1 /*
2  * IMC compatible decoder
3  * Copyright (c) 2002-2004 Maxim Poliakovski
4  * Copyright (c) 2006 Benjamin Larsson
5  * Copyright (c) 2006 Konstantin Shishkov
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  *  @file
26  *  IMC - Intel Music Coder
27  *  A mdct based codec using a 256 points large transform
28  *  divided into 32 bands with some mix of scale factors.
29  *  Only mono is supported.
30  */
31 
32 
33 #include <math.h>
34 #include <stddef.h>
35 #include <stdio.h>
36 
37 #include "libavutil/channel_layout.h"
38 #include "libavutil/ffmath.h"
39 #include "libavutil/float_dsp.h"
40 #include "libavutil/internal.h"
41 #include "avcodec.h"
42 #include "bswapdsp.h"
43 #include "get_bits.h"
44 #include "fft.h"
45 #include "internal.h"
46 #include "sinewin.h"
47 
48 #include "imcdata.h"
49 
50 #define IMC_BLOCK_SIZE 64
51 #define IMC_FRAME_ID 0x21
52 #define BANDS 32
53 #define COEFFS 256
54 
55 typedef struct IMCChannel {
56     float old_floor[BANDS];
57     float flcoeffs1[BANDS];
58     float flcoeffs2[BANDS];
59     float flcoeffs3[BANDS];
60     float flcoeffs4[BANDS];
61     float flcoeffs5[BANDS];
62     float flcoeffs6[BANDS];
63     float CWdecoded[COEFFS];
64 
65     int bandWidthT[BANDS];     ///< codewords per band
66     int bitsBandT[BANDS];      ///< how many bits per codeword in band
67     int CWlengthT[COEFFS];     ///< how many bits in each codeword
68     int levlCoeffBuf[BANDS];
69     int bandFlagsBuf[BANDS];   ///< flags for each band
70     int sumLenArr[BANDS];      ///< bits for all coeffs in band
71     int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
72     int skipFlagBits[BANDS];   ///< bits used to code skip flags
73     int skipFlagCount[BANDS];  ///< skipped coefficients per band
74     int skipFlags[COEFFS];     ///< skip coefficient decoding or not
75     int codewords[COEFFS];     ///< raw codewords read from bitstream
76 
77     float last_fft_im[COEFFS];
78 
79     int decoder_reset;
80 } IMCChannel;
81 
82 typedef struct IMCContext {
83     IMCChannel chctx[2];
84 
85     /** MDCT tables */
86     //@{
87     float mdct_sine_window[COEFFS];
88     float post_cos[COEFFS];
89     float post_sin[COEFFS];
90     float pre_coef1[COEFFS];
91     float pre_coef2[COEFFS];
92     //@}
93 
94     float sqrt_tab[30];
95     GetBitContext gb;
96 
97     BswapDSPContext bdsp;
98     AVFloatDSPContext *fdsp;
99     FFTContext fft;
100     DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
101     float *out_samples;
102 
103     int coef0_pos;
104 
105     int8_t cyclTab[32], cyclTab2[32];
106     float  weights1[31], weights2[31];
107 } IMCContext;
108 
109 static VLC huffman_vlc[4][4];
110 
111 #define VLC_TABLES_SIZE 9512
112 
113 static const int vlc_offsets[17] = {
114     0,     640, 1156, 1732, 2308, 2852, 3396, 3924,
115     4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
116 };
117 
118 static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
119 
freq2bark(double freq)120 static inline double freq2bark(double freq)
121 {
122     return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
123 }
124 
iac_generate_tabs(IMCContext * q,int sampling_rate)125 static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
126 {
127     double freqmin[32], freqmid[32], freqmax[32];
128     double scale = sampling_rate / (256.0 * 2.0 * 2.0);
129     double nyquist_freq = sampling_rate * 0.5;
130     double freq, bark, prev_bark = 0, tf, tb;
131     int i, j;
132 
133     for (i = 0; i < 32; i++) {
134         freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
135         bark = freq2bark(freq);
136 
137         if (i > 0) {
138             tb = bark - prev_bark;
139             q->weights1[i - 1] = ff_exp10(-1.0 * tb);
140             q->weights2[i - 1] = ff_exp10(-2.7 * tb);
141         }
142         prev_bark = bark;
143 
144         freqmid[i] = freq;
145 
146         tf = freq;
147         while (tf < nyquist_freq) {
148             tf += 0.5;
149             tb =  freq2bark(tf);
150             if (tb > bark + 0.5)
151                 break;
152         }
153         freqmax[i] = tf;
154 
155         tf = freq;
156         while (tf > 0.0) {
157             tf -= 0.5;
158             tb =  freq2bark(tf);
159             if (tb <= bark - 0.5)
160                 break;
161         }
162         freqmin[i] = tf;
163     }
164 
165     for (i = 0; i < 32; i++) {
166         freq = freqmax[i];
167         for (j = 31; j > 0 && freq <= freqmid[j]; j--);
168         q->cyclTab[i] = j + 1;
169 
170         freq = freqmin[i];
171         for (j = 0; j < 32 && freq >= freqmid[j]; j++);
172         q->cyclTab2[i] = j - 1;
173     }
174 }
175 
imc_decode_init(AVCodecContext * avctx)176 static av_cold int imc_decode_init(AVCodecContext *avctx)
177 {
178     int i, j, ret;
179     IMCContext *q = avctx->priv_data;
180     double r1, r2;
181 
182     if (avctx->codec_id == AV_CODEC_ID_IAC && avctx->sample_rate > 96000) {
183         av_log(avctx, AV_LOG_ERROR,
184                "Strange sample rate of %i, file likely corrupt or "
185                "needing a new table derivation method.\n",
186                avctx->sample_rate);
187         return AVERROR_PATCHWELCOME;
188     }
189 
190     if (avctx->codec_id == AV_CODEC_ID_IMC)
191         avctx->channels = 1;
192 
193     if (avctx->channels > 2) {
194         avpriv_request_sample(avctx, "Number of channels > 2");
195         return AVERROR_PATCHWELCOME;
196     }
197 
198     for (j = 0; j < avctx->channels; j++) {
199         q->chctx[j].decoder_reset = 1;
200 
201         for (i = 0; i < BANDS; i++)
202             q->chctx[j].old_floor[i] = 1.0;
203 
204         for (i = 0; i < COEFFS / 2; i++)
205             q->chctx[j].last_fft_im[i] = 0;
206     }
207 
208     /* Build mdct window, a simple sine window normalized with sqrt(2) */
209     ff_sine_window_init(q->mdct_sine_window, COEFFS);
210     for (i = 0; i < COEFFS; i++)
211         q->mdct_sine_window[i] *= sqrt(2.0);
212     for (i = 0; i < COEFFS / 2; i++) {
213         q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
214         q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
215 
216         r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
217         r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
218 
219         if (i & 0x1) {
220             q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
221             q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
222         } else {
223             q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
224             q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
225         }
226     }
227 
228     /* Generate a square root table */
229 
230     for (i = 0; i < 30; i++)
231         q->sqrt_tab[i] = sqrt(i);
232 
233     /* initialize the VLC tables */
234     for (i = 0; i < 4 ; i++) {
235         for (j = 0; j < 4; j++) {
236             huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
237             huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
238             init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
239                      imc_huffman_lens[i][j], 1, 1,
240                      imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
241         }
242     }
243 
244     if (avctx->codec_id == AV_CODEC_ID_IAC) {
245         iac_generate_tabs(q, avctx->sample_rate);
246     } else {
247         memcpy(q->cyclTab,  cyclTab,  sizeof(cyclTab));
248         memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
249         memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
250         memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
251     }
252 
253     if ((ret = ff_fft_init(&q->fft, 7, 1))) {
254         av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
255         return ret;
256     }
257     ff_bswapdsp_init(&q->bdsp);
258     q->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
259     if (!q->fdsp) {
260         ff_fft_end(&q->fft);
261 
262         return AVERROR(ENOMEM);
263     }
264 
265     avctx->sample_fmt     = AV_SAMPLE_FMT_FLTP;
266     avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
267                                                  : AV_CH_LAYOUT_STEREO;
268 
269     return 0;
270 }
271 
imc_calculate_coeffs(IMCContext * q,float * flcoeffs1,float * flcoeffs2,int * bandWidthT,float * flcoeffs3,float * flcoeffs5)272 static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
273                                  float *flcoeffs2, int *bandWidthT,
274                                  float *flcoeffs3, float *flcoeffs5)
275 {
276     float   workT1[BANDS];
277     float   workT2[BANDS];
278     float   workT3[BANDS];
279     float   snr_limit = 1.e-30;
280     float   accum = 0.0;
281     int i, cnt2;
282 
283     for (i = 0; i < BANDS; i++) {
284         flcoeffs5[i] = workT2[i] = 0.0;
285         if (bandWidthT[i]) {
286             workT1[i] = flcoeffs1[i] * flcoeffs1[i];
287             flcoeffs3[i] = 2.0 * flcoeffs2[i];
288         } else {
289             workT1[i]    = 0.0;
290             flcoeffs3[i] = -30000.0;
291         }
292         workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
293         if (workT3[i] <= snr_limit)
294             workT3[i] = 0.0;
295     }
296 
297     for (i = 0; i < BANDS; i++) {
298         for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
299             flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
300         workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
301     }
302 
303     for (i = 1; i < BANDS; i++) {
304         accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
305         flcoeffs5[i] += accum;
306     }
307 
308     for (i = 0; i < BANDS; i++)
309         workT2[i] = 0.0;
310 
311     for (i = 0; i < BANDS; i++) {
312         for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
313             flcoeffs5[cnt2] += workT3[i];
314         workT2[cnt2+1] += workT3[i];
315     }
316 
317     accum = 0.0;
318 
319     for (i = BANDS-2; i >= 0; i--) {
320         accum = (workT2[i+1] + accum) * q->weights2[i];
321         flcoeffs5[i] += accum;
322         // there is missing code here, but it seems to never be triggered
323     }
324 }
325 
326 
imc_read_level_coeffs(IMCContext * q,int stream_format_code,int * levlCoeffs)327 static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
328                                   int *levlCoeffs)
329 {
330     int i;
331     VLC *hufftab[4];
332     int start = 0;
333     const uint8_t *cb_sel;
334     int s;
335 
336     s = stream_format_code >> 1;
337     hufftab[0] = &huffman_vlc[s][0];
338     hufftab[1] = &huffman_vlc[s][1];
339     hufftab[2] = &huffman_vlc[s][2];
340     hufftab[3] = &huffman_vlc[s][3];
341     cb_sel = imc_cb_select[s];
342 
343     if (stream_format_code & 4)
344         start = 1;
345     if (start)
346         levlCoeffs[0] = get_bits(&q->gb, 7);
347     for (i = start; i < BANDS; i++) {
348         levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
349                                  hufftab[cb_sel[i]]->bits, 2);
350         if (levlCoeffs[i] == 17)
351             levlCoeffs[i] += get_bits(&q->gb, 4);
352     }
353 }
354 
imc_read_level_coeffs_raw(IMCContext * q,int stream_format_code,int * levlCoeffs)355 static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code,
356                                       int *levlCoeffs)
357 {
358     int i;
359 
360     q->coef0_pos  = get_bits(&q->gb, 5);
361     levlCoeffs[0] = get_bits(&q->gb, 7);
362     for (i = 1; i < BANDS; i++)
363         levlCoeffs[i] = get_bits(&q->gb, 4);
364 }
365 
imc_decode_level_coefficients(IMCContext * q,int * levlCoeffBuf,float * flcoeffs1,float * flcoeffs2)366 static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
367                                           float *flcoeffs1, float *flcoeffs2)
368 {
369     int i, level;
370     float tmp, tmp2;
371     // maybe some frequency division thingy
372 
373     flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
374     flcoeffs2[0] = log2f(flcoeffs1[0]);
375     tmp  = flcoeffs1[0];
376     tmp2 = flcoeffs2[0];
377 
378     for (i = 1; i < BANDS; i++) {
379         level = levlCoeffBuf[i];
380         if (level == 16) {
381             flcoeffs1[i] = 1.0;
382             flcoeffs2[i] = 0.0;
383         } else {
384             if (level < 17)
385                 level -= 7;
386             else if (level <= 24)
387                 level -= 32;
388             else
389                 level -= 16;
390 
391             tmp  *= imc_exp_tab[15 + level];
392             tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
393             flcoeffs1[i] = tmp;
394             flcoeffs2[i] = tmp2;
395         }
396     }
397 }
398 
399 
imc_decode_level_coefficients2(IMCContext * q,int * levlCoeffBuf,float * old_floor,float * flcoeffs1,float * flcoeffs2)400 static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
401                                            float *old_floor, float *flcoeffs1,
402                                            float *flcoeffs2)
403 {
404     int i;
405     /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
406      *       and flcoeffs2 old scale factors
407      *       might be incomplete due to a missing table that is in the binary code
408      */
409     for (i = 0; i < BANDS; i++) {
410         flcoeffs1[i] = 0;
411         if (levlCoeffBuf[i] < 16) {
412             flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
413             flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
414         } else {
415             flcoeffs1[i] = old_floor[i];
416         }
417     }
418 }
419 
imc_decode_level_coefficients_raw(IMCContext * q,int * levlCoeffBuf,float * flcoeffs1,float * flcoeffs2)420 static void imc_decode_level_coefficients_raw(IMCContext *q, int *levlCoeffBuf,
421                                               float *flcoeffs1, float *flcoeffs2)
422 {
423     int i, level, pos;
424     float tmp, tmp2;
425 
426     pos = q->coef0_pos;
427     flcoeffs1[pos] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
428     flcoeffs2[pos] = log2f(flcoeffs1[pos]);
429     tmp  = flcoeffs1[pos];
430     tmp2 = flcoeffs2[pos];
431 
432     levlCoeffBuf++;
433     for (i = 0; i < BANDS; i++) {
434         if (i == pos)
435             continue;
436         level = *levlCoeffBuf++;
437         flcoeffs1[i] = tmp  * powf(10.0, -level * 0.4375); //todo tab
438         flcoeffs2[i] = tmp2 - 1.4533435415 * level; // 1.4533435415 = log2(10) * 0.4375
439     }
440 }
441 
442 /**
443  * Perform bit allocation depending on bits available
444  */
bit_allocation(IMCContext * q,IMCChannel * chctx,int stream_format_code,int freebits,int flag)445 static int bit_allocation(IMCContext *q, IMCChannel *chctx,
446                           int stream_format_code, int freebits, int flag)
447 {
448     int i, j;
449     const float limit = -1.e20;
450     float highest = 0.0;
451     int indx;
452     int t1 = 0;
453     int t2 = 1;
454     float summa = 0.0;
455     int iacc = 0;
456     int summer = 0;
457     int rres, cwlen;
458     float lowest = 1.e10;
459     int low_indx = 0;
460     float workT[32];
461     int flg;
462     int found_indx = 0;
463 
464     for (i = 0; i < BANDS; i++)
465         highest = FFMAX(highest, chctx->flcoeffs1[i]);
466 
467     for (i = 0; i < BANDS - 1; i++) {
468         if (chctx->flcoeffs5[i] <= 0) {
469             av_log(NULL, AV_LOG_ERROR, "flcoeffs5 %f invalid\n", chctx->flcoeffs5[i]);
470             return AVERROR_INVALIDDATA;
471         }
472         chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
473     }
474     chctx->flcoeffs4[BANDS - 1] = limit;
475 
476     highest = highest * 0.25;
477 
478     for (i = 0; i < BANDS; i++) {
479         indx = -1;
480         if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
481             indx = 0;
482 
483         if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
484             indx = 1;
485 
486         if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
487             indx = 2;
488 
489         if (indx == -1)
490             return AVERROR_INVALIDDATA;
491 
492         chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
493     }
494 
495     if (stream_format_code & 0x2) {
496         chctx->flcoeffs4[0] = limit;
497         chctx->flcoeffs4[1] = limit;
498         chctx->flcoeffs4[2] = limit;
499         chctx->flcoeffs4[3] = limit;
500     }
501 
502     for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
503         iacc  += chctx->bandWidthT[i];
504         summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
505     }
506 
507     if (!iacc)
508         return AVERROR_INVALIDDATA;
509 
510     chctx->bandWidthT[BANDS - 1] = 0;
511     summa = (summa * 0.5 - freebits) / iacc;
512 
513 
514     for (i = 0; i < BANDS / 2; i++) {
515         rres = summer - freebits;
516         if ((rres >= -8) && (rres <= 8))
517             break;
518 
519         summer = 0;
520         iacc   = 0;
521 
522         for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
523             cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
524 
525             chctx->bitsBandT[j] = cwlen;
526             summer += chctx->bandWidthT[j] * cwlen;
527 
528             if (cwlen > 0)
529                 iacc += chctx->bandWidthT[j];
530         }
531 
532         flg = t2;
533         t2 = 1;
534         if (freebits < summer)
535             t2 = -1;
536         if (i == 0)
537             flg = t2;
538         if (flg != t2)
539             t1++;
540 
541         summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
542     }
543 
544     for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
545         for (j = band_tab[i]; j < band_tab[i + 1]; j++)
546             chctx->CWlengthT[j] = chctx->bitsBandT[i];
547     }
548 
549     if (freebits > summer) {
550         for (i = 0; i < BANDS; i++) {
551             workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
552                                               : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
553         }
554 
555         highest = 0.0;
556 
557         do {
558             if (highest <= -1.e20)
559                 break;
560 
561             found_indx = 0;
562             highest = -1.e20;
563 
564             for (i = 0; i < BANDS; i++) {
565                 if (workT[i] > highest) {
566                     highest = workT[i];
567                     found_indx = i;
568                 }
569             }
570 
571             if (highest > -1.e20) {
572                 workT[found_indx] -= 2.0;
573                 if (++chctx->bitsBandT[found_indx] == 6)
574                     workT[found_indx] = -1.e20;
575 
576                 for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
577                     chctx->CWlengthT[j]++;
578                     summer++;
579                 }
580             }
581         } while (freebits > summer);
582     }
583     if (freebits < summer) {
584         for (i = 0; i < BANDS; i++) {
585             workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
586                                        : 1.e20;
587         }
588         if (stream_format_code & 0x2) {
589             workT[0] = 1.e20;
590             workT[1] = 1.e20;
591             workT[2] = 1.e20;
592             workT[3] = 1.e20;
593         }
594         while (freebits < summer) {
595             lowest   = 1.e10;
596             low_indx = 0;
597             for (i = 0; i < BANDS; i++) {
598                 if (workT[i] < lowest) {
599                     lowest   = workT[i];
600                     low_indx = i;
601                 }
602             }
603             // if (lowest >= 1.e10)
604             //     break;
605             workT[low_indx] = lowest + 2.0;
606 
607             if (!--chctx->bitsBandT[low_indx])
608                 workT[low_indx] = 1.e20;
609 
610             for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
611                 if (chctx->CWlengthT[j] > 0) {
612                     chctx->CWlengthT[j]--;
613                     summer--;
614                 }
615             }
616         }
617     }
618     return 0;
619 }
620 
imc_get_skip_coeff(IMCContext * q,IMCChannel * chctx)621 static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
622 {
623     int i, j;
624 
625     memset(chctx->skipFlagBits,  0, sizeof(chctx->skipFlagBits));
626     memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
627     for (i = 0; i < BANDS; i++) {
628         if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
629             continue;
630 
631         if (!chctx->skipFlagRaw[i]) {
632             chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
633 
634             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
635                 chctx->skipFlags[j] = get_bits1(&q->gb);
636                 if (chctx->skipFlags[j])
637                     chctx->skipFlagCount[i]++;
638             }
639         } else {
640             for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
641                 if (!get_bits1(&q->gb)) { // 0
642                     chctx->skipFlagBits[i]++;
643                     chctx->skipFlags[j]      = 1;
644                     chctx->skipFlags[j + 1]  = 1;
645                     chctx->skipFlagCount[i] += 2;
646                 } else {
647                     if (get_bits1(&q->gb)) { // 11
648                         chctx->skipFlagBits[i] += 2;
649                         chctx->skipFlags[j]     = 0;
650                         chctx->skipFlags[j + 1] = 1;
651                         chctx->skipFlagCount[i]++;
652                     } else {
653                         chctx->skipFlagBits[i] += 3;
654                         chctx->skipFlags[j + 1] = 0;
655                         if (!get_bits1(&q->gb)) { // 100
656                             chctx->skipFlags[j] = 1;
657                             chctx->skipFlagCount[i]++;
658                         } else { // 101
659                             chctx->skipFlags[j] = 0;
660                         }
661                     }
662                 }
663             }
664 
665             if (j < band_tab[i + 1]) {
666                 chctx->skipFlagBits[i]++;
667                 if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
668                     chctx->skipFlagCount[i]++;
669             }
670         }
671     }
672 }
673 
674 /**
675  * Increase highest' band coefficient sizes as some bits won't be used
676  */
imc_adjust_bit_allocation(IMCContext * q,IMCChannel * chctx,int summer)677 static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
678                                       int summer)
679 {
680     float workT[32];
681     int corrected = 0;
682     int i, j;
683     float highest  = 0;
684     int found_indx = 0;
685 
686     for (i = 0; i < BANDS; i++) {
687         workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
688                                           : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
689     }
690 
691     while (corrected < summer) {
692         if (highest <= -1.e20)
693             break;
694 
695         highest = -1.e20;
696 
697         for (i = 0; i < BANDS; i++) {
698             if (workT[i] > highest) {
699                 highest = workT[i];
700                 found_indx = i;
701             }
702         }
703 
704         if (highest > -1.e20) {
705             workT[found_indx] -= 2.0;
706             if (++(chctx->bitsBandT[found_indx]) == 6)
707                 workT[found_indx] = -1.e20;
708 
709             for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
710                 if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
711                     chctx->CWlengthT[j]++;
712                     corrected++;
713                 }
714             }
715         }
716     }
717 }
718 
imc_imdct256(IMCContext * q,IMCChannel * chctx,int channels)719 static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
720 {
721     int i;
722     float re, im;
723     float *dst1 = q->out_samples;
724     float *dst2 = q->out_samples + (COEFFS - 1);
725 
726     /* prerotation */
727     for (i = 0; i < COEFFS / 2; i++) {
728         q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
729                             (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
730         q->samples[i].im =  (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
731                             (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
732     }
733 
734     /* FFT */
735     q->fft.fft_permute(&q->fft, q->samples);
736     q->fft.fft_calc(&q->fft, q->samples);
737 
738     /* postrotation, window and reorder */
739     for (i = 0; i < COEFFS / 2; i++) {
740         re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
741         im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
742         *dst1 =  (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
743                + (q->mdct_sine_window[i * 2] * re);
744         *dst2 =  (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
745                - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
746         dst1 += 2;
747         dst2 -= 2;
748         chctx->last_fft_im[i] = im;
749     }
750 }
751 
inverse_quant_coeff(IMCContext * q,IMCChannel * chctx,int stream_format_code)752 static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
753                                int stream_format_code)
754 {
755     int i, j;
756     int middle_value, cw_len, max_size;
757     const float *quantizer;
758 
759     for (i = 0; i < BANDS; i++) {
760         for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
761             chctx->CWdecoded[j] = 0;
762             cw_len = chctx->CWlengthT[j];
763 
764             if (cw_len <= 0 || chctx->skipFlags[j])
765                 continue;
766 
767             max_size     = 1 << cw_len;
768             middle_value = max_size >> 1;
769 
770             if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
771                 return AVERROR_INVALIDDATA;
772 
773             if (cw_len >= 4) {
774                 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
775                 if (chctx->codewords[j] >= middle_value)
776                     chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 8]                * chctx->flcoeffs6[i];
777                 else
778                     chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
779             }else{
780                 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
781                 if (chctx->codewords[j] >= middle_value)
782                     chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 1]            * chctx->flcoeffs6[i];
783                 else
784                     chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
785             }
786         }
787     }
788     return 0;
789 }
790 
791 
imc_get_coeffs(AVCodecContext * avctx,IMCContext * q,IMCChannel * chctx)792 static void imc_get_coeffs(AVCodecContext *avctx,
793                            IMCContext *q, IMCChannel *chctx)
794 {
795     int i, j, cw_len, cw;
796 
797     for (i = 0; i < BANDS; i++) {
798         if (!chctx->sumLenArr[i])
799             continue;
800         if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
801             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
802                 cw_len = chctx->CWlengthT[j];
803                 cw = 0;
804 
805                 if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j])) {
806                     if (get_bits_count(&q->gb) + cw_len > 512) {
807                         av_log(avctx, AV_LOG_WARNING,
808                             "Potential problem on band %i, coefficient %i"
809                             ": cw_len=%i\n", i, j, cw_len);
810                     } else
811                         cw = get_bits(&q->gb, cw_len);
812                 }
813 
814                 chctx->codewords[j] = cw;
815             }
816         }
817     }
818 }
819 
imc_refine_bit_allocation(IMCContext * q,IMCChannel * chctx)820 static void imc_refine_bit_allocation(IMCContext *q, IMCChannel *chctx)
821 {
822     int i, j;
823     int bits, summer;
824 
825     for (i = 0; i < BANDS; i++) {
826         chctx->sumLenArr[i]   = 0;
827         chctx->skipFlagRaw[i] = 0;
828         for (j = band_tab[i]; j < band_tab[i + 1]; j++)
829             chctx->sumLenArr[i] += chctx->CWlengthT[j];
830         if (chctx->bandFlagsBuf[i])
831             if (((int)((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
832                 chctx->skipFlagRaw[i] = 1;
833     }
834 
835     imc_get_skip_coeff(q, chctx);
836 
837     for (i = 0; i < BANDS; i++) {
838         chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
839         /* band has flag set and at least one coded coefficient */
840         if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
841             chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
842                                    q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
843         }
844     }
845 
846     /* calculate bits left, bits needed and adjust bit allocation */
847     bits = summer = 0;
848 
849     for (i = 0; i < BANDS; i++) {
850         if (chctx->bandFlagsBuf[i]) {
851             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
852                 if (chctx->skipFlags[j]) {
853                     summer += chctx->CWlengthT[j];
854                     chctx->CWlengthT[j] = 0;
855                 }
856             }
857             bits   += chctx->skipFlagBits[i];
858             summer -= chctx->skipFlagBits[i];
859         }
860     }
861     imc_adjust_bit_allocation(q, chctx, summer);
862 }
863 
imc_decode_block(AVCodecContext * avctx,IMCContext * q,int ch)864 static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
865 {
866     int stream_format_code;
867     int imc_hdr, i, j, ret;
868     int flag;
869     int bits;
870     int counter, bitscount;
871     IMCChannel *chctx = q->chctx + ch;
872 
873 
874     /* Check the frame header */
875     imc_hdr = get_bits(&q->gb, 9);
876     if (imc_hdr & 0x18) {
877         av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
878         av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
879         return AVERROR_INVALIDDATA;
880     }
881     stream_format_code = get_bits(&q->gb, 3);
882 
883     if (stream_format_code & 0x04)
884         chctx->decoder_reset = 1;
885 
886     if (chctx->decoder_reset) {
887         for (i = 0; i < BANDS; i++)
888             chctx->old_floor[i] = 1.0;
889         for (i = 0; i < COEFFS; i++)
890             chctx->CWdecoded[i] = 0;
891         chctx->decoder_reset = 0;
892     }
893 
894     flag = get_bits1(&q->gb);
895     if (stream_format_code & 0x1)
896         imc_read_level_coeffs_raw(q, stream_format_code, chctx->levlCoeffBuf);
897     else
898         imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
899 
900     if (stream_format_code & 0x1)
901         imc_decode_level_coefficients_raw(q, chctx->levlCoeffBuf,
902                                           chctx->flcoeffs1, chctx->flcoeffs2);
903     else if (stream_format_code & 0x4)
904         imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
905                                       chctx->flcoeffs1, chctx->flcoeffs2);
906     else
907         imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
908                                        chctx->flcoeffs1, chctx->flcoeffs2);
909 
910     for(i=0; i<BANDS; i++) {
911         if(chctx->flcoeffs1[i] > INT_MAX) {
912             av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
913             return AVERROR_INVALIDDATA;
914         }
915     }
916 
917     memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
918 
919     counter = 0;
920     if (stream_format_code & 0x1) {
921         for (i = 0; i < BANDS; i++) {
922             chctx->bandWidthT[i]   = band_tab[i + 1] - band_tab[i];
923             chctx->bandFlagsBuf[i] = 0;
924             chctx->flcoeffs3[i]    = chctx->flcoeffs2[i] * 2;
925             chctx->flcoeffs5[i]    = 1.0;
926         }
927     } else {
928         for (i = 0; i < BANDS; i++) {
929             if (chctx->levlCoeffBuf[i] == 16) {
930                 chctx->bandWidthT[i] = 0;
931                 counter++;
932             } else
933                 chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
934         }
935 
936         memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
937         for (i = 0; i < BANDS - 1; i++)
938             if (chctx->bandWidthT[i])
939                 chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
940 
941         imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2,
942                              chctx->bandWidthT, chctx->flcoeffs3,
943                              chctx->flcoeffs5);
944     }
945 
946     bitscount = 0;
947     /* first 4 bands will be assigned 5 bits per coefficient */
948     if (stream_format_code & 0x2) {
949         bitscount += 15;
950 
951         chctx->bitsBandT[0] = 5;
952         chctx->CWlengthT[0] = 5;
953         chctx->CWlengthT[1] = 5;
954         chctx->CWlengthT[2] = 5;
955         for (i = 1; i < 4; i++) {
956             if (stream_format_code & 0x1)
957                 bits = 5;
958             else
959                 bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
960             chctx->bitsBandT[i] = bits;
961             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
962                 chctx->CWlengthT[j] = bits;
963                 bitscount      += bits;
964             }
965         }
966     }
967     if (avctx->codec_id == AV_CODEC_ID_IAC) {
968         bitscount += !!chctx->bandWidthT[BANDS - 1];
969         if (!(stream_format_code & 0x2))
970             bitscount += 16;
971     }
972 
973     if ((ret = bit_allocation(q, chctx, stream_format_code,
974                               512 - bitscount - get_bits_count(&q->gb),
975                               flag)) < 0) {
976         av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
977         chctx->decoder_reset = 1;
978         return ret;
979     }
980 
981     if (stream_format_code & 0x1) {
982         for (i = 0; i < BANDS; i++)
983             chctx->skipFlags[i] = 0;
984     } else {
985         imc_refine_bit_allocation(q, chctx);
986     }
987 
988     for (i = 0; i < BANDS; i++) {
989         chctx->sumLenArr[i] = 0;
990 
991         for (j = band_tab[i]; j < band_tab[i + 1]; j++)
992             if (!chctx->skipFlags[j])
993                 chctx->sumLenArr[i] += chctx->CWlengthT[j];
994     }
995 
996     memset(chctx->codewords, 0, sizeof(chctx->codewords));
997 
998     imc_get_coeffs(avctx, q, chctx);
999 
1000     if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
1001         av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
1002         chctx->decoder_reset = 1;
1003         return AVERROR_INVALIDDATA;
1004     }
1005 
1006     memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
1007 
1008     imc_imdct256(q, chctx, avctx->channels);
1009 
1010     return 0;
1011 }
1012 
imc_decode_frame(AVCodecContext * avctx,void * data,int * got_frame_ptr,AVPacket * avpkt)1013 static int imc_decode_frame(AVCodecContext *avctx, void *data,
1014                             int *got_frame_ptr, AVPacket *avpkt)
1015 {
1016     AVFrame *frame     = data;
1017     const uint8_t *buf = avpkt->data;
1018     int buf_size = avpkt->size;
1019     int ret, i;
1020 
1021     IMCContext *q = avctx->priv_data;
1022 
1023     LOCAL_ALIGNED_16(uint16_t, buf16, [(IMC_BLOCK_SIZE + AV_INPUT_BUFFER_PADDING_SIZE) / 2]);
1024 
1025     if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
1026         av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
1027         return AVERROR_INVALIDDATA;
1028     }
1029 
1030     /* get output buffer */
1031     frame->nb_samples = COEFFS;
1032     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1033         return ret;
1034 
1035     for (i = 0; i < avctx->channels; i++) {
1036         q->out_samples = (float *)frame->extended_data[i];
1037 
1038         q->bdsp.bswap16_buf(buf16, (const uint16_t *) buf, IMC_BLOCK_SIZE / 2);
1039 
1040         init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
1041 
1042         buf += IMC_BLOCK_SIZE;
1043 
1044         if ((ret = imc_decode_block(avctx, q, i)) < 0)
1045             return ret;
1046     }
1047 
1048     if (avctx->channels == 2) {
1049         q->fdsp->butterflies_float((float *)frame->extended_data[0],
1050                                   (float *)frame->extended_data[1], COEFFS);
1051     }
1052 
1053     *got_frame_ptr = 1;
1054 
1055     return IMC_BLOCK_SIZE * avctx->channels;
1056 }
1057 
imc_decode_close(AVCodecContext * avctx)1058 static av_cold int imc_decode_close(AVCodecContext * avctx)
1059 {
1060     IMCContext *q = avctx->priv_data;
1061 
1062     ff_fft_end(&q->fft);
1063     av_freep(&q->fdsp);
1064 
1065     return 0;
1066 }
1067 
flush(AVCodecContext * avctx)1068 static av_cold void flush(AVCodecContext *avctx)
1069 {
1070     IMCContext *q = avctx->priv_data;
1071 
1072     q->chctx[0].decoder_reset =
1073     q->chctx[1].decoder_reset = 1;
1074 }
1075 
1076 #if CONFIG_IMC_DECODER
1077 AVCodec ff_imc_decoder = {
1078     .name           = "imc",
1079     .long_name      = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1080     .type           = AVMEDIA_TYPE_AUDIO,
1081     .id             = AV_CODEC_ID_IMC,
1082     .priv_data_size = sizeof(IMCContext),
1083     .init           = imc_decode_init,
1084     .close          = imc_decode_close,
1085     .decode         = imc_decode_frame,
1086     .flush          = flush,
1087     .capabilities   = AV_CODEC_CAP_DR1,
1088     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1089                                                       AV_SAMPLE_FMT_NONE },
1090 };
1091 #endif
1092 #if CONFIG_IAC_DECODER
1093 AVCodec ff_iac_decoder = {
1094     .name           = "iac",
1095     .long_name      = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1096     .type           = AVMEDIA_TYPE_AUDIO,
1097     .id             = AV_CODEC_ID_IAC,
1098     .priv_data_size = sizeof(IMCContext),
1099     .init           = imc_decode_init,
1100     .close          = imc_decode_close,
1101     .decode         = imc_decode_frame,
1102     .flush          = flush,
1103     .capabilities   = AV_CODEC_CAP_DR1,
1104     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1105                                                       AV_SAMPLE_FMT_NONE },
1106 };
1107 #endif
1108