1 /*
2 * OpenEXR (.exr) image decoder
3 * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4 * Copyright (c) 2009 Jimmy Christensen
5 *
6 * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7 *
8 * This file is part of FFmpeg.
9 *
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25 /**
26 * @file
27 * OpenEXR decoder
28 * @author Jimmy Christensen
29 *
30 * For more information on the OpenEXR format, visit:
31 * http://openexr.com/
32 */
33
34 #include <float.h>
35 #include <zlib.h>
36
37 #include "libavutil/avassert.h"
38 #include "libavutil/common.h"
39 #include "libavutil/imgutils.h"
40 #include "libavutil/intfloat.h"
41 #include "libavutil/avstring.h"
42 #include "libavutil/opt.h"
43 #include "libavutil/color_utils.h"
44
45 #include "avcodec.h"
46 #include "bytestream.h"
47
48 #if HAVE_BIGENDIAN
49 #include "bswapdsp.h"
50 #endif
51
52 #include "exrdsp.h"
53 #include "get_bits.h"
54 #include "internal.h"
55 #include "half2float.h"
56 #include "mathops.h"
57 #include "thread.h"
58
59 enum ExrCompr {
60 EXR_RAW,
61 EXR_RLE,
62 EXR_ZIP1,
63 EXR_ZIP16,
64 EXR_PIZ,
65 EXR_PXR24,
66 EXR_B44,
67 EXR_B44A,
68 EXR_DWAA,
69 EXR_DWAB,
70 EXR_UNKN,
71 };
72
73 enum ExrPixelType {
74 EXR_UINT,
75 EXR_HALF,
76 EXR_FLOAT,
77 EXR_UNKNOWN,
78 };
79
80 enum ExrTileLevelMode {
81 EXR_TILE_LEVEL_ONE,
82 EXR_TILE_LEVEL_MIPMAP,
83 EXR_TILE_LEVEL_RIPMAP,
84 EXR_TILE_LEVEL_UNKNOWN,
85 };
86
87 enum ExrTileLevelRound {
88 EXR_TILE_ROUND_UP,
89 EXR_TILE_ROUND_DOWN,
90 EXR_TILE_ROUND_UNKNOWN,
91 };
92
93 typedef struct HuffEntry {
94 uint8_t len;
95 uint16_t sym;
96 uint32_t code;
97 } HuffEntry;
98
99 typedef struct EXRChannel {
100 int xsub, ysub;
101 enum ExrPixelType pixel_type;
102 } EXRChannel;
103
104 typedef struct EXRTileAttribute {
105 int32_t xSize;
106 int32_t ySize;
107 enum ExrTileLevelMode level_mode;
108 enum ExrTileLevelRound level_round;
109 } EXRTileAttribute;
110
111 typedef struct EXRThreadData {
112 uint8_t *uncompressed_data;
113 int uncompressed_size;
114
115 uint8_t *tmp;
116 int tmp_size;
117
118 uint8_t *bitmap;
119 uint16_t *lut;
120
121 uint8_t *ac_data;
122 unsigned ac_size;
123
124 uint8_t *dc_data;
125 unsigned dc_size;
126
127 uint8_t *rle_data;
128 unsigned rle_size;
129
130 uint8_t *rle_raw_data;
131 unsigned rle_raw_size;
132
133 float block[3][64];
134
135 int ysize, xsize;
136
137 int channel_line_size;
138
139 int run_sym;
140 HuffEntry *he;
141 uint64_t *freq;
142 VLC vlc;
143 } EXRThreadData;
144
145 typedef struct EXRContext {
146 AVClass *class;
147 AVFrame *picture;
148 AVCodecContext *avctx;
149 ExrDSPContext dsp;
150
151 #if HAVE_BIGENDIAN
152 BswapDSPContext bbdsp;
153 #endif
154
155 enum ExrCompr compression;
156 enum ExrPixelType pixel_type;
157 int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
158 const AVPixFmtDescriptor *desc;
159
160 int w, h;
161 uint32_t sar;
162 int32_t xmax, xmin;
163 int32_t ymax, ymin;
164 uint32_t xdelta, ydelta;
165
166 int scan_lines_per_block;
167
168 EXRTileAttribute tile_attr; /* header data attribute of tile */
169 int is_tile; /* 0 if scanline, 1 if tile */
170 int is_multipart;
171 int current_part;
172
173 int is_luma;/* 1 if there is an Y plane */
174
175 GetByteContext gb;
176 const uint8_t *buf;
177 int buf_size;
178
179 EXRChannel *channels;
180 int nb_channels;
181 int current_channel_offset;
182 uint32_t chunk_count;
183
184 EXRThreadData *thread_data;
185
186 const char *layer;
187 int selected_part;
188
189 enum AVColorTransferCharacteristic apply_trc_type;
190 float gamma;
191 union av_intfloat32 gamma_table[65536];
192
193 uint32_t mantissatable[2048];
194 uint32_t exponenttable[64];
195 uint16_t offsettable[64];
196 } EXRContext;
197
zip_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)198 static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
199 int uncompressed_size, EXRThreadData *td)
200 {
201 unsigned long dest_len = uncompressed_size;
202
203 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
204 dest_len != uncompressed_size)
205 return AVERROR_INVALIDDATA;
206
207 av_assert1(uncompressed_size % 2 == 0);
208
209 s->dsp.predictor(td->tmp, uncompressed_size);
210 s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
211
212 return 0;
213 }
214
rle(uint8_t * dst,const uint8_t * src,int compressed_size,int uncompressed_size)215 static int rle(uint8_t *dst, const uint8_t *src,
216 int compressed_size, int uncompressed_size)
217 {
218 uint8_t *d = dst;
219 const int8_t *s = src;
220 int ssize = compressed_size;
221 int dsize = uncompressed_size;
222 uint8_t *dend = d + dsize;
223 int count;
224
225 while (ssize > 0) {
226 count = *s++;
227
228 if (count < 0) {
229 count = -count;
230
231 if ((dsize -= count) < 0 ||
232 (ssize -= count + 1) < 0)
233 return AVERROR_INVALIDDATA;
234
235 while (count--)
236 *d++ = *s++;
237 } else {
238 count++;
239
240 if ((dsize -= count) < 0 ||
241 (ssize -= 2) < 0)
242 return AVERROR_INVALIDDATA;
243
244 while (count--)
245 *d++ = *s;
246
247 s++;
248 }
249 }
250
251 if (dend != d)
252 return AVERROR_INVALIDDATA;
253
254 return 0;
255 }
256
rle_uncompress(EXRContext * ctx,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)257 static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
258 int uncompressed_size, EXRThreadData *td)
259 {
260 rle(td->tmp, src, compressed_size, uncompressed_size);
261
262 av_assert1(uncompressed_size % 2 == 0);
263
264 ctx->dsp.predictor(td->tmp, uncompressed_size);
265 ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
266
267 return 0;
268 }
269
270 #define USHORT_RANGE (1 << 16)
271 #define BITMAP_SIZE (1 << 13)
272
reverse_lut(const uint8_t * bitmap,uint16_t * lut)273 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
274 {
275 int i, k = 0;
276
277 for (i = 0; i < USHORT_RANGE; i++)
278 if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
279 lut[k++] = i;
280
281 i = k - 1;
282
283 memset(lut + k, 0, (USHORT_RANGE - k) * 2);
284
285 return i;
286 }
287
apply_lut(const uint16_t * lut,uint16_t * dst,int dsize)288 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
289 {
290 int i;
291
292 for (i = 0; i < dsize; ++i)
293 dst[i] = lut[dst[i]];
294 }
295
296 #define HUF_ENCBITS 16 // literal (value) bit length
297 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
298
huf_canonical_code_table(uint64_t * freq)299 static void huf_canonical_code_table(uint64_t *freq)
300 {
301 uint64_t c, n[59] = { 0 };
302 int i;
303
304 for (i = 0; i < HUF_ENCSIZE; i++)
305 n[freq[i]] += 1;
306
307 c = 0;
308 for (i = 58; i > 0; --i) {
309 uint64_t nc = ((c + n[i]) >> 1);
310 n[i] = c;
311 c = nc;
312 }
313
314 for (i = 0; i < HUF_ENCSIZE; ++i) {
315 int l = freq[i];
316
317 if (l > 0)
318 freq[i] = l | (n[l]++ << 6);
319 }
320 }
321
322 #define SHORT_ZEROCODE_RUN 59
323 #define LONG_ZEROCODE_RUN 63
324 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
325 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
326
huf_unpack_enc_table(GetByteContext * gb,int32_t im,int32_t iM,uint64_t * freq)327 static int huf_unpack_enc_table(GetByteContext *gb,
328 int32_t im, int32_t iM, uint64_t *freq)
329 {
330 GetBitContext gbit;
331 int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
332 if (ret < 0)
333 return ret;
334
335 for (; im <= iM; im++) {
336 uint64_t l = freq[im] = get_bits(&gbit, 6);
337
338 if (l == LONG_ZEROCODE_RUN) {
339 int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
340
341 if (im + zerun > iM + 1)
342 return AVERROR_INVALIDDATA;
343
344 while (zerun--)
345 freq[im++] = 0;
346
347 im--;
348 } else if (l >= SHORT_ZEROCODE_RUN) {
349 int zerun = l - SHORT_ZEROCODE_RUN + 2;
350
351 if (im + zerun > iM + 1)
352 return AVERROR_INVALIDDATA;
353
354 while (zerun--)
355 freq[im++] = 0;
356
357 im--;
358 }
359 }
360
361 bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
362 huf_canonical_code_table(freq);
363
364 return 0;
365 }
366
huf_build_dec_table(EXRContext * s,EXRThreadData * td,int im,int iM)367 static int huf_build_dec_table(EXRContext *s,
368 EXRThreadData *td, int im, int iM)
369 {
370 int j = 0;
371
372 td->run_sym = -1;
373 for (int i = im; i < iM; i++) {
374 td->he[j].sym = i;
375 td->he[j].len = td->freq[i] & 63;
376 td->he[j].code = td->freq[i] >> 6;
377 if (td->he[j].len > 32) {
378 avpriv_request_sample(s->avctx, "Too big code length");
379 return AVERROR_PATCHWELCOME;
380 }
381 if (td->he[j].len > 0)
382 j++;
383 else
384 td->run_sym = i;
385 }
386
387 if (im > 0)
388 td->run_sym = 0;
389 else if (iM < 65535)
390 td->run_sym = 65535;
391
392 if (td->run_sym == -1) {
393 avpriv_request_sample(s->avctx, "No place for run symbol");
394 return AVERROR_PATCHWELCOME;
395 }
396
397 td->he[j].sym = td->run_sym;
398 td->he[j].len = td->freq[iM] & 63;
399 if (td->he[j].len > 32) {
400 avpriv_request_sample(s->avctx, "Too big code length");
401 return AVERROR_PATCHWELCOME;
402 }
403 td->he[j].code = td->freq[iM] >> 6;
404 j++;
405
406 ff_free_vlc(&td->vlc);
407 return ff_init_vlc_sparse(&td->vlc, 12, j,
408 &td->he[0].len, sizeof(td->he[0]), sizeof(td->he[0].len),
409 &td->he[0].code, sizeof(td->he[0]), sizeof(td->he[0].code),
410 &td->he[0].sym, sizeof(td->he[0]), sizeof(td->he[0].sym), 0);
411 }
412
huf_decode(VLC * vlc,GetByteContext * gb,int nbits,int run_sym,int no,uint16_t * out)413 static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym,
414 int no, uint16_t *out)
415 {
416 GetBitContext gbit;
417 int oe = 0;
418
419 init_get_bits(&gbit, gb->buffer, nbits);
420 while (get_bits_left(&gbit) > 0 && oe < no) {
421 uint16_t x = get_vlc2(&gbit, vlc->table, 12, 3);
422
423 if (x == run_sym) {
424 int run = get_bits(&gbit, 8);
425 uint16_t fill;
426
427 if (oe == 0 || oe + run > no)
428 return AVERROR_INVALIDDATA;
429
430 fill = out[oe - 1];
431
432 while (run-- > 0)
433 out[oe++] = fill;
434 } else {
435 out[oe++] = x;
436 }
437 }
438
439 return 0;
440 }
441
huf_uncompress(EXRContext * s,EXRThreadData * td,GetByteContext * gb,uint16_t * dst,int dst_size)442 static int huf_uncompress(EXRContext *s,
443 EXRThreadData *td,
444 GetByteContext *gb,
445 uint16_t *dst, int dst_size)
446 {
447 int32_t im, iM;
448 uint32_t nBits;
449 int ret;
450
451 im = bytestream2_get_le32(gb);
452 iM = bytestream2_get_le32(gb);
453 bytestream2_skip(gb, 4);
454 nBits = bytestream2_get_le32(gb);
455 if (im < 0 || im >= HUF_ENCSIZE ||
456 iM < 0 || iM >= HUF_ENCSIZE)
457 return AVERROR_INVALIDDATA;
458
459 bytestream2_skip(gb, 4);
460
461 if (!td->freq)
462 td->freq = av_malloc_array(HUF_ENCSIZE, sizeof(*td->freq));
463 if (!td->he)
464 td->he = av_calloc(HUF_ENCSIZE, sizeof(*td->he));
465 if (!td->freq || !td->he) {
466 ret = AVERROR(ENOMEM);
467 return ret;
468 }
469
470 memset(td->freq, 0, sizeof(*td->freq) * HUF_ENCSIZE);
471 if ((ret = huf_unpack_enc_table(gb, im, iM, td->freq)) < 0)
472 return ret;
473
474 if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
475 ret = AVERROR_INVALIDDATA;
476 return ret;
477 }
478
479 if ((ret = huf_build_dec_table(s, td, im, iM)) < 0)
480 return ret;
481 return huf_decode(&td->vlc, gb, nBits, td->run_sym, dst_size, dst);
482 }
483
wdec14(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)484 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
485 {
486 int16_t ls = l;
487 int16_t hs = h;
488 int hi = hs;
489 int ai = ls + (hi & 1) + (hi >> 1);
490 int16_t as = ai;
491 int16_t bs = ai - hi;
492
493 *a = as;
494 *b = bs;
495 }
496
497 #define NBITS 16
498 #define A_OFFSET (1 << (NBITS - 1))
499 #define MOD_MASK ((1 << NBITS) - 1)
500
wdec16(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)501 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
502 {
503 int m = l;
504 int d = h;
505 int bb = (m - (d >> 1)) & MOD_MASK;
506 int aa = (d + bb - A_OFFSET) & MOD_MASK;
507 *b = bb;
508 *a = aa;
509 }
510
wav_decode(uint16_t * in,int nx,int ox,int ny,int oy,uint16_t mx)511 static void wav_decode(uint16_t *in, int nx, int ox,
512 int ny, int oy, uint16_t mx)
513 {
514 int w14 = (mx < (1 << 14));
515 int n = (nx > ny) ? ny : nx;
516 int p = 1;
517 int p2;
518
519 while (p <= n)
520 p <<= 1;
521
522 p >>= 1;
523 p2 = p;
524 p >>= 1;
525
526 while (p >= 1) {
527 uint16_t *py = in;
528 uint16_t *ey = in + oy * (ny - p2);
529 uint16_t i00, i01, i10, i11;
530 int oy1 = oy * p;
531 int oy2 = oy * p2;
532 int ox1 = ox * p;
533 int ox2 = ox * p2;
534
535 for (; py <= ey; py += oy2) {
536 uint16_t *px = py;
537 uint16_t *ex = py + ox * (nx - p2);
538
539 for (; px <= ex; px += ox2) {
540 uint16_t *p01 = px + ox1;
541 uint16_t *p10 = px + oy1;
542 uint16_t *p11 = p10 + ox1;
543
544 if (w14) {
545 wdec14(*px, *p10, &i00, &i10);
546 wdec14(*p01, *p11, &i01, &i11);
547 wdec14(i00, i01, px, p01);
548 wdec14(i10, i11, p10, p11);
549 } else {
550 wdec16(*px, *p10, &i00, &i10);
551 wdec16(*p01, *p11, &i01, &i11);
552 wdec16(i00, i01, px, p01);
553 wdec16(i10, i11, p10, p11);
554 }
555 }
556
557 if (nx & p) {
558 uint16_t *p10 = px + oy1;
559
560 if (w14)
561 wdec14(*px, *p10, &i00, p10);
562 else
563 wdec16(*px, *p10, &i00, p10);
564
565 *px = i00;
566 }
567 }
568
569 if (ny & p) {
570 uint16_t *px = py;
571 uint16_t *ex = py + ox * (nx - p2);
572
573 for (; px <= ex; px += ox2) {
574 uint16_t *p01 = px + ox1;
575
576 if (w14)
577 wdec14(*px, *p01, &i00, p01);
578 else
579 wdec16(*px, *p01, &i00, p01);
580
581 *px = i00;
582 }
583 }
584
585 p2 = p;
586 p >>= 1;
587 }
588 }
589
piz_uncompress(EXRContext * s,const uint8_t * src,int ssize,int dsize,EXRThreadData * td)590 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
591 int dsize, EXRThreadData *td)
592 {
593 GetByteContext gb;
594 uint16_t maxval, min_non_zero, max_non_zero;
595 uint16_t *ptr;
596 uint16_t *tmp = (uint16_t *)td->tmp;
597 uint16_t *out;
598 uint16_t *in;
599 int ret, i, j;
600 int pixel_half_size;/* 1 for half, 2 for float and uint32 */
601 EXRChannel *channel;
602 int tmp_offset;
603
604 if (!td->bitmap)
605 td->bitmap = av_malloc(BITMAP_SIZE);
606 if (!td->lut)
607 td->lut = av_malloc(1 << 17);
608 if (!td->bitmap || !td->lut) {
609 av_freep(&td->bitmap);
610 av_freep(&td->lut);
611 return AVERROR(ENOMEM);
612 }
613
614 bytestream2_init(&gb, src, ssize);
615 min_non_zero = bytestream2_get_le16(&gb);
616 max_non_zero = bytestream2_get_le16(&gb);
617
618 if (max_non_zero >= BITMAP_SIZE)
619 return AVERROR_INVALIDDATA;
620
621 memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
622 if (min_non_zero <= max_non_zero)
623 bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
624 max_non_zero - min_non_zero + 1);
625 memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
626
627 maxval = reverse_lut(td->bitmap, td->lut);
628
629 bytestream2_skip(&gb, 4);
630 ret = huf_uncompress(s, td, &gb, tmp, dsize / sizeof(uint16_t));
631 if (ret)
632 return ret;
633
634 ptr = tmp;
635 for (i = 0; i < s->nb_channels; i++) {
636 channel = &s->channels[i];
637
638 if (channel->pixel_type == EXR_HALF)
639 pixel_half_size = 1;
640 else
641 pixel_half_size = 2;
642
643 for (j = 0; j < pixel_half_size; j++)
644 wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
645 td->xsize * pixel_half_size, maxval);
646 ptr += td->xsize * td->ysize * pixel_half_size;
647 }
648
649 apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
650
651 out = (uint16_t *)td->uncompressed_data;
652 for (i = 0; i < td->ysize; i++) {
653 tmp_offset = 0;
654 for (j = 0; j < s->nb_channels; j++) {
655 channel = &s->channels[j];
656 if (channel->pixel_type == EXR_HALF)
657 pixel_half_size = 1;
658 else
659 pixel_half_size = 2;
660
661 in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
662 tmp_offset += pixel_half_size;
663
664 #if HAVE_BIGENDIAN
665 s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
666 #else
667 memcpy(out, in, td->xsize * 2 * pixel_half_size);
668 #endif
669 out += td->xsize * pixel_half_size;
670 }
671 }
672
673 return 0;
674 }
675
pxr24_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)676 static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
677 int compressed_size, int uncompressed_size,
678 EXRThreadData *td)
679 {
680 unsigned long dest_len, expected_len = 0;
681 const uint8_t *in = td->tmp;
682 uint8_t *out;
683 int c, i, j;
684
685 for (i = 0; i < s->nb_channels; i++) {
686 if (s->channels[i].pixel_type == EXR_FLOAT) {
687 expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
688 } else if (s->channels[i].pixel_type == EXR_HALF) {
689 expected_len += (td->xsize * td->ysize * 2);
690 } else {//UINT 32
691 expected_len += (td->xsize * td->ysize * 4);
692 }
693 }
694
695 dest_len = expected_len;
696
697 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
698 return AVERROR_INVALIDDATA;
699 } else if (dest_len != expected_len) {
700 return AVERROR_INVALIDDATA;
701 }
702
703 out = td->uncompressed_data;
704 for (i = 0; i < td->ysize; i++)
705 for (c = 0; c < s->nb_channels; c++) {
706 EXRChannel *channel = &s->channels[c];
707 const uint8_t *ptr[4];
708 uint32_t pixel = 0;
709
710 switch (channel->pixel_type) {
711 case EXR_FLOAT:
712 ptr[0] = in;
713 ptr[1] = ptr[0] + td->xsize;
714 ptr[2] = ptr[1] + td->xsize;
715 in = ptr[2] + td->xsize;
716
717 for (j = 0; j < td->xsize; ++j) {
718 uint32_t diff = ((unsigned)*(ptr[0]++) << 24) |
719 (*(ptr[1]++) << 16) |
720 (*(ptr[2]++) << 8);
721 pixel += diff;
722 bytestream_put_le32(&out, pixel);
723 }
724 break;
725 case EXR_HALF:
726 ptr[0] = in;
727 ptr[1] = ptr[0] + td->xsize;
728 in = ptr[1] + td->xsize;
729 for (j = 0; j < td->xsize; j++) {
730 uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
731
732 pixel += diff;
733 bytestream_put_le16(&out, pixel);
734 }
735 break;
736 case EXR_UINT:
737 ptr[0] = in;
738 ptr[1] = ptr[0] + s->xdelta;
739 ptr[2] = ptr[1] + s->xdelta;
740 ptr[3] = ptr[2] + s->xdelta;
741 in = ptr[3] + s->xdelta;
742
743 for (j = 0; j < s->xdelta; ++j) {
744 uint32_t diff = ((uint32_t)*(ptr[0]++) << 24) |
745 (*(ptr[1]++) << 16) |
746 (*(ptr[2]++) << 8 ) |
747 (*(ptr[3]++));
748 pixel += diff;
749 bytestream_put_le32(&out, pixel);
750 }
751 break;
752 default:
753 return AVERROR_INVALIDDATA;
754 }
755 }
756
757 return 0;
758 }
759
unpack_14(const uint8_t b[14],uint16_t s[16])760 static void unpack_14(const uint8_t b[14], uint16_t s[16])
761 {
762 unsigned short shift = (b[ 2] >> 2) & 15;
763 unsigned short bias = (0x20 << shift);
764 int i;
765
766 s[ 0] = (b[0] << 8) | b[1];
767
768 s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
769 s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
770 s[12] = s[ 8] + ((b[ 4] & 0x3f) << shift) - bias;
771
772 s[ 1] = s[ 0] + ((b[ 5] >> 2) << shift) - bias;
773 s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
774 s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
775 s[13] = s[12] + ((b[ 7] & 0x3f) << shift) - bias;
776
777 s[ 2] = s[ 1] + ((b[ 8] >> 2) << shift) - bias;
778 s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
779 s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
780 s[14] = s[13] + ((b[10] & 0x3f) << shift) - bias;
781
782 s[ 3] = s[ 2] + ((b[11] >> 2) << shift) - bias;
783 s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
784 s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
785 s[15] = s[14] + ((b[13] & 0x3f) << shift) - bias;
786
787 for (i = 0; i < 16; ++i) {
788 if (s[i] & 0x8000)
789 s[i] &= 0x7fff;
790 else
791 s[i] = ~s[i];
792 }
793 }
794
unpack_3(const uint8_t b[3],uint16_t s[16])795 static void unpack_3(const uint8_t b[3], uint16_t s[16])
796 {
797 int i;
798
799 s[0] = (b[0] << 8) | b[1];
800
801 if (s[0] & 0x8000)
802 s[0] &= 0x7fff;
803 else
804 s[0] = ~s[0];
805
806 for (i = 1; i < 16; i++)
807 s[i] = s[0];
808 }
809
810
b44_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)811 static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
812 int uncompressed_size, EXRThreadData *td) {
813 const int8_t *sr = src;
814 int stay_to_uncompress = compressed_size;
815 int nb_b44_block_w, nb_b44_block_h;
816 int index_tl_x, index_tl_y, index_out, index_tmp;
817 uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
818 int c, iY, iX, y, x;
819 int target_channel_offset = 0;
820
821 /* calc B44 block count */
822 nb_b44_block_w = td->xsize / 4;
823 if ((td->xsize % 4) != 0)
824 nb_b44_block_w++;
825
826 nb_b44_block_h = td->ysize / 4;
827 if ((td->ysize % 4) != 0)
828 nb_b44_block_h++;
829
830 for (c = 0; c < s->nb_channels; c++) {
831 if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
832 for (iY = 0; iY < nb_b44_block_h; iY++) {
833 for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
834 if (stay_to_uncompress < 3) {
835 av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
836 return AVERROR_INVALIDDATA;
837 }
838
839 if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
840 unpack_3(sr, tmp_buffer);
841 sr += 3;
842 stay_to_uncompress -= 3;
843 } else {/* B44 Block */
844 if (stay_to_uncompress < 14) {
845 av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
846 return AVERROR_INVALIDDATA;
847 }
848 unpack_14(sr, tmp_buffer);
849 sr += 14;
850 stay_to_uncompress -= 14;
851 }
852
853 /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
854 index_tl_x = iX * 4;
855 index_tl_y = iY * 4;
856
857 for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
858 for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
859 index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
860 index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
861 td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
862 td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
863 }
864 }
865 }
866 }
867 target_channel_offset += 2;
868 } else {/* Float or UINT 32 channel */
869 if (stay_to_uncompress < td->ysize * td->xsize * 4) {
870 av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
871 return AVERROR_INVALIDDATA;
872 }
873
874 for (y = 0; y < td->ysize; y++) {
875 index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
876 memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
877 sr += td->xsize * 4;
878 }
879 target_channel_offset += 4;
880
881 stay_to_uncompress -= td->ysize * td->xsize * 4;
882 }
883 }
884
885 return 0;
886 }
887
ac_uncompress(EXRContext * s,GetByteContext * gb,float * block)888 static int ac_uncompress(EXRContext *s, GetByteContext *gb, float *block)
889 {
890 int ret = 0, n = 1;
891
892 while (n < 64) {
893 uint16_t val = bytestream2_get_ne16(gb);
894
895 if (val == 0xff00) {
896 n = 64;
897 } else if ((val >> 8) == 0xff) {
898 n += val & 0xff;
899 } else {
900 ret = n;
901 block[ff_zigzag_direct[n]] = av_int2float(half2float(val,
902 s->mantissatable,
903 s->exponenttable,
904 s->offsettable));
905 n++;
906 }
907 }
908
909 return ret;
910 }
911
idct_1d(float * blk,int step)912 static void idct_1d(float *blk, int step)
913 {
914 const float a = .5f * cosf( M_PI / 4.f);
915 const float b = .5f * cosf( M_PI / 16.f);
916 const float c = .5f * cosf( M_PI / 8.f);
917 const float d = .5f * cosf(3.f*M_PI / 16.f);
918 const float e = .5f * cosf(5.f*M_PI / 16.f);
919 const float f = .5f * cosf(3.f*M_PI / 8.f);
920 const float g = .5f * cosf(7.f*M_PI / 16.f);
921
922 float alpha[4], beta[4], theta[4], gamma[4];
923
924 alpha[0] = c * blk[2 * step];
925 alpha[1] = f * blk[2 * step];
926 alpha[2] = c * blk[6 * step];
927 alpha[3] = f * blk[6 * step];
928
929 beta[0] = b * blk[1 * step] + d * blk[3 * step] + e * blk[5 * step] + g * blk[7 * step];
930 beta[1] = d * blk[1 * step] - g * blk[3 * step] - b * blk[5 * step] - e * blk[7 * step];
931 beta[2] = e * blk[1 * step] - b * blk[3 * step] + g * blk[5 * step] + d * blk[7 * step];
932 beta[3] = g * blk[1 * step] - e * blk[3 * step] + d * blk[5 * step] - b * blk[7 * step];
933
934 theta[0] = a * (blk[0 * step] + blk[4 * step]);
935 theta[3] = a * (blk[0 * step] - blk[4 * step]);
936
937 theta[1] = alpha[0] + alpha[3];
938 theta[2] = alpha[1] - alpha[2];
939
940 gamma[0] = theta[0] + theta[1];
941 gamma[1] = theta[3] + theta[2];
942 gamma[2] = theta[3] - theta[2];
943 gamma[3] = theta[0] - theta[1];
944
945 blk[0 * step] = gamma[0] + beta[0];
946 blk[1 * step] = gamma[1] + beta[1];
947 blk[2 * step] = gamma[2] + beta[2];
948 blk[3 * step] = gamma[3] + beta[3];
949
950 blk[4 * step] = gamma[3] - beta[3];
951 blk[5 * step] = gamma[2] - beta[2];
952 blk[6 * step] = gamma[1] - beta[1];
953 blk[7 * step] = gamma[0] - beta[0];
954 }
955
dct_inverse(float * block)956 static void dct_inverse(float *block)
957 {
958 for (int i = 0; i < 8; i++)
959 idct_1d(block + i, 8);
960
961 for (int i = 0; i < 8; i++) {
962 idct_1d(block, 1);
963 block += 8;
964 }
965 }
966
convert(float y,float u,float v,float * b,float * g,float * r)967 static void convert(float y, float u, float v,
968 float *b, float *g, float *r)
969 {
970 *r = y + 1.5747f * v;
971 *g = y - 0.1873f * u - 0.4682f * v;
972 *b = y + 1.8556f * u;
973 }
974
to_linear(float x,float scale)975 static float to_linear(float x, float scale)
976 {
977 float ax = fabsf(x);
978
979 if (ax <= 1.f) {
980 return FFSIGN(x) * powf(ax, 2.2f * scale);
981 } else {
982 const float log_base = expf(2.2f * scale);
983
984 return FFSIGN(x) * powf(log_base, ax - 1.f);
985 }
986 }
987
dwa_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)988 static int dwa_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
989 int uncompressed_size, EXRThreadData *td)
990 {
991 int64_t version, lo_usize, lo_size;
992 int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
993 int64_t ac_count, dc_count, ac_compression;
994 const int dc_w = td->xsize >> 3;
995 const int dc_h = td->ysize >> 3;
996 GetByteContext gb, agb;
997 int skip, ret;
998
999 if (compressed_size <= 88)
1000 return AVERROR_INVALIDDATA;
1001
1002 version = AV_RL64(src + 0);
1003 if (version != 2)
1004 return AVERROR_INVALIDDATA;
1005
1006 lo_usize = AV_RL64(src + 8);
1007 lo_size = AV_RL64(src + 16);
1008 ac_size = AV_RL64(src + 24);
1009 dc_size = AV_RL64(src + 32);
1010 rle_csize = AV_RL64(src + 40);
1011 rle_usize = AV_RL64(src + 48);
1012 rle_raw_size = AV_RL64(src + 56);
1013 ac_count = AV_RL64(src + 64);
1014 dc_count = AV_RL64(src + 72);
1015 ac_compression = AV_RL64(src + 80);
1016
1017 if ( compressed_size < (uint64_t)(lo_size | ac_size | dc_size | rle_csize) || compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize
1018 || ac_count > (uint64_t)INT_MAX/2
1019 )
1020 return AVERROR_INVALIDDATA;
1021
1022 bytestream2_init(&gb, src + 88, compressed_size - 88);
1023 skip = bytestream2_get_le16(&gb);
1024 if (skip < 2)
1025 return AVERROR_INVALIDDATA;
1026
1027 bytestream2_skip(&gb, skip - 2);
1028
1029 if (lo_size > 0) {
1030 if (lo_usize > uncompressed_size)
1031 return AVERROR_INVALIDDATA;
1032 bytestream2_skip(&gb, lo_size);
1033 }
1034
1035 if (ac_size > 0) {
1036 unsigned long dest_len;
1037 GetByteContext agb = gb;
1038
1039 if (ac_count > 3LL * td->xsize * s->scan_lines_per_block)
1040 return AVERROR_INVALIDDATA;
1041
1042 dest_len = ac_count * 2LL;
1043
1044 av_fast_padded_malloc(&td->ac_data, &td->ac_size, dest_len);
1045 if (!td->ac_data)
1046 return AVERROR(ENOMEM);
1047
1048 switch (ac_compression) {
1049 case 0:
1050 ret = huf_uncompress(s, td, &agb, (int16_t *)td->ac_data, ac_count);
1051 if (ret < 0)
1052 return ret;
1053 break;
1054 case 1:
1055 if (uncompress(td->ac_data, &dest_len, agb.buffer, ac_size) != Z_OK ||
1056 dest_len != ac_count * 2LL)
1057 return AVERROR_INVALIDDATA;
1058 break;
1059 default:
1060 return AVERROR_INVALIDDATA;
1061 }
1062
1063 bytestream2_skip(&gb, ac_size);
1064 }
1065
1066 {
1067 unsigned long dest_len;
1068 GetByteContext agb = gb;
1069
1070 if (dc_count != dc_w * dc_h * 3)
1071 return AVERROR_INVALIDDATA;
1072
1073 dest_len = dc_count * 2LL;
1074
1075 av_fast_padded_malloc(&td->dc_data, &td->dc_size, FFALIGN(dest_len, 64) * 2);
1076 if (!td->dc_data)
1077 return AVERROR(ENOMEM);
1078
1079 if (uncompress(td->dc_data + FFALIGN(dest_len, 64), &dest_len, agb.buffer, dc_size) != Z_OK ||
1080 (dest_len != dc_count * 2LL))
1081 return AVERROR_INVALIDDATA;
1082
1083 s->dsp.predictor(td->dc_data + FFALIGN(dest_len, 64), dest_len);
1084 s->dsp.reorder_pixels(td->dc_data, td->dc_data + FFALIGN(dest_len, 64), dest_len);
1085
1086 bytestream2_skip(&gb, dc_size);
1087 }
1088
1089 if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
1090 unsigned long dest_len = rle_usize;
1091
1092 av_fast_padded_malloc(&td->rle_data, &td->rle_size, rle_usize);
1093 if (!td->rle_data)
1094 return AVERROR(ENOMEM);
1095
1096 av_fast_padded_malloc(&td->rle_raw_data, &td->rle_raw_size, rle_raw_size);
1097 if (!td->rle_raw_data)
1098 return AVERROR(ENOMEM);
1099
1100 if (uncompress(td->rle_data, &dest_len, gb.buffer, rle_csize) != Z_OK ||
1101 (dest_len != rle_usize))
1102 return AVERROR_INVALIDDATA;
1103
1104 ret = rle(td->rle_raw_data, td->rle_data, rle_usize, rle_raw_size);
1105 if (ret < 0)
1106 return ret;
1107 bytestream2_skip(&gb, rle_csize);
1108 }
1109
1110 bytestream2_init(&agb, td->ac_data, ac_count * 2);
1111
1112 for (int y = 0; y < td->ysize; y += 8) {
1113 for (int x = 0; x < td->xsize; x += 8) {
1114 memset(td->block, 0, sizeof(td->block));
1115
1116 for (int j = 0; j < 3; j++) {
1117 float *block = td->block[j];
1118 const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
1119 uint16_t *dc = (uint16_t *)td->dc_data;
1120 union av_intfloat32 dc_val;
1121
1122 dc_val.i = half2float(dc[idx], s->mantissatable,
1123 s->exponenttable, s->offsettable);
1124
1125 block[0] = dc_val.f;
1126 ac_uncompress(s, &agb, block);
1127 dct_inverse(block);
1128 }
1129
1130 {
1131 const float scale = s->pixel_type == EXR_FLOAT ? 2.f : 1.f;
1132 const int o = s->nb_channels == 4;
1133 float *bo = ((float *)td->uncompressed_data) +
1134 y * td->xsize * s->nb_channels + td->xsize * (o + 0) + x;
1135 float *go = ((float *)td->uncompressed_data) +
1136 y * td->xsize * s->nb_channels + td->xsize * (o + 1) + x;
1137 float *ro = ((float *)td->uncompressed_data) +
1138 y * td->xsize * s->nb_channels + td->xsize * (o + 2) + x;
1139 float *yb = td->block[0];
1140 float *ub = td->block[1];
1141 float *vb = td->block[2];
1142
1143 for (int yy = 0; yy < 8; yy++) {
1144 for (int xx = 0; xx < 8; xx++) {
1145 const int idx = xx + yy * 8;
1146
1147 convert(yb[idx], ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
1148
1149 bo[xx] = to_linear(bo[xx], scale);
1150 go[xx] = to_linear(go[xx], scale);
1151 ro[xx] = to_linear(ro[xx], scale);
1152 }
1153
1154 bo += td->xsize * s->nb_channels;
1155 go += td->xsize * s->nb_channels;
1156 ro += td->xsize * s->nb_channels;
1157 }
1158 }
1159 }
1160 }
1161
1162 if (s->nb_channels < 4)
1163 return 0;
1164
1165 for (int y = 0; y < td->ysize && td->rle_raw_data; y++) {
1166 uint32_t *ao = ((uint32_t *)td->uncompressed_data) + y * td->xsize * s->nb_channels;
1167 uint8_t *ai0 = td->rle_raw_data + y * td->xsize;
1168 uint8_t *ai1 = td->rle_raw_data + y * td->xsize + rle_raw_size / 2;
1169
1170 for (int x = 0; x < td->xsize; x++) {
1171 uint16_t ha = ai0[x] | (ai1[x] << 8);
1172
1173 ao[x] = half2float(ha, s->mantissatable, s->exponenttable, s->offsettable);
1174 }
1175 }
1176
1177 return 0;
1178 }
1179
decode_block(AVCodecContext * avctx,void * tdata,int jobnr,int threadnr)1180 static int decode_block(AVCodecContext *avctx, void *tdata,
1181 int jobnr, int threadnr)
1182 {
1183 EXRContext *s = avctx->priv_data;
1184 AVFrame *const p = s->picture;
1185 EXRThreadData *td = &s->thread_data[threadnr];
1186 const uint8_t *channel_buffer[4] = { 0 };
1187 const uint8_t *buf = s->buf;
1188 uint64_t line_offset, uncompressed_size;
1189 uint8_t *ptr;
1190 uint32_t data_size;
1191 int line, col = 0;
1192 uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1193 const uint8_t *src;
1194 int step = s->desc->flags & AV_PIX_FMT_FLAG_FLOAT ? 4 : 2 * s->desc->nb_components;
1195 int bxmin = 0, axmax = 0, window_xoffset = 0;
1196 int window_xmin, window_xmax, window_ymin, window_ymax;
1197 int data_xoffset, data_yoffset, data_window_offset, xsize, ysize;
1198 int i, x, buf_size = s->buf_size;
1199 int c, rgb_channel_count;
1200 float one_gamma = 1.0f / s->gamma;
1201 avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1202 int ret;
1203
1204 line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1205
1206 if (s->is_tile) {
1207 if (buf_size < 20 || line_offset > buf_size - 20)
1208 return AVERROR_INVALIDDATA;
1209
1210 src = buf + line_offset + 20;
1211 if (s->is_multipart)
1212 src += 4;
1213
1214 tile_x = AV_RL32(src - 20);
1215 tile_y = AV_RL32(src - 16);
1216 tile_level_x = AV_RL32(src - 12);
1217 tile_level_y = AV_RL32(src - 8);
1218
1219 data_size = AV_RL32(src - 4);
1220 if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1221 return AVERROR_INVALIDDATA;
1222
1223 if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1224 avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1225 return AVERROR_PATCHWELCOME;
1226 }
1227
1228 if (tile_x && s->tile_attr.xSize + (int64_t)FFMAX(s->xmin, 0) >= INT_MAX / tile_x )
1229 return AVERROR_INVALIDDATA;
1230 if (tile_y && s->tile_attr.ySize + (int64_t)FFMAX(s->ymin, 0) >= INT_MAX / tile_y )
1231 return AVERROR_INVALIDDATA;
1232
1233 line = s->ymin + s->tile_attr.ySize * tile_y;
1234 col = s->tile_attr.xSize * tile_x;
1235
1236 if (line < s->ymin || line > s->ymax ||
1237 s->xmin + col < s->xmin || s->xmin + col > s->xmax)
1238 return AVERROR_INVALIDDATA;
1239
1240 td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1241 td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1242
1243 if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX)
1244 return AVERROR_INVALIDDATA;
1245
1246 td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1247 uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1248 } else {
1249 if (buf_size < 8 || line_offset > buf_size - 8)
1250 return AVERROR_INVALIDDATA;
1251
1252 src = buf + line_offset + 8;
1253 if (s->is_multipart)
1254 src += 4;
1255 line = AV_RL32(src - 8);
1256
1257 if (line < s->ymin || line > s->ymax)
1258 return AVERROR_INVALIDDATA;
1259
1260 data_size = AV_RL32(src - 4);
1261 if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1262 return AVERROR_INVALIDDATA;
1263
1264 td->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1265 td->xsize = s->xdelta;
1266
1267 if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX)
1268 return AVERROR_INVALIDDATA;
1269
1270 td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1271 uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1272
1273 if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1274 line_offset > buf_size - uncompressed_size)) ||
1275 (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1276 line_offset > buf_size - data_size))) {
1277 return AVERROR_INVALIDDATA;
1278 }
1279 }
1280
1281 window_xmin = FFMIN(avctx->width, FFMAX(0, s->xmin + col));
1282 window_xmax = FFMIN(avctx->width, FFMAX(0, s->xmin + col + td->xsize));
1283 window_ymin = FFMIN(avctx->height, FFMAX(0, line ));
1284 window_ymax = FFMIN(avctx->height, FFMAX(0, line + td->ysize));
1285 xsize = window_xmax - window_xmin;
1286 ysize = window_ymax - window_ymin;
1287
1288 /* tile or scanline not visible skip decoding */
1289 if (xsize <= 0 || ysize <= 0)
1290 return 0;
1291
1292 /* is the first tile or is a scanline */
1293 if(col == 0) {
1294 window_xmin = 0;
1295 /* pixels to add at the left of the display window */
1296 window_xoffset = FFMAX(0, s->xmin);
1297 /* bytes to add at the left of the display window */
1298 bxmin = window_xoffset * step;
1299 }
1300
1301 /* is the last tile or is a scanline */
1302 if(col + td->xsize == s->xdelta) {
1303 window_xmax = avctx->width;
1304 /* bytes to add at the right of the display window */
1305 axmax = FFMAX(0, (avctx->width - (s->xmax + 1))) * step;
1306 }
1307
1308 if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1309 av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1310 if (!td->tmp)
1311 return AVERROR(ENOMEM);
1312 }
1313
1314 if (data_size < uncompressed_size) {
1315 av_fast_padded_malloc(&td->uncompressed_data,
1316 &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */
1317
1318 if (!td->uncompressed_data)
1319 return AVERROR(ENOMEM);
1320
1321 ret = AVERROR_INVALIDDATA;
1322 switch (s->compression) {
1323 case EXR_ZIP1:
1324 case EXR_ZIP16:
1325 ret = zip_uncompress(s, src, data_size, uncompressed_size, td);
1326 break;
1327 case EXR_PIZ:
1328 ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1329 break;
1330 case EXR_PXR24:
1331 ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1332 break;
1333 case EXR_RLE:
1334 ret = rle_uncompress(s, src, data_size, uncompressed_size, td);
1335 break;
1336 case EXR_B44:
1337 case EXR_B44A:
1338 ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1339 break;
1340 case EXR_DWAA:
1341 case EXR_DWAB:
1342 ret = dwa_uncompress(s, src, data_size, uncompressed_size, td);
1343 break;
1344 }
1345 if (ret < 0) {
1346 av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1347 return ret;
1348 }
1349 src = td->uncompressed_data;
1350 }
1351
1352 /* offsets to crop data outside display window */
1353 data_xoffset = FFABS(FFMIN(0, s->xmin + col)) * (s->pixel_type == EXR_HALF ? 2 : 4);
1354 data_yoffset = FFABS(FFMIN(0, line));
1355 data_window_offset = (data_yoffset * td->channel_line_size) + data_xoffset;
1356
1357 if (!s->is_luma) {
1358 channel_buffer[0] = src + (td->xsize * s->channel_offsets[0]) + data_window_offset;
1359 channel_buffer[1] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset;
1360 channel_buffer[2] = src + (td->xsize * s->channel_offsets[2]) + data_window_offset;
1361 rgb_channel_count = 3;
1362 } else { /* put y data in the first channel_buffer */
1363 channel_buffer[0] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset;
1364 rgb_channel_count = 1;
1365 }
1366 if (s->channel_offsets[3] >= 0)
1367 channel_buffer[3] = src + (td->xsize * s->channel_offsets[3]) + data_window_offset;
1368
1369 if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1370 /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1371 int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1372 if (s->is_luma) {
1373 channel_buffer[1] = channel_buffer[0];
1374 channel_buffer[2] = channel_buffer[0];
1375 }
1376
1377 for (c = 0; c < channel_count; c++) {
1378 int plane = s->desc->comp[c].plane;
1379 ptr = p->data[plane] + window_ymin * p->linesize[plane] + (window_xmin * 4);
1380
1381 for (i = 0; i < ysize; i++, ptr += p->linesize[plane]) {
1382 const uint8_t *src;
1383 union av_intfloat32 *ptr_x;
1384
1385 src = channel_buffer[c];
1386 ptr_x = (union av_intfloat32 *)ptr;
1387
1388 // Zero out the start if xmin is not 0
1389 memset(ptr_x, 0, bxmin);
1390 ptr_x += window_xoffset;
1391
1392 if (s->pixel_type == EXR_FLOAT ||
1393 s->compression == EXR_DWAA ||
1394 s->compression == EXR_DWAB) {
1395 // 32-bit
1396 union av_intfloat32 t;
1397 if (trc_func && c < 3) {
1398 for (x = 0; x < xsize; x++) {
1399 t.i = bytestream_get_le32(&src);
1400 t.f = trc_func(t.f);
1401 *ptr_x++ = t;
1402 }
1403 } else if (one_gamma != 1.f) {
1404 for (x = 0; x < xsize; x++) {
1405 t.i = bytestream_get_le32(&src);
1406 if (t.f > 0.0f && c < 3) /* avoid negative values */
1407 t.f = powf(t.f, one_gamma);
1408 *ptr_x++ = t;
1409 }
1410 } else {
1411 for (x = 0; x < xsize; x++) {
1412 t.i = bytestream_get_le32(&src);
1413 *ptr_x++ = t;
1414 }
1415 }
1416 } else if (s->pixel_type == EXR_HALF) {
1417 // 16-bit
1418 if (c < 3 || !trc_func) {
1419 for (x = 0; x < xsize; x++) {
1420 *ptr_x++ = s->gamma_table[bytestream_get_le16(&src)];
1421 }
1422 } else {
1423 for (x = 0; x < xsize; x++) {
1424 ptr_x[0].i = half2float(bytestream_get_le16(&src),
1425 s->mantissatable,
1426 s->exponenttable,
1427 s->offsettable);
1428 ptr_x++;
1429 }
1430 }
1431 }
1432
1433 // Zero out the end if xmax+1 is not w
1434 memset(ptr_x, 0, axmax);
1435 channel_buffer[c] += td->channel_line_size;
1436 }
1437 }
1438 } else {
1439
1440 av_assert1(s->pixel_type == EXR_UINT);
1441 ptr = p->data[0] + window_ymin * p->linesize[0] + (window_xmin * s->desc->nb_components * 2);
1442
1443 for (i = 0; i < ysize; i++, ptr += p->linesize[0]) {
1444
1445 const uint8_t * a;
1446 const uint8_t *rgb[3];
1447 uint16_t *ptr_x;
1448
1449 for (c = 0; c < rgb_channel_count; c++) {
1450 rgb[c] = channel_buffer[c];
1451 }
1452
1453 if (channel_buffer[3])
1454 a = channel_buffer[3];
1455
1456 ptr_x = (uint16_t *) ptr;
1457
1458 // Zero out the start if xmin is not 0
1459 memset(ptr_x, 0, bxmin);
1460 ptr_x += window_xoffset * s->desc->nb_components;
1461
1462 for (x = 0; x < xsize; x++) {
1463 for (c = 0; c < rgb_channel_count; c++) {
1464 *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1465 }
1466
1467 if (channel_buffer[3])
1468 *ptr_x++ = bytestream_get_le32(&a) >> 16;
1469 }
1470
1471 // Zero out the end if xmax+1 is not w
1472 memset(ptr_x, 0, axmax);
1473
1474 channel_buffer[0] += td->channel_line_size;
1475 channel_buffer[1] += td->channel_line_size;
1476 channel_buffer[2] += td->channel_line_size;
1477 if (channel_buffer[3])
1478 channel_buffer[3] += td->channel_line_size;
1479 }
1480 }
1481
1482 return 0;
1483 }
1484
skip_header_chunk(EXRContext * s)1485 static void skip_header_chunk(EXRContext *s)
1486 {
1487 GetByteContext *gb = &s->gb;
1488
1489 while (bytestream2_get_bytes_left(gb) > 0) {
1490 if (!bytestream2_peek_byte(gb))
1491 break;
1492
1493 // Process unknown variables
1494 for (int i = 0; i < 2; i++) // value_name and value_type
1495 while (bytestream2_get_byte(gb) != 0);
1496
1497 // Skip variable length
1498 bytestream2_skip(gb, bytestream2_get_le32(gb));
1499 }
1500 }
1501
1502 /**
1503 * Check if the variable name corresponds to its data type.
1504 *
1505 * @param s the EXRContext
1506 * @param value_name name of the variable to check
1507 * @param value_type type of the variable to check
1508 * @param minimum_length minimum length of the variable data
1509 *
1510 * @return bytes to read containing variable data
1511 * -1 if variable is not found
1512 * 0 if buffer ended prematurely
1513 */
check_header_variable(EXRContext * s,const char * value_name,const char * value_type,unsigned int minimum_length)1514 static int check_header_variable(EXRContext *s,
1515 const char *value_name,
1516 const char *value_type,
1517 unsigned int minimum_length)
1518 {
1519 GetByteContext *gb = &s->gb;
1520 int var_size = -1;
1521
1522 if (bytestream2_get_bytes_left(gb) >= minimum_length &&
1523 !strcmp(gb->buffer, value_name)) {
1524 // found value_name, jump to value_type (null terminated strings)
1525 gb->buffer += strlen(value_name) + 1;
1526 if (!strcmp(gb->buffer, value_type)) {
1527 gb->buffer += strlen(value_type) + 1;
1528 var_size = bytestream2_get_le32(gb);
1529 // don't go read past boundaries
1530 if (var_size > bytestream2_get_bytes_left(gb))
1531 var_size = 0;
1532 } else {
1533 // value_type not found, reset the buffer
1534 gb->buffer -= strlen(value_name) + 1;
1535 av_log(s->avctx, AV_LOG_WARNING,
1536 "Unknown data type %s for header variable %s.\n",
1537 value_type, value_name);
1538 }
1539 }
1540
1541 return var_size;
1542 }
1543
decode_header(EXRContext * s,AVFrame * frame)1544 static int decode_header(EXRContext *s, AVFrame *frame)
1545 {
1546 AVDictionary *metadata = NULL;
1547 GetByteContext *gb = &s->gb;
1548 int magic_number, version, flags;
1549 int layer_match = 0;
1550 int ret;
1551 int dup_channels = 0;
1552
1553 s->current_channel_offset = 0;
1554 s->xmin = ~0;
1555 s->xmax = ~0;
1556 s->ymin = ~0;
1557 s->ymax = ~0;
1558 s->xdelta = ~0;
1559 s->ydelta = ~0;
1560 s->channel_offsets[0] = -1;
1561 s->channel_offsets[1] = -1;
1562 s->channel_offsets[2] = -1;
1563 s->channel_offsets[3] = -1;
1564 s->pixel_type = EXR_UNKNOWN;
1565 s->compression = EXR_UNKN;
1566 s->nb_channels = 0;
1567 s->w = 0;
1568 s->h = 0;
1569 s->tile_attr.xSize = -1;
1570 s->tile_attr.ySize = -1;
1571 s->is_tile = 0;
1572 s->is_multipart = 0;
1573 s->is_luma = 0;
1574 s->current_part = 0;
1575
1576 if (bytestream2_get_bytes_left(gb) < 10) {
1577 av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1578 return AVERROR_INVALIDDATA;
1579 }
1580
1581 magic_number = bytestream2_get_le32(gb);
1582 if (magic_number != 20000630) {
1583 /* As per documentation of OpenEXR, it is supposed to be
1584 * int 20000630 little-endian */
1585 av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1586 return AVERROR_INVALIDDATA;
1587 }
1588
1589 version = bytestream2_get_byte(gb);
1590 if (version != 2) {
1591 avpriv_report_missing_feature(s->avctx, "Version %d", version);
1592 return AVERROR_PATCHWELCOME;
1593 }
1594
1595 flags = bytestream2_get_le24(gb);
1596
1597 if (flags & 0x02)
1598 s->is_tile = 1;
1599 if (flags & 0x10)
1600 s->is_multipart = 1;
1601 if (flags & 0x08) {
1602 avpriv_report_missing_feature(s->avctx, "deep data");
1603 return AVERROR_PATCHWELCOME;
1604 }
1605
1606 // Parse the header
1607 while (bytestream2_get_bytes_left(gb) > 0) {
1608 int var_size;
1609
1610 while (s->is_multipart && s->current_part < s->selected_part &&
1611 bytestream2_get_bytes_left(gb) > 0) {
1612 if (bytestream2_peek_byte(gb)) {
1613 skip_header_chunk(s);
1614 } else {
1615 bytestream2_skip(gb, 1);
1616 if (!bytestream2_peek_byte(gb))
1617 break;
1618 }
1619 bytestream2_skip(gb, 1);
1620 s->current_part++;
1621 }
1622
1623 if (!bytestream2_peek_byte(gb)) {
1624 if (!s->is_multipart)
1625 break;
1626 bytestream2_skip(gb, 1);
1627 if (s->current_part == s->selected_part) {
1628 while (bytestream2_get_bytes_left(gb) > 0) {
1629 if (bytestream2_peek_byte(gb)) {
1630 skip_header_chunk(s);
1631 } else {
1632 bytestream2_skip(gb, 1);
1633 if (!bytestream2_peek_byte(gb))
1634 break;
1635 }
1636 }
1637 }
1638 if (!bytestream2_peek_byte(gb))
1639 break;
1640 s->current_part++;
1641 }
1642
1643 if ((var_size = check_header_variable(s, "channels",
1644 "chlist", 38)) >= 0) {
1645 GetByteContext ch_gb;
1646 if (!var_size) {
1647 ret = AVERROR_INVALIDDATA;
1648 goto fail;
1649 }
1650
1651 bytestream2_init(&ch_gb, gb->buffer, var_size);
1652
1653 while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1654 EXRChannel *channel;
1655 enum ExrPixelType current_pixel_type;
1656 int channel_index = -1;
1657 int xsub, ysub;
1658
1659 if (strcmp(s->layer, "") != 0) {
1660 if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1661 layer_match = 1;
1662 av_log(s->avctx, AV_LOG_INFO,
1663 "Channel match layer : %s.\n", ch_gb.buffer);
1664 ch_gb.buffer += strlen(s->layer);
1665 if (*ch_gb.buffer == '.')
1666 ch_gb.buffer++; /* skip dot if not given */
1667 } else {
1668 layer_match = 0;
1669 av_log(s->avctx, AV_LOG_INFO,
1670 "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1671 }
1672 } else {
1673 layer_match = 1;
1674 }
1675
1676 if (layer_match) { /* only search channel if the layer match is valid */
1677 if (!av_strcasecmp(ch_gb.buffer, "R") ||
1678 !av_strcasecmp(ch_gb.buffer, "X") ||
1679 !av_strcasecmp(ch_gb.buffer, "U")) {
1680 channel_index = 0;
1681 s->is_luma = 0;
1682 } else if (!av_strcasecmp(ch_gb.buffer, "G") ||
1683 !av_strcasecmp(ch_gb.buffer, "V")) {
1684 channel_index = 1;
1685 s->is_luma = 0;
1686 } else if (!av_strcasecmp(ch_gb.buffer, "Y")) {
1687 channel_index = 1;
1688 s->is_luma = 1;
1689 } else if (!av_strcasecmp(ch_gb.buffer, "B") ||
1690 !av_strcasecmp(ch_gb.buffer, "Z") ||
1691 !av_strcasecmp(ch_gb.buffer, "W")) {
1692 channel_index = 2;
1693 s->is_luma = 0;
1694 } else if (!av_strcasecmp(ch_gb.buffer, "A")) {
1695 channel_index = 3;
1696 } else {
1697 av_log(s->avctx, AV_LOG_WARNING,
1698 "Unsupported channel %.256s.\n", ch_gb.buffer);
1699 }
1700 }
1701
1702 /* skip until you get a 0 */
1703 while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1704 bytestream2_get_byte(&ch_gb))
1705 continue;
1706
1707 if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1708 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1709 ret = AVERROR_INVALIDDATA;
1710 goto fail;
1711 }
1712
1713 current_pixel_type = bytestream2_get_le32(&ch_gb);
1714 if (current_pixel_type >= EXR_UNKNOWN) {
1715 avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1716 current_pixel_type);
1717 ret = AVERROR_PATCHWELCOME;
1718 goto fail;
1719 }
1720
1721 bytestream2_skip(&ch_gb, 4);
1722 xsub = bytestream2_get_le32(&ch_gb);
1723 ysub = bytestream2_get_le32(&ch_gb);
1724
1725 if (xsub != 1 || ysub != 1) {
1726 avpriv_report_missing_feature(s->avctx,
1727 "Subsampling %dx%d",
1728 xsub, ysub);
1729 ret = AVERROR_PATCHWELCOME;
1730 goto fail;
1731 }
1732
1733 if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1734 if (s->pixel_type != EXR_UNKNOWN &&
1735 s->pixel_type != current_pixel_type) {
1736 av_log(s->avctx, AV_LOG_ERROR,
1737 "RGB channels not of the same depth.\n");
1738 ret = AVERROR_INVALIDDATA;
1739 goto fail;
1740 }
1741 s->pixel_type = current_pixel_type;
1742 s->channel_offsets[channel_index] = s->current_channel_offset;
1743 } else if (channel_index >= 0) {
1744 av_log(s->avctx, AV_LOG_WARNING,
1745 "Multiple channels with index %d.\n", channel_index);
1746 if (++dup_channels > 10) {
1747 ret = AVERROR_INVALIDDATA;
1748 goto fail;
1749 }
1750 }
1751
1752 s->channels = av_realloc(s->channels,
1753 ++s->nb_channels * sizeof(EXRChannel));
1754 if (!s->channels) {
1755 ret = AVERROR(ENOMEM);
1756 goto fail;
1757 }
1758 channel = &s->channels[s->nb_channels - 1];
1759 channel->pixel_type = current_pixel_type;
1760 channel->xsub = xsub;
1761 channel->ysub = ysub;
1762
1763 if (current_pixel_type == EXR_HALF) {
1764 s->current_channel_offset += 2;
1765 } else {/* Float or UINT32 */
1766 s->current_channel_offset += 4;
1767 }
1768 }
1769
1770 /* Check if all channels are set with an offset or if the channels
1771 * are causing an overflow */
1772 if (!s->is_luma) {/* if we expected to have at least 3 channels */
1773 if (FFMIN3(s->channel_offsets[0],
1774 s->channel_offsets[1],
1775 s->channel_offsets[2]) < 0) {
1776 if (s->channel_offsets[0] < 0)
1777 av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1778 if (s->channel_offsets[1] < 0)
1779 av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1780 if (s->channel_offsets[2] < 0)
1781 av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1782 ret = AVERROR_INVALIDDATA;
1783 goto fail;
1784 }
1785 }
1786
1787 // skip one last byte and update main gb
1788 gb->buffer = ch_gb.buffer + 1;
1789 continue;
1790 } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1791 31)) >= 0) {
1792 int xmin, ymin, xmax, ymax;
1793 if (!var_size) {
1794 ret = AVERROR_INVALIDDATA;
1795 goto fail;
1796 }
1797
1798 xmin = bytestream2_get_le32(gb);
1799 ymin = bytestream2_get_le32(gb);
1800 xmax = bytestream2_get_le32(gb);
1801 ymax = bytestream2_get_le32(gb);
1802
1803 if (xmin > xmax || ymin > ymax ||
1804 ymax == INT_MAX || xmax == INT_MAX ||
1805 (unsigned)xmax - xmin >= INT_MAX ||
1806 (unsigned)ymax - ymin >= INT_MAX) {
1807 ret = AVERROR_INVALIDDATA;
1808 goto fail;
1809 }
1810 s->xmin = xmin;
1811 s->xmax = xmax;
1812 s->ymin = ymin;
1813 s->ymax = ymax;
1814 s->xdelta = (s->xmax - s->xmin) + 1;
1815 s->ydelta = (s->ymax - s->ymin) + 1;
1816
1817 continue;
1818 } else if ((var_size = check_header_variable(s, "displayWindow",
1819 "box2i", 34)) >= 0) {
1820 int32_t sx, sy, dx, dy;
1821
1822 if (!var_size) {
1823 ret = AVERROR_INVALIDDATA;
1824 goto fail;
1825 }
1826
1827 sx = bytestream2_get_le32(gb);
1828 sy = bytestream2_get_le32(gb);
1829 dx = bytestream2_get_le32(gb);
1830 dy = bytestream2_get_le32(gb);
1831
1832 s->w = dx - sx + 1;
1833 s->h = dy - sy + 1;
1834
1835 continue;
1836 } else if ((var_size = check_header_variable(s, "lineOrder",
1837 "lineOrder", 25)) >= 0) {
1838 int line_order;
1839 if (!var_size) {
1840 ret = AVERROR_INVALIDDATA;
1841 goto fail;
1842 }
1843
1844 line_order = bytestream2_get_byte(gb);
1845 av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1846 if (line_order > 2) {
1847 av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1848 ret = AVERROR_INVALIDDATA;
1849 goto fail;
1850 }
1851
1852 continue;
1853 } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1854 "float", 31)) >= 0) {
1855 if (!var_size) {
1856 ret = AVERROR_INVALIDDATA;
1857 goto fail;
1858 }
1859
1860 s->sar = bytestream2_get_le32(gb);
1861
1862 continue;
1863 } else if ((var_size = check_header_variable(s, "compression",
1864 "compression", 29)) >= 0) {
1865 if (!var_size) {
1866 ret = AVERROR_INVALIDDATA;
1867 goto fail;
1868 }
1869
1870 if (s->compression == EXR_UNKN)
1871 s->compression = bytestream2_get_byte(gb);
1872 else {
1873 bytestream2_skip(gb, 1);
1874 av_log(s->avctx, AV_LOG_WARNING,
1875 "Found more than one compression attribute.\n");
1876 }
1877
1878 continue;
1879 } else if ((var_size = check_header_variable(s, "tiles",
1880 "tiledesc", 22)) >= 0) {
1881 char tileLevel;
1882
1883 if (!s->is_tile)
1884 av_log(s->avctx, AV_LOG_WARNING,
1885 "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1886
1887 s->tile_attr.xSize = bytestream2_get_le32(gb);
1888 s->tile_attr.ySize = bytestream2_get_le32(gb);
1889
1890 tileLevel = bytestream2_get_byte(gb);
1891 s->tile_attr.level_mode = tileLevel & 0x0f;
1892 s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1893
1894 if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN) {
1895 avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1896 s->tile_attr.level_mode);
1897 ret = AVERROR_PATCHWELCOME;
1898 goto fail;
1899 }
1900
1901 if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
1902 avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1903 s->tile_attr.level_round);
1904 ret = AVERROR_PATCHWELCOME;
1905 goto fail;
1906 }
1907
1908 continue;
1909 } else if ((var_size = check_header_variable(s, "writer",
1910 "string", 1)) >= 0) {
1911 uint8_t key[256] = { 0 };
1912
1913 bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size));
1914 av_dict_set(&metadata, "writer", key, 0);
1915
1916 continue;
1917 } else if ((var_size = check_header_variable(s, "framesPerSecond",
1918 "rational", 33)) >= 0) {
1919 if (!var_size) {
1920 ret = AVERROR_INVALIDDATA;
1921 goto fail;
1922 }
1923
1924 s->avctx->framerate.num = bytestream2_get_le32(gb);
1925 s->avctx->framerate.den = bytestream2_get_le32(gb);
1926
1927 continue;
1928 } else if ((var_size = check_header_variable(s, "chunkCount",
1929 "int", 23)) >= 0) {
1930
1931 s->chunk_count = bytestream2_get_le32(gb);
1932
1933 continue;
1934 } else if ((var_size = check_header_variable(s, "type",
1935 "string", 16)) >= 0) {
1936 uint8_t key[256] = { 0 };
1937
1938 bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size));
1939 if (strncmp("scanlineimage", key, var_size) &&
1940 strncmp("tiledimage", key, var_size))
1941 return AVERROR_PATCHWELCOME;
1942
1943 continue;
1944 } else if ((var_size = check_header_variable(s, "preview",
1945 "preview", 16)) >= 0) {
1946 uint32_t pw = bytestream2_get_le32(gb);
1947 uint32_t ph = bytestream2_get_le32(gb);
1948 int64_t psize = 4LL * pw * ph;
1949
1950 if (psize >= bytestream2_get_bytes_left(gb))
1951 return AVERROR_INVALIDDATA;
1952
1953 bytestream2_skip(gb, psize);
1954
1955 continue;
1956 }
1957
1958 // Check if there are enough bytes for a header
1959 if (bytestream2_get_bytes_left(gb) <= 9) {
1960 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1961 ret = AVERROR_INVALIDDATA;
1962 goto fail;
1963 }
1964
1965 // Process unknown variables
1966 {
1967 uint8_t name[256] = { 0 };
1968 uint8_t type[256] = { 0 };
1969 uint8_t value[256] = { 0 };
1970 int i = 0, size;
1971
1972 while (bytestream2_get_bytes_left(gb) > 0 &&
1973 bytestream2_peek_byte(gb) && i < 255) {
1974 name[i++] = bytestream2_get_byte(gb);
1975 }
1976
1977 bytestream2_skip(gb, 1);
1978 i = 0;
1979 while (bytestream2_get_bytes_left(gb) > 0 &&
1980 bytestream2_peek_byte(gb) && i < 255) {
1981 type[i++] = bytestream2_get_byte(gb);
1982 }
1983 bytestream2_skip(gb, 1);
1984 size = bytestream2_get_le32(gb);
1985
1986 bytestream2_get_buffer(gb, value, FFMIN(sizeof(value) - 1, size));
1987 if (!strcmp(type, "string"))
1988 av_dict_set(&metadata, name, value, 0);
1989 }
1990 }
1991
1992 if (s->compression == EXR_UNKN) {
1993 av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1994 ret = AVERROR_INVALIDDATA;
1995 goto fail;
1996 }
1997
1998 if (s->is_tile) {
1999 if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
2000 av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
2001 ret = AVERROR_INVALIDDATA;
2002 goto fail;
2003 }
2004 }
2005
2006 if (bytestream2_get_bytes_left(gb) <= 0) {
2007 av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
2008 ret = AVERROR_INVALIDDATA;
2009 goto fail;
2010 }
2011
2012 frame->metadata = metadata;
2013
2014 // aaand we are done
2015 bytestream2_skip(gb, 1);
2016 return 0;
2017 fail:
2018 av_dict_free(&metadata);
2019 return ret;
2020 }
2021
decode_frame(AVCodecContext * avctx,void * data,int * got_frame,AVPacket * avpkt)2022 static int decode_frame(AVCodecContext *avctx, void *data,
2023 int *got_frame, AVPacket *avpkt)
2024 {
2025 EXRContext *s = avctx->priv_data;
2026 GetByteContext *gb = &s->gb;
2027 ThreadFrame frame = { .f = data };
2028 AVFrame *picture = data;
2029 uint8_t *ptr;
2030
2031 int i, y, ret, ymax;
2032 int planes;
2033 int out_line_size;
2034 int nb_blocks; /* nb scanline or nb tile */
2035 uint64_t start_offset_table;
2036 uint64_t start_next_scanline;
2037 PutByteContext offset_table_writer;
2038
2039 bytestream2_init(gb, avpkt->data, avpkt->size);
2040
2041 if ((ret = decode_header(s, picture)) < 0)
2042 return ret;
2043
2044 if ((s->compression == EXR_DWAA || s->compression == EXR_DWAB) &&
2045 s->pixel_type == EXR_HALF) {
2046 s->current_channel_offset *= 2;
2047 for (int i = 0; i < 4; i++)
2048 s->channel_offsets[i] *= 2;
2049 }
2050
2051 switch (s->pixel_type) {
2052 case EXR_FLOAT:
2053 case EXR_HALF:
2054 if (s->channel_offsets[3] >= 0) {
2055 if (!s->is_luma) {
2056 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
2057 } else {
2058 /* todo: change this when a floating point pixel format with luma with alpha is implemented */
2059 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
2060 }
2061 } else {
2062 if (!s->is_luma) {
2063 avctx->pix_fmt = AV_PIX_FMT_GBRPF32;
2064 } else {
2065 avctx->pix_fmt = AV_PIX_FMT_GRAYF32;
2066 }
2067 }
2068 break;
2069 case EXR_UINT:
2070 if (s->channel_offsets[3] >= 0) {
2071 if (!s->is_luma) {
2072 avctx->pix_fmt = AV_PIX_FMT_RGBA64;
2073 } else {
2074 avctx->pix_fmt = AV_PIX_FMT_YA16;
2075 }
2076 } else {
2077 if (!s->is_luma) {
2078 avctx->pix_fmt = AV_PIX_FMT_RGB48;
2079 } else {
2080 avctx->pix_fmt = AV_PIX_FMT_GRAY16;
2081 }
2082 }
2083 break;
2084 default:
2085 av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
2086 return AVERROR_INVALIDDATA;
2087 }
2088
2089 if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
2090 avctx->color_trc = s->apply_trc_type;
2091
2092 switch (s->compression) {
2093 case EXR_RAW:
2094 case EXR_RLE:
2095 case EXR_ZIP1:
2096 s->scan_lines_per_block = 1;
2097 break;
2098 case EXR_PXR24:
2099 case EXR_ZIP16:
2100 s->scan_lines_per_block = 16;
2101 break;
2102 case EXR_PIZ:
2103 case EXR_B44:
2104 case EXR_B44A:
2105 case EXR_DWAA:
2106 s->scan_lines_per_block = 32;
2107 break;
2108 case EXR_DWAB:
2109 s->scan_lines_per_block = 256;
2110 break;
2111 default:
2112 avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
2113 return AVERROR_PATCHWELCOME;
2114 }
2115
2116 /* Verify the xmin, xmax, ymin and ymax before setting the actual image size.
2117 * It's possible for the data window can larger or outside the display window */
2118 if (s->xmin > s->xmax || s->ymin > s->ymax ||
2119 s->ydelta == 0xFFFFFFFF || s->xdelta == 0xFFFFFFFF) {
2120 av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
2121 return AVERROR_INVALIDDATA;
2122 }
2123
2124 if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
2125 return ret;
2126
2127 ff_set_sar(s->avctx, av_d2q(av_int2float(s->sar), 255));
2128
2129 s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
2130 if (!s->desc)
2131 return AVERROR_INVALIDDATA;
2132
2133 if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
2134 planes = s->desc->nb_components;
2135 out_line_size = avctx->width * 4;
2136 } else {
2137 planes = 1;
2138 out_line_size = avctx->width * 2 * s->desc->nb_components;
2139 }
2140
2141 if (s->is_tile) {
2142 nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
2143 ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
2144 } else { /* scanline */
2145 nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
2146 s->scan_lines_per_block;
2147 }
2148
2149 if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
2150 return ret;
2151
2152 if (bytestream2_get_bytes_left(gb)/8 < nb_blocks)
2153 return AVERROR_INVALIDDATA;
2154
2155 // check offset table and recreate it if need
2156 if (!s->is_tile && bytestream2_peek_le64(gb) == 0) {
2157 av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
2158
2159 start_offset_table = bytestream2_tell(gb);
2160 start_next_scanline = start_offset_table + nb_blocks * 8;
2161 bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
2162
2163 for (y = 0; y < nb_blocks; y++) {
2164 /* write offset of prev scanline in offset table */
2165 bytestream2_put_le64(&offset_table_writer, start_next_scanline);
2166
2167 /* get len of next scanline */
2168 bytestream2_seek(gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
2169 start_next_scanline += (bytestream2_get_le32(gb) + 8);
2170 }
2171 bytestream2_seek(gb, start_offset_table, SEEK_SET);
2172 }
2173
2174 // save pointer we are going to use in decode_block
2175 s->buf = avpkt->data;
2176 s->buf_size = avpkt->size;
2177
2178 // Zero out the start if ymin is not 0
2179 for (i = 0; i < planes; i++) {
2180 ptr = picture->data[i];
2181 for (y = 0; y < FFMIN(s->ymin, s->h); y++) {
2182 memset(ptr, 0, out_line_size);
2183 ptr += picture->linesize[i];
2184 }
2185 }
2186
2187 s->picture = picture;
2188
2189 avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
2190
2191 ymax = FFMAX(0, s->ymax + 1);
2192 // Zero out the end if ymax+1 is not h
2193 if (ymax < avctx->height)
2194 for (i = 0; i < planes; i++) {
2195 ptr = picture->data[i] + (ymax * picture->linesize[i]);
2196 for (y = ymax; y < avctx->height; y++) {
2197 memset(ptr, 0, out_line_size);
2198 ptr += picture->linesize[i];
2199 }
2200 }
2201
2202 picture->pict_type = AV_PICTURE_TYPE_I;
2203 *got_frame = 1;
2204
2205 return avpkt->size;
2206 }
2207
decode_init(AVCodecContext * avctx)2208 static av_cold int decode_init(AVCodecContext *avctx)
2209 {
2210 EXRContext *s = avctx->priv_data;
2211 uint32_t i;
2212 union av_intfloat32 t;
2213 float one_gamma = 1.0f / s->gamma;
2214 avpriv_trc_function trc_func = NULL;
2215
2216 half2float_table(s->mantissatable, s->exponenttable, s->offsettable);
2217
2218 s->avctx = avctx;
2219
2220 ff_exrdsp_init(&s->dsp);
2221
2222 #if HAVE_BIGENDIAN
2223 ff_bswapdsp_init(&s->bbdsp);
2224 #endif
2225
2226 trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
2227 if (trc_func) {
2228 for (i = 0; i < 65536; ++i) {
2229 t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2230 t.f = trc_func(t.f);
2231 s->gamma_table[i] = t;
2232 }
2233 } else {
2234 if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
2235 for (i = 0; i < 65536; ++i) {
2236 s->gamma_table[i].i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2237 }
2238 } else {
2239 for (i = 0; i < 65536; ++i) {
2240 t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2241 /* If negative value we reuse half value */
2242 if (t.f <= 0.0f) {
2243 s->gamma_table[i] = t;
2244 } else {
2245 t.f = powf(t.f, one_gamma);
2246 s->gamma_table[i] = t;
2247 }
2248 }
2249 }
2250 }
2251
2252 // allocate thread data, used for non EXR_RAW compression types
2253 s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
2254 if (!s->thread_data)
2255 return AVERROR_INVALIDDATA;
2256
2257 return 0;
2258 }
2259
decode_end(AVCodecContext * avctx)2260 static av_cold int decode_end(AVCodecContext *avctx)
2261 {
2262 EXRContext *s = avctx->priv_data;
2263 int i;
2264 for (i = 0; i < avctx->thread_count; i++) {
2265 EXRThreadData *td = &s->thread_data[i];
2266 av_freep(&td->uncompressed_data);
2267 av_freep(&td->tmp);
2268 av_freep(&td->bitmap);
2269 av_freep(&td->lut);
2270 av_freep(&td->he);
2271 av_freep(&td->freq);
2272 av_freep(&td->ac_data);
2273 av_freep(&td->dc_data);
2274 av_freep(&td->rle_data);
2275 av_freep(&td->rle_raw_data);
2276 ff_free_vlc(&td->vlc);
2277 }
2278
2279 av_freep(&s->thread_data);
2280 av_freep(&s->channels);
2281
2282 return 0;
2283 }
2284
2285 #define OFFSET(x) offsetof(EXRContext, x)
2286 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2287 static const AVOption options[] = {
2288 { "layer", "Set the decoding layer", OFFSET(layer),
2289 AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
2290 { "part", "Set the decoding part", OFFSET(selected_part),
2291 AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VD },
2292 { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
2293 AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
2294
2295 // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
2296 { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
2297 AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
2298 { "bt709", "BT.709", 0,
2299 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2300 { "gamma", "gamma", 0,
2301 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2302 { "gamma22", "BT.470 M", 0,
2303 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2304 { "gamma28", "BT.470 BG", 0,
2305 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2306 { "smpte170m", "SMPTE 170 M", 0,
2307 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2308 { "smpte240m", "SMPTE 240 M", 0,
2309 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2310 { "linear", "Linear", 0,
2311 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2312 { "log", "Log", 0,
2313 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2314 { "log_sqrt", "Log square root", 0,
2315 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2316 { "iec61966_2_4", "IEC 61966-2-4", 0,
2317 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2318 { "bt1361", "BT.1361", 0,
2319 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2320 { "iec61966_2_1", "IEC 61966-2-1", 0,
2321 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2322 { "bt2020_10bit", "BT.2020 - 10 bit", 0,
2323 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2324 { "bt2020_12bit", "BT.2020 - 12 bit", 0,
2325 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2326 { "smpte2084", "SMPTE ST 2084", 0,
2327 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2328 { "smpte428_1", "SMPTE ST 428-1", 0,
2329 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2330
2331 { NULL },
2332 };
2333
2334 static const AVClass exr_class = {
2335 .class_name = "EXR",
2336 .item_name = av_default_item_name,
2337 .option = options,
2338 .version = LIBAVUTIL_VERSION_INT,
2339 };
2340
2341 AVCodec ff_exr_decoder = {
2342 .name = "exr",
2343 .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
2344 .type = AVMEDIA_TYPE_VIDEO,
2345 .id = AV_CODEC_ID_EXR,
2346 .priv_data_size = sizeof(EXRContext),
2347 .init = decode_init,
2348 .close = decode_end,
2349 .decode = decode_frame,
2350 .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
2351 AV_CODEC_CAP_SLICE_THREADS,
2352 .priv_class = &exr_class,
2353 };
2354