1 /*
2 * QuickTime RPZA Video Encoder
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file rpzaenc.c
23 * QT RPZA Video Encoder by Todd Kirby <doubleshot@pacbell.net> and David Adler
24 */
25
26 #include "libavutil/avassert.h"
27 #include "libavutil/common.h"
28 #include "libavutil/opt.h"
29
30 #include "avcodec.h"
31 #include "internal.h"
32 #include "put_bits.h"
33
34 typedef struct RpzaContext {
35 AVClass *avclass;
36
37 int skip_frame_thresh;
38 int start_one_color_thresh;
39 int continue_one_color_thresh;
40 int sixteen_color_thresh;
41
42 AVFrame *prev_frame; // buffer for previous source frame
43 PutBitContext pb; // buffer for encoded frame data.
44
45 int frame_width; // width in pixels of source frame
46 int frame_height; // height in pixesl of source frame
47
48 int first_frame; // flag set to one when the first frame is being processed
49 // so that comparisons with previous frame data in not attempted
50 } RpzaContext;
51
52 typedef enum channel_offset {
53 RED = 2,
54 GREEN = 1,
55 BLUE = 0,
56 } channel_offset;
57
58 typedef struct rgb {
59 uint8_t r;
60 uint8_t g;
61 uint8_t b;
62 } rgb;
63
64 #define SQR(x) ((x) * (x))
65
66 /* 15 bit components */
67 #define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F) * 8)
68 #define R(color) GET_CHAN(color, RED)
69 #define G(color) GET_CHAN(color, GREEN)
70 #define B(color) GET_CHAN(color, BLUE)
71
72 typedef struct BlockInfo {
73 int row;
74 int col;
75 int block_width;
76 int block_height;
77 int image_width;
78 int image_height;
79 int block_index;
80 uint16_t start;
81 int rowstride;
82 int blocks_per_row;
83 int total_blocks;
84 } BlockInfo;
85
get_colors(uint8_t * min,uint8_t * max,uint8_t color4[4][3])86 static void get_colors(uint8_t *min, uint8_t *max, uint8_t color4[4][3])
87 {
88 uint8_t step;
89
90 color4[0][0] = min[0];
91 color4[0][1] = min[1];
92 color4[0][2] = min[2];
93
94 color4[3][0] = max[0];
95 color4[3][1] = max[1];
96 color4[3][2] = max[2];
97
98 // red components
99 step = (color4[3][0] - color4[0][0] + 1) / 3;
100 color4[1][0] = color4[0][0] + step;
101 color4[2][0] = color4[3][0] - step;
102
103 // green components
104 step = (color4[3][1] - color4[0][1] + 1) / 3;
105 color4[1][1] = color4[0][1] + step;
106 color4[2][1] = color4[3][1] - step;
107
108 // blue components
109 step = (color4[3][2] - color4[0][2] + 1) / 3;
110 color4[1][2] = color4[0][2] + step;
111 color4[2][2] = color4[3][2] - step;
112 }
113
114 /* Fill BlockInfo struct with information about a 4x4 block of the image */
get_block_info(BlockInfo * bi,int block)115 static int get_block_info(BlockInfo *bi, int block)
116 {
117 bi->row = block / bi->blocks_per_row;
118 bi->col = block % bi->blocks_per_row;
119
120 // test for right edge block
121 if (bi->col == bi->blocks_per_row - 1 && (bi->image_width % 4) != 0) {
122 bi->block_width = bi->image_width % 4;
123 } else {
124 bi->block_width = 4;
125 }
126
127 // test for bottom edge block
128 if (bi->row == (bi->image_height / 4) && (bi->image_height % 4) != 0) {
129 bi->block_height = bi->image_height % 4;
130 } else {
131 bi->block_height = 4;
132 }
133
134 return block ? (bi->col * 4) + (bi->row * bi->rowstride * 4) : 0;
135 }
136
rgb24_to_rgb555(uint8_t * rgb24)137 static uint16_t rgb24_to_rgb555(uint8_t *rgb24)
138 {
139 uint16_t rgb555 = 0;
140 uint32_t r, g, b;
141
142 r = rgb24[0] >> 3;
143 g = rgb24[1] >> 3;
144 b = rgb24[2] >> 3;
145
146 rgb555 |= (r << 10);
147 rgb555 |= (g << 5);
148 rgb555 |= (b << 0);
149
150 return rgb555;
151 }
152
153 /*
154 * Returns the total difference between two 24 bit color values
155 */
diff_colors(uint8_t * colorA,uint8_t * colorB)156 static int diff_colors(uint8_t *colorA, uint8_t *colorB)
157 {
158 int tot;
159
160 tot = SQR(colorA[0] - colorB[0]);
161 tot += SQR(colorA[1] - colorB[1]);
162 tot += SQR(colorA[2] - colorB[2]);
163
164 return tot;
165 }
166
167 /*
168 * Returns the maximum channel difference
169 */
max_component_diff(uint16_t * colorA,uint16_t * colorB)170 static int max_component_diff(uint16_t *colorA, uint16_t *colorB)
171 {
172 int diff, max = 0;
173
174 diff = FFABS(R(colorA[0]) - R(colorB[0]));
175 if (diff > max) {
176 max = diff;
177 }
178 diff = FFABS(G(colorA[0]) - G(colorB[0]));
179 if (diff > max) {
180 max = diff;
181 }
182 diff = FFABS(B(colorA[0]) - B(colorB[0]));
183 if (diff > max) {
184 max = diff;
185 }
186 return max * 8;
187 }
188
189 /*
190 * Find the channel that has the largest difference between minimum and maximum
191 * color values. Put the minimum value in min, maximum in max and the channel
192 * in chan.
193 */
get_max_component_diff(BlockInfo * bi,uint16_t * block_ptr,uint8_t * min,uint8_t * max,channel_offset * chan)194 static void get_max_component_diff(BlockInfo *bi, uint16_t *block_ptr,
195 uint8_t *min, uint8_t *max, channel_offset *chan)
196 {
197 int x, y;
198 uint8_t min_r, max_r, min_g, max_g, min_b, max_b;
199 uint8_t r, g, b;
200
201 // fix warning about uninitialized vars
202 min_r = min_g = min_b = UINT8_MAX;
203 max_r = max_g = max_b = 0;
204
205 // loop thru and compare pixels
206 for (y = 0; y < bi->block_height; y++) {
207 for (x = 0; x < bi->block_width; x++){
208 // TODO: optimize
209 min_r = FFMIN(R(block_ptr[x]), min_r);
210 min_g = FFMIN(G(block_ptr[x]), min_g);
211 min_b = FFMIN(B(block_ptr[x]), min_b);
212
213 max_r = FFMAX(R(block_ptr[x]), max_r);
214 max_g = FFMAX(G(block_ptr[x]), max_g);
215 max_b = FFMAX(B(block_ptr[x]), max_b);
216 }
217 block_ptr += bi->rowstride;
218 }
219
220 r = max_r - min_r;
221 g = max_g - min_g;
222 b = max_b - min_b;
223
224 if (r > g && r > b) {
225 *max = max_r;
226 *min = min_r;
227 *chan = RED;
228 } else if (g > b && g >= r) {
229 *max = max_g;
230 *min = min_g;
231 *chan = GREEN;
232 } else {
233 *max = max_b;
234 *min = min_b;
235 *chan = BLUE;
236 }
237 }
238
239 /*
240 * Compare two 4x4 blocks to determine if the total difference between the
241 * blocks is greater than the thresh parameter. Returns -1 if difference
242 * exceeds threshold or zero otherwise.
243 */
compare_blocks(uint16_t * block1,uint16_t * block2,BlockInfo * bi,int thresh)244 static int compare_blocks(uint16_t *block1, uint16_t *block2, BlockInfo *bi, int thresh)
245 {
246 int x, y, diff = 0;
247 for (y = 0; y < bi->block_height; y++) {
248 for (x = 0; x < bi->block_width; x++) {
249 diff = max_component_diff(&block1[x], &block2[x]);
250 if (diff >= thresh) {
251 return -1;
252 }
253 }
254 block1 += bi->rowstride;
255 block2 += bi->rowstride;
256 }
257 return 0;
258 }
259
260 /*
261 * Determine the fit of one channel to another within a 4x4 block. This
262 * is used to determine the best palette choices for 4-color encoding.
263 */
leastsquares(uint16_t * block_ptr,BlockInfo * bi,channel_offset xchannel,channel_offset ychannel,double * slope,double * y_intercept,double * correlation_coef)264 static int leastsquares(uint16_t *block_ptr, BlockInfo *bi,
265 channel_offset xchannel, channel_offset ychannel,
266 double *slope, double *y_intercept, double *correlation_coef)
267 {
268 double sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0,
269 sumx_sq = 0, sumy_sq = 0, tmp, tmp2;
270 int i, j, count;
271 uint8_t x, y;
272
273 count = bi->block_height * bi->block_width;
274
275 if (count < 2)
276 return -1;
277
278 for (i = 0; i < bi->block_height; i++) {
279 for (j = 0; j < bi->block_width; j++){
280 x = GET_CHAN(block_ptr[j], xchannel);
281 y = GET_CHAN(block_ptr[j], ychannel);
282 sumx += x;
283 sumy += y;
284 sumx2 += x * x;
285 sumy2 += y * y;
286 sumxy += x * y;
287 }
288 block_ptr += bi->rowstride;
289 }
290
291 sumx_sq = sumx * sumx;
292 tmp = (count * sumx2 - sumx_sq);
293
294 // guard against div/0
295 if (tmp == 0)
296 return -2;
297
298 sumy_sq = sumy * sumy;
299
300 *slope = (sumx * sumy - sumxy) / tmp;
301 *y_intercept = (sumy - (*slope) * sumx) / count;
302
303 tmp2 = count * sumy2 - sumy_sq;
304 if (tmp2 == 0) {
305 *correlation_coef = 0.0;
306 } else {
307 *correlation_coef = (count * sumxy - sumx * sumy) /
308 sqrt(tmp * tmp2);
309 }
310
311 return 0; // success
312 }
313
314 /*
315 * Determine the amount of error in the leastsquares fit.
316 */
calc_lsq_max_fit_error(uint16_t * block_ptr,BlockInfo * bi,int min,int max,int tmp_min,int tmp_max,channel_offset xchannel,channel_offset ychannel)317 static int calc_lsq_max_fit_error(uint16_t *block_ptr, BlockInfo *bi,
318 int min, int max, int tmp_min, int tmp_max,
319 channel_offset xchannel, channel_offset ychannel)
320 {
321 int i, j, x, y;
322 int err;
323 int max_err = 0;
324
325 for (i = 0; i < bi->block_height; i++) {
326 for (j = 0; j < bi->block_width; j++){
327 int x_inc, lin_y, lin_x;
328 x = GET_CHAN(block_ptr[j], xchannel);
329 y = GET_CHAN(block_ptr[j], ychannel);
330
331 /* calculate x_inc as the 4-color index (0..3) */
332 x_inc = floor( (x - min) * 3.0 / (max - min) + 0.5);
333 x_inc = FFMAX(FFMIN(3, x_inc), 0);
334
335 /* calculate lin_y corresponding to x_inc */
336 lin_y = (int)(tmp_min + (tmp_max - tmp_min) * x_inc / 3.0 + 0.5);
337
338 err = FFABS(lin_y - y);
339 if (err > max_err)
340 max_err = err;
341
342 /* calculate lin_x corresponding to x_inc */
343 lin_x = (int)(min + (max - min) * x_inc / 3.0 + 0.5);
344
345 err = FFABS(lin_x - x);
346 if (err > max_err)
347 max_err += err;
348 }
349 block_ptr += bi->rowstride;
350 }
351
352 return max_err;
353 }
354
355 /*
356 * Find the closest match to a color within the 4-color palette
357 */
match_color(uint16_t * color,uint8_t colors[4][3])358 static int match_color(uint16_t *color, uint8_t colors[4][3])
359 {
360 int ret = 0;
361 int smallest_variance = INT_MAX;
362 uint8_t dithered_color[3];
363
364 for (int channel = 0; channel < 3; channel++) {
365 dithered_color[channel] = GET_CHAN(color[0], channel);
366 }
367
368 for (int palette_entry = 0; palette_entry < 4; palette_entry++) {
369 int variance = diff_colors(dithered_color, colors[palette_entry]);
370
371 if (variance < smallest_variance) {
372 smallest_variance = variance;
373 ret = palette_entry;
374 }
375 }
376
377 return ret;
378 }
379
380 /*
381 * Encode a block using the 4-color opcode and palette. return number of
382 * blocks encoded (until we implement multi-block 4 color runs this will
383 * always be 1)
384 */
encode_four_color_block(uint8_t * min_color,uint8_t * max_color,PutBitContext * pb,uint16_t * block_ptr,BlockInfo * bi)385 static int encode_four_color_block(uint8_t *min_color, uint8_t *max_color,
386 PutBitContext *pb, uint16_t *block_ptr, BlockInfo *bi)
387 {
388 int x, y, idx;
389 uint8_t color4[4][3];
390 uint16_t rounded_max, rounded_min;
391
392 // round min and max wider
393 rounded_min = rgb24_to_rgb555(min_color);
394 rounded_max = rgb24_to_rgb555(max_color);
395
396 // put a and b colors
397 // encode 4 colors = first 16 bit color with MSB zeroed and...
398 put_bits(pb, 16, rounded_max & ~0x8000);
399 // ...second 16 bit color with MSB on.
400 put_bits(pb, 16, rounded_min | 0x8000);
401
402 get_colors(min_color, max_color, color4);
403
404 for (y = 0; y < 4; y++) {
405 for (x = 0; x < 4; x++) {
406 idx = match_color(&block_ptr[x], color4);
407 put_bits(pb, 2, idx);
408 }
409 block_ptr += bi->rowstride;
410 }
411 return 1; // num blocks encoded
412 }
413
414 /*
415 * Copy a 4x4 block from the current frame buffer to the previous frame buffer.
416 */
update_block_in_prev_frame(const uint16_t * src_pixels,uint16_t * dest_pixels,const BlockInfo * bi,int block_counter)417 static void update_block_in_prev_frame(const uint16_t *src_pixels,
418 uint16_t *dest_pixels,
419 const BlockInfo *bi, int block_counter)
420 {
421 for (int y = 0; y < 4; y++) {
422 memcpy(dest_pixels, src_pixels, 8);
423 dest_pixels += bi->rowstride;
424 src_pixels += bi->rowstride;
425 }
426 }
427
428 /*
429 * update statistics for the specified block. If first_block,
430 * it initializes the statistics. Otherwise it updates the statistics IF THIS
431 * BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether
432 * the range of colors (since the routine was called first_block != 0) are
433 * all close enough intensities to be represented by a single color.
434
435 * The routine returns 0 if this block is too different to be part of
436 * the same run of 1-color blocks. The routine returns 1 if this
437 * block can be part of the same 1-color block run.
438
439 * If the routine returns 1, it also updates its arguments to include
440 * the statistics of this block. Otherwise, the stats are unchanged
441 * and don't include the current block.
442 */
update_block_stats(RpzaContext * s,BlockInfo * bi,uint16_t * block,uint8_t min_color[3],uint8_t max_color[3],int * total_rgb,int * total_pixels,uint8_t avg_color[3],int first_block)443 static int update_block_stats(RpzaContext *s, BlockInfo *bi, uint16_t *block,
444 uint8_t min_color[3], uint8_t max_color[3],
445 int *total_rgb, int *total_pixels,
446 uint8_t avg_color[3], int first_block)
447 {
448 int x, y;
449 int is_in_range;
450 int total_pixels_blk;
451 int threshold;
452
453 uint8_t min_color_blk[3], max_color_blk[3];
454 int total_rgb_blk[3];
455 uint8_t avg_color_blk[3];
456
457 if (first_block) {
458 min_color[0] = UINT8_MAX;
459 min_color[1] = UINT8_MAX;
460 min_color[2] = UINT8_MAX;
461 max_color[0] = 0;
462 max_color[1] = 0;
463 max_color[2] = 0;
464 total_rgb[0] = 0;
465 total_rgb[1] = 0;
466 total_rgb[2] = 0;
467 *total_pixels = 0;
468 threshold = s->start_one_color_thresh;
469 } else {
470 threshold = s->continue_one_color_thresh;
471 }
472
473 /*
474 The *_blk variables will include the current block.
475 Initialize them based on the blocks so far.
476 */
477 min_color_blk[0] = min_color[0];
478 min_color_blk[1] = min_color[1];
479 min_color_blk[2] = min_color[2];
480 max_color_blk[0] = max_color[0];
481 max_color_blk[1] = max_color[1];
482 max_color_blk[2] = max_color[2];
483 total_rgb_blk[0] = total_rgb[0];
484 total_rgb_blk[1] = total_rgb[1];
485 total_rgb_blk[2] = total_rgb[2];
486 total_pixels_blk = *total_pixels + bi->block_height * bi->block_width;
487
488 /*
489 Update stats for this block's pixels
490 */
491 for (y = 0; y < bi->block_height; y++) {
492 for (x = 0; x < bi->block_width; x++) {
493 total_rgb_blk[0] += R(block[x]);
494 total_rgb_blk[1] += G(block[x]);
495 total_rgb_blk[2] += B(block[x]);
496
497 min_color_blk[0] = FFMIN(R(block[x]), min_color_blk[0]);
498 min_color_blk[1] = FFMIN(G(block[x]), min_color_blk[1]);
499 min_color_blk[2] = FFMIN(B(block[x]), min_color_blk[2]);
500
501 max_color_blk[0] = FFMAX(R(block[x]), max_color_blk[0]);
502 max_color_blk[1] = FFMAX(G(block[x]), max_color_blk[1]);
503 max_color_blk[2] = FFMAX(B(block[x]), max_color_blk[2]);
504 }
505 block += bi->rowstride;
506 }
507
508 /*
509 Calculate average color including current block.
510 */
511 avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk;
512 avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk;
513 avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk;
514
515 /*
516 Are all the pixels within threshold of the average color?
517 */
518 is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold &&
519 max_color_blk[1] - avg_color_blk[1] <= threshold &&
520 max_color_blk[2] - avg_color_blk[2] <= threshold &&
521 avg_color_blk[0] - min_color_blk[0] <= threshold &&
522 avg_color_blk[1] - min_color_blk[1] <= threshold &&
523 avg_color_blk[2] - min_color_blk[2] <= threshold);
524
525 if (is_in_range) {
526 /*
527 Set the output variables to include this block.
528 */
529 min_color[0] = min_color_blk[0];
530 min_color[1] = min_color_blk[1];
531 min_color[2] = min_color_blk[2];
532 max_color[0] = max_color_blk[0];
533 max_color[1] = max_color_blk[1];
534 max_color[2] = max_color_blk[2];
535 total_rgb[0] = total_rgb_blk[0];
536 total_rgb[1] = total_rgb_blk[1];
537 total_rgb[2] = total_rgb_blk[2];
538 *total_pixels = total_pixels_blk;
539 avg_color[0] = avg_color_blk[0];
540 avg_color[1] = avg_color_blk[1];
541 avg_color[2] = avg_color_blk[2];
542 }
543
544 return is_in_range;
545 }
546
rpza_encode_stream(RpzaContext * s,const AVFrame * pict)547 static void rpza_encode_stream(RpzaContext *s, const AVFrame *pict)
548 {
549 BlockInfo bi;
550 int block_counter = 0;
551 int n_blocks;
552 int total_blocks;
553 int prev_block_offset;
554 int block_offset = 0;
555 uint8_t min = 0, max = 0;
556 channel_offset chan;
557 int i;
558 int tmp_min, tmp_max;
559 int total_rgb[3];
560 uint8_t avg_color[3];
561 int pixel_count;
562 uint8_t min_color[3], max_color[3];
563 double slope, y_intercept, correlation_coef;
564 uint16_t *src_pixels = (uint16_t *)pict->data[0];
565 uint16_t *prev_pixels = (uint16_t *)s->prev_frame->data[0];
566
567 /* Number of 4x4 blocks in frame. */
568 total_blocks = ((s->frame_width + 3) / 4) * ((s->frame_height + 3) / 4);
569
570 bi.image_width = s->frame_width;
571 bi.image_height = s->frame_height;
572 bi.rowstride = pict->linesize[0] / 2;
573
574 bi.blocks_per_row = (s->frame_width + 3) / 4;
575
576 while (block_counter < total_blocks) {
577 // SKIP CHECK
578 // make sure we have a valid previous frame and we're not writing
579 // a key frame
580 if (!s->first_frame) {
581 n_blocks = 0;
582 prev_block_offset = 0;
583
584 while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
585
586 block_offset = get_block_info(&bi, block_counter + n_blocks);
587
588 // multi-block opcodes cannot span multiple rows.
589 // If we're starting a new row, break out and write the opcode
590 /* TODO: Should eventually use bi.row here to determine when a
591 row break occurs, but that is currently breaking the
592 quicktime player. This is probably due to a bug in the
593 way I'm calculating the current row.
594 */
595 if (prev_block_offset && block_offset - prev_block_offset > 12) {
596 break;
597 }
598
599 prev_block_offset = block_offset;
600
601 if (compare_blocks(&prev_pixels[block_offset],
602 &src_pixels[block_offset], &bi, s->skip_frame_thresh) != 0) {
603 // write out skipable blocks
604 if (n_blocks) {
605
606 // write skip opcode
607 put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
608 block_counter += n_blocks;
609
610 goto post_skip;
611 }
612 break;
613 }
614
615 /*
616 * NOTE: we don't update skipped blocks in the previous frame buffer
617 * since skipped needs always to be compared against the first skipped
618 * block to avoid artifacts during gradual fade in/outs.
619 */
620
621 // update_block_in_prev_frame(&src_pixels[block_offset],
622 // &prev_pixels[block_offset], &bi, block_counter + n_blocks);
623
624 n_blocks++;
625 }
626
627 // we're either at the end of the frame or we've reached the maximum
628 // of 32 blocks in a run. Write out the run.
629 if (n_blocks) {
630 // write skip opcode
631 put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
632 block_counter += n_blocks;
633
634 continue;
635 }
636
637 } else {
638 block_offset = get_block_info(&bi, block_counter);
639 }
640 post_skip :
641
642 // ONE COLOR CHECK
643 if (update_block_stats(s, &bi, &src_pixels[block_offset],
644 min_color, max_color,
645 total_rgb, &pixel_count, avg_color, 1)) {
646 prev_block_offset = block_offset;
647
648 n_blocks = 1;
649
650 /* update this block in the previous frame buffer */
651 update_block_in_prev_frame(&src_pixels[block_offset],
652 &prev_pixels[block_offset], &bi, block_counter + n_blocks);
653
654 // check for subsequent blocks with the same color
655 while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
656 block_offset = get_block_info(&bi, block_counter + n_blocks);
657
658 // multi-block opcodes cannot span multiple rows.
659 // If we've hit end of a row, break out and write the opcode
660 if (block_offset - prev_block_offset > 12) {
661 break;
662 }
663
664 if (!update_block_stats(s, &bi, &src_pixels[block_offset],
665 min_color, max_color,
666 total_rgb, &pixel_count, avg_color, 0)) {
667 break;
668 }
669
670 prev_block_offset = block_offset;
671
672 /* update this block in the previous frame buffer */
673 update_block_in_prev_frame(&src_pixels[block_offset],
674 &prev_pixels[block_offset], &bi, block_counter + n_blocks);
675
676 n_blocks++;
677 }
678
679 // write one color opcode.
680 put_bits(&s->pb, 8, 0xa0 | (n_blocks - 1));
681 // write color to encode.
682 put_bits(&s->pb, 16, rgb24_to_rgb555(avg_color));
683 // skip past the blocks we've just encoded.
684 block_counter += n_blocks;
685 } else { // FOUR COLOR CHECK
686 int err = 0;
687
688 // get max component diff for block
689 get_max_component_diff(&bi, &src_pixels[block_offset], &min, &max, &chan);
690
691 min_color[0] = 0;
692 max_color[0] = 0;
693 min_color[1] = 0;
694 max_color[1] = 0;
695 min_color[2] = 0;
696 max_color[2] = 0;
697
698 // run least squares against other two components
699 for (i = 0; i < 3; i++) {
700 if (i == chan) {
701 min_color[i] = min;
702 max_color[i] = max;
703 continue;
704 }
705
706 slope = y_intercept = correlation_coef = 0;
707
708 if (leastsquares(&src_pixels[block_offset], &bi, chan, i,
709 &slope, &y_intercept, &correlation_coef)) {
710 min_color[i] = GET_CHAN(src_pixels[block_offset], i);
711 max_color[i] = GET_CHAN(src_pixels[block_offset], i);
712 } else {
713 tmp_min = (int)(0.5 + min * slope + y_intercept);
714 tmp_max = (int)(0.5 + max * slope + y_intercept);
715
716 av_assert0(tmp_min <= tmp_max);
717 // clamp min and max color values
718 tmp_min = av_clip_uint8(tmp_min);
719 tmp_max = av_clip_uint8(tmp_max);
720
721 err = FFMAX(calc_lsq_max_fit_error(&src_pixels[block_offset], &bi,
722 min, max, tmp_min, tmp_max, chan, i), err);
723
724 min_color[i] = tmp_min;
725 max_color[i] = tmp_max;
726 }
727 }
728
729 if (err > s->sixteen_color_thresh) { // DO SIXTEEN COLOR BLOCK
730 uint16_t *row_ptr;
731 int rgb555;
732
733 block_offset = get_block_info(&bi, block_counter);
734
735 row_ptr = &src_pixels[block_offset];
736
737 for (int y = 0; y < 4; y++) {
738 for (int x = 0; x < 4; x++){
739 rgb555 = row_ptr[x] & ~0x8000;
740
741 put_bits(&s->pb, 16, rgb555);
742 }
743 row_ptr += bi.rowstride;
744 }
745
746 block_counter++;
747 } else { // FOUR COLOR BLOCK
748 block_counter += encode_four_color_block(min_color, max_color,
749 &s->pb, &src_pixels[block_offset], &bi);
750 }
751
752 /* update this block in the previous frame buffer */
753 update_block_in_prev_frame(&src_pixels[block_offset],
754 &prev_pixels[block_offset], &bi, block_counter);
755 }
756 }
757 }
758
rpza_encode_init(AVCodecContext * avctx)759 static int rpza_encode_init(AVCodecContext *avctx)
760 {
761 RpzaContext *s = avctx->priv_data;
762
763 s->frame_width = avctx->width;
764 s->frame_height = avctx->height;
765
766 s->prev_frame = av_frame_alloc();
767 if (!s->prev_frame)
768 return AVERROR(ENOMEM);
769
770 return 0;
771 }
772
rpza_encode_frame(AVCodecContext * avctx,AVPacket * pkt,const AVFrame * frame,int * got_packet)773 static int rpza_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
774 const AVFrame *frame, int *got_packet)
775 {
776 RpzaContext *s = avctx->priv_data;
777 const AVFrame *pict = frame;
778 uint8_t *buf;
779 int ret;
780
781 if ((ret = ff_alloc_packet2(avctx, pkt, 6LL * avctx->height * avctx->width, 0)) < 0)
782 return ret;
783
784 init_put_bits(&s->pb, pkt->data, pkt->size);
785
786 // skip 4 byte header, write it later once the size of the chunk is known
787 put_bits32(&s->pb, 0x00);
788
789 if (!s->prev_frame->data[0]) {
790 s->first_frame = 1;
791 s->prev_frame->format = pict->format;
792 s->prev_frame->width = pict->width;
793 s->prev_frame->height = pict->height;
794 ret = av_frame_get_buffer(s->prev_frame, 0);
795 if (ret < 0)
796 return ret;
797 } else {
798 s->first_frame = 0;
799 }
800
801 rpza_encode_stream(s, pict);
802
803 flush_put_bits(&s->pb);
804
805 av_shrink_packet(pkt, put_bits_count(&s->pb) >> 3);
806 buf = pkt->data;
807
808 // write header opcode
809 buf[0] = 0xe1; // chunk opcode
810
811 // write chunk length
812 AV_WB24(buf + 1, pkt->size);
813
814 *got_packet = 1;
815
816 return 0;
817 }
818
rpza_encode_end(AVCodecContext * avctx)819 static int rpza_encode_end(AVCodecContext *avctx)
820 {
821 RpzaContext *s = (RpzaContext *)avctx->priv_data;
822
823 av_frame_free(&s->prev_frame);
824
825 return 0;
826 }
827
828 #define OFFSET(x) offsetof(RpzaContext, x)
829 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
830 static const AVOption options[] = {
831 { "skip_frame_thresh", NULL, OFFSET(skip_frame_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
832 { "start_one_color_thresh", NULL, OFFSET(start_one_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
833 { "continue_one_color_thresh", NULL, OFFSET(continue_one_color_thresh), AV_OPT_TYPE_INT, {.i64=0}, 0, 24, VE},
834 { "sixteen_color_thresh", NULL, OFFSET(sixteen_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
835 { NULL },
836 };
837
838 static const AVClass rpza_class = {
839 .class_name = "rpza",
840 .item_name = av_default_item_name,
841 .option = options,
842 .version = LIBAVUTIL_VERSION_INT,
843 };
844
845 AVCodec ff_rpza_encoder = {
846 .name = "rpza",
847 .long_name = NULL_IF_CONFIG_SMALL("QuickTime video (RPZA)"),
848 .type = AVMEDIA_TYPE_VIDEO,
849 .id = AV_CODEC_ID_RPZA,
850 .priv_data_size = sizeof(RpzaContext),
851 .priv_class = &rpza_class,
852 .init = rpza_encode_init,
853 .encode2 = rpza_encode_frame,
854 .close = rpza_encode_end,
855 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
856 .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB555,
857 AV_PIX_FMT_NONE},
858 };
859