   if (cpi->sf.part_sf.simple_motion_search_prune_rect &&
652       !frame_is_intra_only(cm) &&
653       (part_state->partition_rect_allowed[HORZ] ||
654        part_state->partition_rect_allowed[VERT]) &&
655       bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) {
656     // Write features to file
657     write_features_to_file(
658         cpi->oxcf.partition_info_path, cpi->ext_part_controller.test_mode,
659         features, FEATURE_SIZE_SMS_PRUNE_PART, 1, bsize, mi_row, mi_col);
660 
661     if (ext_ml_model_decision_before_none_part2(
662             cpi, features, &part_state->prune_rect_part[HORZ],
663             &part_state->prune_rect_part[VERT])) {
664       return;
665     }
666   }
667 
668   for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) {
669     features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
670   }
671 
672   // Get probabilities
673   float scores[EXT_PARTITION_TYPES] = { 0.0f },
674         probs[EXT_PARTITION_TYPES] = { 0.0f };
675   const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8)
676                               ? PARTITION_TYPES
677                               : EXT_PARTITION_TYPES;
678 
679   av1_nn_predict(features, nn_config, 1, scores);
680 
681   av1_nn_softmax(scores, probs, num_classes);
682 
683   // Determine if we should prune rectangular partitions.
684   if (probs[PARTITION_HORZ] <= prune_thresh) {
685     part_state->prune_rect_part[HORZ] = 1;
686   }
687   if (probs[PARTITION_VERT] <= prune_thresh) {
688     part_state->prune_rect_part[VERT] = 1;
689   }
690 }
691 
692 // Early terminates PARTITION_NONE using simple_motion_search features and the
693 // rate, distortion, and rdcost of PARTITION_NONE. This is only called when:
694 //  - The frame is a show frame
695 //  - The frame is not intra only
696 //  - The current bsize is > BLOCK_8X8
697 //  - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols
av1_simple_motion_search_early_term_none(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,const RD_STATS * none_rdc,PartitionSearchState * part_state)698 void av1_simple_motion_search_early_term_none(
699     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
700     const RD_STATS *none_rdc, PartitionSearchState *part_state) {
701   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
702   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
703   const BLOCK_SIZE bsize = blk_params->bsize;
704 
705   float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f };
706   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
707                                            bsize, features,
708                                            FEATURE_SMS_PRUNE_PART_FLAG);
709   int f_idx = FEATURE_SIZE_SMS_PRUNE_PART;
710 
711   features[f_idx++] = logf(1.0f + (float)none_rdc->rate);
712   features[f_idx++] = logf(1.0f + (float)none_rdc->dist);
713   features[f_idx++] = logf(1.0f + (float)none_rdc->rdcost);
714 
715   assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE);
716 
717   const float *ml_mean = NULL;
718   const float *ml_std = NULL;
719   const float *ml_model = NULL;
720 
721   if (bsize == BLOCK_128X128) {
722     ml_mean = av1_simple_motion_search_term_none_mean_128;
723     ml_std = av1_simple_motion_search_term_none_std_128;
724     ml_model = av1_simple_motion_search_term_none_model_128;
725   } else if (bsize == BLOCK_64X64) {
726     ml_mean = av1_simple_motion_search_term_none_mean_64;
727     ml_std = av1_simple_motion_search_term_none_std_64;
728     ml_model = av1_simple_motion_search_term_none_model_64;
729   } else if (bsize == BLOCK_32X32) {
730     ml_mean = av1_simple_motion_search_term_none_mean_32;
731     ml_std = av1_simple_motion_search_term_none_std_32;
732     ml_model = av1_simple_motion_search_term_none_model_32;
733   } else if (bsize == BLOCK_16X16) {
734     ml_mean = av1_simple_motion_search_term_none_mean_16;
735     ml_std = av1_simple_motion_search_term_none_std_16;
736     ml_model = av1_simple_motion_search_term_none_model_16;
737   } else {
738     assert(0 && "Unexpected block size in simple_motion_term_none");
739   }
740 
741   // Write features to file
742   write_features_to_file(cpi->oxcf.partition_info_path,
743                          cpi->ext_part_controller.test_mode, features,
744                          FEATURE_SIZE_SMS_TERM_NONE, 3, bsize, mi_row, mi_col);
745 
746   if (ext_ml_model_decision_after_none_part2(
747           cpi, features, &part_state->terminate_partition_search)) {
748     return;
749   }
750 
751   if (ml_model) {
752     float score = 0.0f;
753     for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) {
754       score +=
755           ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
756     }
757     score += ml_model[FEATURE_SIZE_SMS_TERM_NONE];
758 
759     if (score >= 0.0f) {
760       part_state->terminate_partition_search = 1;
761     }
762   }
763 }
764 
av1_get_max_min_partition_features(AV1_COMP * const cpi,MACROBLOCK * x,int mi_row,int mi_col,float * features)765 void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x,
766                                         int mi_row, int mi_col,
767                                         float *features) {
768   AV1_COMMON *const cm = &cpi->common;
769   MACROBLOCKD *xd = &x->e_mbd;
770   const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
771 
772   // Currently this only allows 128X128 SB size. May extend it to 64X64 SB size.
773   assert(sb_size == BLOCK_128X128);
774 
775   int f_idx = 0;
776 
777   const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
778   const float log_q_sq = logf(1.0f + (float)(dc_q * dc_q) / 256.0f);
779 
780   // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb
781   float sum_mv_row_sq = 0;
782   float sum_mv_row = 0;
783   float min_abs_mv_row = FLT_MAX;
784   float max_abs_mv_row = 0;
785 
786   float sum_mv_col_sq = 0;
787   float sum_mv_col = 0;
788   float min_abs_mv_col = FLT_MAX;
789   float max_abs_mv_col = 0;
790 
791   float sum_log_sse_sq = 0;
792   float sum_log_sse = 0;
793   float min_log_sse = FLT_MAX;
794   float max_log_sse = 0;
795 
796   const BLOCK_SIZE mb_size = BLOCK_16X16;
797   const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size];
798   const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size];
799   const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size];
800   const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size];
801 
802   for (int mb_row = 0; mb_row < mb_rows; mb_row++)
803     for (int mb_col = 0; mb_col < mb_cols; mb_col++) {
804       const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2);
805       const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2);
806       unsigned int sse = 0;
807       unsigned int var = 0;
808       const FULLPEL_MV start_mv = kZeroFullMv;
809       int_mv best_mv = av1_simple_motion_sse_var(
810           cpi, x, this_mi_row, this_mi_col, mb_size, start_mv, 0, &sse, &var);
811 
812       const float mv_row = (float)(best_mv.as_mv.row / 8);
813       const float mv_col = (float)(best_mv.as_mv.col / 8);
814       const float log_sse = logf(1.0f + (float)sse);
815       const float abs_mv_row = fabsf(mv_row);
816       const float abs_mv_col = fabsf(mv_col);
817 
818       sum_mv_row_sq += mv_row * mv_row;
819       sum_mv_row += mv_row;
820       sum_mv_col_sq += mv_col * mv_col;
821       sum_mv_col += mv_col;
822 
823       if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row;
824       if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row;
825       if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col;
826       if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col;
827 
828       sum_log_sse_sq += log_sse * log_sse;
829       sum_log_sse += log_sse;
830       if (log_sse < min_log_sse) min_log_sse = log_sse;
831       if (log_sse > max_log_sse) max_log_sse = log_sse;
832     }
833   const int blks = mb_rows * mb_cols;
834   const float avg_mv_row = sum_mv_row / (float)blks;
835   const float var_mv_row =
836       sum_mv_row_sq / (float)blks - avg_mv_row * avg_mv_row;
837 
838   const float avg_mv_col = sum_mv_col / (float)blks;
839   const float var_mv_col =
840       sum_mv_col_sq / (float)blks - avg_mv_col * avg_mv_col;
841 
842   const float avg_log_sse = sum_log_sse / (float)blks;
843   const float var_log_sse =
844       sum_log_sse_sq / (float)blks - avg_log_sse * avg_log_sse;
845 
846   features[f_idx++] = avg_log_sse;
847   features[f_idx++] = avg_mv_col;
848   features[f_idx++] = avg_mv_row;
849   features[f_idx++] = log_q_sq;
850   features[f_idx++] = max_abs_mv_col;
851   features[f_idx++] = max_abs_mv_row;
852   features[f_idx++] = max_log_sse;
853   features[f_idx++] = min_abs_mv_col;
854   features[f_idx++] = min_abs_mv_row;
855   features[f_idx++] = min_log_sse;
856   features[f_idx++] = var_log_sse;
857   features[f_idx++] = var_mv_col;
858   features[f_idx++] = var_mv_row;
859 
860   assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED);
861 }
862 
863 // Convert result index to block size.
864 // result idx     block size
865 //     0          BLOCK_16X16
866 //     1          BLOCK_32X32
867 //     2          BLOCK_64X64
868 //     3          BLOCK_128X128
get_block_size(int idx)869 static BLOCK_SIZE get_block_size(int idx) {
870   return (BLOCK_SIZE)((idx + 2) * 3);
871 }
872 
av1_predict_max_partition(const AV1_COMP * const cpi,const MACROBLOCK * const x,const float * features)873 BLOCK_SIZE av1_predict_max_partition(const AV1_COMP *const cpi,
874                                      const MACROBLOCK *const x,
875                                      const float *features) {
876   float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
877   const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config;
878 
879   assert(cpi->sf.part_sf.auto_max_partition_based_on_simple_motion !=
880          NOT_IN_USE);
881 
882   av1_nn_predict(features, nn_config, 1, scores);
883 
884   int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1;
885   if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
886       DIRECT_PRED) {
887     result = 0;
888     float max_score = scores[0];
889     for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) {
890       if (scores[i] > max_score) {
891         max_score = scores[i];
892         result = i;
893       }
894     }
895     return get_block_size(result);
896   }
897 
898   float probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
899   av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED);
900 
901   if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
902       RELAXED_PRED) {
903     for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
904          --result) {
905       if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
906         probs[result] += probs[result + 1];
907       }
908       if (probs[result] > 0.2) break;
909     }
910   } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
911              ADAPT_PRED) {
912     const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size;
913     const MACROBLOCKD *const xd = &x->e_mbd;
914     // TODO(debargha): x->source_variance is unavailable at this point,
915     // so compute. The redundant recomputation later can be removed.
916     const unsigned int source_variance =
917         is_cur_buf_hbd(xd)
918             ? av1_high_get_sby_perpixel_variance(cpi, &x->plane[0].src, sb_size,
919                                                  xd->bd)
920             : av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, sb_size);
921     if (source_variance > 16) {
922       const double thresh = source_variance < 128 ? 0.05 : 0.1;
923       for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
924            --result) {
925         if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
926           probs[result] += probs[result + 1];
927         }
928         if (probs[result] > thresh) break;
929       }
930     }
931   }
932 
933   return get_block_size(result);
934 }
935 
936 // Get the minimum partition block width and height(in log scale) under a
937 // SIMPLE_MOTION_DATA_TREE.
get_min_bsize(const SIMPLE_MOTION_DATA_TREE * sms_tree,int * min_bw,int * min_bh)938 static AOM_INLINE void get_min_bsize(const SIMPLE_MOTION_DATA_TREE *sms_tree,
939                                      int *min_bw, int *min_bh) {
940   if (!sms_tree) return;
941 
942   const BLOCK_SIZE bsize = sms_tree->block_size;
943   if (bsize == BLOCK_4X4) {
944     *min_bw = 0;
945     *min_bh = 0;
946     return;
947   }
948 
949   PARTITION_TYPE part_type = sms_tree->partitioning;
950   if (part_type == PARTITION_INVALID) return;
951 
952   if (part_type == PARTITION_SPLIT) {
953     for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
954       get_min_bsize(sms_tree->split[i], min_bw, min_bh);
955     }
956   } else {
957     if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B ||
958         part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B)
959       part_type = PARTITION_SPLIT;
960     const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type);
961     if (subsize != BLOCK_INVALID) {
962       *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]);
963       *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]);
964     }
965   }
966 }
967 
add_rd_feature(int64_t rd,int64_t best_rd,float * features,int * feature_idx)968 static INLINE void add_rd_feature(int64_t rd, int64_t best_rd, float *features,
969                                   int *feature_idx) {
970   const int rd_valid = rd > 0 && rd < INT64_MAX;
971   const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f;
972   features[(*feature_idx)++] = (float)rd_valid;
973   features[(*feature_idx)++] = rd_ratio;
974 }
975 
976 #define FEATURES 31
av1_ml_early_term_after_split(AV1_COMP * const cpi,MACROBLOCK * const x,SIMPLE_MOTION_DATA_TREE * const sms_tree,int64_t best_rd,int64_t part_none_rd,int64_t part_split_rd,int64_t * split_block_rd,PartitionSearchState * part_state)977 void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x,
978                                    SIMPLE_MOTION_DATA_TREE *const sms_tree,
979                                    int64_t best_rd, int64_t part_none_rd,
980                                    int64_t part_split_rd,
981                                    int64_t *split_block_rd,
982                                    PartitionSearchState *part_state) {
983   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
984   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
985   const BLOCK_SIZE bsize = blk_params->bsize;
986 
987   if (best_rd <= 0 || best_rd == INT64_MAX ||
988       part_state->terminate_partition_search)
989     return;
990 
991   const AV1_COMMON *const cm = &cpi->common;
992   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
993   const NN_CONFIG *nn_config = NULL;
994   float thresh = -1e6;
995   switch (bsize) {
996     case BLOCK_128X128: break;
997     case BLOCK_64X64:
998       nn_config = &av1_early_term_after_split_nnconfig_64;
999       thresh = is_480p_or_larger ? -2.0f : -1.2f;
1000       break;
1001     case BLOCK_32X32:
1002       nn_config = &av1_early_term_after_split_nnconfig_32;
1003       thresh = is_480p_or_larger ? -2.6f : -2.3f;
1004       break;
1005     case BLOCK_16X16:
1006       nn_config = &av1_early_term_after_split_nnconfig_16;
1007       thresh = is_480p_or_larger ? -2.0f : -2.4f;
1008       break;
1009     case BLOCK_8X8:
1010       nn_config = &av1_early_term_after_split_nnconfig_8;
1011       thresh = is_480p_or_larger ? -1.0f : -1.4f;
1012       break;
1013     case BLOCK_4X4: break;
1014     default:
1015       assert(0 && "Invalid block size in av1_ml_early_term_after_split().");
1016       break;
1017   }
1018   if (!nn_config) return;
1019 
1020   // Use more conservative threshold for level 1.
1021   if (cpi->sf.part_sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f;
1022 
1023   const MACROBLOCKD *const xd = &x->e_mbd;
1024   const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
1025   const int bs = block_size_wide[bsize];
1026   int f_idx = 0;
1027   float features[FEATURES] = { 0.0f };
1028 
1029   features[f_idx++] = logf(1.0f + (float)dc_q / 4.0f);
1030   features[f_idx++] = logf(1.0f + (float)best_rd / bs / bs / 1024.0f);
1031 
1032   add_rd_feature(part_none_rd, best_rd, features, &f_idx);
1033   add_rd_feature(part_split_rd, best_rd, features, &f_idx);
1034 
1035   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1036     add_rd_feature(split_block_rd[i], best_rd, features, &f_idx);
1037     int min_bw = MAX_SB_SIZE_LOG2;
1038     int min_bh = MAX_SB_SIZE_LOG2;
1039     get_min_bsize(sms_tree->split[i], &min_bw, &min_bh);
1040     features[f_idx++] = (float)min_bw;
1041     features[f_idx++] = (float)min_bh;
1042   }
1043 
1044   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
1045                                            bsize, NULL,
1046                                            FEATURE_SMS_PRUNE_PART_FLAG);
1047 
1048   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_none_feat[1]);
1049 
1050   features[f_idx++] = logf(1.0f + (float)sms_tree->split[0]->sms_none_feat[1]);
1051   features[f_idx++] = logf(1.0f + (float)sms_tree->split[1]->sms_none_feat[1]);
1052   features[f_idx++] = logf(1.0f + (float)sms_tree->split[2]->sms_none_feat[1]);
1053   features[f_idx++] = logf(1.0f + (float)sms_tree->split[3]->sms_none_feat[1]);
1054 
1055   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[1]);
1056   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[3]);
1057   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[5]);
1058   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[7]);
1059 
1060   assert(f_idx == FEATURES);
1061 
1062   // Write features to file
1063   write_features_to_file(cpi->oxcf.partition_info_path,
1064                          cpi->ext_part_controller.test_mode, features, FEATURES,
1065                          4, bsize, mi_row, mi_col);
1066 
1067   if (ext_ml_model_decision_after_split(
1068           cpi, features, &part_state->terminate_partition_search)) {
1069     return;
1070   }
1071 
1072   float score = 0.0f;
1073   av1_nn_predict(features, nn_config, 1, &score);
1074   // Score is indicator of confidence that we should NOT terminate.
1075   if (score < thresh) {
1076     part_state->terminate_partition_search = 1;
1077   }
1078 }
1079 #undef FEATURES
1080 
av1_ml_prune_rect_partition(AV1_COMP * const cpi,const MACROBLOCK * const x,int64_t best_rd,int64_t none_rd,const int64_t * split_rd,PartitionSearchState * part_state)1081 void av1_ml_prune_rect_partition(AV1_COMP *const cpi, const MACROBLOCK *const x,
1082                                  int64_t best_rd, int64_t none_rd,
1083                                  const int64_t *split_rd,
1084                                  PartitionSearchState *part_state) {
1085   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1086   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1087   const BLOCK_SIZE bsize = blk_params->bsize;
1088 
1089   if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
1090   best_rd = AOMMAX(best_rd, 1);
1091   const NN_CONFIG *nn_config = NULL;
1092   const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f };
1093   float cur_thresh = 0.0f;
1094   switch (bsize) {
1095     case BLOCK_8X8:
1096       nn_config = &av1_rect_partition_nnconfig_8;
1097       cur_thresh = prob_thresholds[0];
1098       break;
1099     case BLOCK_16X16:
1100       nn_config = &av1_rect_partition_nnconfig_16;
1101       cur_thresh = prob_thresholds[1];
1102       break;
1103     case BLOCK_32X32:
1104       nn_config = &av1_rect_partition_nnconfig_32;
1105       cur_thresh = prob_thresholds[2];
1106       break;
1107     case BLOCK_64X64:
1108       nn_config = &av1_rect_partition_nnconfig_64;
1109       cur_thresh = prob_thresholds[3];
1110       break;
1111     case BLOCK_128X128:
1112       nn_config = &av1_rect_partition_nnconfig_128;
1113       cur_thresh = prob_thresholds[4];
1114       break;
1115     default: assert(0 && "Unexpected bsize.");
1116   }
1117   if (!nn_config) return;
1118 
1119   // 1. Compute input features
1120   float features[9];
1121 
1122   // RD cost ratios
1123   for (int i = 0; i < 5; i++) features[i] = 1.0f;
1124   if (none_rd > 0 && none_rd < 1000000000)
1125     features[0] = (float)none_rd / (float)best_rd;
1126   for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
1127     if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1128       features[1 + i] = (float)split_rd[i] / (float)best_rd;
1129   }
1130 
1131   // Variance ratios
1132   const MACROBLOCKD *const xd = &x->e_mbd;
1133   int whole_block_variance;
1134   if (is_cur_buf_hbd(xd)) {
1135     whole_block_variance = av1_high_get_sby_perpixel_variance(
1136         cpi, &x->plane[0].src, bsize, xd->bd);
1137   } else {
1138     whole_block_variance =
1139         av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
1140   }
1141   whole_block_variance = AOMMAX(whole_block_variance, 1);
1142 
1143   int split_variance[SUB_PARTITIONS_SPLIT];
1144   const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
1145   struct buf_2d buf;
1146   buf.stride = x->plane[0].src.stride;
1147   const int bw = block_size_wide[bsize];
1148   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1149     const int x_idx = (i & 1) * bw / 2;
1150     const int y_idx = (i >> 1) * bw / 2;
1151     buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride;
1152     if (is_cur_buf_hbd(xd)) {
1153       split_variance[i] =
1154           av1_high_get_sby_perpixel_variance(cpi, &buf, subsize, xd->bd);
1155     } else {
1156       split_variance[i] = av1_get_sby_perpixel_variance(cpi, &buf, subsize);
1157     }
1158   }
1159 
1160   for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++)
1161     features[5 + i] = (float)split_variance[i] / (float)whole_block_variance;
1162 
1163   // Write features to file
1164   write_features_to_file(cpi->oxcf.partition_info_path,
1165                          cpi->ext_part_controller.test_mode, features,
1166                          /*feature_size=*/9, 5, bsize, mi_row, mi_col);
1167 
1168   if (ext_ml_model_decision_after_split_part2(
1169           &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
1170           features, &part_state->prune_rect_part[HORZ],
1171           &part_state->prune_rect_part[VERT])) {
1172     return;
1173   }
1174 
1175   // 2. Do the prediction and prune 0-2 partitions based on their probabilities
1176   float raw_scores[3] = { 0.0f };
1177   av1_nn_predict(features, nn_config, 1, raw_scores);
1178   float probs[3] = { 0.0f };
1179   av1_nn_softmax(raw_scores, probs, 3);
1180 
1181   // probs[0] is the probability of the fact that both rectangular partitions
1182   // are worse than current best_rd
1183   if (probs[1] <= cur_thresh) part_state->prune_rect_part[HORZ] = 1;
1184   if (probs[2] <= cur_thresh) part_state->prune_rect_part[VERT] = 1;
1185 }
1186 
1187 // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be
1188 // considered.
av1_ml_prune_ab_partition(AV1_COMP * const cpi,int part_ctx,int var_ctx,int64_t best_rd,PartitionSearchState * part_state,int * ab_partitions_allowed)1189 void av1_ml_prune_ab_partition(AV1_COMP *const cpi, int part_ctx, int var_ctx,
1190                                int64_t best_rd,
1191                                PartitionSearchState *part_state,
1192                                int *ab_partitions_allowed) {
1193   const PartitionBlkParams blk_params = part_state->part_blk_params;
1194   const int mi_row = blk_params.mi_row;
1195   const int mi_col = blk_params.mi_col;
1196   const int bsize = blk_params.bsize;
1197 
1198   if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
1199   const NN_CONFIG *nn_config = NULL;
1200   switch (bsize) {
1201     case BLOCK_8X8: nn_config = NULL; break;
1202     case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break;
1203     case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break;
1204     case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break;
1205     case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break;
1206     default: assert(0 && "Unexpected bsize.");
1207   }
1208   if (!nn_config) return;
1209 
1210   // Generate features.
1211   float features[10];
1212   int feature_index = 0;
1213   features[feature_index++] = (float)part_ctx;
1214   features[feature_index++] = (float)var_ctx;
1215   const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1216   int sub_block_rdcost[8] = { 0 };
1217   int rd_index = 0;
1218   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1219     const int64_t *horz_rd = part_state->rect_part_rd[HORZ];
1220     if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1221       sub_block_rdcost[rd_index] = (int)horz_rd[i];
1222     ++rd_index;
1223   }
1224   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1225     const int64_t *vert_rd = part_state->rect_part_rd[VERT];
1226     if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1227       sub_block_rdcost[rd_index] = (int)vert_rd[i];
1228     ++rd_index;
1229   }
1230   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1231     const int64_t *split_rd = part_state->split_rd;
1232     if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1233       sub_block_rdcost[rd_index] = (int)split_rd[i];
1234     ++rd_index;
1235   }
1236   for (int i = 0; i < 8; ++i) {
1237     // Ratio between the sub-block RD and the whole-block RD.
1238     float rd_ratio = 1.0f;
1239     if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1240       rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1241     features[feature_index++] = rd_ratio;
1242   }
1243   assert(feature_index == 10);
1244 
1245   // Write features to file
1246   if (!frame_is_intra_only(&cpi->common)) {
1247     write_features_to_file(cpi->oxcf.partition_info_path,
1248                            cpi->ext_part_controller.test_mode, features,
1249                            /*feature_size=*/10, 6, bsize, mi_row, mi_col);
1250   }
1251 
1252   if (ext_ml_model_decision_after_rect(
1253           &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
1254           features, &ab_partitions_allowed[HORZ_A],
1255           &ab_partitions_allowed[HORZ_B], &ab_partitions_allowed[VERT_A],
1256           &ab_partitions_allowed[VERT_B])) {
1257     return;
1258   }
1259 
1260   // Calculate scores using the NN model.
1261   float score[16] = { 0.0f };
1262   av1_nn_predict(features, nn_config, 1, score);
1263   int int_score[16];
1264   int max_score = -1000;
1265   for (int i = 0; i < 16; ++i) {
1266     int_score[i] = (int)(100 * score[i]);
1267     max_score = AOMMAX(int_score[i], max_score);
1268   }
1269 
1270   // Make decisions based on the model scores.
1271   int thresh = max_score;
1272   switch (bsize) {
1273     case BLOCK_16X16: thresh -= 150; break;
1274     case BLOCK_32X32: thresh -= 100; break;
1275     default: break;
1276   }
1277   av1_zero_array(ab_partitions_allowed, NUM_AB_PARTS);
1278   for (int i = 0; i < 16; ++i) {
1279     if (int_score[i] >= thresh) {
1280       if ((i >> 0) & 1) ab_partitions_allowed[HORZ_A] = 1;
1281       if ((i >> 1) & 1) ab_partitions_allowed[HORZ_B] = 1;
1282       if ((i >> 2) & 1) ab_partitions_allowed[VERT_A] = 1;
1283       if ((i >> 3) & 1) ab_partitions_allowed[VERT_B] = 1;
1284     }
1285   }
1286 }
1287 
1288 #define FEATURES 18
1289 #define LABELS 4
1290 // Use a ML model to predict if horz4 and vert4 should be considered.
av1_ml_prune_4_partition(AV1_COMP * const cpi,MACROBLOCK * const x,int part_ctx,int64_t best_rd,PartitionSearchState * part_state,int * part4_allowed,unsigned int pb_source_variance)1291 void av1_ml_prune_4_partition(AV1_COMP *const cpi, MACROBLOCK *const x,
1292                               int part_ctx, int64_t best_rd,
1293                               PartitionSearchState *part_state,
1294                               int *part4_allowed,
1295                               unsigned int pb_source_variance) {
1296   const PartitionBlkParams blk_params = part_state->part_blk_params;
1297   const int mi_row = blk_params.mi_row;
1298   const int mi_col = blk_params.mi_col;
1299   const int bsize = blk_params.bsize;
1300 
1301   int64_t(*rect_part_rd)[SUB_PARTITIONS_RECT] = part_state->rect_part_rd;
1302   int64_t *split_rd = part_state->split_rd;
1303   if (ext_ml_model_decision_after_part_ab(
1304           cpi, x, bsize, part_ctx, best_rd, rect_part_rd, split_rd,
1305           &part4_allowed[HORZ4], &part4_allowed[VERT4], pb_source_variance,
1306           mi_row, mi_col))
1307     return;
1308 
1309   if (best_rd >= 1000000000) return;
1310   int64_t *horz_rd = rect_part_rd[HORZ4];
1311   int64_t *vert_rd = rect_part_rd[VERT4];
1312   const NN_CONFIG *nn_config = NULL;
1313   switch (bsize) {
1314     case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break;
1315     case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break;
1316     case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break;
1317     default: assert(0 && "Unexpected bsize.");
1318   }
1319   if (!nn_config) return;
1320 
1321   // Generate features.
1322   float features[FEATURES];
1323   int feature_index = 0;
1324   features[feature_index++] = (float)part_ctx;
1325   features[feature_index++] = (float)get_unsigned_bits(pb_source_variance);
1326 
1327   const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1328   int sub_block_rdcost[8] = { 0 };
1329   int rd_index = 0;
1330   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1331     if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1332       sub_block_rdcost[rd_index] = (int)horz_rd[i];
1333     ++rd_index;
1334   }
1335   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1336     if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1337       sub_block_rdcost[rd_index] = (int)vert_rd[i];
1338     ++rd_index;
1339   }
1340   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1341     if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1342       sub_block_rdcost[rd_index] = (int)split_rd[i];
1343     ++rd_index;
1344   }
1345   for (int i = 0; i < 8; ++i) {
1346     // Ratio between the sub-block RD and the whole-block RD.
1347     float rd_ratio = 1.0f;
1348     if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1349       rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1350     features[feature_index++] = rd_ratio;
1351   }
1352 
1353   // Get variance of the 1:4 and 4:1 sub-blocks.
1354   unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1355   unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1356   {
1357     BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
1358     BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
1359     av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
1360                          av1_num_planes(&cpi->common), bsize);
1361     const int src_stride = x->plane[0].src.stride;
1362     uint8_t *src = x->plane[0].src.buf;
1363     const MACROBLOCKD *const xd = &x->e_mbd;
1364 
1365     struct buf_2d horz_4_src, vert_4_src;
1366     horz_4_src.stride = src_stride;
1367     vert_4_src.stride = src_stride;
1368 
1369     for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1370       horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
1371       vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
1372 
1373       if (is_cur_buf_hbd(xd)) {
1374         horz_4_source_var[i] = av1_high_get_sby_perpixel_variance(
1375             cpi, &horz_4_src, horz_4_bs, xd->bd);
1376         vert_4_source_var[i] = av1_high_get_sby_perpixel_variance(
1377             cpi, &vert_4_src, vert_4_bs, xd->bd);
1378       } else {
1379         horz_4_source_var[i] =
1380             av1_get_sby_perpixel_variance(cpi, &horz_4_src, horz_4_bs);
1381         vert_4_source_var[i] =
1382             av1_get_sby_perpixel_variance(cpi, &vert_4_src, vert_4_bs);
1383       }
1384     }
1385   }
1386 
1387   const float denom = (float)(pb_source_variance + 1);
1388   const float low_b = 0.1f;
1389   const float high_b = 10.0f;
1390   for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1391     // Ratio between the 4:1 sub-block variance and the whole-block variance.
1392     float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
1393     if (var_ratio < low_b) var_ratio = low_b;
1394     if (var_ratio > high_b) var_ratio = high_b;
1395     features[feature_index++] = var_ratio;
1396   }
1397   for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1398     // Ratio between the 1:4 sub-block RD and the whole-block RD.
1399     float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
1400     if (var_ratio < low_b) var_ratio = low_b;
1401     if (var_ratio > high_b) var_ratio = high_b;
1402     features[feature_index++] = var_ratio;
1403   }
1404   assert(feature_index == FEATURES);
1405 
1406   // Write features to file
1407   if (!frame_is_intra_only(&cpi->common)) {
1408     write_features_to_file(cpi->oxcf.partition_info_path,
1409                            cpi->ext_part_controller.test_mode, features,
1410                            FEATURES, 7, bsize, mi_row, mi_col);
1411   }
1412 
1413   // Calculate scores using the NN model.
1414   float score[LABELS] = { 0.0f };
1415   av1_nn_predict(features, nn_config, 1, score);
1416   int int_score[LABELS];
1417   int max_score = -1000;
1418   for (int i = 0; i < LABELS; ++i) {
1419     int_score[i] = (int)(100 * score[i]);
1420     max_score = AOMMAX(int_score[i], max_score);
1421   }
1422 
1423   // Make decisions based on the model scores.
1424   int thresh = max_score;
1425   switch (bsize) {
1426     case BLOCK_16X16: thresh -= 500; break;
1427     case BLOCK_32X32: thresh -= 500; break;
1428     case BLOCK_64X64: thresh -= 200; break;
1429     default: break;
1430   }
1431   av1_zero_array(part4_allowed, NUM_PART4_TYPES);
1432   for (int i = 0; i < LABELS; ++i) {
1433     if (int_score[i] >= thresh) {
1434       if ((i >> 0) & 1) part4_allowed[HORZ4] = 1;
1435       if ((i >> 1) & 1) part4_allowed[VERT4] = 1;
1436     }
1437   }
1438 }
1439 #undef FEATURES
1440 #undef LABELS
1441 
1442 #define FEATURES 4
av1_ml_predict_breakout(AV1_COMP * const cpi,const MACROBLOCK * const x,const RD_STATS * const rd_stats,unsigned int pb_source_variance,int bit_depth,PartitionSearchState * part_state)1443 void av1_ml_predict_breakout(AV1_COMP *const cpi, const MACROBLOCK *const x,
1444                              const RD_STATS *const rd_stats,
1445                              unsigned int pb_source_variance, int bit_depth,
1446                              PartitionSearchState *part_state) {
1447   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1448   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1449   const BLOCK_SIZE bsize = blk_params->bsize;
1450 
1451   const NN_CONFIG *nn_config = NULL;
1452   int thresh = 0;
1453   switch (bsize) {
1454     case BLOCK_8X8:
1455       nn_config = &av1_partition_breakout_nnconfig_8;
1456       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[0];
1457       break;
1458     case BLOCK_16X16:
1459       nn_config = &av1_partition_breakout_nnconfig_16;
1460       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[1];
1461       break;
1462     case BLOCK_32X32:
1463       nn_config = &av1_partition_breakout_nnconfig_32;
1464       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[2];
1465       break;
1466     case BLOCK_64X64:
1467       nn_config = &av1_partition_breakout_nnconfig_64;
1468       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[3];
1469       break;
1470     case BLOCK_128X128:
1471       nn_config = &av1_partition_breakout_nnconfig_128;
1472       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[4];
1473       break;
1474     default: assert(0 && "Unexpected bsize.");
1475   }
1476   if (!nn_config || thresh < 0) return;
1477 
1478   const float ml_predict_breakout_thresh_scale[3] = { 1.15f, 1.05f, 1.0f };
1479   thresh = (int)((float)thresh *
1480                  ml_predict_breakout_thresh_scale
1481                      [cpi->sf.part_sf.ml_predict_breakout_level - 1]);
1482 
1483   // Generate feature values.
1484   float features[FEATURES];
1485   int feature_index = 0;
1486 
1487   const int num_pels_log2 = num_pels_log2_lookup[bsize];
1488   float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX);
1489   rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
1490            rate_f;
1491   features[feature_index++] = rate_f;
1492 
1493   const float dist_f =
1494       (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2);
1495   features[feature_index++] = dist_f;
1496 
1497   features[feature_index++] = (float)pb_source_variance;
1498 
1499   const int dc_q = (int)x->plane[0].dequant_QTX[0] >> (bit_depth - 8);
1500   features[feature_index++] = (float)(dc_q * dc_q) / 256.0f;
1501   assert(feature_index == FEATURES);
1502 
1503   // Write features to file
1504   write_features_to_file(cpi->oxcf.partition_info_path,
1505                          cpi->ext_part_controller.test_mode, features, FEATURES,
1506                          2, bsize, mi_row, mi_col);
1507 
1508   if (ext_ml_model_decision_after_none(&cpi->ext_part_controller,
1509                                        frame_is_intra_only(&cpi->common),
1510                                        features, &part_state->do_square_split,
1511                                        &part_state->do_rectangular_split)) {
1512     return;
1513   }
1514 
1515   // Calculate score using the NN model.
1516   float score = 0.0f;
1517   av1_nn_predict(features, nn_config, 1, &score);
1518 
1519   // Make decision.
1520   if ((int)(score * 100) >= thresh) {
1521     part_state->do_square_split = 0;
1522     part_state->do_rectangular_split = 0;
1523   }
1524 }
1525 #undef FEATURES
1526 
av1_prune_partitions_before_search(AV1_COMP * const cpi,MACROBLOCK * const x,SIMPLE_MOTION_DATA_TREE * const sms_tree,PartitionSearchState * part_state)1527 void av1_prune_partitions_before_search(AV1_COMP *const cpi,
1528                                         MACROBLOCK *const x,
1529                                         SIMPLE_MOTION_DATA_TREE *const sms_tree,
1530                                         PartitionSearchState *part_state) {
1531   const AV1_COMMON *const cm = &cpi->common;
1532   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1533 
1534   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1535   const BLOCK_SIZE bsize = blk_params->bsize;
1536 
1537   // Prune rectangular partitions for larger blocks.
1538   if (bsize > cpi->sf.part_sf.rect_partition_eval_thresh) {
1539     part_state->do_rectangular_split = 0;
1540     part_state->partition_rect_allowed[HORZ] = 0;
1541     part_state->partition_rect_allowed[VERT] = 0;
1542   }
1543 
1544   // Prune rectangular, AB and 4-way partition based on q index and block size
1545   if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 1) {
1546     if (bsize == BLOCK_8X8 && x->qindex < 35)
1547       av1_disable_rect_partitions(part_state);
1548 
1549   } else if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 2) {
1550     // Enumeration difference between two square partitions
1551     const int sqr_bsize_step = BLOCK_32X32 - BLOCK_16X16;
1552     int max_bsize =
1553         BLOCK_32X32 - (x->qindex * 3 / QINDEX_RANGE) * sqr_bsize_step;
1554     max_bsize = AOMMAX(max_bsize, BLOCK_4X4);
1555     const BLOCK_SIZE max_prune_bsize =
1556         (BLOCK_SIZE)AOMMIN(max_bsize, BLOCK_32X32);
1557 
1558     // Prune partition
1559     // qidx 0 to 85: prune bsize below BLOCK_32X32
1560     // qidx 86 to 170: prune bsize below BLOCK_16X16
1561     // qidx 171 to 255: prune bsize below BLOCK_8X8
1562     if (bsize < max_prune_bsize) {
1563       av1_disable_rect_partitions(part_state);
1564     }
1565   }
1566 
1567   if (cpi->sf.part_sf.prune_sub_8x8_partition_level && (bsize == BLOCK_8X8)) {
1568     const MACROBLOCKD *const xd = &x->e_mbd;
1569     int prune_sub_8x8 = 1;
1570     if (cpi->sf.part_sf.prune_sub_8x8_partition_level == 1) {
1571       int num_neighbors_lt_8x8 = 0;
1572       if (xd->left_available)
1573         num_neighbors_lt_8x8 += (xd->left_mbmi->bsize <= BLOCK_8X8);
1574       if (xd->up_available)
1575         num_neighbors_lt_8x8 += (xd->above_mbmi->bsize <= BLOCK_8X8);
1576       // Evaluate only if both left and above blocks are of size <= BLOCK_8X8.
1577       if (num_neighbors_lt_8x8 == 2) {
1578         prune_sub_8x8 = 0;
1579       }
1580     }
1581     if (prune_sub_8x8) {
1582       av1_disable_all_splits(part_state);
1583     }
1584   }
1585 
1586   // A CNN-based speed feature pruning out either split or all non-split
1587   // partition in INTRA frame coding.
1588   const int try_intra_cnn_based_part_prune =
1589       frame_is_intra_only(cm) &&
1590       cpi->sf.part_sf.intra_cnn_based_part_prune_level &&
1591       cm->seq_params->sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 &&
1592       blk_params->bsize_at_least_8x8 &&
1593       av1_is_whole_blk_in_frame(blk_params, mi_params);
1594 
1595   if (try_intra_cnn_based_part_prune) {
1596     av1_intra_mode_cnn_partition(
1597         &cpi->common, x, x->part_search_info.quad_tree_idx,
1598         cpi->sf.part_sf.intra_cnn_based_part_prune_level, part_state);
1599   }
1600 
1601   // Use simple motion search to prune out split or non-split partitions. This
1602   // must be done prior to PARTITION_SPLIT to propagate the initial mvs to a
1603   // smaller blocksize.
1604   const int try_split_only =
1605       cpi->sf.part_sf.simple_motion_search_split &&
1606       part_state->do_square_split && blk_params->bsize_at_least_8x8 &&
1607       av1_is_whole_blk_in_frame(blk_params, mi_params) &&
1608       !frame_is_intra_only(cm) && !av1_superres_scaled(cm);
1609 
1610   if (try_split_only) {
1611     av1_simple_motion_search_based_split(cpi, x, sms_tree, part_state);
1612   }
1613 
1614   // Use simple motion search to prune out rectangular partition in some
1615   // direction. The results are stored in prune_horz and prune_vert in order to
1616   // bypass future related pruning checks if a pruning decision has been made.
1617 
1618   // We want to search at least one partition mode, so don't prune if NONE and
1619   // SPLIT are disabled.
1620   const int non_rect_part_allowed =
1621       part_state->do_square_split || part_state->partition_none_allowed;
1622   // Only run the model if the partitions are not already pruned.
1623   const int rect_part_allowed = part_state->do_rectangular_split &&
1624                                 ((part_state->partition_rect_allowed[HORZ] &&
1625                                   !part_state->prune_rect_part[HORZ]) ||
1626                                  (part_state->partition_rect_allowed[VERT] &&
1627                                   !part_state->prune_rect_part[VERT]));
1628 
1629   const int try_prune_rect = cpi->sf.part_sf.simple_motion_search_prune_rect &&
1630                              !frame_is_intra_only(cm) &&
1631                              non_rect_part_allowed && rect_part_allowed &&
1632                              !av1_superres_scaled(cm);
1633 
1634   if (try_prune_rect) {
1635     av1_simple_motion_search_prune_rect(cpi, x, sms_tree, part_state);
1636   }
1637 }
1638 
1639 #ifndef NDEBUG
is_bsize_square(BLOCK_SIZE bsize)1640 static AOM_INLINE int is_bsize_square(BLOCK_SIZE bsize) {
1641   return block_size_wide[bsize] == block_size_high[bsize];
1642 }
1643 #endif  // NDEBUG
1644 
av1_prune_partitions_by_max_min_bsize(SuperBlockEnc * sb_enc,PartitionSearchState * part_state)1645 void av1_prune_partitions_by_max_min_bsize(SuperBlockEnc *sb_enc,
1646                                            PartitionSearchState *part_state) {
1647   assert(is_bsize_square(sb_enc->max_partition_size));
1648   assert(is_bsize_square(sb_enc->min_partition_size));
1649   assert(sb_enc->min_partition_size <= sb_enc->max_partition_size);
1650   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1651   const BLOCK_SIZE bsize = blk_params->bsize;
1652   assert(is_bsize_square(bsize));
1653   const int max_partition_size_1d = block_size_wide[sb_enc->max_partition_size];
1654   const int min_partition_size_1d = block_size_wide[sb_enc->min_partition_size];
1655   const int bsize_1d = block_size_wide[bsize];
1656   assert(min_partition_size_1d <= max_partition_size_1d);
1657   const int is_le_min_sq_part = bsize_1d <= min_partition_size_1d;
1658   const int is_gt_max_sq_part = bsize_1d > max_partition_size_1d;
1659   if (is_gt_max_sq_part) {
1660     // If current block size is larger than max, only allow split.
1661     av1_set_square_split_only(part_state);
1662   } else if (is_le_min_sq_part) {
1663     // If current block size is less or equal to min, only allow none if valid
1664     // block large enough; only allow split otherwise.
1665     av1_disable_rect_partitions(part_state);
1666 
1667     // only disable square split when current block is not at the picture
1668     // boundary. otherwise, inherit the square split flag from previous logic
1669     if (av1_blk_has_rows_and_cols(blk_params)) {
1670       part_state->do_square_split = 0;
1671     }
1672     part_state->partition_none_allowed = !(part_state->do_square_split);
1673   }
1674 }
1675 
1676 // Decide whether to evaluate the AB partition specified by part_type based on
1677 // split and HORZ/VERT info
evaluate_ab_partition_based_on_split(const PC_TREE * pc_tree,PARTITION_TYPE rect_part,const RD_RECT_PART_WIN_INFO * rect_part_win_info,int qindex,int split_idx1,int split_idx2)1678 int evaluate_ab_partition_based_on_split(
1679     const PC_TREE *pc_tree, PARTITION_TYPE rect_part,
1680     const RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1,
1681     int split_idx2) {
1682   int num_win = 0;
1683   // Threshold for number of winners
1684   // Conservative pruning for high quantizers
1685   const int num_win_thresh = AOMMIN(3 * (2 * (MAXQ - qindex) / MAXQ), 3);
1686   int sub_part_win = (rect_part_win_info == NULL)
1687                          ? (pc_tree->partitioning == rect_part)
1688                          : (rect_part == PARTITION_HORZ)
1689                                ? rect_part_win_info->rect_part_win[HORZ]
1690                                : rect_part_win_info->rect_part_win[VERT];
1691   num_win += (sub_part_win) ? 1 : 0;
1692   if (pc_tree->split[split_idx1]) {
1693     num_win +=
1694         (pc_tree->split[split_idx1]->partitioning == PARTITION_NONE) ? 1 : 0;
1695   } else {
1696     num_win += 1;
1697   }
1698   if (pc_tree->split[split_idx2]) {
1699     num_win +=
1700         (pc_tree->split[split_idx2]->partitioning == PARTITION_NONE) ? 1 : 0;
1701   } else {
1702     num_win += 1;
1703   }
1704   if (num_win < num_win_thresh) {
1705     return 0;
1706   }
1707   return 1;
1708 }
1709 
av1_prune_ab_partitions(AV1_COMP * cpi,const MACROBLOCK * x,const PC_TREE * pc_tree,int pb_source_variance,int64_t best_rdcost,const RD_RECT_PART_WIN_INFO * rect_part_win_info,bool ext_partition_allowed,PartitionSearchState * part_state,int * ab_partitions_allowed)1710 void av1_prune_ab_partitions(AV1_COMP *cpi, const MACROBLOCK *x,
1711                              const PC_TREE *pc_tree, int pb_source_variance,
1712                              int64_t best_rdcost,
1713                              const RD_RECT_PART_WIN_INFO *rect_part_win_info,
1714                              bool ext_partition_allowed,
1715                              PartitionSearchState *part_state,
1716                              int *ab_partitions_allowed) {
1717   int64_t *horz_rd = part_state->rect_part_rd[HORZ];
1718   int64_t *vert_rd = part_state->rect_part_rd[VERT];
1719   int64_t *split_rd = part_state->split_rd;
1720   const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
1721   // The standard AB partitions are allowed initially if ext-partition-types are
1722   // allowed.
1723   int horzab_partition_allowed = ext_partition_allowed &&
1724                                  part_cfg->enable_ab_partitions &&
1725                                  part_state->partition_rect_allowed[HORZ];
1726   int vertab_partition_allowed = ext_partition_allowed &&
1727                                  part_cfg->enable_ab_partitions &&
1728                                  part_state->partition_rect_allowed[VERT];
1729 
1730   // Pruning: pruning out AB partitions on one main direction based on the
1731   // current best partition and source variance.
1732   if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1733     if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 1) {
1734       // TODO(debargha,huisu@google.com): may need to tune the threshold for
1735       // pb_source_variance.
1736       horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
1737                                    (pc_tree->partitioning == PARTITION_NONE &&
1738                                     pb_source_variance < 32) ||
1739                                    pc_tree->partitioning == PARTITION_SPLIT);
1740       vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
1741                                    (pc_tree->partitioning == PARTITION_NONE &&
1742                                     pb_source_variance < 32) ||
1743                                    pc_tree->partitioning == PARTITION_SPLIT);
1744     } else {
1745       horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
1746                                    pc_tree->partitioning == PARTITION_SPLIT);
1747       vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
1748                                    pc_tree->partitioning == PARTITION_SPLIT);
1749     }
1750     horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0);
1751     horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0);
1752     vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0);
1753     vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0);
1754     split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0);
1755     split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0);
1756     split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0);
1757     split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0);
1758   }
1759 
1760   // Pruning: pruning out horz_a or horz_b if the combined rdcost of its
1761   // subblocks estimated from previous partitions is much higher than the best
1762   // rd so far.
1763   ab_partitions_allowed[HORZ_A] = horzab_partition_allowed;
1764   ab_partitions_allowed[HORZ_B] = horzab_partition_allowed;
1765   if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1766     const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1];
1767     const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3];
1768     switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1769       case 1:
1770         ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 14 < best_rdcost);
1771         ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 14 < best_rdcost);
1772         break;
1773       case 2:
1774       default:
1775         ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 15 < best_rdcost);
1776         ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 15 < best_rdcost);
1777         break;
1778     }
1779   }
1780 
1781   // Pruning: pruning out vert_a or vert_b if the combined rdcost of its
1782   // subblocks estimated from previous partitions is much higher than the best
1783   // rd so far.
1784   ab_partitions_allowed[VERT_A] = vertab_partition_allowed;
1785   ab_partitions_allowed[VERT_B] = vertab_partition_allowed;
1786   if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1787     const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2];
1788     const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3];
1789     switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1790       case 1:
1791         ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 14 < best_rdcost);
1792         ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 14 < best_rdcost);
1793         break;
1794       case 2:
1795       default:
1796         ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 15 < best_rdcost);
1797         ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 15 < best_rdcost);
1798         break;
1799     }
1800   }
1801 
1802   // Pruning: pruning out some ab partitions using a DNN taking rd costs of
1803   // sub-blocks from previous basic partition types.
1804   if (cpi->sf.part_sf.ml_prune_partition && ext_partition_allowed &&
1805       part_state->partition_rect_allowed[HORZ] &&
1806       part_state->partition_rect_allowed[VERT]) {
1807     // TODO(huisu@google.com): x->source_variance may not be the current
1808     // block's variance. The correct one to use is pb_source_variance. Need to
1809     // re-train the model to fix it.
1810     av1_ml_prune_ab_partition(cpi, pc_tree->partitioning,
1811                               get_unsigned_bits(x->source_variance),
1812                               best_rdcost, part_state, ab_partitions_allowed);
1813   }
1814 
1815   // Pruning: pruning AB partitions based on the number of horz/vert wins
1816   // in the current block and sub-blocks in PARTITION_SPLIT.
1817   if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1818       ab_partitions_allowed[HORZ_A]) {
1819     ab_partitions_allowed[HORZ_A] &= evaluate_ab_partition_based_on_split(
1820         pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 0, 1);
1821   }
1822   if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1823       ab_partitions_allowed[HORZ_B]) {
1824     ab_partitions_allowed[HORZ_B] &= evaluate_ab_partition_based_on_split(
1825         pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 2, 3);
1826   }
1827   if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1828       ab_partitions_allowed[VERT_A]) {
1829     ab_partitions_allowed[VERT_A] &= evaluate_ab_partition_based_on_split(
1830         pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 0, 2);
1831   }
1832   if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1833       ab_partitions_allowed[VERT_B]) {
1834     ab_partitions_allowed[VERT_B] &= evaluate_ab_partition_based_on_split(
1835         pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 1, 3);
1836   }
1837 }
1838 
1839 // Prepare features for the external model. Specifically, features after
1840 // ab partition is searched.
prepare_features_after_part_ab(const AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int part_ctx,int64_t best_rd,int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],int64_t split_rd[SUB_PARTITIONS_SPLIT],unsigned int pb_source_variance,int mi_row,int mi_col,aom_partition_features_t * const features)1841 static void prepare_features_after_part_ab(
1842     const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
1843     int part_ctx, int64_t best_rd,
1844     int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
1845     int64_t split_rd[SUB_PARTITIONS_SPLIT], unsigned int pb_source_variance,
1846     int mi_row, int mi_col, aom_partition_features_t *const features) {
1847   int64_t *horz_rd = rect_part_rd[HORZ];
1848   int64_t *vert_rd = rect_part_rd[VERT];
1849 
1850   // Generate features.
1851   int feature_index = 0;
1852   features->after_part_ab.f[feature_index++] = (float)part_ctx;
1853   features->after_part_ab.f[feature_index++] =
1854       (float)get_unsigned_bits(pb_source_variance);
1855 
1856   const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1857   int sub_block_rdcost[8] = { 0 };
1858   int rd_index = 0;
1859   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1860     if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1861       sub_block_rdcost[rd_index] = (int)horz_rd[i];
1862     ++rd_index;
1863   }
1864   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1865     if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1866       sub_block_rdcost[rd_index] = (int)vert_rd[i];
1867     ++rd_index;
1868   }
1869   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1870     if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1871       sub_block_rdcost[rd_index] = (int)split_rd[i];
1872     ++rd_index;
1873   }
1874   for (int i = 0; i < 8; ++i) {
1875     // Ratio between the sub-block RD and the whole-block RD.
1876     float rd_ratio = 1.0f;
1877     if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1878       rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1879     features->after_part_ab.f[feature_index++] = rd_ratio;
1880   }
1881 
1882   // Get variance of the 1:4 and 4:1 sub-blocks.
1883   unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1884   unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1885   {
1886     BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
1887     BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
1888     av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
1889                          av1_num_planes(&cpi->common), bsize);
1890     const int src_stride = x->plane[0].src.stride;
1891     uint8_t *src = x->plane[0].src.buf;
1892     const MACROBLOCKD *const xd = &x->e_mbd;
1893 
1894     struct buf_2d horz_4_src, vert_4_src;
1895     horz_4_src.stride = src_stride;
1896     vert_4_src.stride = src_stride;
1897 
1898     for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1899       horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
1900       vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
1901 
1902       if (is_cur_buf_hbd(xd)) {
1903         horz_4_source_var[i] = av1_high_get_sby_perpixel_variance(
1904             cpi, &horz_4_src, horz_4_bs, xd->bd);
1905         vert_4_source_var[i] = av1_high_get_sby_perpixel_variance(
1906             cpi, &vert_4_src, vert_4_bs, xd->bd);
1907       } else {
1908         horz_4_source_var[i] =
1909             av1_get_sby_perpixel_variance(cpi, &horz_4_src, horz_4_bs);
1910         vert_4_source_var[i] =
1911             av1_get_sby_perpixel_variance(cpi, &vert_4_src, vert_4_bs);
1912       }
1913     }
1914   }
1915 
1916   const float denom = (float)(pb_source_variance + 1);
1917   const float low_b = 0.1f;
1918   const float high_b = 10.0f;
1919   for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1920     // Ratio between the 4:1 sub-block variance and the whole-block variance.
1921     float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
1922     if (var_ratio < low_b) var_ratio = low_b;
1923     if (var_ratio > high_b) var_ratio = high_b;
1924     features->after_part_ab.f[feature_index++] = var_ratio;
1925   }
1926   for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1927     // Ratio between the 1:4 sub-block RD and the whole-block RD.
1928     float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
1929     if (var_ratio < low_b) var_ratio = low_b;
1930     if (var_ratio > high_b) var_ratio = high_b;
1931     features->after_part_ab.f[feature_index++] = var_ratio;
1932   }
1933   assert(feature_index == 18);
1934 }
1935 
1936 // If the external partition model is used, we let it determine partition
1937 // decisions before partition none. Specifically, these parameters:
1938 // partition_none_allowed
1939 // partition_horz_allowed
1940 // partition_vert_allowed
1941 // do_rectangular_split
1942 // do_square_split
ext_ml_model_decision_before_none(AV1_COMP * cpi,const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],int * partition_none_allowed,int * partition_horz_allowed,int * partition_vert_allowed,int * do_rectangular_split,int * do_square_split)1943 static bool ext_ml_model_decision_before_none(
1944     AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
1945     int *partition_none_allowed, int *partition_horz_allowed,
1946     int *partition_vert_allowed, int *do_rectangular_split,
1947     int *do_square_split) {
1948   ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
1949   if (!ext_part_controller->ready) return false;
1950 
1951   // Setup features.
1952   aom_partition_features_t features;
1953   features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE;
1954   for (int i = 0; i < FEATURE_SIZE_SMS_SPLIT; ++i) {
1955     features.before_part_none.f[i] = features_from_motion[i];
1956   }
1957 
1958   // Send necessary features to the external model.
1959   av1_ext_part_send_features(ext_part_controller, &features);
1960 
1961   // Get partition decisions from the external model.
1962   aom_partition_decision_t decision;
1963   const bool valid_decision =
1964       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
1965   if (!valid_decision) return false;
1966 
1967   // Populate decisions
1968   *partition_none_allowed = decision.partition_none_allowed;
1969   *partition_horz_allowed = decision.partition_rect_allowed[HORZ];
1970   *partition_vert_allowed = decision.partition_rect_allowed[VERT];
1971   *do_rectangular_split = decision.do_rectangular_split;
1972   *do_square_split = decision.do_square_split;
1973 
1974   return true;
1975 }
1976 
1977 // If the external partition model is used, we let it determine partition
1978 // decisions before partition none. Specifically, these parameters:
1979 // prune_horz
1980 // prune_vert
ext_ml_model_decision_before_none_part2(AV1_COMP * cpi,const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],int * prune_horz,int * prune_vert)1981 static bool ext_ml_model_decision_before_none_part2(
1982     AV1_COMP *cpi,
1983     const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
1984     int *prune_horz, int *prune_vert) {
1985   ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
1986   if (!ext_part_controller->ready) return false;
1987 
1988   // Setup features.
1989   aom_partition_features_t features;
1990   features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE_PART2;
1991   for (int i = 0; i < FEATURE_SIZE_SMS_PRUNE_PART; ++i) {
1992     features.before_part_none.f_part2[i] = features_from_motion[i];
1993   }
1994 
1995   // Send necessary features to the external model.
1996   av1_ext_part_send_features(ext_part_controller, &features);
1997 
1998   // Get partition decisions from the external model.
1999   aom_partition_decision_t decision;
2000   const bool valid_decision =
2001       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2002   if (!valid_decision) return false;
2003 
2004   // Populate decisions
2005   *prune_horz = decision.prune_rect_part[HORZ];
2006   *prune_vert = decision.prune_rect_part[VERT];
2007 
2008   return true;
2009 }
2010 
2011 // If the external partition model is used, we let it determine partition
2012 // decisions after none partition. Specifically, these parameters:
2013 // do_square_split
2014 // do_rectangular_split
ext_ml_model_decision_after_none(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_after_none,int * do_square_split,int * do_rectangular_split)2015 bool ext_ml_model_decision_after_none(
2016     ExtPartController *const ext_part_controller, const int is_intra_frame,
2017     const float *const features_after_none, int *do_square_split,
2018     int *do_rectangular_split) {
2019   if (!ext_part_controller->ready || is_intra_frame) return false;
2020 
2021   // Setup features.
2022   aom_partition_features_t features;
2023   features.id = AOM_EXT_PART_FEATURE_AFTER_NONE;
2024   for (int i = 0; i < 4; ++i) {
2025     features.after_part_none.f[i] = features_after_none[i];
2026   }
2027 
2028   // Send necessary features to the external model.
2029   av1_ext_part_send_features(ext_part_controller, &features);
2030 
2031   // Get partition decisions from the external model.
2032   aom_partition_decision_t decision;
2033   const bool valid_decision =
2034       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2035   if (!valid_decision) return false;
2036 
2037   // Populate decisions
2038   *do_square_split = decision.do_square_split;
2039   *do_rectangular_split = decision.do_rectangular_split;
2040 
2041   return true;
2042 }
2043 
2044 // If the external partition model is used, we let it determine partition
2045 // decisions after none partition. Specifically, these parameters:
2046 // terminate_partition_search
ext_ml_model_decision_after_none_part2(AV1_COMP * const cpi,const float * const features_terminate,int * terminate_partition_search)2047 bool ext_ml_model_decision_after_none_part2(
2048     AV1_COMP *const cpi, const float *const features_terminate,
2049     int *terminate_partition_search) {
2050   AV1_COMMON *const cm = &cpi->common;
2051   ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2052   if (!ext_part_controller->ready || frame_is_intra_only(cm)) return false;
2053 
2054   // Setup features.
2055   aom_partition_features_t features;
2056   features.id = AOM_EXT_PART_FEATURE_AFTER_NONE_PART2;
2057   for (int i = 0; i < FEATURE_SIZE_SMS_TERM_NONE; ++i) {
2058     features.after_part_none.f_terminate[i] = features_terminate[i];
2059   }
2060 
2061   // Send necessary features to the external model.
2062   av1_ext_part_send_features(ext_part_controller, &features);
2063 
2064   // Get partition decisions from the external model.
2065   aom_partition_decision_t decision;
2066   const bool valid_decision =
2067       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2068   if (!valid_decision) return false;
2069 
2070   // Populate decisions
2071   *terminate_partition_search = decision.terminate_partition_search;
2072 
2073   return true;
2074 }
2075 
2076 // If the external partition model is used, we let it determine partition
2077 // decisions after none partition. Specifically, these parameters:
2078 // terminate_partition_search
ext_ml_model_decision_after_split(AV1_COMP * const cpi,const float * const features_terminate,int * terminate_partition_search)2079 bool ext_ml_model_decision_after_split(AV1_COMP *const cpi,
2080                                        const float *const features_terminate,
2081                                        int *terminate_partition_search) {
2082   const AV1_COMMON *const cm = &cpi->common;
2083   ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2084   if (frame_is_intra_only(cm) || !cpi->ext_part_controller.ready) {
2085     return false;
2086   }
2087 
2088   // Setup features.
2089   aom_partition_features_t features;
2090   features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT;
2091   for (int i = 0; i < 31; ++i) {
2092     features.after_part_split.f_terminate[i] = features_terminate[i];
2093   }
2094 
2095   // Send necessary features to the external model.
2096   av1_ext_part_send_features(ext_part_controller, &features);
2097 
2098   // Get partition decisions from the external model.
2099   aom_partition_decision_t decision;
2100   const bool valid_decision =
2101       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2102   if (!valid_decision) return false;
2103 
2104   // Populate decisions
2105   *terminate_partition_search = decision.terminate_partition_search;
2106 
2107   return true;
2108 }
2109 
2110 // If the external partition model is used, we let it determine partition
2111 // decisions after none partition. Specifically, these parameters:
2112 // prune_rect_part[HORZ]
2113 // prune_rect_part[VERT]
ext_ml_model_decision_after_split_part2(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_prune,int * prune_rect_part_horz,int * prune_rect_part_vert)2114 bool ext_ml_model_decision_after_split_part2(
2115     ExtPartController *const ext_part_controller, const int is_intra_frame,
2116     const float *const features_prune, int *prune_rect_part_horz,
2117     int *prune_rect_part_vert) {
2118   if (is_intra_frame || !ext_part_controller->ready) {
2119     return false;
2120   }
2121 
2122   // Setup features.
2123   aom_partition_features_t features;
2124   features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT_PART2;
2125   for (int i = 0; i < 9; ++i) {
2126     features.after_part_split.f_prune_rect[i] = features_prune[i];
2127   }
2128 
2129   // Send necessary features to the external model.
2130   av1_ext_part_send_features(ext_part_controller, &features);
2131 
2132   // Get partition decisions from the external model.
2133   aom_partition_decision_t decision;
2134   const bool valid_decision =
2135       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2136   if (!valid_decision) return false;
2137 
2138   // Populate decisions
2139   *prune_rect_part_horz = decision.prune_rect_part[0];
2140   *prune_rect_part_vert = decision.prune_rect_part[1];
2141 
2142   return true;
2143 }
2144 
2145 // If the external partition model is used, we let it determine partition
2146 // decisions after rectangular partition. Specifically, these parameters:
2147 // horza_partition_allowed
2148 // horzb_partition_allowed
2149 // verta_partition_allowed
2150 // vertb_partition_allowed
ext_ml_model_decision_after_rect(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_after_rect,int * horza_partition_allowed,int * horzb_partition_allowed,int * verta_partition_allowed,int * vertb_partition_allowed)2151 static bool ext_ml_model_decision_after_rect(
2152     ExtPartController *const ext_part_controller, const int is_intra_frame,
2153     const float *const features_after_rect, int *horza_partition_allowed,
2154     int *horzb_partition_allowed, int *verta_partition_allowed,
2155     int *vertb_partition_allowed) {
2156   if (is_intra_frame || !ext_part_controller->ready) return false;
2157 
2158   // Setup features.
2159   aom_partition_features_t features;
2160   features.id = AOM_EXT_PART_FEATURE_AFTER_RECT;
2161   for (int i = 0; i < 10; ++i) {
2162     features.after_part_rect.f[i] = features_after_rect[i];
2163   }
2164 
2165   // Send necessary features to the external model.
2166   av1_ext_part_send_features(ext_part_controller, &features);
2167 
2168   // Get partition decisions from the external model.
2169   aom_partition_decision_t decision;
2170   const bool valid_decision =
2171       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2172   if (!valid_decision) return false;
2173 
2174   // Populate decisions
2175   *horza_partition_allowed = decision.horza_partition_allowed;
2176   *horzb_partition_allowed = decision.horzb_partition_allowed;
2177   *verta_partition_allowed = decision.verta_partition_allowed;
2178   *vertb_partition_allowed = decision.vertb_partition_allowed;
2179 
2180   return true;
2181 }
2182 
2183 // If the external partition model is used, we let it determine partition
2184 // decisions after AB partition. Specifically, these parameters:
2185 // partition_vert4_allowed
2186 // partition_horz4_allowed
ext_ml_model_decision_after_part_ab(AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int part_ctx,int64_t best_rd,int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],int64_t split_rd[SUB_PARTITIONS_SPLIT],int * const partition_horz4_allowed,int * const partition_vert4_allowed,unsigned int pb_source_variance,int mi_row,int mi_col)2187 static bool ext_ml_model_decision_after_part_ab(
2188     AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
2189     int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
2190     int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
2191     int *const partition_vert4_allowed, unsigned int pb_source_variance,
2192     int mi_row, int mi_col) {
2193   const AV1_COMMON *const cm = &cpi->common;
2194   ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2195 
2196   if (!frame_is_intra_only(cm) && ext_part_controller->ready) {
2197     // Setup features.
2198     aom_partition_features_t features;
2199     features.id = AOM_EXT_PART_FEATURE_AFTER_AB;
2200     prepare_features_after_part_ab(cpi, x, bsize, part_ctx, best_rd,
2201                                    rect_part_rd, split_rd, pb_source_variance,
2202                                    mi_row, mi_col, &features);
2203 
2204     // Send necessary features to the external model.
2205     av1_ext_part_send_features(ext_part_controller, &features);
2206 
2207     // Get partition decisions from the external model.
2208     aom_partition_decision_t decision;
2209     const bool valid_decision =
2210         av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2211     if (!valid_decision) return false;
2212 
2213     // Populate decisions
2214     *partition_horz4_allowed = decision.partition_horz4_allowed;
2215     *partition_vert4_allowed = decision.partition_vert4_allowed;
2216 
2217     return true;
2218   }
2219 
2220   return false;
2221 }
2222 
2223 // This function resembles "av1_setup_sms_tree()" in context_tree.c
2224 // with function signature change.
setup_sms_tree(AV1_COMP * const cpi,SIMPLE_MOTION_DATA_TREE * sms_tree)2225 static SIMPLE_MOTION_DATA_TREE *setup_sms_tree(
2226     AV1_COMP *const cpi, SIMPLE_MOTION_DATA_TREE *sms_tree) {
2227   AV1_COMMON *const cm = &cpi->common;
2228   const int stat_generation_stage = is_stat_generation_stage(cpi);
2229   const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2230   const int tree_nodes =
2231       av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2232   int sms_tree_index = 0;
2233   SIMPLE_MOTION_DATA_TREE *this_sms;
2234   int square_index = 1;
2235   int nodes;
2236 
2237   aom_free(sms_tree);
2238   CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
2239   this_sms = &sms_tree[0];
2240 
2241   if (!stat_generation_stage) {
2242     const int leaf_factor = is_sb_size_128 ? 4 : 1;
2243     const int leaf_nodes = 256 * leaf_factor;
2244 
2245     // Sets up all the leaf nodes in the tree.
2246     for (sms_tree_index = 0; sms_tree_index < leaf_nodes; ++sms_tree_index) {
2247       SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2248       tree->block_size = square[0];
2249     }
2250 
2251     // Each node has 4 leaf nodes, fill each block_size level of the tree
2252     // from leafs to the root.
2253     for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
2254       for (int i = 0; i < nodes; ++i) {
2255         SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2256         tree->block_size = square[square_index];
2257         for (int j = 0; j < 4; j++) tree->split[j] = this_sms++;
2258         ++sms_tree_index;
2259       }
2260       ++square_index;
2261     }
2262   } else {
2263     // Allocation for firstpass/LAP stage
2264     // TODO(Mufaddal): refactor square_index to use a common block_size macro
2265     // from firstpass.c
2266     SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2267     square_index = 2;
2268     tree->block_size = square[square_index];
2269   }
2270 
2271   // Set up the root node for the largest superblock size
2272   return &sms_tree[tree_nodes - 1];
2273 }
2274 
write_motion_feature_to_file(const char * const path,const int sb_counter,const unsigned int * block_sse,const unsigned int * block_var,const int num_blocks,const BLOCK_SIZE bsize,const BLOCK_SIZE fixed_block_size,const int mi_row,const int mi_col)2275 static void write_motion_feature_to_file(
2276     const char *const path, const int sb_counter, const unsigned int *block_sse,
2277     const unsigned int *block_var, const int num_blocks, const BLOCK_SIZE bsize,
2278     const BLOCK_SIZE fixed_block_size, const int mi_row, const int mi_col) {
2279   char filename[256];
2280   snprintf(filename, sizeof(filename), "%s/motion_search_feature_sb%d", path,
2281            sb_counter);
2282   FILE *pfile = fopen(filename, "w");
2283   fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize,
2284           block_size_wide[fixed_block_size], num_blocks);
2285   for (int i = 0; i < num_blocks; ++i) {
2286     fprintf(pfile, "%d", block_sse[i]);
2287     if (i < num_blocks - 1) fprintf(pfile, ",");
2288   }
2289   fprintf(pfile, "\n");
2290   for (int i = 0; i < num_blocks; ++i) {
2291     fprintf(pfile, "%d", block_var[i]);
2292     if (i < num_blocks - 1) fprintf(pfile, ",");
2293   }
2294   fprintf(pfile, "\n");
2295   fclose(pfile);
2296 }
2297 
av1_collect_motion_search_features_sb(AV1_COMP * const cpi,ThreadData * td,const int mi_row,const int mi_col,const BLOCK_SIZE bsize,aom_partition_features_t * features)2298 void av1_collect_motion_search_features_sb(AV1_COMP *const cpi, ThreadData *td,
2299                                            const int mi_row, const int mi_col,
2300                                            const BLOCK_SIZE bsize,
2301                                            aom_partition_features_t *features) {
2302   const AV1_COMMON *const cm = &cpi->common;
2303   if (frame_is_intra_only(cm)) return;
2304 
2305   MACROBLOCK *const x = &td->mb;
2306   const BLOCK_SIZE fixed_block_size = BLOCK_16X16;
2307   const int col_step = mi_size_wide[fixed_block_size];
2308   const int row_step = mi_size_high[fixed_block_size];
2309   SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
2310   SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
2311   av1_init_simple_motion_search_mvs_for_sb(cpi, NULL, x, sms_root, mi_row,
2312                                            mi_col);
2313   av1_reset_simple_motion_tree_partition(sms_root, bsize);
2314   const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
2315                                                         : LAST_FRAME };
2316   const int mi_width =
2317       AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
2318   const int mi_height =
2319       AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
2320   const int col_steps = (mi_width / col_step) + ((mi_width % col_step) > 0);
2321   const int row_steps = (mi_height / row_step) + ((mi_height % row_step) > 0);
2322   const int num_blocks = col_steps * row_steps;
2323   unsigned int *block_sse = aom_calloc(num_blocks, sizeof(*block_sse));
2324   unsigned int *block_var = aom_calloc(num_blocks, sizeof(*block_var));
2325   int idx = 0;
2326 
2327   for (int row = mi_row;
2328        row < AOMMIN(mi_row + mi_size_high[bsize], cm->mi_params.mi_rows);
2329        row += row_step) {
2330     for (int col = mi_col;
2331          col < AOMMIN(mi_col + mi_size_wide[bsize], cm->mi_params.mi_cols);
2332          col += col_step) {
2333       simple_motion_search_get_best_ref(
2334           cpi, x, sms_root, row, col, fixed_block_size, ref_list,
2335           /*num_refs=*/1, /*use_subpixel=*/1,
2336           /*save_mv=*/1, &block_sse[idx], &block_var[idx]);
2337       ++idx;
2338     }
2339   }
2340   if (features == NULL) {
2341     write_motion_feature_to_file(cpi->oxcf.partition_info_path, cpi->sb_counter,
2342                                  block_sse, block_var, idx, bsize,
2343                                  fixed_block_size, mi_row, mi_col);
2344   } else {
2345     features->sb_features.motion_features.unit_length =
2346         block_size_wide[fixed_block_size];
2347     features->sb_features.motion_features.num_units = idx;
2348     for (int i = 0; i < idx; ++i) {
2349       features->sb_features.motion_features.block_sse[i] = block_sse[i];
2350       features->sb_features.motion_features.block_var[i] = block_var[i];
2351     }
2352   }
2353 
2354   aom_free(block_sse);
2355   aom_free(block_var);
2356   aom_free(sms_tree);
2357   if (sms_tree != NULL) {
2358     aom_free(sms_tree);
2359     sms_tree = NULL;
2360   }
2361 }
2362 
2363 #endif  // !CONFIG_REALTIME_ONLY
2364 
init_simple_motion_search_mvs(SIMPLE_MOTION_DATA_TREE * sms_tree,const FULLPEL_MV * start_mvs)2365 static INLINE void init_simple_motion_search_mvs(
2366     SIMPLE_MOTION_DATA_TREE *sms_tree, const FULLPEL_MV *start_mvs) {
2367   memcpy(sms_tree->start_mvs, start_mvs, sizeof(sms_tree->start_mvs));
2368   av1_zero(sms_tree->sms_none_feat);
2369   av1_zero(sms_tree->sms_rect_feat);
2370   av1_zero(sms_tree->sms_none_valid);
2371   av1_zero(sms_tree->sms_rect_valid);
2372 
2373   if (sms_tree->block_size >= BLOCK_8X8) {
2374     init_simple_motion_search_mvs(sms_tree->split[0], start_mvs);
2375     init_simple_motion_search_mvs(sms_tree->split[1], start_mvs);
2376     init_simple_motion_search_mvs(sms_tree->split[2], start_mvs);
2377     init_simple_motion_search_mvs(sms_tree->split[3], start_mvs);
2378   }
2379 }
2380 
av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP * cpi,const TileInfo * tile_info,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_root,int mi_row,int mi_col)2381 void av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP *cpi,
2382                                               const TileInfo *tile_info,
2383                                               MACROBLOCK *x,
2384                                               SIMPLE_MOTION_DATA_TREE *sms_root,
2385                                               int mi_row, int mi_col) {
2386   // Use the NEARESTMV of the sb as the start mv
2387   const AV1_COMMON *cm = &cpi->common;
2388   MACROBLOCKD *const xd = &x->e_mbd;
2389   FULLPEL_MV ref_mvs[REF_FRAMES];
2390   const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
2391   av1_zero(ref_mvs);
2392   // If tile_info is NULL, assume that the offsets have already been set.
2393   if (tile_info) {
2394     av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col,
2395                                        sb_size);
2396   }
2397 
2398   MB_MODE_INFO_EXT mbmi_ext;
2399   const int ref_frame =
2400       cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
2401   av1_find_mv_refs(cm, xd, xd->mi[0], ref_frame, mbmi_ext.ref_mv_count,
2402                    xd->ref_mv_stack, xd->weight, NULL, mbmi_ext.global_mvs,
2403                    mbmi_ext.mode_context);
2404   if (mbmi_ext.ref_mv_count[ref_frame] > 0) {
2405     ref_mvs[ref_frame] =
2406         get_fullmv_from_mv(&xd->ref_mv_stack[ref_frame][0].this_mv.as_mv);
2407   } else {
2408     ref_mvs[ref_frame] =
2409         get_fullmv_from_mv(&mbmi_ext.global_mvs[ref_frame].as_mv);
2410   }
2411 
2412   init_simple_motion_search_mvs(sms_root, ref_mvs);
2413 }
2414