1 /*
2  * Copyright (c) 2019, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <stdint.h>
13 #include <float.h>
14 
15 #include "config/aom_config.h"
16 #include "config/aom_dsp_rtcd.h"
17 #include "config/aom_scale_rtcd.h"
18 
19 #include "aom/aom_codec.h"
20 
21 #include "av1/common/av1_common_int.h"
22 #include "av1/common/enums.h"
23 #include "av1/common/idct.h"
24 #include "av1/common/reconintra.h"
25 
26 #include "av1/encoder/encoder.h"
27 #include "av1/encoder/ethread.h"
28 #include "av1/encoder/encodeframe_utils.h"
29 #include "av1/encoder/encode_strategy.h"
30 #include "av1/encoder/hybrid_fwd_txfm.h"
31 #include "av1/encoder/motion_search_facade.h"
32 #include "av1/encoder/rd.h"
33 #include "av1/encoder/rdopt.h"
34 #include "av1/encoder/reconinter_enc.h"
35 #include "av1/encoder/tpl_model.h"
36 
exp_bounded(double v)37 static INLINE double exp_bounded(double v) {
38   // When v > 700 or <-700, the exp function will be close to overflow
39   // For details, see the "Notes" in the following link.
40   // https://en.cppreference.com/w/c/numeric/math/exp
41   if (v > 700) {
42     return DBL_MAX;
43   } else if (v < -700) {
44     return 0;
45   }
46   return exp(v);
47 }
48 
av1_init_tpl_txfm_stats(TplTxfmStats * tpl_txfm_stats)49 void av1_init_tpl_txfm_stats(TplTxfmStats *tpl_txfm_stats) {
50   tpl_txfm_stats->coeff_num = 256;
51   tpl_txfm_stats->txfm_block_count = 0;
52   memset(tpl_txfm_stats->abs_coeff_sum, 0,
53          sizeof(tpl_txfm_stats->abs_coeff_sum[0]) * tpl_txfm_stats->coeff_num);
54 }
55 
av1_accumulate_tpl_txfm_stats(const TplTxfmStats * sub_stats,TplTxfmStats * accumulated_stats)56 void av1_accumulate_tpl_txfm_stats(const TplTxfmStats *sub_stats,
57                                    TplTxfmStats *accumulated_stats) {
58   accumulated_stats->txfm_block_count += sub_stats->txfm_block_count;
59   for (int i = 0; i < accumulated_stats->coeff_num; ++i) {
60     accumulated_stats->abs_coeff_sum[i] += sub_stats->abs_coeff_sum[i];
61   }
62 }
63 
av1_record_tpl_txfm_block(TplTxfmStats * tpl_txfm_stats,const tran_low_t * coeff)64 void av1_record_tpl_txfm_block(TplTxfmStats *tpl_txfm_stats,
65                                const tran_low_t *coeff) {
66   // For transform larger than 16x16, the scale of coeff need to be adjusted.
67   // It's not LOSSLESS_Q_STEP.
68   assert(tpl_txfm_stats->coeff_num <= 256);
69   for (int i = 0; i < tpl_txfm_stats->coeff_num; ++i) {
70     tpl_txfm_stats->abs_coeff_sum[i] += abs(coeff[i]) / (double)LOSSLESS_Q_STEP;
71   }
72   ++tpl_txfm_stats->txfm_block_count;
73 }
74 
av1_tpl_store_txfm_stats(TplParams * tpl_data,const TplTxfmStats * tpl_txfm_stats,const int frame_index)75 static AOM_INLINE void av1_tpl_store_txfm_stats(
76     TplParams *tpl_data, const TplTxfmStats *tpl_txfm_stats,
77     const int frame_index) {
78   tpl_data->txfm_stats_list[frame_index] = *tpl_txfm_stats;
79 }
80 
get_quantize_error(const MACROBLOCK * x,int plane,const tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,TX_SIZE tx_size,uint16_t * eob,int64_t * recon_error,int64_t * sse)81 static AOM_INLINE void get_quantize_error(const MACROBLOCK *x, int plane,
82                                           const tran_low_t *coeff,
83                                           tran_low_t *qcoeff,
84                                           tran_low_t *dqcoeff, TX_SIZE tx_size,
85                                           uint16_t *eob, int64_t *recon_error,
86                                           int64_t *sse) {
87   const struct macroblock_plane *const p = &x->plane[plane];
88   const MACROBLOCKD *xd = &x->e_mbd;
89   const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
90   int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
91   const int shift = tx_size == TX_32X32 ? 0 : 2;
92 
93   QUANT_PARAM quant_param;
94   av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
95 
96 #if CONFIG_AV1_HIGHBITDEPTH
97   if (is_cur_buf_hbd(xd)) {
98     av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob,
99                                   scan_order, &quant_param);
100     *recon_error =
101         av1_highbd_block_error(coeff, dqcoeff, pix_num, sse, xd->bd) >> shift;
102   } else {
103     av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
104                            &quant_param);
105     *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
106   }
107 #else
108   (void)xd;
109   av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
110                          &quant_param);
111   *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
112 #endif  // CONFIG_AV1_HIGHBITDEPTH
113 
114   *recon_error = AOMMAX(*recon_error, 1);
115 
116   *sse = (*sse) >> shift;
117   *sse = AOMMAX(*sse, 1);
118 }
119 
set_tpl_stats_block_size(uint8_t * block_mis_log2,uint8_t * tpl_bsize_1d)120 static AOM_INLINE void set_tpl_stats_block_size(uint8_t *block_mis_log2,
121                                                 uint8_t *tpl_bsize_1d) {
122   // tpl stats bsize: 2 means 16x16
123   *block_mis_log2 = 2;
124   // Block size used in tpl motion estimation
125   *tpl_bsize_1d = 16;
126   // MIN_TPL_BSIZE_1D = 16;
127   assert(*tpl_bsize_1d >= 16);
128 }
129 
av1_setup_tpl_buffers(AV1_PRIMARY * const ppi,CommonModeInfoParams * const mi_params,int width,int height,int byte_alignment,int lag_in_frames)130 void av1_setup_tpl_buffers(AV1_PRIMARY *const ppi,
131                            CommonModeInfoParams *const mi_params, int width,
132                            int height, int byte_alignment, int lag_in_frames) {
133   SequenceHeader *const seq_params = &ppi->seq_params;
134   TplParams *const tpl_data = &ppi->tpl_data;
135   set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
136                            &tpl_data->tpl_bsize_1d);
137   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
138   tpl_data->border_in_pixels =
139       ALIGN_POWER_OF_TWO(tpl_data->tpl_bsize_1d + 2 * AOM_INTERP_EXTEND, 5);
140 
141   for (int frame = 0; frame < MAX_LENGTH_TPL_FRAME_STATS; ++frame) {
142     const int mi_cols =
143         ALIGN_POWER_OF_TWO(mi_params->mi_cols, MAX_MIB_SIZE_LOG2);
144     const int mi_rows =
145         ALIGN_POWER_OF_TWO(mi_params->mi_rows, MAX_MIB_SIZE_LOG2);
146     TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame];
147     tpl_frame->is_valid = 0;
148     tpl_frame->width = mi_cols >> block_mis_log2;
149     tpl_frame->height = mi_rows >> block_mis_log2;
150     tpl_frame->stride = tpl_data->tpl_stats_buffer[frame].width;
151     tpl_frame->mi_rows = mi_params->mi_rows;
152     tpl_frame->mi_cols = mi_params->mi_cols;
153   }
154   tpl_data->tpl_frame = &tpl_data->tpl_stats_buffer[REF_FRAMES + 1];
155 
156   // If lag_in_frames <= 1, TPL module is not invoked. Hence tpl recon and
157   // stats buffers are not allocated.
158   if (lag_in_frames <= 1) return;
159 
160   for (int frame = 0; frame < lag_in_frames; ++frame) {
161     AOM_CHECK_MEM_ERROR(
162         &ppi->error, tpl_data->tpl_stats_pool[frame],
163         aom_calloc(tpl_data->tpl_stats_buffer[frame].width *
164                        tpl_data->tpl_stats_buffer[frame].height,
165                    sizeof(*tpl_data->tpl_stats_buffer[frame].tpl_stats_ptr)));
166 
167     if (aom_alloc_frame_buffer(&tpl_data->tpl_rec_pool[frame], width, height,
168                                seq_params->subsampling_x,
169                                seq_params->subsampling_y,
170                                seq_params->use_highbitdepth,
171                                tpl_data->border_in_pixels, byte_alignment))
172       aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
173                          "Failed to allocate frame buffer");
174   }
175 }
176 
tpl_get_satd_cost(BitDepthInfo bd_info,int16_t * src_diff,int diff_stride,const uint8_t * src,int src_stride,const uint8_t * dst,int dst_stride,tran_low_t * coeff,int bw,int bh,TX_SIZE tx_size)177 static AOM_INLINE int64_t tpl_get_satd_cost(BitDepthInfo bd_info,
178                                             int16_t *src_diff, int diff_stride,
179                                             const uint8_t *src, int src_stride,
180                                             const uint8_t *dst, int dst_stride,
181                                             tran_low_t *coeff, int bw, int bh,
182                                             TX_SIZE tx_size) {
183   const int pix_num = bw * bh;
184 
185   av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
186                      dst, dst_stride);
187   av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
188   return aom_satd(coeff, pix_num);
189 }
190 
rate_estimator(const tran_low_t * qcoeff,int eob,TX_SIZE tx_size)191 static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
192   const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
193 
194   assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
195   int rate_cost = 1;
196 
197   for (int idx = 0; idx < eob; ++idx) {
198     int abs_level = abs(qcoeff[scan_order->scan[idx]]);
199     rate_cost += (int)(log(abs_level + 1.0) / log(2.0)) + 1;
200   }
201 
202   return (rate_cost << AV1_PROB_COST_SHIFT);
203 }
204 
txfm_quant_rdcost(const MACROBLOCK * x,int16_t * src_diff,int diff_stride,uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,int bw,int bh,TX_SIZE tx_size,int * rate_cost,int64_t * recon_error,int64_t * sse)205 static AOM_INLINE void txfm_quant_rdcost(
206     const MACROBLOCK *x, int16_t *src_diff, int diff_stride, uint8_t *src,
207     int src_stride, uint8_t *dst, int dst_stride, tran_low_t *coeff,
208     tran_low_t *qcoeff, tran_low_t *dqcoeff, int bw, int bh, TX_SIZE tx_size,
209     int *rate_cost, int64_t *recon_error, int64_t *sse) {
210   const MACROBLOCKD *xd = &x->e_mbd;
211   const BitDepthInfo bd_info = get_bit_depth_info(xd);
212   uint16_t eob;
213   av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
214                      dst, dst_stride);
215   av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
216 
217   get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &eob, recon_error,
218                      sse);
219 
220   *rate_cost = rate_estimator(qcoeff, eob, tx_size);
221 
222   av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst, dst_stride,
223                               eob, 0);
224 }
225 
motion_estimation(AV1_COMP * cpi,MACROBLOCK * x,uint8_t * cur_frame_buf,uint8_t * ref_frame_buf,int stride,int stride_ref,BLOCK_SIZE bsize,MV center_mv,int_mv * best_mv)226 static uint32_t motion_estimation(AV1_COMP *cpi, MACROBLOCK *x,
227                                   uint8_t *cur_frame_buf,
228                                   uint8_t *ref_frame_buf, int stride,
229                                   int stride_ref, BLOCK_SIZE bsize,
230                                   MV center_mv, int_mv *best_mv) {
231   AV1_COMMON *cm = &cpi->common;
232   MACROBLOCKD *const xd = &x->e_mbd;
233   TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
234   int step_param;
235   uint32_t bestsme = UINT_MAX;
236   int distortion;
237   uint32_t sse;
238   int cost_list[5];
239   FULLPEL_MV start_mv = get_fullmv_from_mv(&center_mv);
240 
241   // Setup frame pointers
242   x->plane[0].src.buf = cur_frame_buf;
243   x->plane[0].src.stride = stride;
244   xd->plane[0].pre[0].buf = ref_frame_buf;
245   xd->plane[0].pre[0].stride = stride_ref;
246 
247   step_param = tpl_sf->reduce_first_step_size;
248   step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
249 
250   const search_site_config *search_site_cfg =
251       cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
252   if (search_site_cfg->stride != stride_ref)
253     search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
254   assert(search_site_cfg->stride == stride_ref);
255 
256   FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
257   av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &center_mv,
258                                      search_site_cfg,
259                                      /*fine_search_interval=*/0);
260   av1_set_mv_search_method(&full_ms_params, search_site_cfg,
261                            tpl_sf->search_method);
262 
263   av1_full_pixel_search(start_mv, &full_ms_params, step_param,
264                         cond_cost_list(cpi, cost_list), &best_mv->as_fullmv,
265                         NULL);
266 
267   SUBPEL_MOTION_SEARCH_PARAMS ms_params;
268   av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &center_mv,
269                                     cost_list);
270   ms_params.forced_stop = tpl_sf->subpel_force_stop;
271   ms_params.var_params.subpel_search_type = USE_2_TAPS;
272   ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
273   MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
274   bestsme = cpi->mv_search_params.find_fractional_mv_step(
275       xd, cm, &ms_params, subpel_start_mv, &best_mv->as_mv, &distortion, &sse,
276       NULL);
277 
278   return bestsme;
279 }
280 
281 typedef struct {
282   int_mv mv;
283   int sad;
284 } center_mv_t;
285 
compare_sad(const void * a,const void * b)286 static int compare_sad(const void *a, const void *b) {
287   const int diff = ((center_mv_t *)a)->sad - ((center_mv_t *)b)->sad;
288   if (diff < 0)
289     return -1;
290   else if (diff > 0)
291     return 1;
292   return 0;
293 }
294 
is_alike_mv(int_mv candidate_mv,center_mv_t * center_mvs,int center_mvs_count,int skip_alike_starting_mv)295 static int is_alike_mv(int_mv candidate_mv, center_mv_t *center_mvs,
296                        int center_mvs_count, int skip_alike_starting_mv) {
297   // MV difference threshold is in 1/8 precision.
298   const int mv_diff_thr[3] = { 1, (8 << 3), (16 << 3) };
299   int thr = mv_diff_thr[skip_alike_starting_mv];
300   int i;
301 
302   for (i = 0; i < center_mvs_count; i++) {
303     if (abs(center_mvs[i].mv.as_mv.col - candidate_mv.as_mv.col) < thr &&
304         abs(center_mvs[i].mv.as_mv.row - candidate_mv.as_mv.row) < thr)
305       return 1;
306   }
307 
308   return 0;
309 }
310 
get_rate_distortion(int * rate_cost,int64_t * recon_error,int64_t * pred_error,int16_t * src_diff,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,AV1_COMMON * cm,MACROBLOCK * x,const YV12_BUFFER_CONFIG * ref_frame_ptr[2],uint8_t * rec_buffer_pool[3],const int rec_stride_pool[3],TX_SIZE tx_size,PREDICTION_MODE best_mode,int mi_row,int mi_col,int use_y_only_rate_distortion)311 static void get_rate_distortion(
312     int *rate_cost, int64_t *recon_error, int64_t *pred_error,
313     int16_t *src_diff, tran_low_t *coeff, tran_low_t *qcoeff,
314     tran_low_t *dqcoeff, AV1_COMMON *cm, MACROBLOCK *x,
315     const YV12_BUFFER_CONFIG *ref_frame_ptr[2], uint8_t *rec_buffer_pool[3],
316     const int rec_stride_pool[3], TX_SIZE tx_size, PREDICTION_MODE best_mode,
317     int mi_row, int mi_col, int use_y_only_rate_distortion) {
318   const SequenceHeader *seq_params = cm->seq_params;
319   *rate_cost = 0;
320   *recon_error = 1;
321   *pred_error = 1;
322 
323   MACROBLOCKD *xd = &x->e_mbd;
324   int is_compound = (best_mode == NEW_NEWMV);
325   int num_planes = use_y_only_rate_distortion ? 1 : MAX_MB_PLANE;
326 
327   uint8_t *src_buffer_pool[MAX_MB_PLANE] = {
328     xd->cur_buf->y_buffer,
329     xd->cur_buf->u_buffer,
330     xd->cur_buf->v_buffer,
331   };
332   const int src_stride_pool[MAX_MB_PLANE] = {
333     xd->cur_buf->y_stride,
334     xd->cur_buf->uv_stride,
335     xd->cur_buf->uv_stride,
336   };
337 
338   const int_interpfilters kernel =
339       av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
340 
341   for (int plane = 0; plane < num_planes; ++plane) {
342     struct macroblockd_plane *pd = &xd->plane[plane];
343     BLOCK_SIZE bsize_plane =
344         ss_size_lookup[txsize_to_bsize[tx_size]][pd->subsampling_x]
345                       [pd->subsampling_y];
346 
347     int dst_buffer_stride = rec_stride_pool[plane];
348     int dst_mb_offset =
349         ((mi_row * MI_SIZE * dst_buffer_stride) >> pd->subsampling_y) +
350         ((mi_col * MI_SIZE) >> pd->subsampling_x);
351     uint8_t *dst_buffer = rec_buffer_pool[plane] + dst_mb_offset;
352     for (int ref = 0; ref < 1 + is_compound; ++ref) {
353       if (!is_inter_mode(best_mode)) {
354         av1_predict_intra_block(
355             xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
356             block_size_wide[bsize_plane], block_size_high[bsize_plane],
357             max_txsize_rect_lookup[bsize_plane], best_mode, 0, 0,
358             FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, dst_buffer,
359             dst_buffer_stride, 0, 0, plane);
360       } else {
361         int_mv best_mv = xd->mi[0]->mv[ref];
362         uint8_t *ref_buffer_pool[MAX_MB_PLANE] = {
363           ref_frame_ptr[ref]->y_buffer,
364           ref_frame_ptr[ref]->u_buffer,
365           ref_frame_ptr[ref]->v_buffer,
366         };
367         InterPredParams inter_pred_params;
368         struct buf_2d ref_buf = {
369           NULL, ref_buffer_pool[plane],
370           plane ? ref_frame_ptr[ref]->uv_width : ref_frame_ptr[ref]->y_width,
371           plane ? ref_frame_ptr[ref]->uv_height : ref_frame_ptr[ref]->y_height,
372           plane ? ref_frame_ptr[ref]->uv_stride : ref_frame_ptr[ref]->y_stride
373         };
374         av1_init_inter_params(&inter_pred_params, block_size_wide[bsize_plane],
375                               block_size_high[bsize_plane],
376                               (mi_row * MI_SIZE) >> pd->subsampling_y,
377                               (mi_col * MI_SIZE) >> pd->subsampling_x,
378                               pd->subsampling_x, pd->subsampling_y, xd->bd,
379                               is_cur_buf_hbd(xd), 0,
380                               xd->block_ref_scale_factors[0], &ref_buf, kernel);
381         if (is_compound) av1_init_comp_mode(&inter_pred_params);
382         inter_pred_params.conv_params = get_conv_params_no_round(
383             ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
384 
385         av1_enc_build_one_inter_predictor(dst_buffer, dst_buffer_stride,
386                                           &best_mv.as_mv, &inter_pred_params);
387       }
388     }
389 
390     int src_stride = src_stride_pool[plane];
391     int src_mb_offset = ((mi_row * MI_SIZE * src_stride) >> pd->subsampling_y) +
392                         ((mi_col * MI_SIZE) >> pd->subsampling_x);
393 
394     int this_rate = 1;
395     int64_t this_recon_error = 1;
396     int64_t sse;
397     txfm_quant_rdcost(
398         x, src_diff, block_size_wide[bsize_plane],
399         src_buffer_pool[plane] + src_mb_offset, src_stride, dst_buffer,
400         dst_buffer_stride, coeff, qcoeff, dqcoeff, block_size_wide[bsize_plane],
401         block_size_high[bsize_plane], max_txsize_rect_lookup[bsize_plane],
402         &this_rate, &this_recon_error, &sse);
403 
404     *recon_error += this_recon_error;
405     *pred_error += sse;
406     *rate_cost += this_rate;
407   }
408 }
409 
mode_estimation(AV1_COMP * cpi,TplTxfmStats * tpl_txfm_stats,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,TX_SIZE tx_size,TplDepStats * tpl_stats)410 static AOM_INLINE void mode_estimation(AV1_COMP *cpi,
411                                        TplTxfmStats *tpl_txfm_stats,
412                                        MACROBLOCK *x, int mi_row, int mi_col,
413                                        BLOCK_SIZE bsize, TX_SIZE tx_size,
414                                        TplDepStats *tpl_stats) {
415   AV1_COMMON *cm = &cpi->common;
416   const GF_GROUP *gf_group = &cpi->ppi->gf_group;
417 
418   (void)gf_group;
419 
420   MACROBLOCKD *xd = &x->e_mbd;
421   const BitDepthInfo bd_info = get_bit_depth_info(xd);
422   TplParams *tpl_data = &cpi->ppi->tpl_data;
423   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
424   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
425 
426   const int bw = 4 << mi_size_wide_log2[bsize];
427   const int bh = 4 << mi_size_high_log2[bsize];
428   const int_interpfilters kernel =
429       av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
430 
431   int64_t best_intra_cost = INT64_MAX;
432   int64_t intra_cost;
433   PREDICTION_MODE best_mode = DC_PRED;
434 
435   int mb_y_offset = mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE;
436   uint8_t *src_mb_buffer = xd->cur_buf->y_buffer + mb_y_offset;
437   int src_stride = xd->cur_buf->y_stride;
438 
439   int dst_mb_offset =
440       mi_row * MI_SIZE * tpl_frame->rec_picture->y_stride + mi_col * MI_SIZE;
441   uint8_t *dst_buffer = tpl_frame->rec_picture->y_buffer + dst_mb_offset;
442   int dst_buffer_stride = tpl_frame->rec_picture->y_stride;
443   int use_y_only_rate_distortion = cpi->sf.tpl_sf.use_y_only_rate_distortion;
444 
445   uint8_t *rec_buffer_pool[3] = {
446     tpl_frame->rec_picture->y_buffer,
447     tpl_frame->rec_picture->u_buffer,
448     tpl_frame->rec_picture->v_buffer,
449   };
450 
451   const int rec_stride_pool[3] = {
452     tpl_frame->rec_picture->y_stride,
453     tpl_frame->rec_picture->uv_stride,
454     tpl_frame->rec_picture->uv_stride,
455   };
456 
457   for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
458     struct macroblockd_plane *pd = &xd->plane[plane];
459     pd->subsampling_x = xd->cur_buf->subsampling_x;
460     pd->subsampling_y = xd->cur_buf->subsampling_y;
461   }
462 
463   // Number of pixels in a tpl block
464   const int tpl_block_pels = tpl_data->tpl_bsize_1d * tpl_data->tpl_bsize_1d;
465   // Allocate temporary buffers used in motion estimation.
466   uint8_t *predictor8 = aom_memalign(32, tpl_block_pels * 2 * sizeof(uint8_t));
467   int16_t *src_diff = aom_memalign(32, tpl_block_pels * sizeof(int16_t));
468   tran_low_t *coeff = aom_memalign(32, tpl_block_pels * sizeof(tran_low_t));
469   tran_low_t *qcoeff = aom_memalign(32, tpl_block_pels * sizeof(tran_low_t));
470   tran_low_t *dqcoeff = aom_memalign(32, tpl_block_pels * sizeof(tran_low_t));
471   uint8_t *predictor =
472       is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
473   int64_t recon_error = 1;
474   int64_t pred_error = 1;
475 
476   memset(tpl_stats, 0, sizeof(*tpl_stats));
477   tpl_stats->ref_frame_index[0] = -1;
478   tpl_stats->ref_frame_index[1] = -1;
479 
480   const int mi_width = mi_size_wide[bsize];
481   const int mi_height = mi_size_high[bsize];
482   set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
483                         mi_row, mi_col);
484   set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
485                  cm->mi_params.mi_rows, cm->mi_params.mi_cols);
486   set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
487                av1_num_planes(cm));
488   xd->mi[0]->bsize = bsize;
489   xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
490 
491   // Intra prediction search
492   xd->mi[0]->ref_frame[0] = INTRA_FRAME;
493 
494   // Pre-load the bottom left line.
495   if (xd->left_available &&
496       mi_row + tx_size_high_unit[tx_size] < xd->tile.mi_row_end) {
497     if (is_cur_buf_hbd(xd)) {
498       uint16_t *dst = CONVERT_TO_SHORTPTR(dst_buffer);
499       for (int i = 0; i < bw; ++i)
500         dst[(bw + i) * dst_buffer_stride - 1] =
501             dst[(bw - 1) * dst_buffer_stride - 1];
502     } else {
503       for (int i = 0; i < bw; ++i)
504         dst_buffer[(bw + i) * dst_buffer_stride - 1] =
505             dst_buffer[(bw - 1) * dst_buffer_stride - 1];
506     }
507   }
508 
509   // if cpi->sf.tpl_sf.prune_intra_modes is on, then search only DC_PRED,
510   // H_PRED, and V_PRED
511   const PREDICTION_MODE last_intra_mode =
512       cpi->sf.tpl_sf.prune_intra_modes ? D45_PRED : INTRA_MODE_END;
513   const SequenceHeader *seq_params = cm->seq_params;
514   for (PREDICTION_MODE mode = INTRA_MODE_START; mode < last_intra_mode;
515        ++mode) {
516     av1_predict_intra_block(xd, seq_params->sb_size,
517                             seq_params->enable_intra_edge_filter,
518                             block_size_wide[bsize], block_size_high[bsize],
519                             tx_size, mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
520                             dst_buffer_stride, predictor, bw, 0, 0, 0);
521 
522     intra_cost =
523         tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
524                           predictor, bw, coeff, bw, bh, tx_size);
525 
526     if (intra_cost < best_intra_cost) {
527       best_intra_cost = intra_cost;
528       best_mode = mode;
529     }
530   }
531 
532   // Motion compensated prediction
533   xd->mi[0]->ref_frame[0] = INTRA_FRAME;
534   xd->mi[0]->ref_frame[1] = NONE_FRAME;
535   xd->mi[0]->compound_idx = 1;
536 
537   int best_rf_idx = -1;
538   int_mv best_mv[2];
539   int64_t inter_cost;
540   int64_t best_inter_cost = INT64_MAX;
541   int rf_idx;
542   int_mv single_mv[INTER_REFS_PER_FRAME];
543 
544   best_mv[0].as_int = INVALID_MV;
545   best_mv[1].as_int = INVALID_MV;
546 
547   for (rf_idx = 0; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) {
548     single_mv[rf_idx].as_int = INVALID_MV;
549     if (tpl_data->ref_frame[rf_idx] == NULL ||
550         tpl_data->src_ref_frame[rf_idx] == NULL) {
551       tpl_stats->mv[rf_idx].as_int = INVALID_MV;
552       continue;
553     }
554 
555     const YV12_BUFFER_CONFIG *ref_frame_ptr = tpl_data->src_ref_frame[rf_idx];
556     int ref_mb_offset =
557         mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
558     uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
559     int ref_stride = ref_frame_ptr->y_stride;
560 
561     int_mv best_rfidx_mv = { 0 };
562     uint32_t bestsme = UINT32_MAX;
563 
564     center_mv_t center_mvs[4] = { { { 0 }, INT_MAX },
565                                   { { 0 }, INT_MAX },
566                                   { { 0 }, INT_MAX },
567                                   { { 0 }, INT_MAX } };
568     int refmv_count = 1;
569     int idx;
570 
571     if (xd->up_available) {
572       TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
573           mi_row - mi_height, mi_col, tpl_frame->stride, block_mis_log2)];
574       if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
575                        cpi->sf.tpl_sf.skip_alike_starting_mv)) {
576         center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
577         ++refmv_count;
578       }
579     }
580 
581     if (xd->left_available) {
582       TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
583           mi_row, mi_col - mi_width, tpl_frame->stride, block_mis_log2)];
584       if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
585                        cpi->sf.tpl_sf.skip_alike_starting_mv)) {
586         center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
587         ++refmv_count;
588       }
589     }
590 
591     if (xd->up_available && mi_col + mi_width < xd->tile.mi_col_end) {
592       TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
593           mi_row - mi_height, mi_col + mi_width, tpl_frame->stride,
594           block_mis_log2)];
595       if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
596                        cpi->sf.tpl_sf.skip_alike_starting_mv)) {
597         center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
598         ++refmv_count;
599       }
600     }
601 
602     // Prune starting mvs
603     if (cpi->sf.tpl_sf.prune_starting_mv) {
604       // Get each center mv's sad.
605       for (idx = 0; idx < refmv_count; ++idx) {
606         FULLPEL_MV mv = get_fullmv_from_mv(&center_mvs[idx].mv.as_mv);
607         clamp_fullmv(&mv, &x->mv_limits);
608         center_mvs[idx].sad = (int)cpi->ppi->fn_ptr[bsize].sdf(
609             src_mb_buffer, src_stride, &ref_mb[mv.row * ref_stride + mv.col],
610             ref_stride);
611       }
612 
613       // Rank center_mv using sad.
614       if (refmv_count > 1) {
615         qsort(center_mvs, refmv_count, sizeof(center_mvs[0]), compare_sad);
616       }
617       refmv_count = AOMMIN(4 - cpi->sf.tpl_sf.prune_starting_mv, refmv_count);
618       // Further reduce number of refmv based on sad difference.
619       if (refmv_count > 1) {
620         int last_sad = center_mvs[refmv_count - 1].sad;
621         int second_to_last_sad = center_mvs[refmv_count - 2].sad;
622         if ((last_sad - second_to_last_sad) * 5 > second_to_last_sad)
623           refmv_count--;
624       }
625     }
626 
627     for (idx = 0; idx < refmv_count; ++idx) {
628       int_mv this_mv;
629       uint32_t thissme = motion_estimation(cpi, x, src_mb_buffer, ref_mb,
630                                            src_stride, ref_stride, bsize,
631                                            center_mvs[idx].mv.as_mv, &this_mv);
632 
633       if (thissme < bestsme) {
634         bestsme = thissme;
635         best_rfidx_mv = this_mv;
636       }
637     }
638 
639     tpl_stats->mv[rf_idx].as_int = best_rfidx_mv.as_int;
640     single_mv[rf_idx] = best_rfidx_mv;
641 
642     struct buf_2d ref_buf = { NULL, ref_frame_ptr->y_buffer,
643                               ref_frame_ptr->y_width, ref_frame_ptr->y_height,
644                               ref_frame_ptr->y_stride };
645     InterPredParams inter_pred_params;
646     av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
647                           mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0,
648                           &tpl_data->sf, &ref_buf, kernel);
649     inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd);
650 
651     av1_enc_build_one_inter_predictor(predictor, bw, &best_rfidx_mv.as_mv,
652                                       &inter_pred_params);
653 
654     inter_cost =
655         tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
656                           predictor, bw, coeff, bw, bh, tx_size);
657     // Store inter cost for each ref frame
658     tpl_stats->pred_error[rf_idx] = AOMMAX(1, inter_cost);
659 
660     if (inter_cost < best_inter_cost) {
661       best_rf_idx = rf_idx;
662 
663       best_inter_cost = inter_cost;
664       best_mv[0].as_int = best_rfidx_mv.as_int;
665       if (best_inter_cost < best_intra_cost) {
666         best_mode = NEWMV;
667         xd->mi[0]->ref_frame[0] = best_rf_idx + LAST_FRAME;
668         xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
669       }
670     }
671   }
672 
673   int comp_ref_frames[3][2] = {
674     { 0, 4 },
675     { 0, 6 },
676     { 3, 6 },
677   };
678 
679   xd->mi_row = mi_row;
680   xd->mi_col = mi_col;
681   int best_cmp_rf_idx = -1;
682   for (int cmp_rf_idx = 0; cmp_rf_idx < 3 && cpi->sf.tpl_sf.allow_compound_pred;
683        ++cmp_rf_idx) {
684     int rf_idx0 = comp_ref_frames[cmp_rf_idx][0];
685     int rf_idx1 = comp_ref_frames[cmp_rf_idx][1];
686 
687     if (tpl_data->ref_frame[rf_idx0] == NULL ||
688         tpl_data->src_ref_frame[rf_idx0] == NULL ||
689         tpl_data->ref_frame[rf_idx1] == NULL ||
690         tpl_data->src_ref_frame[rf_idx1] == NULL) {
691       continue;
692     }
693 
694     const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
695       tpl_data->src_ref_frame[rf_idx0],
696       tpl_data->src_ref_frame[rf_idx1],
697     };
698 
699     xd->mi[0]->ref_frame[0] = LAST_FRAME;
700     xd->mi[0]->ref_frame[1] = ALTREF_FRAME;
701 
702     struct buf_2d yv12_mb[2][MAX_MB_PLANE];
703     for (int i = 0; i < 2; ++i) {
704       av1_setup_pred_block(xd, yv12_mb[i], ref_frame_ptr[i],
705                            xd->block_ref_scale_factors[i],
706                            xd->block_ref_scale_factors[i], MAX_MB_PLANE);
707       for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
708         xd->plane[plane].pre[i] = yv12_mb[i][plane];
709       }
710     }
711 
712     int_mv tmp_mv[2] = { single_mv[rf_idx0], single_mv[rf_idx1] };
713     int rate_mv;
714     av1_joint_motion_search(cpi, x, bsize, tmp_mv, NULL, 0, &rate_mv,
715                             !cpi->sf.mv_sf.disable_second_mv);
716 
717     for (int ref = 0; ref < 2; ++ref) {
718       struct buf_2d ref_buf = { NULL, ref_frame_ptr[ref]->y_buffer,
719                                 ref_frame_ptr[ref]->y_width,
720                                 ref_frame_ptr[ref]->y_height,
721                                 ref_frame_ptr[ref]->y_stride };
722       InterPredParams inter_pred_params;
723       av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
724                             mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd),
725                             0, &tpl_data->sf, &ref_buf, kernel);
726       av1_init_comp_mode(&inter_pred_params);
727 
728       inter_pred_params.conv_params = get_conv_params_no_round(
729           ref, 0, xd->tmp_conv_dst, MAX_SB_SIZE, 1, xd->bd);
730 
731       av1_enc_build_one_inter_predictor(predictor, bw, &tmp_mv[ref].as_mv,
732                                         &inter_pred_params);
733     }
734     inter_cost =
735         tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
736                           predictor, bw, coeff, bw, bh, tx_size);
737     if (inter_cost < best_inter_cost) {
738       best_cmp_rf_idx = cmp_rf_idx;
739       best_inter_cost = inter_cost;
740       best_mv[0] = tmp_mv[0];
741       best_mv[1] = tmp_mv[1];
742 
743       if (best_inter_cost < best_intra_cost) {
744         best_mode = NEW_NEWMV;
745         xd->mi[0]->ref_frame[0] = rf_idx0 + LAST_FRAME;
746         xd->mi[0]->ref_frame[1] = rf_idx1 + LAST_FRAME;
747       }
748     }
749   }
750 
751   if (best_inter_cost < INT64_MAX) {
752     xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
753     xd->mi[0]->mv[1].as_int = best_mv[1].as_int;
754     const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
755       best_cmp_rf_idx >= 0
756           ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
757           : tpl_data->src_ref_frame[best_rf_idx],
758       best_cmp_rf_idx >= 0
759           ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
760           : NULL,
761     };
762     int rate_cost = 1;
763     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
764                         qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
765                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
766                         use_y_only_rate_distortion);
767     tpl_stats->srcrf_rate = rate_cost << TPL_DEP_COST_SCALE_LOG2;
768   }
769 
770   best_intra_cost = AOMMAX(best_intra_cost, 1);
771   best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost);
772   tpl_stats->inter_cost = best_inter_cost << TPL_DEP_COST_SCALE_LOG2;
773   tpl_stats->intra_cost = best_intra_cost << TPL_DEP_COST_SCALE_LOG2;
774 
775   tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
776   tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
777 
778   // Final encode
779   int rate_cost = 0;
780   const YV12_BUFFER_CONFIG *ref_frame_ptr[2];
781 
782   ref_frame_ptr[0] =
783       best_mode == NEW_NEWMV
784           ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
785           : best_rf_idx >= 0 ? tpl_data->ref_frame[best_rf_idx] : NULL;
786   ref_frame_ptr[1] =
787       best_mode == NEW_NEWMV
788           ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
789           : NULL;
790   get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
791                       qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
792                       rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
793                       use_y_only_rate_distortion);
794 
795   av1_record_tpl_txfm_block(tpl_txfm_stats, coeff);
796 
797   tpl_stats->recrf_dist = recon_error << (TPL_DEP_COST_SCALE_LOG2);
798   tpl_stats->recrf_rate = rate_cost << TPL_DEP_COST_SCALE_LOG2;
799   if (!is_inter_mode(best_mode)) {
800     tpl_stats->srcrf_dist = recon_error << (TPL_DEP_COST_SCALE_LOG2);
801     tpl_stats->srcrf_rate = rate_cost << TPL_DEP_COST_SCALE_LOG2;
802     tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
803   }
804 
805   tpl_stats->recrf_dist = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->recrf_dist);
806   tpl_stats->recrf_rate = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->recrf_rate);
807 
808   if (best_mode == NEW_NEWMV) {
809     ref_frame_ptr[0] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
810     ref_frame_ptr[1] =
811         tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
812     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
813                         qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
814                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
815                         use_y_only_rate_distortion);
816     tpl_stats->cmp_recrf_dist[0] = recon_error << TPL_DEP_COST_SCALE_LOG2;
817     tpl_stats->cmp_recrf_rate[0] = rate_cost << TPL_DEP_COST_SCALE_LOG2;
818 
819     tpl_stats->cmp_recrf_dist[0] =
820         AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[0]);
821     tpl_stats->cmp_recrf_rate[0] =
822         AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[0]);
823 
824     tpl_stats->cmp_recrf_dist[0] =
825         AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[0]);
826     tpl_stats->cmp_recrf_rate[0] =
827         AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[0]);
828 
829     rate_cost = 0;
830     ref_frame_ptr[0] =
831         tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
832     ref_frame_ptr[1] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
833     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
834                         qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
835                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
836                         use_y_only_rate_distortion);
837     tpl_stats->cmp_recrf_dist[1] = recon_error << TPL_DEP_COST_SCALE_LOG2;
838     tpl_stats->cmp_recrf_rate[1] = rate_cost << TPL_DEP_COST_SCALE_LOG2;
839 
840     tpl_stats->cmp_recrf_dist[1] =
841         AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[1]);
842     tpl_stats->cmp_recrf_rate[1] =
843         AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[1]);
844 
845     tpl_stats->cmp_recrf_dist[1] =
846         AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[1]);
847     tpl_stats->cmp_recrf_rate[1] =
848         AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[1]);
849   }
850 
851   if (best_mode == NEWMV) {
852     tpl_stats->mv[best_rf_idx] = best_mv[0];
853     tpl_stats->ref_frame_index[0] = best_rf_idx;
854     tpl_stats->ref_frame_index[1] = NONE_FRAME;
855   } else if (best_mode == NEW_NEWMV) {
856     tpl_stats->ref_frame_index[0] = comp_ref_frames[best_cmp_rf_idx][0];
857     tpl_stats->ref_frame_index[1] = comp_ref_frames[best_cmp_rf_idx][1];
858     tpl_stats->mv[tpl_stats->ref_frame_index[0]] = best_mv[0];
859     tpl_stats->mv[tpl_stats->ref_frame_index[1]] = best_mv[1];
860   }
861 
862   for (int idy = 0; idy < mi_height; ++idy) {
863     for (int idx = 0; idx < mi_width; ++idx) {
864       if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > idx &&
865           (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > idy) {
866         xd->mi[idx + idy * cm->mi_params.mi_stride] = xd->mi[0];
867       }
868     }
869   }
870 
871   // Free temporary buffers.
872   aom_free(predictor8);
873   aom_free(src_diff);
874   aom_free(coeff);
875   aom_free(qcoeff);
876   aom_free(dqcoeff);
877 }
878 
round_floor(int ref_pos,int bsize_pix)879 static int round_floor(int ref_pos, int bsize_pix) {
880   int round;
881   if (ref_pos < 0)
882     round = -(1 + (-ref_pos - 1) / bsize_pix);
883   else
884     round = ref_pos / bsize_pix;
885 
886   return round;
887 }
888 
av1_get_overlap_area(int row_a,int col_a,int row_b,int col_b,int width,int height)889 int av1_get_overlap_area(int row_a, int col_a, int row_b, int col_b, int width,
890                          int height) {
891   int min_row = AOMMAX(row_a, row_b);
892   int max_row = AOMMIN(row_a + height, row_b + height);
893   int min_col = AOMMAX(col_a, col_b);
894   int max_col = AOMMIN(col_a + width, col_b + width);
895   if (min_row < max_row && min_col < max_col) {
896     return (max_row - min_row) * (max_col - min_col);
897   }
898   return 0;
899 }
900 
av1_tpl_ptr_pos(int mi_row,int mi_col,int stride,uint8_t right_shift)901 int av1_tpl_ptr_pos(int mi_row, int mi_col, int stride, uint8_t right_shift) {
902   return (mi_row >> right_shift) * stride + (mi_col >> right_shift);
903 }
904 
av1_delta_rate_cost(int64_t delta_rate,int64_t recrf_dist,int64_t srcrf_dist,int pix_num)905 int64_t av1_delta_rate_cost(int64_t delta_rate, int64_t recrf_dist,
906                             int64_t srcrf_dist, int pix_num) {
907   double beta = (double)srcrf_dist / recrf_dist;
908   int64_t rate_cost = delta_rate;
909 
910   if (srcrf_dist <= 128) return rate_cost;
911 
912   double dr =
913       (double)(delta_rate >> (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT)) /
914       pix_num;
915 
916   double log_den = log(beta) / log(2.0) + 2.0 * dr;
917 
918   if (log_den > log(10.0) / log(2.0)) {
919     rate_cost = (int64_t)((log(1.0 / beta) * pix_num) / log(2.0) / 2.0);
920     rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
921     return rate_cost;
922   }
923 
924   double num = pow(2.0, log_den);
925   double den = num * beta + (1 - beta) * beta;
926 
927   rate_cost = (int64_t)((pix_num * log(num / den)) / log(2.0) / 2.0);
928 
929   rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
930 
931   return rate_cost;
932 }
933 
tpl_model_update_b(TplParams * const tpl_data,int mi_row,int mi_col,const BLOCK_SIZE bsize,int frame_idx,int ref)934 static AOM_INLINE void tpl_model_update_b(TplParams *const tpl_data, int mi_row,
935                                           int mi_col, const BLOCK_SIZE bsize,
936                                           int frame_idx, int ref) {
937   TplDepFrame *tpl_frame_ptr = &tpl_data->tpl_frame[frame_idx];
938   TplDepStats *tpl_ptr = tpl_frame_ptr->tpl_stats_ptr;
939   TplDepFrame *tpl_frame = tpl_data->tpl_frame;
940   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
941   TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos(
942       mi_row, mi_col, tpl_frame->stride, block_mis_log2)];
943 
944   int is_compound = tpl_stats_ptr->ref_frame_index[1] >= 0;
945 
946   if (tpl_stats_ptr->ref_frame_index[ref] < 0) return;
947   const int ref_frame_index = tpl_stats_ptr->ref_frame_index[ref];
948   TplDepFrame *ref_tpl_frame =
949       &tpl_frame[tpl_frame[frame_idx].ref_map_index[ref_frame_index]];
950   TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr;
951 
952   if (tpl_frame[frame_idx].ref_map_index[ref_frame_index] < 0) return;
953 
954   const FULLPEL_MV full_mv =
955       get_fullmv_from_mv(&tpl_stats_ptr->mv[ref_frame_index].as_mv);
956   const int ref_pos_row = mi_row * MI_SIZE + full_mv.row;
957   const int ref_pos_col = mi_col * MI_SIZE + full_mv.col;
958 
959   const int bw = 4 << mi_size_wide_log2[bsize];
960   const int bh = 4 << mi_size_high_log2[bsize];
961   const int mi_height = mi_size_high[bsize];
962   const int mi_width = mi_size_wide[bsize];
963   const int pix_num = bw * bh;
964 
965   // top-left on grid block location in pixel
966   int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh;
967   int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw;
968   int block;
969 
970   int64_t srcrf_dist = is_compound ? tpl_stats_ptr->cmp_recrf_dist[!ref]
971                                    : tpl_stats_ptr->srcrf_dist;
972   int64_t srcrf_rate = is_compound ? tpl_stats_ptr->cmp_recrf_rate[!ref]
973                                    : tpl_stats_ptr->srcrf_rate;
974 
975   int64_t cur_dep_dist = tpl_stats_ptr->recrf_dist - srcrf_dist;
976   int64_t mc_dep_dist =
977       (int64_t)(tpl_stats_ptr->mc_dep_dist *
978                 ((double)(tpl_stats_ptr->recrf_dist - srcrf_dist) /
979                  tpl_stats_ptr->recrf_dist));
980   int64_t delta_rate = tpl_stats_ptr->recrf_rate - srcrf_rate;
981   int64_t mc_dep_rate =
982       av1_delta_rate_cost(tpl_stats_ptr->mc_dep_rate, tpl_stats_ptr->recrf_dist,
983                           srcrf_dist, pix_num);
984 
985   for (block = 0; block < 4; ++block) {
986     int grid_pos_row = grid_pos_row_base + bh * (block >> 1);
987     int grid_pos_col = grid_pos_col_base + bw * (block & 0x01);
988 
989     if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE &&
990         grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) {
991       int overlap_area = av1_get_overlap_area(grid_pos_row, grid_pos_col,
992                                               ref_pos_row, ref_pos_col, bw, bh);
993       int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height;
994       int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width;
995       assert((1 << block_mis_log2) == mi_height);
996       assert((1 << block_mis_log2) == mi_width);
997       TplDepStats *des_stats = &ref_stats_ptr[av1_tpl_ptr_pos(
998           ref_mi_row, ref_mi_col, ref_tpl_frame->stride, block_mis_log2)];
999       des_stats->mc_dep_dist +=
1000           ((cur_dep_dist + mc_dep_dist) * overlap_area) / pix_num;
1001       des_stats->mc_dep_rate +=
1002           ((delta_rate + mc_dep_rate) * overlap_area) / pix_num;
1003     }
1004   }
1005 }
1006 
tpl_model_update(TplParams * const tpl_data,int mi_row,int mi_col,int frame_idx)1007 static AOM_INLINE void tpl_model_update(TplParams *const tpl_data, int mi_row,
1008                                         int mi_col, int frame_idx) {
1009   const BLOCK_SIZE tpl_stats_block_size =
1010       convert_length_to_bsize(MI_SIZE << tpl_data->tpl_stats_block_mis_log2);
1011   tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1012                      0);
1013   tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1014                      1);
1015 }
1016 
tpl_model_store(TplDepStats * tpl_stats_ptr,int mi_row,int mi_col,int stride,const TplDepStats * src_stats,uint8_t block_mis_log2)1017 static AOM_INLINE void tpl_model_store(TplDepStats *tpl_stats_ptr, int mi_row,
1018                                        int mi_col, int stride,
1019                                        const TplDepStats *src_stats,
1020                                        uint8_t block_mis_log2) {
1021   int index = av1_tpl_ptr_pos(mi_row, mi_col, stride, block_mis_log2);
1022   TplDepStats *tpl_ptr = &tpl_stats_ptr[index];
1023   *tpl_ptr = *src_stats;
1024   tpl_ptr->intra_cost = AOMMAX(1, tpl_ptr->intra_cost);
1025   tpl_ptr->inter_cost = AOMMAX(1, tpl_ptr->inter_cost);
1026   tpl_ptr->srcrf_dist = AOMMAX(1, tpl_ptr->srcrf_dist);
1027   tpl_ptr->srcrf_sse = AOMMAX(1, tpl_ptr->srcrf_sse);
1028   tpl_ptr->recrf_dist = AOMMAX(1, tpl_ptr->recrf_dist);
1029   tpl_ptr->srcrf_rate = AOMMAX(1, tpl_ptr->srcrf_rate);
1030   tpl_ptr->recrf_rate = AOMMAX(1, tpl_ptr->recrf_rate);
1031   tpl_ptr->cmp_recrf_dist[0] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[0]);
1032   tpl_ptr->cmp_recrf_dist[1] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[1]);
1033   tpl_ptr->cmp_recrf_rate[0] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[0]);
1034   tpl_ptr->cmp_recrf_rate[1] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[1]);
1035 }
1036 
1037 // Reset the ref and source frame pointers of tpl_data.
tpl_reset_src_ref_frames(TplParams * tpl_data)1038 static AOM_INLINE void tpl_reset_src_ref_frames(TplParams *tpl_data) {
1039   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1040     tpl_data->ref_frame[i] = NULL;
1041     tpl_data->src_ref_frame[i] = NULL;
1042   }
1043 }
1044 
get_gop_length(const GF_GROUP * gf_group)1045 static AOM_INLINE int get_gop_length(const GF_GROUP *gf_group) {
1046   int gop_length = AOMMIN(gf_group->size, MAX_TPL_FRAME_IDX - 1);
1047   return gop_length;
1048 }
1049 
1050 // Initialize the mc_flow parameters used in computing tpl data.
init_mc_flow_dispenser(AV1_COMP * cpi,int frame_idx,int pframe_qindex)1051 static AOM_INLINE void init_mc_flow_dispenser(AV1_COMP *cpi, int frame_idx,
1052                                               int pframe_qindex) {
1053   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1054   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
1055   const YV12_BUFFER_CONFIG *this_frame = tpl_frame->gf_picture;
1056   const YV12_BUFFER_CONFIG *ref_frames_ordered[INTER_REFS_PER_FRAME];
1057   uint32_t ref_frame_display_indices[INTER_REFS_PER_FRAME];
1058   const GF_GROUP *gf_group = &cpi->ppi->gf_group;
1059   int ref_pruning_enabled = is_frame_eligible_for_ref_pruning(
1060       gf_group, cpi->sf.inter_sf.selective_ref_frame,
1061       cpi->sf.tpl_sf.prune_ref_frames_in_tpl, frame_idx);
1062   int gop_length = get_gop_length(gf_group);
1063   int ref_frame_flags;
1064   AV1_COMMON *cm = &cpi->common;
1065   int rdmult, idx;
1066   ThreadData *td = &cpi->td;
1067   MACROBLOCK *x = &td->mb;
1068   MACROBLOCKD *xd = &x->e_mbd;
1069   TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
1070   tpl_data->frame_idx = frame_idx;
1071   tpl_reset_src_ref_frames(tpl_data);
1072   av1_tile_init(&xd->tile, cm, 0, 0);
1073 
1074   // Setup scaling factor
1075   av1_setup_scale_factors_for_frame(
1076       &tpl_data->sf, this_frame->y_crop_width, this_frame->y_crop_height,
1077       this_frame->y_crop_width, this_frame->y_crop_height);
1078 
1079   xd->cur_buf = this_frame;
1080 
1081   for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1082     TplDepFrame *tpl_ref_frame =
1083         &tpl_data->tpl_frame[tpl_frame->ref_map_index[idx]];
1084     tpl_data->ref_frame[idx] = tpl_ref_frame->rec_picture;
1085     tpl_data->src_ref_frame[idx] = tpl_ref_frame->gf_picture;
1086     ref_frame_display_indices[idx] = tpl_ref_frame->frame_display_index;
1087   }
1088 
1089   // Store the reference frames based on priority order
1090   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1091     ref_frames_ordered[i] =
1092         tpl_data->ref_frame[ref_frame_priority_order[i] - 1];
1093   }
1094 
1095   // Work out which reference frame slots may be used.
1096   ref_frame_flags =
1097       get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi),
1098                           ref_frames_ordered, cpi->ext_flags.ref_frame_flags);
1099 
1100   enforce_max_ref_frames(cpi, &ref_frame_flags, ref_frame_display_indices,
1101                          tpl_frame->frame_display_index);
1102 
1103   // Prune reference frames
1104   for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1105     if ((ref_frame_flags & (1 << idx)) == 0) {
1106       tpl_data->ref_frame[idx] = NULL;
1107     }
1108   }
1109 
1110   // Skip motion estimation w.r.t. reference frames which are not
1111   // considered in RD search, using "selective_ref_frame" speed feature.
1112   // The reference frame pruning is not enabled for frames beyond the gop
1113   // length, as there are fewer reference frames and the reference frames
1114   // differ from the frames considered during RD search.
1115   if (ref_pruning_enabled && (frame_idx < gop_length)) {
1116     for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1117       const MV_REFERENCE_FRAME refs[2] = { idx + 1, NONE_FRAME };
1118       if (prune_ref_by_selective_ref_frame(cpi, NULL, refs,
1119                                            ref_frame_display_indices)) {
1120         tpl_data->ref_frame[idx] = NULL;
1121       }
1122     }
1123   }
1124 
1125   // Make a temporary mbmi for tpl model
1126   MB_MODE_INFO mbmi;
1127   memset(&mbmi, 0, sizeof(mbmi));
1128   MB_MODE_INFO *mbmi_ptr = &mbmi;
1129   xd->mi = &mbmi_ptr;
1130 
1131   xd->block_ref_scale_factors[0] = &tpl_data->sf;
1132   xd->block_ref_scale_factors[1] = &tpl_data->sf;
1133 
1134   const int base_qindex = pframe_qindex;
1135   // Get rd multiplier set up.
1136   rdmult = (int)av1_compute_rd_mult(cpi, base_qindex);
1137   if (rdmult < 1) rdmult = 1;
1138   av1_set_error_per_bit(&x->errorperbit, rdmult);
1139   av1_set_sad_per_bit(cpi, &x->sadperbit, base_qindex);
1140 
1141   tpl_frame->is_valid = 1;
1142 
1143   cm->quant_params.base_qindex = base_qindex;
1144   av1_frame_init_quantizer(cpi);
1145 
1146   const BitDepthInfo bd_info = get_bit_depth_info(xd);
1147   const FRAME_UPDATE_TYPE update_type =
1148       gf_group->update_type[cpi->gf_frame_index];
1149   tpl_frame->base_rdmult = av1_compute_rd_mult_based_on_qindex(
1150                                bd_info.bit_depth, update_type, pframe_qindex) /
1151                            6;
1152 
1153   av1_init_tpl_txfm_stats(tpl_txfm_stats);
1154 }
1155 
1156 // This function stores the motion estimation dependencies of all the blocks in
1157 // a row
av1_mc_flow_dispenser_row(AV1_COMP * cpi,TplTxfmStats * tpl_txfm_stats,MACROBLOCK * x,int mi_row,BLOCK_SIZE bsize,TX_SIZE tx_size)1158 void av1_mc_flow_dispenser_row(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
1159                                MACROBLOCK *x, int mi_row, BLOCK_SIZE bsize,
1160                                TX_SIZE tx_size) {
1161   AV1_COMMON *const cm = &cpi->common;
1162   MultiThreadInfo *const mt_info = &cpi->mt_info;
1163   AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
1164   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1165   const int mi_width = mi_size_wide[bsize];
1166   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1167   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
1168   MACROBLOCKD *xd = &x->e_mbd;
1169 
1170   const int tplb_cols_in_tile =
1171       ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
1172   const int tplb_row = ROUND_POWER_OF_TWO(mi_row, mi_size_high_log2[bsize]);
1173   assert(mi_size_high[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
1174   assert(mi_size_wide[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
1175 
1176   for (int mi_col = 0, tplb_col_in_tile = 0; mi_col < mi_params->mi_cols;
1177        mi_col += mi_width, tplb_col_in_tile++) {
1178     (*tpl_row_mt->sync_read_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
1179                                  tplb_col_in_tile);
1180     TplDepStats tpl_stats;
1181 
1182     // Motion estimation column boundary
1183     av1_set_mv_col_limits(mi_params, &x->mv_limits, mi_col, mi_width,
1184                           tpl_data->border_in_pixels);
1185     xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE);
1186     xd->mb_to_right_edge =
1187         GET_MV_SUBPEL(mi_params->mi_cols - mi_width - mi_col);
1188     mode_estimation(cpi, tpl_txfm_stats, x, mi_row, mi_col, bsize, tx_size,
1189                     &tpl_stats);
1190 
1191     // Motion flow dependency dispenser.
1192     tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, tpl_frame->stride,
1193                     &tpl_stats, tpl_data->tpl_stats_block_mis_log2);
1194     (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
1195                                   tplb_col_in_tile, tplb_cols_in_tile);
1196   }
1197 }
1198 
mc_flow_dispenser(AV1_COMP * cpi)1199 static AOM_INLINE void mc_flow_dispenser(AV1_COMP *cpi) {
1200   AV1_COMMON *cm = &cpi->common;
1201   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1202   ThreadData *td = &cpi->td;
1203   MACROBLOCK *x = &td->mb;
1204   MACROBLOCKD *xd = &x->e_mbd;
1205   const BLOCK_SIZE bsize =
1206       convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
1207   const TX_SIZE tx_size = max_txsize_lookup[bsize];
1208   const int mi_height = mi_size_high[bsize];
1209   for (int mi_row = 0; mi_row < mi_params->mi_rows; mi_row += mi_height) {
1210     // Motion estimation row boundary
1211     av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
1212                           cpi->ppi->tpl_data.border_in_pixels);
1213     xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1214     xd->mb_to_bottom_edge =
1215         GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
1216     av1_mc_flow_dispenser_row(cpi, &td->tpl_txfm_stats, x, mi_row, bsize,
1217                               tx_size);
1218   }
1219 }
1220 
mc_flow_synthesizer(TplParams * tpl_data,int frame_idx,int mi_rows,int mi_cols)1221 static void mc_flow_synthesizer(TplParams *tpl_data, int frame_idx, int mi_rows,
1222                                 int mi_cols) {
1223   if (!frame_idx) {
1224     return;
1225   }
1226   const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
1227   const int mi_height = mi_size_high[bsize];
1228   const int mi_width = mi_size_wide[bsize];
1229   assert(mi_height == (1 << tpl_data->tpl_stats_block_mis_log2));
1230   assert(mi_width == (1 << tpl_data->tpl_stats_block_mis_log2));
1231 
1232   for (int mi_row = 0; mi_row < mi_rows; mi_row += mi_height) {
1233     for (int mi_col = 0; mi_col < mi_cols; mi_col += mi_width) {
1234       tpl_model_update(tpl_data, mi_row, mi_col, frame_idx);
1235     }
1236   }
1237 }
1238 
init_gop_frames_for_tpl(AV1_COMP * cpi,const EncodeFrameParams * const init_frame_params,GF_GROUP * gf_group,int gop_eval,int * tpl_group_frames,const EncodeFrameInput * const frame_input,int * pframe_qindex)1239 static AOM_INLINE void init_gop_frames_for_tpl(
1240     AV1_COMP *cpi, const EncodeFrameParams *const init_frame_params,
1241     GF_GROUP *gf_group, int gop_eval, int *tpl_group_frames,
1242     const EncodeFrameInput *const frame_input, int *pframe_qindex) {
1243   AV1_COMMON *cm = &cpi->common;
1244   int cur_frame_idx = cpi->gf_frame_index;
1245   *pframe_qindex = 0;
1246 
1247 #if CONFIG_FRAME_PARALLEL_ENCODE
1248   RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
1249   init_ref_map_pair(cpi, ref_frame_map_pairs);
1250 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1251 
1252   RefBufferStack ref_buffer_stack = cpi->ref_buffer_stack;
1253   int remapped_ref_idx[REF_FRAMES];
1254 
1255   EncodeFrameParams frame_params = *init_frame_params;
1256   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1257 
1258   int ref_picture_map[REF_FRAMES];
1259 
1260   for (int i = 0; i < REF_FRAMES; ++i) {
1261     if (frame_params.frame_type == KEY_FRAME) {
1262       tpl_data->tpl_frame[-i - 1].gf_picture = NULL;
1263       tpl_data->tpl_frame[-i - 1].rec_picture = NULL;
1264       tpl_data->tpl_frame[-i - 1].frame_display_index = 0;
1265     } else {
1266       tpl_data->tpl_frame[-i - 1].gf_picture = &cm->ref_frame_map[i]->buf;
1267       tpl_data->tpl_frame[-i - 1].rec_picture = &cm->ref_frame_map[i]->buf;
1268       tpl_data->tpl_frame[-i - 1].frame_display_index =
1269           cm->ref_frame_map[i]->display_order_hint;
1270     }
1271 
1272     ref_picture_map[i] = -i - 1;
1273   }
1274 
1275   *tpl_group_frames = cur_frame_idx;
1276 
1277   int gf_index;
1278   int anc_frame_offset = gop_eval ? 0 : gf_group->cur_frame_idx[cur_frame_idx];
1279   int process_frame_count = 0;
1280   const int gop_length = get_gop_length(gf_group);
1281 
1282   for (gf_index = cur_frame_idx; gf_index < gop_length; ++gf_index) {
1283     TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
1284     FRAME_UPDATE_TYPE frame_update_type = gf_group->update_type[gf_index];
1285     int frame_display_index = gf_index == gf_group->size
1286                                   ? cpi->ppi->p_rc.baseline_gf_interval
1287                                   : gf_group->cur_frame_idx[gf_index] +
1288                                         gf_group->arf_src_offset[gf_index];
1289 
1290     int lookahead_index = frame_display_index - anc_frame_offset;
1291 
1292     frame_params.show_frame = frame_update_type != ARF_UPDATE &&
1293                               frame_update_type != INTNL_ARF_UPDATE;
1294     frame_params.show_existing_frame =
1295         frame_update_type == INTNL_OVERLAY_UPDATE ||
1296         frame_update_type == OVERLAY_UPDATE;
1297     frame_params.frame_type = gf_group->frame_type[gf_index];
1298 
1299     if (frame_update_type == LF_UPDATE)
1300       *pframe_qindex = gf_group->q_val[gf_index];
1301 
1302     struct lookahead_entry *buf;
1303     if (gf_index == cur_frame_idx) {
1304       buf = av1_lookahead_peek(cpi->ppi->lookahead, lookahead_index,
1305                                cpi->compressor_stage);
1306       tpl_frame->gf_picture = gop_eval ? &buf->img : frame_input->source;
1307     } else {
1308       buf = av1_lookahead_peek(cpi->ppi->lookahead, lookahead_index,
1309                                cpi->compressor_stage);
1310       if (buf == NULL) break;
1311       tpl_frame->gf_picture = &buf->img;
1312     }
1313     if (gop_eval && cpi->rc.frames_since_key > 0 &&
1314         gf_group->arf_index == gf_index)
1315       tpl_frame->gf_picture = &cpi->ppi->alt_ref_buffer;
1316 
1317     // 'cm->current_frame.frame_number' is the display number
1318     // of the current frame.
1319     // 'anc_frame_offset' is the number of frames displayed so
1320     // far within the gf group. 'cm->current_frame.frame_number -
1321     // anc_frame_offset' is the offset of the first frame in the gf group.
1322     // 'frame display index' is frame offset within the gf group.
1323     // 'frame_display_index + cm->current_frame.frame_number - anc_frame_offset'
1324     // is the display index of the frame.
1325     tpl_frame->frame_display_index =
1326         frame_display_index + cm->current_frame.frame_number - anc_frame_offset;
1327     assert(buf->display_idx == cpi->frame_index_set.show_frame_count -
1328                                    anc_frame_offset + frame_display_index);
1329 
1330     if (frame_update_type != OVERLAY_UPDATE &&
1331         frame_update_type != INTNL_OVERLAY_UPDATE) {
1332       tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
1333       tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
1334       ++process_frame_count;
1335     }
1336 #if CONFIG_FRAME_PARALLEL_ENCODE
1337     const int true_disp = (int)(tpl_frame->frame_display_index);
1338 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1339 
1340     av1_get_ref_frames(&ref_buffer_stack,
1341 #if CONFIG_FRAME_PARALLEL_ENCODE
1342                        ref_frame_map_pairs, true_disp,
1343 #if CONFIG_FRAME_PARALLEL_ENCODE_2
1344                        cpi, gf_index, 0,
1345 #endif  // CONFIG_FRAME_PARALLEL_ENCODE_2
1346 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1347                        remapped_ref_idx);
1348 
1349     int refresh_mask = av1_get_refresh_frame_flags(
1350         cpi, &frame_params, frame_update_type, gf_index,
1351 #if CONFIG_FRAME_PARALLEL_ENCODE
1352         true_disp, ref_frame_map_pairs,
1353 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1354         &ref_buffer_stack);
1355 
1356 #if CONFIG_FRAME_PARALLEL_ENCODE
1357     // Make the frames marked as is_frame_non_ref to non-reference frames.
1358     if (cpi->ppi->gf_group.is_frame_non_ref[gf_index]) refresh_mask = 0;
1359 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1360 
1361     int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
1362 #if !CONFIG_FRAME_PARALLEL_ENCODE
1363     av1_update_ref_frame_map(cpi, frame_update_type,
1364                              gf_group->refbuf_state[gf_index],
1365                              refresh_frame_map_index, &ref_buffer_stack);
1366 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1367 
1368 #if CONFIG_FRAME_PARALLEL_ENCODE
1369     if (refresh_frame_map_index < REF_FRAMES &&
1370         refresh_frame_map_index != INVALID_IDX) {
1371       ref_frame_map_pairs[refresh_frame_map_index].disp_order =
1372           AOMMAX(0, true_disp);
1373       ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
1374           get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
1375                              cpi->ppi->gf_group.max_layer_depth);
1376     }
1377 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1378 
1379     for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
1380       tpl_frame->ref_map_index[i - LAST_FRAME] =
1381           ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
1382 
1383     if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
1384 
1385     ++*tpl_group_frames;
1386   }
1387 
1388   if (cpi->rc.frames_since_key == 0) return;
1389 
1390   const int tpl_extend = cpi->oxcf.gf_cfg.lag_in_frames - MAX_GF_INTERVAL;
1391   int extend_frame_count = 0;
1392   int extend_frame_length = AOMMIN(
1393       tpl_extend, cpi->rc.frames_to_key - cpi->ppi->p_rc.baseline_gf_interval);
1394 
1395   int frame_display_index = gf_group->cur_frame_idx[gop_length - 1] +
1396                             gf_group->arf_src_offset[gop_length - 1] + 1;
1397 
1398   for (;
1399        gf_index < MAX_TPL_FRAME_IDX && extend_frame_count < extend_frame_length;
1400        ++gf_index) {
1401     TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
1402     FRAME_UPDATE_TYPE frame_update_type = LF_UPDATE;
1403     frame_params.show_frame = frame_update_type != ARF_UPDATE &&
1404                               frame_update_type != INTNL_ARF_UPDATE;
1405     frame_params.show_existing_frame =
1406         frame_update_type == INTNL_OVERLAY_UPDATE;
1407     frame_params.frame_type = INTER_FRAME;
1408 
1409     int lookahead_index = frame_display_index - anc_frame_offset;
1410     struct lookahead_entry *buf = av1_lookahead_peek(
1411         cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
1412 
1413     if (buf == NULL) break;
1414 
1415     tpl_frame->gf_picture = &buf->img;
1416     tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
1417     tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
1418     // 'cm->current_frame.frame_number' is the display number
1419     // of the current frame.
1420     // 'anc_frame_offset' is the number of frames displayed so
1421     // far within the gf group. 'cm->current_frame.frame_number -
1422     // anc_frame_offset' is the offset of the first frame in the gf group.
1423     // 'frame display index' is frame offset within the gf group.
1424     // 'frame_display_index + cm->current_frame.frame_number - anc_frame_offset'
1425     // is the display index of the frame.
1426     tpl_frame->frame_display_index =
1427         frame_display_index + cm->current_frame.frame_number - anc_frame_offset;
1428 
1429     ++process_frame_count;
1430 
1431     gf_group->update_type[gf_index] = LF_UPDATE;
1432     gf_group->q_val[gf_index] = *pframe_qindex;
1433 #if CONFIG_FRAME_PARALLEL_ENCODE
1434     const int true_disp = (int)(tpl_frame->frame_display_index);
1435 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1436     av1_get_ref_frames(&ref_buffer_stack,
1437 #if CONFIG_FRAME_PARALLEL_ENCODE
1438                        ref_frame_map_pairs, true_disp,
1439 #if CONFIG_FRAME_PARALLEL_ENCODE_2
1440                        cpi, gf_index, 0,
1441 #endif  // CONFIG_FRAME_PARALLEL_ENCODE_2
1442 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1443                        remapped_ref_idx);
1444     int refresh_mask = av1_get_refresh_frame_flags(
1445         cpi, &frame_params, frame_update_type, gf_index,
1446 #if CONFIG_FRAME_PARALLEL_ENCODE
1447         true_disp, ref_frame_map_pairs,
1448 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1449         &ref_buffer_stack);
1450     int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
1451 #if !CONFIG_FRAME_PARALLEL_ENCODE
1452     av1_update_ref_frame_map(cpi, frame_update_type,
1453                              gf_group->refbuf_state[gf_index],
1454                              refresh_frame_map_index, &ref_buffer_stack);
1455 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1456 
1457 #if CONFIG_FRAME_PARALLEL_ENCODE
1458     if (refresh_frame_map_index < REF_FRAMES &&
1459         refresh_frame_map_index != INVALID_IDX) {
1460       ref_frame_map_pairs[refresh_frame_map_index].disp_order =
1461           AOMMAX(0, true_disp);
1462       ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
1463           get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
1464                              cpi->ppi->gf_group.max_layer_depth);
1465     }
1466 #endif  // CONFIG_FRAME_PARALLEL_ENCODE
1467 
1468     for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
1469       tpl_frame->ref_map_index[i - LAST_FRAME] =
1470           ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
1471 
1472     tpl_frame->ref_map_index[ALTREF_FRAME - LAST_FRAME] = -1;
1473     tpl_frame->ref_map_index[LAST3_FRAME - LAST_FRAME] = -1;
1474     tpl_frame->ref_map_index[BWDREF_FRAME - LAST_FRAME] = -1;
1475     tpl_frame->ref_map_index[ALTREF2_FRAME - LAST_FRAME] = -1;
1476 
1477     if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
1478 
1479     ++*tpl_group_frames;
1480     ++extend_frame_count;
1481     ++frame_display_index;
1482   }
1483 }
1484 
av1_init_tpl_stats(TplParams * const tpl_data)1485 void av1_init_tpl_stats(TplParams *const tpl_data) {
1486   int frame_idx;
1487   tpl_data->ready = 0;
1488   set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
1489                            &tpl_data->tpl_bsize_1d);
1490   for (frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
1491     TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
1492     if (tpl_data->tpl_stats_pool[frame_idx] == NULL) continue;
1493     memset(tpl_data->tpl_stats_pool[frame_idx], 0,
1494            tpl_frame->height * tpl_frame->width *
1495                sizeof(*tpl_frame->tpl_stats_ptr));
1496     tpl_frame->is_valid = 0;
1497   }
1498 #if CONFIG_BITRATE_ACCURACY
1499   tpl_data->estimated_gop_bitrate = 0;
1500   tpl_data->actual_gop_bitrate = 0;
1501 #endif
1502 }
1503 
av1_tpl_stats_ready(const TplParams * tpl_data,int gf_frame_index)1504 int av1_tpl_stats_ready(const TplParams *tpl_data, int gf_frame_index) {
1505   if (tpl_data->ready == 0) {
1506     return 0;
1507   }
1508   if (gf_frame_index >= MAX_TPL_FRAME_IDX) {
1509     assert(gf_frame_index < MAX_TPL_FRAME_IDX && "Invalid gf_frame_index\n");
1510     return 0;
1511   }
1512   return tpl_data->tpl_frame[gf_frame_index].is_valid;
1513 }
1514 
eval_gop_length(double * beta,int gop_eval)1515 static AOM_INLINE int eval_gop_length(double *beta, int gop_eval) {
1516   switch (gop_eval) {
1517     case 1:
1518       // Allow larger GOP size if the base layer ARF has higher dependency
1519       // factor than the intermediate ARF and both ARFs have reasonably high
1520       // dependency factors.
1521       return (beta[0] >= beta[1] + 0.7) && beta[0] > 8.0;
1522     case 2:
1523       if ((beta[0] >= beta[1] + 0.4) && beta[0] > 1.6)
1524         return 1;  // Don't shorten the gf interval
1525       else if ((beta[0] < beta[1] + 0.1) || beta[0] <= 1.4)
1526         return 0;  // Shorten the gf interval
1527       else
1528         return 2;  // Cannot decide the gf interval, so redo the
1529                    // tpl stats calculation.
1530     case 3: return beta[0] > 1.1;
1531     default: return 2;
1532   }
1533 }
1534 
1535 // TODO(jingning): Restructure av1_rc_pick_q_and_bounds() to narrow down
1536 // the scope of input arguments.
av1_tpl_preload_rc_estimate(AV1_COMP * cpi,const EncodeFrameParams * const frame_params)1537 void av1_tpl_preload_rc_estimate(AV1_COMP *cpi,
1538                                  const EncodeFrameParams *const frame_params) {
1539   AV1_COMMON *cm = &cpi->common;
1540   GF_GROUP *gf_group = &cpi->ppi->gf_group;
1541   int bottom_index, top_index;
1542   cm->current_frame.frame_type = frame_params->frame_type;
1543   for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
1544        ++gf_index) {
1545     cm->current_frame.frame_type = gf_group->frame_type[gf_index];
1546     cm->show_frame = gf_group->update_type[gf_index] != ARF_UPDATE &&
1547                      gf_group->update_type[gf_index] != INTNL_ARF_UPDATE;
1548     gf_group->q_val[gf_index] = av1_rc_pick_q_and_bounds(
1549         cpi, cm->width, cm->height, gf_index, &bottom_index, &top_index);
1550   }
1551 }
1552 
av1_tpl_setup_stats(AV1_COMP * cpi,int gop_eval,const EncodeFrameParams * const frame_params,const EncodeFrameInput * const frame_input)1553 int av1_tpl_setup_stats(AV1_COMP *cpi, int gop_eval,
1554                         const EncodeFrameParams *const frame_params,
1555                         const EncodeFrameInput *const frame_input) {
1556 #if CONFIG_COLLECT_COMPONENT_TIMING
1557   start_timing(cpi, av1_tpl_setup_stats_time);
1558 #endif
1559   AV1_COMMON *cm = &cpi->common;
1560   MultiThreadInfo *const mt_info = &cpi->mt_info;
1561   AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
1562   GF_GROUP *gf_group = &cpi->ppi->gf_group;
1563   EncodeFrameParams this_frame_params = *frame_params;
1564   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1565   int approx_gop_eval = (gop_eval > 1);
1566   int num_arf_layers = MAX_ARF_LAYERS;
1567 
1568   // When gop_eval is set to 2, tpl stats calculation is done for ARFs from base
1569   // layer, (base+1) layer and (base+2) layer. When gop_eval is set to 3,
1570   // tpl stats calculation is limited to ARFs from base layer and (base+1)
1571   // layer.
1572   if (approx_gop_eval) num_arf_layers = (gop_eval == 2) ? 3 : 2;
1573 
1574   if (cpi->superres_mode != AOM_SUPERRES_NONE) {
1575     assert(cpi->superres_mode != AOM_SUPERRES_AUTO);
1576     av1_init_tpl_stats(tpl_data);
1577     return 0;
1578   }
1579 
1580   cm->current_frame.frame_type = frame_params->frame_type;
1581   for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
1582        ++gf_index) {
1583     cm->current_frame.frame_type = gf_group->frame_type[gf_index];
1584     av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
1585                                  gf_group->update_type[gf_index],
1586                                  gf_group->refbuf_state[gf_index], 0);
1587 
1588     memcpy(&cpi->refresh_frame, &this_frame_params.refresh_frame,
1589            sizeof(cpi->refresh_frame));
1590   }
1591 
1592   int pframe_qindex;
1593   int tpl_gf_group_frames;
1594   init_gop_frames_for_tpl(cpi, frame_params, gf_group, gop_eval,
1595                           &tpl_gf_group_frames, frame_input, &pframe_qindex);
1596 
1597   cpi->ppi->p_rc.base_layer_qp = pframe_qindex;
1598 
1599   av1_init_tpl_stats(tpl_data);
1600 
1601   tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read_dummy;
1602   tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write_dummy;
1603 
1604   av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
1605                                     cm->width, cm->height);
1606 
1607   if (frame_params->frame_type == KEY_FRAME) {
1608     av1_init_mv_probs(cm);
1609   }
1610   av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
1611                     cm->features.allow_high_precision_mv, cpi->td.mb.mv_costs);
1612 
1613   const int gop_length = get_gop_length(gf_group);
1614   // Backward propagation from tpl_group_frames to 1.
1615   for (int frame_idx = cpi->gf_frame_index; frame_idx < tpl_gf_group_frames;
1616        ++frame_idx) {
1617     if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE ||
1618         gf_group->update_type[frame_idx] == OVERLAY_UPDATE)
1619       continue;
1620 
1621     // When approx_gop_eval = 1, skip tpl stats calculation for higher layer
1622     // frames and for frames beyond gop length.
1623     if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers ||
1624                             frame_idx >= gop_length))
1625       continue;
1626 
1627     init_mc_flow_dispenser(cpi, frame_idx, pframe_qindex);
1628     if (mt_info->num_workers > 1) {
1629       tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read;
1630       tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write;
1631       av1_mc_flow_dispenser_mt(cpi);
1632     } else {
1633       mc_flow_dispenser(cpi);
1634     }
1635     av1_tpl_store_txfm_stats(tpl_data, &cpi->td.tpl_txfm_stats, frame_idx);
1636 
1637     aom_extend_frame_borders(tpl_data->tpl_frame[frame_idx].rec_picture,
1638                              av1_num_planes(cm));
1639   }
1640 
1641   for (int frame_idx = tpl_gf_group_frames - 1;
1642        frame_idx >= cpi->gf_frame_index; --frame_idx) {
1643     if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE ||
1644         gf_group->update_type[frame_idx] == OVERLAY_UPDATE)
1645       continue;
1646 
1647     if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers ||
1648                             frame_idx >= gop_length))
1649       continue;
1650 
1651     mc_flow_synthesizer(tpl_data, frame_idx, cm->mi_params.mi_rows,
1652                         cm->mi_params.mi_cols);
1653   }
1654 
1655   av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
1656                                gf_group->update_type[cpi->gf_frame_index],
1657                                gf_group->update_type[cpi->gf_frame_index], 0);
1658   cm->current_frame.frame_type = frame_params->frame_type;
1659   cm->show_frame = frame_params->show_frame;
1660 
1661 #if CONFIG_COLLECT_COMPONENT_TIMING
1662   // Record the time if the function returns.
1663   if (cpi->common.tiles.large_scale || gf_group->max_layer_depth_allowed == 0 ||
1664       !gop_eval)
1665     end_timing(cpi, av1_tpl_setup_stats_time);
1666 #endif
1667 
1668   if (!approx_gop_eval) {
1669     tpl_data->ready = 1;
1670   }
1671   if (cpi->common.tiles.large_scale) return 0;
1672   if (gf_group->max_layer_depth_allowed == 0) return 1;
1673   if (!gop_eval) return 0;
1674   assert(gf_group->arf_index >= 0);
1675 
1676   double beta[2] = { 0.0 };
1677   for (int frame_idx = gf_group->arf_index;
1678        frame_idx <= AOMMIN(tpl_gf_group_frames - 1, gf_group->arf_index + 1);
1679        ++frame_idx) {
1680     TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
1681     TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
1682     int tpl_stride = tpl_frame->stride;
1683     int64_t intra_cost_base = 0;
1684     int64_t mc_dep_cost_base = 0;
1685     const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
1686     const int row_step = step;
1687     const int col_step_sr =
1688         coded_to_superres_mi(step, cm->superres_scale_denominator);
1689     const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
1690 
1691     for (int row = 0; row < cm->mi_params.mi_rows; row += row_step) {
1692       for (int col = 0; col < mi_cols_sr; col += col_step_sr) {
1693         TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
1694             row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
1695         int64_t mc_dep_delta =
1696             RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
1697                    this_stats->mc_dep_dist);
1698         intra_cost_base += (this_stats->recrf_dist << RDDIV_BITS);
1699         mc_dep_cost_base +=
1700             (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
1701       }
1702     }
1703     if (intra_cost_base == 0) {
1704       // This should happen very rarely and if it happens, assign a dummy value
1705       // to it since it probably wouldn't influence things much
1706       beta[frame_idx - gf_group->arf_index] = 0;
1707     } else {
1708       beta[frame_idx - gf_group->arf_index] =
1709           (double)mc_dep_cost_base / intra_cost_base;
1710     }
1711   }
1712 
1713 #if CONFIG_COLLECT_COMPONENT_TIMING
1714   end_timing(cpi, av1_tpl_setup_stats_time);
1715 #endif
1716   return eval_gop_length(beta, gop_eval);
1717 }
1718 
av1_tpl_rdmult_setup(AV1_COMP * cpi)1719 void av1_tpl_rdmult_setup(AV1_COMP *cpi) {
1720   const AV1_COMMON *const cm = &cpi->common;
1721   const int tpl_idx = cpi->gf_frame_index;
1722 
1723   assert(
1724       IMPLIES(cpi->ppi->gf_group.size > 0, tpl_idx < cpi->ppi->gf_group.size));
1725 
1726   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1727   const TplDepFrame *const tpl_frame = &tpl_data->tpl_frame[tpl_idx];
1728 
1729   if (!tpl_frame->is_valid) return;
1730 
1731   const TplDepStats *const tpl_stats = tpl_frame->tpl_stats_ptr;
1732   const int tpl_stride = tpl_frame->stride;
1733   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
1734 
1735   const int block_size = BLOCK_16X16;
1736   const int num_mi_w = mi_size_wide[block_size];
1737   const int num_mi_h = mi_size_high[block_size];
1738   const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
1739   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
1740   const double c = 1.2;
1741   const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
1742 
1743   // Loop through each 'block_size' X 'block_size' block.
1744   for (int row = 0; row < num_rows; row++) {
1745     for (int col = 0; col < num_cols; col++) {
1746       double intra_cost = 0.0, mc_dep_cost = 0.0;
1747       // Loop through each mi block.
1748       for (int mi_row = row * num_mi_h; mi_row < (row + 1) * num_mi_h;
1749            mi_row += step) {
1750         for (int mi_col = col * num_mi_w; mi_col < (col + 1) * num_mi_w;
1751              mi_col += step) {
1752           if (mi_row >= cm->mi_params.mi_rows || mi_col >= mi_cols_sr) continue;
1753           const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
1754               mi_row, mi_col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
1755           int64_t mc_dep_delta =
1756               RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
1757                      this_stats->mc_dep_dist);
1758           intra_cost += (double)(this_stats->recrf_dist << RDDIV_BITS);
1759           mc_dep_cost +=
1760               (double)(this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
1761         }
1762       }
1763       const double rk = intra_cost / mc_dep_cost;
1764       const int index = row * num_cols + col;
1765       cpi->ppi->tpl_rdmult_scaling_factors[index] = rk / cpi->rd.r0 + c;
1766     }
1767   }
1768 }
1769 
av1_tpl_rdmult_setup_sb(AV1_COMP * cpi,MACROBLOCK * const x,BLOCK_SIZE sb_size,int mi_row,int mi_col)1770 void av1_tpl_rdmult_setup_sb(AV1_COMP *cpi, MACROBLOCK *const x,
1771                              BLOCK_SIZE sb_size, int mi_row, int mi_col) {
1772   AV1_COMMON *const cm = &cpi->common;
1773   GF_GROUP *gf_group = &cpi->ppi->gf_group;
1774   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
1775                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
1776   const int tpl_idx = cpi->gf_frame_index;
1777 
1778   if (tpl_idx >= MAX_TPL_FRAME_IDX) return;
1779   TplDepFrame *tpl_frame = &cpi->ppi->tpl_data.tpl_frame[tpl_idx];
1780   if (!tpl_frame->is_valid) return;
1781   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return;
1782   if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return;
1783 
1784   const int mi_col_sr =
1785       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
1786   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
1787   const int sb_mi_width_sr = coded_to_superres_mi(
1788       mi_size_wide[sb_size], cm->superres_scale_denominator);
1789 
1790   const int bsize_base = BLOCK_16X16;
1791   const int num_mi_w = mi_size_wide[bsize_base];
1792   const int num_mi_h = mi_size_high[bsize_base];
1793   const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
1794   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
1795   const int num_bcols = (sb_mi_width_sr + num_mi_w - 1) / num_mi_w;
1796   const int num_brows = (mi_size_high[sb_size] + num_mi_h - 1) / num_mi_h;
1797   int row, col;
1798 
1799   double base_block_count = 0.0;
1800   double log_sum = 0.0;
1801 
1802   for (row = mi_row / num_mi_w;
1803        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
1804     for (col = mi_col_sr / num_mi_h;
1805          col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
1806       const int index = row * num_cols + col;
1807       log_sum += log(cpi->ppi->tpl_rdmult_scaling_factors[index]);
1808       base_block_count += 1.0;
1809     }
1810   }
1811 
1812   const CommonQuantParams *quant_params = &cm->quant_params;
1813   const int orig_rdmult = av1_compute_rd_mult(
1814       cpi, quant_params->base_qindex + quant_params->y_dc_delta_q);
1815   const int new_rdmult =
1816       av1_compute_rd_mult(cpi, quant_params->base_qindex + x->delta_qindex +
1817                                    quant_params->y_dc_delta_q);
1818   const double scaling_factor = (double)new_rdmult / (double)orig_rdmult;
1819 
1820   double scale_adj = log(scaling_factor) - log_sum / base_block_count;
1821   scale_adj = exp_bounded(scale_adj);
1822 
1823   for (row = mi_row / num_mi_w;
1824        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
1825     for (col = mi_col_sr / num_mi_h;
1826          col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
1827       const int index = row * num_cols + col;
1828       cpi->ppi->tpl_sb_rdmult_scaling_factors[index] =
1829           scale_adj * cpi->ppi->tpl_rdmult_scaling_factors[index];
1830     }
1831   }
1832 }
1833 
av1_exponential_entropy(double q_step,double b)1834 double av1_exponential_entropy(double q_step, double b) {
1835   b = AOMMAX(b, TPL_EPSILON);
1836   double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
1837   return -log2(1 - z) - z * log2(z) / (1 - z);
1838 }
1839 
av1_laplace_entropy(double q_step,double b,double zero_bin_ratio)1840 double av1_laplace_entropy(double q_step, double b, double zero_bin_ratio) {
1841   // zero bin's size is zero_bin_ratio * q_step
1842   // non-zero bin's size is q_step
1843   b = AOMMAX(b, TPL_EPSILON);
1844   double z = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
1845   double h = av1_exponential_entropy(q_step, b);
1846   double r = -(1 - z) * log2(1 - z) - z * log2(z) + z * (h + 1);
1847   return r;
1848 }
1849 
av1_laplace_estimate_frame_rate(int q_index,int block_count,const double * abs_coeff_mean,int coeff_num)1850 double av1_laplace_estimate_frame_rate(int q_index, int block_count,
1851                                        const double *abs_coeff_mean,
1852                                        int coeff_num) {
1853   double zero_bin_ratio = 2;
1854   double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
1855   double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
1856   double est_rate = 0;
1857   // dc coeff
1858   est_rate += av1_laplace_entropy(dc_q_step, abs_coeff_mean[0], zero_bin_ratio);
1859   // ac coeff
1860   for (int i = 1; i < coeff_num; ++i) {
1861     est_rate +=
1862         av1_laplace_entropy(ac_q_step, abs_coeff_mean[i], zero_bin_ratio);
1863   }
1864   est_rate *= block_count;
1865   return est_rate;
1866 }
1867 
av1_estimate_gop_bitrate(const int * q_index_list,const int frame_count,const TplTxfmStats * stats_list,const int * stats_valid_list,double * bitrate_byframe_list)1868 double av1_estimate_gop_bitrate(const int *q_index_list, const int frame_count,
1869                                 const TplTxfmStats *stats_list,
1870                                 const int *stats_valid_list,
1871                                 double *bitrate_byframe_list) {
1872   double gop_bitrate = 0;
1873   for (int frame_index = 0; frame_index < frame_count; frame_index++) {
1874     if (stats_valid_list[frame_index]) {
1875       int q_index = q_index_list[frame_index];
1876       TplTxfmStats frame_stats = stats_list[frame_index];
1877 
1878       /* Convert to mean absolute deviation */
1879       double abs_coeff_mean[256] = { 0 };
1880       for (int i = 0; i < 256; i++) {
1881         abs_coeff_mean[i] =
1882             frame_stats.abs_coeff_sum[i] / frame_stats.txfm_block_count;
1883       }
1884 
1885       double frame_bitrate = av1_laplace_estimate_frame_rate(
1886           q_index, frame_stats.txfm_block_count, abs_coeff_mean, 256);
1887       gop_bitrate += frame_bitrate;
1888 
1889       if (bitrate_byframe_list != NULL) {
1890         bitrate_byframe_list[frame_index] = frame_bitrate;
1891       }
1892     }
1893   }
1894   return gop_bitrate;
1895 }
1896 
av1_estimate_coeff_entropy(double q_step,double b,double zero_bin_ratio,int qcoeff)1897 double av1_estimate_coeff_entropy(double q_step, double b,
1898                                   double zero_bin_ratio, int qcoeff) {
1899   b = AOMMAX(b, TPL_EPSILON);
1900   int abs_qcoeff = abs(qcoeff);
1901   double z0 = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
1902   if (abs_qcoeff == 0) {
1903     double r = -log2(1 - z0);
1904     return r;
1905   } else {
1906     double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
1907     double r = 1 - log2(z0) - log2(1 - z) - (abs_qcoeff - 1) * log2(z);
1908     return r;
1909   }
1910 }
1911 
av1_estimate_txfm_block_entropy(int q_index,const double * abs_coeff_mean,int * qcoeff_arr,int coeff_num)1912 double av1_estimate_txfm_block_entropy(int q_index,
1913                                        const double *abs_coeff_mean,
1914                                        int *qcoeff_arr, int coeff_num) {
1915   double zero_bin_ratio = 2;
1916   double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
1917   double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
1918   double est_rate = 0;
1919   // dc coeff
1920   est_rate += av1_estimate_coeff_entropy(dc_q_step, abs_coeff_mean[0],
1921                                          zero_bin_ratio, qcoeff_arr[0]);
1922   // ac coeff
1923   for (int i = 1; i < coeff_num; ++i) {
1924     est_rate += av1_estimate_coeff_entropy(ac_q_step, abs_coeff_mean[i],
1925                                            zero_bin_ratio, qcoeff_arr[i]);
1926   }
1927   return est_rate;
1928 }
1929 
1930 #if CONFIG_RD_COMMAND
av1_read_rd_command(const char * filepath,RD_COMMAND * rd_command)1931 void av1_read_rd_command(const char *filepath, RD_COMMAND *rd_command) {
1932   FILE *fptr = fopen(filepath, "r");
1933   fscanf(fptr, "%d", &rd_command->frame_count);
1934   rd_command->frame_index = 0;
1935   for (int i = 0; i < rd_command->frame_count; ++i) {
1936     int option;
1937     fscanf(fptr, "%d", &option);
1938     rd_command->option_ls[i] = (RD_OPTION)option;
1939     if (option == RD_OPTION_SET_Q) {
1940       fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
1941     } else if (option == RD_OPTION_SET_Q_RDMULT) {
1942       fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
1943       fscanf(fptr, "%d", &rd_command->rdmult_ls[i]);
1944     }
1945   }
1946   fclose(fptr);
1947 }
1948 #endif  // CONFIG_RD_COMMAND
1949 
get_tpl_stats_valid_list(const TplParams * tpl_data,int gop_size,int * stats_valid_list)1950 void get_tpl_stats_valid_list(const TplParams *tpl_data, int gop_size,
1951                               int *stats_valid_list) {
1952   for (int i = 0; i < gop_size; ++i) {
1953     stats_valid_list[i] = av1_tpl_stats_ready(tpl_data, i);
1954   }
1955 }
1956 
1957 /*
1958  * Estimate the optimal base q index for a GOP.
1959  */
av1_q_mode_estimate_base_q(const GF_GROUP * gf_group,const TplTxfmStats * txfm_stats_list,const int * stats_valid_list,double bit_budget,int gf_frame_index,double arf_qstep_ratio,aom_bit_depth_t bit_depth,double scale_factor,int * q_index_list,double * estimated_bitrate_byframe)1960 int av1_q_mode_estimate_base_q(const GF_GROUP *gf_group,
1961                                const TplTxfmStats *txfm_stats_list,
1962                                const int *stats_valid_list, double bit_budget,
1963                                int gf_frame_index, double arf_qstep_ratio,
1964                                aom_bit_depth_t bit_depth, double scale_factor,
1965                                int *q_index_list,
1966                                double *estimated_bitrate_byframe) {
1967   int q_max = 255;  // Maximum q value.
1968   int q_min = 0;    // Minimum q value.
1969   int q = (q_max + q_min) / 2;
1970 
1971   av1_q_mode_compute_gop_q_indices(gf_frame_index, q_max, arf_qstep_ratio,
1972                                    bit_depth, gf_group, q_index_list);
1973   double q_max_estimate = av1_estimate_gop_bitrate(
1974       q_index_list, gf_group->size, txfm_stats_list, stats_valid_list, NULL);
1975   av1_q_mode_compute_gop_q_indices(gf_frame_index, q_min, arf_qstep_ratio,
1976                                    bit_depth, gf_group, q_index_list);
1977   double q_min_estimate = av1_estimate_gop_bitrate(
1978       q_index_list, gf_group->size, txfm_stats_list, stats_valid_list, NULL);
1979 
1980   while (true) {
1981     av1_q_mode_compute_gop_q_indices(gf_frame_index, q, arf_qstep_ratio,
1982                                      bit_depth, gf_group, q_index_list);
1983 
1984     double estimate = av1_estimate_gop_bitrate(
1985         q_index_list, gf_group->size, txfm_stats_list, stats_valid_list, NULL);
1986 
1987     estimate *= scale_factor;
1988 
1989     // We want to find the lowest q that satisfies the bit budget constraint.
1990     // A binary search narrows the result down to two values: q_min and q_max.
1991     if (q_max <= q_min + 1 || estimate == bit_budget) {
1992       // Pick the estimate that lands closest to the budget.
1993       if (fabs(q_max_estimate - bit_budget) <
1994           fabs(q_min_estimate - bit_budget)) {
1995         q = q_max;
1996       } else {
1997         q = q_min;
1998       }
1999       break;
2000     } else if (estimate > bit_budget) {
2001       q_min = q;
2002       q_min_estimate = estimate;
2003       q = (q_max + q_min) / 2;
2004     } else if (estimate < bit_budget) {
2005       q_max = q;
2006       q_max_estimate = estimate;
2007       q = (q_max + q_min) / 2;
2008     }
2009   }
2010 
2011   // Update q_index_list and vbr_rc_info.
2012   av1_q_mode_compute_gop_q_indices(gf_frame_index, q, arf_qstep_ratio,
2013                                    bit_depth, gf_group, q_index_list);
2014   av1_estimate_gop_bitrate(q_index_list, gf_group->size, txfm_stats_list,
2015                            stats_valid_list, estimated_bitrate_byframe);
2016   return q;
2017 }
2018 
av1_tpl_get_qstep_ratio(const TplParams * tpl_data,int gf_frame_index)2019 double av1_tpl_get_qstep_ratio(const TplParams *tpl_data, int gf_frame_index) {
2020   const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_frame_index];
2021   const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
2022 
2023   const int tpl_stride = tpl_frame->stride;
2024   int64_t intra_cost_base = 0;
2025   int64_t mc_dep_cost_base = 0;
2026   const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
2027 
2028   for (int row = 0; row < tpl_frame->mi_rows; row += step) {
2029     for (int col = 0; col < tpl_frame->mi_cols; col += step) {
2030       const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
2031           row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
2032       const int64_t mc_dep_delta =
2033           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
2034                  this_stats->mc_dep_dist);
2035       intra_cost_base += (this_stats->recrf_dist << RDDIV_BITS);
2036       mc_dep_cost_base += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
2037     }
2038   }
2039   const double r0 = (double)intra_cost_base / mc_dep_cost_base;
2040   return sqrt(r0);
2041 }
2042 
av1_get_q_index_from_qstep_ratio(int leaf_qindex,double qstep_ratio,aom_bit_depth_t bit_depth)2043 int av1_get_q_index_from_qstep_ratio(int leaf_qindex, double qstep_ratio,
2044                                      aom_bit_depth_t bit_depth) {
2045   const double leaf_qstep = av1_dc_quant_QTX(leaf_qindex, 0, bit_depth);
2046   const double target_qstep = leaf_qstep * qstep_ratio;
2047   int qindex = leaf_qindex;
2048   for (qindex = leaf_qindex; qindex > 0; --qindex) {
2049     const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
2050     if (qstep + 0.1 <= target_qstep) break;
2051   }
2052   return qindex;
2053 }
2054 
av1_tpl_get_q_index(const TplParams * tpl_data,int gf_frame_index,int leaf_qindex,aom_bit_depth_t bit_depth)2055 int av1_tpl_get_q_index(const TplParams *tpl_data, int gf_frame_index,
2056                         int leaf_qindex, aom_bit_depth_t bit_depth) {
2057   const double qstep_ratio = av1_tpl_get_qstep_ratio(tpl_data, gf_frame_index);
2058   return av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
2059 }
2060 
2061 #if CONFIG_BITRATE_ACCURACY
av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO * vbr_rc_info,const TplParams * tpl_data,const GF_GROUP * gf_group,int gf_frame_index,aom_bit_depth_t bit_depth)2062 void av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO *vbr_rc_info,
2063                                     const TplParams *tpl_data,
2064                                     const GF_GROUP *gf_group,
2065                                     int gf_frame_index,
2066                                     aom_bit_depth_t bit_depth) {
2067   // We always update q_index_list when gf_frame_index is zero.
2068   // This will make the q indices for the entire gop more consistent
2069   if (gf_frame_index == 0) {
2070     vbr_rc_info->q_index_list_ready = 1;
2071     double gop_bit_budget = vbr_rc_info->gop_bit_budget;
2072     // Use the gop_bit_budget to determine q_index_list.
2073     const double arf_qstep_ratio =
2074         av1_tpl_get_qstep_ratio(tpl_data, gf_frame_index);
2075     // We update the q indices in vbr_rc_info in vbr_rc_info->q_index_list
2076     // rather than gf_group->q_val to avoid conflicts with the existing code.
2077     int stats_valid_list[MAX_LENGTH_TPL_FRAME_STATS] = { 0 };
2078     get_tpl_stats_valid_list(tpl_data, gf_group->size, stats_valid_list);
2079 
2080     double mv_bits = av1_tpl_compute_mv_bits(
2081         tpl_data, gf_group->size, gf_frame_index,
2082         gf_group->update_type[gf_frame_index], vbr_rc_info);
2083 
2084     mv_bits = AOMMIN(mv_bits, 0.6 * gop_bit_budget);
2085     gop_bit_budget -= mv_bits;
2086 
2087     double scale_factor =
2088         vbr_rc_info->scale_factors[gf_group->update_type[gf_frame_index]];
2089 
2090     av1_q_mode_estimate_base_q(
2091         gf_group, tpl_data->txfm_stats_list, stats_valid_list, gop_bit_budget,
2092         gf_frame_index, arf_qstep_ratio, bit_depth, scale_factor,
2093         vbr_rc_info->q_index_list, vbr_rc_info->estimated_bitrate_byframe);
2094   }
2095 }
2096 
2097 /* For a GOP, calculate the bits used by motion vectors. */
av1_tpl_compute_mv_bits(const TplParams * tpl_data,int gf_group_size,int gf_frame_index,int gf_update_type,VBR_RATECTRL_INFO * vbr_rc_info)2098 double av1_tpl_compute_mv_bits(const TplParams *tpl_data, int gf_group_size,
2099                                int gf_frame_index, int gf_update_type,
2100                                VBR_RATECTRL_INFO *vbr_rc_info) {
2101   double total_mv_bits = 0;
2102 
2103   // Loop through each frame.
2104   for (int i = gf_frame_index; i < gf_group_size; i++) {
2105     if (av1_tpl_stats_ready(tpl_data, i)) {
2106       TplDepFrame *tpl_frame = &tpl_data->tpl_frame[i];
2107       double frame_mv_bits = av1_tpl_compute_frame_mv_entropy(
2108           tpl_frame, tpl_data->tpl_stats_block_mis_log2);
2109       total_mv_bits += frame_mv_bits;
2110       vbr_rc_info->estimated_mv_bitrate_byframe[i] = frame_mv_bits;
2111     } else {
2112       vbr_rc_info->estimated_mv_bitrate_byframe[i] = 0;
2113     }
2114   }
2115 
2116   // Scale the final result by the scale factor.
2117   return total_mv_bits * vbr_rc_info->mv_scale_factors[gf_update_type];
2118 }
2119 #endif  // CONFIG_BITRATE_ACCURACY
2120 
2121 // Use upper and left neighbor block as the reference MVs.
2122 // Compute the minimum difference between current MV and reference MV.
av1_compute_mv_difference(const TplDepFrame * tpl_frame,int row,int col,int step,int tpl_stride,int right_shift)2123 int_mv av1_compute_mv_difference(const TplDepFrame *tpl_frame, int row, int col,
2124                                  int step, int tpl_stride, int right_shift) {
2125   const TplDepStats *tpl_stats =
2126       &tpl_frame
2127            ->tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_stride, right_shift)];
2128   int_mv current_mv = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2129   int current_mv_magnitude =
2130       abs(current_mv.as_mv.row) + abs(current_mv.as_mv.col);
2131 
2132   // Retrieve the up and left neighbors.
2133   int up_error = INT_MAX;
2134   int_mv up_mv_diff;
2135   if (row - step >= 0) {
2136     tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
2137         row - step, col, tpl_stride, right_shift)];
2138     up_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2139     up_mv_diff.as_mv.row = current_mv.as_mv.row - up_mv_diff.as_mv.row;
2140     up_mv_diff.as_mv.col = current_mv.as_mv.col - up_mv_diff.as_mv.col;
2141     up_error = abs(up_mv_diff.as_mv.row) + abs(up_mv_diff.as_mv.col);
2142   }
2143 
2144   int left_error = INT_MAX;
2145   int_mv left_mv_diff;
2146   if (col - step >= 0) {
2147     tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
2148         row, col - step, tpl_stride, right_shift)];
2149     left_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2150     left_mv_diff.as_mv.row = current_mv.as_mv.row - left_mv_diff.as_mv.row;
2151     left_mv_diff.as_mv.col = current_mv.as_mv.col - left_mv_diff.as_mv.col;
2152     left_error = abs(left_mv_diff.as_mv.row) + abs(left_mv_diff.as_mv.col);
2153   }
2154 
2155   // Return the MV with the minimum distance from current.
2156   if (up_error < left_error && up_error < current_mv_magnitude) {
2157     return up_mv_diff;
2158   } else if (left_error < up_error && left_error < current_mv_magnitude) {
2159     return left_mv_diff;
2160   }
2161   return current_mv;
2162 }
2163 
2164 /* Compute the entropy of motion vectors for a single frame. */
av1_tpl_compute_frame_mv_entropy(const TplDepFrame * tpl_frame,uint8_t right_shift)2165 double av1_tpl_compute_frame_mv_entropy(const TplDepFrame *tpl_frame,
2166                                         uint8_t right_shift) {
2167   if (!tpl_frame->is_valid) {
2168     return 0;
2169   }
2170 
2171   int count_row[500] = { 0 };
2172   int count_col[500] = { 0 };
2173   int n = 0;  // number of MVs to process
2174 
2175   const int tpl_stride = tpl_frame->stride;
2176   const int step = 1 << right_shift;
2177 
2178   for (int row = 0; row < tpl_frame->mi_rows; row += step) {
2179     for (int col = 0; col < tpl_frame->mi_cols; col += step) {
2180       int_mv mv = av1_compute_mv_difference(tpl_frame, row, col, step,
2181                                             tpl_stride, right_shift);
2182       count_row[clamp(mv.as_mv.row, 0, 499)] += 1;
2183       count_col[clamp(mv.as_mv.row, 0, 499)] += 1;
2184       n += 1;
2185     }
2186   }
2187 
2188   // Estimate the bits used using the entropy formula.
2189   double rate_row = 0;
2190   double rate_col = 0;
2191   for (int i = 0; i < 500; i++) {
2192     if (count_row[i] != 0) {
2193       double p = count_row[i] / (double)n;
2194       rate_row += count_row[i] * -log2(p);
2195     }
2196     if (count_col[i] != 0) {
2197       double p = count_col[i] / (double)n;
2198       rate_col += count_col[i] * -log2(p);
2199     }
2200   }
2201 
2202   return rate_row + rate_col;
2203 }
2204