1<?xml version="1.0"?> 2<opencv_storage> 3<A_gest type_id="opencv-haar-classifier"> 4 <size> 5 24 24</size> 6 <stages> 7 <_> 8 <!-- stage 0 --> 9 <trees> 10 <_> 11 <!-- tree 0 --> 12 <_> 13 <!-- root node --> 14 <feature> 15 <rects> 16 <_> 17 3 3 9 16 -1.</_> 18 <_> 19 3 7 9 8 2.</_></rects> 20 <tilted>0</tilted></feature> 21 <threshold>-0.0223442204296589</threshold> 22 <left_val>0.7737345099449158</left_val> 23 <right_val>-0.9436557292938232</right_val></_></_> 24 <_> 25 <!-- tree 1 --> 26 <_> 27 <!-- root node --> 28 <feature> 29 <rects> 30 <_> 31 0 9 12 5 -1.</_> 32 <_> 33 6 9 6 5 2.</_></rects> 34 <tilted>0</tilted></feature> 35 <threshold>-9.3714958056807518e-003</threshold> 36 <left_val>0.5525149106979370</left_val> 37 <right_val>-0.9004204869270325</right_val></_></_></trees> 38 <stage_threshold>-0.3911409080028534</stage_threshold> 39 <parent>-1</parent> 40 <next>-1</next></_> 41 <_> 42 <!-- stage 1 --> 43 <trees> 44 <_> 45 <!-- tree 0 --> 46 <_> 47 <!-- root node --> 48 <feature> 49 <rects> 50 <_> 51 12 14 12 10 -1.</_> 52 <_> 53 12 14 6 5 2.</_> 54 <_> 55 18 19 6 5 2.</_></rects> 56 <tilted>0</tilted></feature> 57 <threshold>0.0127444602549076</threshold> 58 <left_val>-0.7241874933242798</left_val> 59 <right_val>0.5557708144187927</right_val></_></_> 60 <_> 61 <!-- tree 1 --> 62 <_> 63 <!-- root node --> 64 <feature> 65 <rects> 66 <_> 67 2 4 16 8 -1.</_> 68 <_> 69 2 8 16 4 2.</_></rects> 70 <tilted>0</tilted></feature> 71 <threshold>-0.0203973893076181</threshold> 72 <left_val>0.3255875110626221</left_val> 73 <right_val>-0.9134256243705750</right_val></_></_> 74 <_> 75 <!-- tree 2 --> 76 <_> 77 <!-- root node --> 78 <feature> 79 <rects> 80 <_> 81 9 6 15 14 -1.</_> 82 <_> 83 9 13 15 7 2.</_></rects> 84 <tilted>0</tilted></feature> 85 <threshold>1.5015050303190947e-003</threshold> 86 <left_val>-0.8422530293464661</left_val> 87 <right_val>0.2950277030467987</right_val></_></_> 88 <_> 89 <!-- tree 3 --> 90 <_> 91 <!-- root node --> 92 <feature> 93 <rects> 94 <_> 95 0 10 10 5 -1.</_> 96 <_> 97 5 10 5 5 2.</_></rects> 98 <tilted>0</tilted></feature> 99 <threshold>-9.5540005713701248e-003</threshold> 100 <left_val>0.2949278056621552</left_val> 101 <right_val>-0.8186870813369751</right_val></_></_> 102 <_> 103 <!-- tree 4 --> 104 <_> 105 <!-- root node --> 106 <feature> 107 <rects> 108 <_> 109 8 0 16 6 -1.</_> 110 <_> 111 8 0 16 3 2.</_></rects> 112 <tilted>1</tilted></feature> 113 <threshold>-9.0454015880823135e-003</threshold> 114 <left_val>-0.9253956079483032</left_val> 115 <right_val>0.2449316978454590</right_val></_></_></trees> 116 <stage_threshold>-0.8027257919311523</stage_threshold> 117 <parent>0</parent> 118 <next>-1</next></_> 119 <_> 120 <!-- stage 2 --> 121 <trees> 122 <_> 123 <!-- tree 0 --> 124 <_> 125 <!-- root node --> 126 <feature> 127 <rects> 128 <_> 129 11 9 9 6 -1.</_> 130 <_> 131 14 12 3 6 3.</_></rects> 132 <tilted>1</tilted></feature> 133 <threshold>0.0339135192334652</threshold> 134 <left_val>-0.6010565757751465</left_val> 135 <right_val>0.5952491760253906</right_val></_></_> 136 <_> 137 <!-- tree 1 --> 138 <_> 139 <!-- root node --> 140 <feature> 141 <rects> 142 <_> 143 15 1 8 10 -1.</_> 144 <_> 145 15 6 8 5 2.</_></rects> 146 <tilted>0</tilted></feature> 147 <threshold>-6.3976310193538666e-003</threshold> 148 <left_val>0.2902083992958069</left_val> 149 <right_val>-0.9008722901344299</right_val></_></_> 150 <_> 151 <!-- tree 2 --> 152 <_> 153 <!-- root node --> 154 <feature> 155 <rects> 156 <_> 157 12 23 12 1 -1.</_> 158 <_> 159 18 23 6 1 2.</_></rects> 160 <tilted>0</tilted></feature> 161 <threshold>3.5964029375463724e-003</threshold> 162 <left_val>-0.6108912825584412</left_val> 163 <right_val>0.3585815131664276</right_val></_></_> 164 <_> 165 <!-- tree 3 --> 166 <_> 167 <!-- root node --> 168 <feature> 169 <rects> 170 <_> 171 0 8 16 11 -1.</_> 172 <_> 173 8 8 8 11 2.</_></rects> 174 <tilted>0</tilted></feature> 175 <threshold>3.1002631294541061e-004</threshold> 176 <left_val>0.2521544992923737</left_val> 177 <right_val>-0.9231098890304565</right_val></_></_></trees> 178 <stage_threshold>-0.6695849895477295</stage_threshold> 179 <parent>1</parent> 180 <next>-1</next></_> 181 <_> 182 <!-- stage 3 --> 183 <trees> 184 <_> 185 <!-- tree 0 --> 186 <_> 187 <!-- root node --> 188 <feature> 189 <rects> 190 <_> 191 12 22 12 2 -1.</_> 192 <_> 193 18 22 6 2 2.</_></rects> 194 <tilted>0</tilted></feature> 195 <threshold>8.9982077479362488e-003</threshold> 196 <left_val>-0.6216139197349548</left_val> 197 <right_val>0.5311666131019592</right_val></_></_> 198 <_> 199 <!-- tree 1 --> 200 <_> 201 <!-- root node --> 202 <feature> 203 <rects> 204 <_> 205 6 7 10 5 -1.</_> 206 <_> 207 6 7 5 5 2.</_></rects> 208 <tilted>1</tilted></feature> 209 <threshold>5.8961678296327591e-003</threshold> 210 <left_val>0.3589088022708893</left_val> 211 <right_val>-0.8741096854209900</right_val></_></_> 212 <_> 213 <!-- tree 2 --> 214 <_> 215 <!-- root node --> 216 <feature> 217 <rects> 218 <_> 219 10 8 3 2 -1.</_> 220 <_> 221 10 9 3 1 2.</_></rects> 222 <tilted>0</tilted></feature> 223 <threshold>-7.3489747592248023e-005</threshold> 224 <left_val>0.2021690011024475</left_val> 225 <right_val>-0.8340616226196289</right_val></_></_> 226 <_> 227 <!-- tree 3 --> 228 <_> 229 <!-- root node --> 230 <feature> 231 <rects> 232 <_> 233 15 15 3 4 -1.</_> 234 <_> 235 15 15 3 2 2.</_></rects> 236 <tilted>1</tilted></feature> 237 <threshold>-1.3183970004320145e-003</threshold> 238 <left_val>-0.8218436241149902</left_val> 239 <right_val>0.2309758067131043</right_val></_></_></trees> 240 <stage_threshold>-0.9460288882255554</stage_threshold> 241 <parent>2</parent> 242 <next>-1</next></_> 243 <_> 244 <!-- stage 4 --> 245 <trees> 246 <_> 247 <!-- tree 0 --> 248 <_> 249 <!-- root node --> 250 <feature> 251 <rects> 252 <_> 253 4 18 20 6 -1.</_> 254 <_> 255 4 18 10 3 2.</_> 256 <_> 257 14 21 10 3 2.</_></rects> 258 <tilted>0</tilted></feature> 259 <threshold>5.8955969288945198e-003</threshold> 260 <left_val>-0.7554979920387268</left_val> 261 <right_val>0.3239434063434601</right_val></_></_> 262 <_> 263 <!-- tree 1 --> 264 <_> 265 <!-- root node --> 266 <feature> 267 <rects> 268 <_> 269 3 1 20 14 -1.</_> 270 <_> 271 3 1 10 7 2.</_> 272 <_> 273 13 8 10 7 2.</_></rects> 274 <tilted>0</tilted></feature> 275 <threshold>8.6170788854360580e-003</threshold> 276 <left_val>-0.7028874754905701</left_val> 277 <right_val>0.2782224118709564</right_val></_></_> 278 <_> 279 <!-- tree 2 --> 280 <_> 281 <!-- root node --> 282 <feature> 283 <rects> 284 <_> 285 2 11 3 9 -1.</_> 286 <_> 287 3 14 1 3 9.</_></rects> 288 <tilted>0</tilted></feature> 289 <threshold>-1.5837070532143116e-003</threshold> 290 <left_val>-0.7751926779747009</left_val> 291 <right_val>0.2773326933383942</right_val></_></_> 292 <_> 293 <!-- tree 3 --> 294 <_> 295 <!-- root node --> 296 <feature> 297 <rects> 298 <_> 299 0 4 12 20 -1.</_> 300 <_> 301 0 4 6 10 2.</_> 302 <_> 303 6 14 6 10 2.</_></rects> 304 <tilted>0</tilted></feature> 305 <threshold>7.9292394220829010e-003</threshold> 306 <left_val>-0.7723438143730164</left_val> 307 <right_val>0.2167312055826187</right_val></_></_> 308 <_> 309 <!-- tree 4 --> 310 <_> 311 <!-- root node --> 312 <feature> 313 <rects> 314 <_> 315 16 15 6 2 -1.</_> 316 <_> 317 16 15 6 1 2.</_></rects> 318 <tilted>1</tilted></feature> 319 <threshold>-1.4443190302699804e-003</threshold> 320 <left_val>-0.8843228220939636</left_val> 321 <right_val>0.2078661024570465</right_val></_></_> 322 <_> 323 <!-- tree 5 --> 324 <_> 325 <!-- root node --> 326 <feature> 327 <rects> 328 <_> 329 11 8 7 2 -1.</_> 330 <_> 331 11 9 7 1 2.</_></rects> 332 <tilted>0</tilted></feature> 333 <threshold>-4.8251380212605000e-004</threshold> 334 <left_val>0.2337501049041748</left_val> 335 <right_val>-0.6776664853096008</right_val></_></_> 336 <_> 337 <!-- tree 6 --> 338 <_> 339 <!-- root node --> 340 <feature> 341 <rects> 342 <_> 343 20 15 4 6 -1.</_> 344 <_> 345 22 15 2 6 2.</_></rects> 346 <tilted>0</tilted></feature> 347 <threshold>8.0077340826392174e-003</threshold> 348 <left_val>-0.3731102049350739</left_val> 349 <right_val>0.5163818001747131</right_val></_></_></trees> 350 <stage_threshold>-1.0588489770889282</stage_threshold> 351 <parent>3</parent> 352 <next>-1</next></_> 353 <_> 354 <!-- stage 5 --> 355 <trees> 356 <_> 357 <!-- tree 0 --> 358 <_> 359 <!-- root node --> 360 <feature> 361 <rects> 362 <_> 363 14 19 1 2 -1.</_> 364 <_> 365 14 20 1 1 2.</_></rects> 366 <tilted>0</tilted></feature> 367 <threshold>-5.8145709772361442e-005</threshold> 368 <left_val>0.3404448032379150</left_val> 369 <right_val>-0.6792302131652832</right_val></_></_> 370 <_> 371 <!-- tree 1 --> 372 <_> 373 <!-- root node --> 374 <feature> 375 <rects> 376 <_> 377 0 6 2 7 -1.</_> 378 <_> 379 1 6 1 7 2.</_></rects> 380 <tilted>0</tilted></feature> 381 <threshold>-1.1419489746913314e-003</threshold> 382 <left_val>0.3598371148109436</left_val> 383 <right_val>-0.5890597105026245</right_val></_></_> 384 <_> 385 <!-- tree 2 --> 386 <_> 387 <!-- root node --> 388 <feature> 389 <rects> 390 <_> 391 8 0 10 2 -1.</_> 392 <_> 393 8 0 5 2 2.</_></rects> 394 <tilted>1</tilted></feature> 395 <threshold>5.8654937893152237e-003</threshold> 396 <left_val>-0.9622359871864319</left_val> 397 <right_val>0.1721540987491608</right_val></_></_> 398 <_> 399 <!-- tree 3 --> 400 <_> 401 <!-- root node --> 402 <feature> 403 <rects> 404 <_> 405 5 8 16 7 -1.</_> 406 <_> 407 13 8 8 7 2.</_></rects> 408 <tilted>0</tilted></feature> 409 <threshold>1.1028599692508578e-004</threshold> 410 <left_val>-0.7706093192100525</left_val> 411 <right_val>0.2389315962791443</right_val></_></_> 412 <_> 413 <!-- tree 4 --> 414 <_> 415 <!-- root node --> 416 <feature> 417 <rects> 418 <_> 419 2 9 14 12 -1.</_> 420 <_> 421 9 9 7 12 2.</_></rects> 422 <tilted>0</tilted></feature> 423 <threshold>0.0145609602332115</threshold> 424 <left_val>0.1552716046571732</left_val> 425 <right_val>-0.8984915018081665</right_val></_></_></trees> 426 <stage_threshold>-0.7966647148132324</stage_threshold> 427 <parent>4</parent> 428 <next>-1</next></_> 429 <_> 430 <!-- stage 6 --> 431 <trees> 432 <_> 433 <!-- tree 0 --> 434 <_> 435 <!-- root node --> 436 <feature> 437 <rects> 438 <_> 439 2 11 6 10 -1.</_> 440 <_> 441 2 11 3 5 2.</_> 442 <_> 443 5 16 3 5 2.</_></rects> 444 <tilted>0</tilted></feature> 445 <threshold>3.9159432053565979e-003</threshold> 446 <left_val>-0.7370954751968384</left_val> 447 <right_val>0.2886646091938019</right_val></_></_> 448 <_> 449 <!-- tree 1 --> 450 <_> 451 <!-- root node --> 452 <feature> 453 <rects> 454 <_> 455 0 3 4 9 -1.</_> 456 <_> 457 2 3 2 9 2.</_></rects> 458 <tilted>0</tilted></feature> 459 <threshold>-4.6402178704738617e-003</threshold> 460 <left_val>0.3129867017269135</left_val> 461 <right_val>-0.5601897239685059</right_val></_></_> 462 <_> 463 <!-- tree 2 --> 464 <_> 465 <!-- root node --> 466 <feature> 467 <rects> 468 <_> 469 7 10 10 8 -1.</_> 470 <_> 471 12 10 5 8 2.</_></rects> 472 <tilted>0</tilted></feature> 473 <threshold>-4.2656981386244297e-003</threshold> 474 <left_val>-0.8286197781562805</left_val> 475 <right_val>0.2132489979267120</right_val></_></_> 476 <_> 477 <!-- tree 3 --> 478 <_> 479 <!-- root node --> 480 <feature> 481 <rects> 482 <_> 483 8 16 16 8 -1.</_> 484 <_> 485 8 16 8 4 2.</_> 486 <_> 487 16 20 8 4 2.</_></rects> 488 <tilted>0</tilted></feature> 489 <threshold>7.9925684258341789e-003</threshold> 490 <left_val>-0.6752548217773438</left_val> 491 <right_val>0.2340082973241806</right_val></_></_> 492 <_> 493 <!-- tree 4 --> 494 <_> 495 <!-- root node --> 496 <feature> 497 <rects> 498 <_> 499 4 13 6 3 -1.</_> 500 <_> 501 6 15 2 3 3.</_></rects> 502 <tilted>1</tilted></feature> 503 <threshold>-6.2725958414375782e-003</threshold> 504 <left_val>-0.7839264273643494</left_val> 505 <right_val>0.2019792944192886</right_val></_></_> 506 <_> 507 <!-- tree 5 --> 508 <_> 509 <!-- root node --> 510 <feature> 511 <rects> 512 <_> 513 13 3 11 18 -1.</_> 514 <_> 515 13 12 11 9 2.</_></rects> 516 <tilted>0</tilted></feature> 517 <threshold>-0.0288890209048986</threshold> 518 <left_val>-0.7889788150787354</left_val> 519 <right_val>0.1651563942432404</right_val></_></_> 520 <_> 521 <!-- tree 6 --> 522 <_> 523 <!-- root node --> 524 <feature> 525 <rects> 526 <_> 527 10 7 5 4 -1.</_> 528 <_> 529 10 9 5 2 2.</_></rects> 530 <tilted>0</tilted></feature> 531 <threshold>-1.5122259501367807e-003</threshold> 532 <left_val>0.1971655040979385</left_val> 533 <right_val>-0.7596625089645386</right_val></_></_> 534 <_> 535 <!-- tree 7 --> 536 <_> 537 <!-- root node --> 538 <feature> 539 <rects> 540 <_> 541 11 17 6 3 -1.</_> 542 <_> 543 13 18 2 1 9.</_></rects> 544 <tilted>0</tilted></feature> 545 <threshold>4.3620187789201736e-003</threshold> 546 <left_val>0.1344974040985107</left_val> 547 <right_val>-0.9309347271919251</right_val></_></_> 548 <_> 549 <!-- tree 8 --> 550 <_> 551 <!-- root node --> 552 <feature> 553 <rects> 554 <_> 555 12 7 12 17 -1.</_> 556 <_> 557 15 7 6 17 2.</_></rects> 558 <tilted>0</tilted></feature> 559 <threshold>-3.2192119397222996e-003</threshold> 560 <left_val>0.2437663972377777</left_val> 561 <right_val>-0.6044244170188904</right_val></_></_></trees> 562 <stage_threshold>-1.0856239795684814</stage_threshold> 563 <parent>5</parent> 564 <next>-1</next></_> 565 <_> 566 <!-- stage 7 --> 567 <trees> 568 <_> 569 <!-- tree 0 --> 570 <_> 571 <!-- root node --> 572 <feature> 573 <rects> 574 <_> 575 14 18 1 2 -1.</_> 576 <_> 577 14 19 1 1 2.</_></rects> 578 <tilted>0</tilted></feature> 579 <threshold>-4.3883759644813836e-005</threshold> 580 <left_val>0.3130159080028534</left_val> 581 <right_val>-0.6793813705444336</right_val></_></_> 582 <_> 583 <!-- tree 1 --> 584 <_> 585 <!-- root node --> 586 <feature> 587 <rects> 588 <_> 589 3 11 6 12 -1.</_> 590 <_> 591 3 11 3 6 2.</_> 592 <_> 593 6 17 3 6 2.</_></rects> 594 <tilted>0</tilted></feature> 595 <threshold>6.2022951897233725e-004</threshold> 596 <left_val>-0.8423554897308350</left_val> 597 <right_val>0.1801322996616364</right_val></_></_> 598 <_> 599 <!-- tree 2 --> 600 <_> 601 <!-- root node --> 602 <feature> 603 <rects> 604 <_> 605 22 13 2 7 -1.</_> 606 <_> 607 23 13 1 7 2.</_></rects> 608 <tilted>0</tilted></feature> 609 <threshold>1.0972339659929276e-003</threshold> 610 <left_val>-0.4771775007247925</left_val> 611 <right_val>0.3450973927974701</right_val></_></_> 612 <_> 613 <!-- tree 3 --> 614 <_> 615 <!-- root node --> 616 <feature> 617 <rects> 618 <_> 619 16 15 1 2 -1.</_> 620 <_> 621 16 15 1 1 2.</_></rects> 622 <tilted>1</tilted></feature> 623 <threshold>-2.6349889230914414e-004</threshold> 624 <left_val>-0.7629253864288330</left_val> 625 <right_val>0.2153723984956741</right_val></_></_> 626 <_> 627 <!-- tree 4 --> 628 <_> 629 <!-- root node --> 630 <feature> 631 <rects> 632 <_> 633 0 5 22 18 -1.</_> 634 <_> 635 0 14 22 9 2.</_></rects> 636 <tilted>0</tilted></feature> 637 <threshold>-0.0542980991303921</threshold> 638 <left_val>-0.8849576711654663</left_val> 639 <right_val>0.1730009019374847</right_val></_></_> 640 <_> 641 <!-- tree 5 --> 642 <_> 643 <!-- root node --> 644 <feature> 645 <rects> 646 <_> 647 13 19 3 3 -1.</_> 648 <_> 649 14 20 1 1 9.</_></rects> 650 <tilted>0</tilted></feature> 651 <threshold>-2.1721520461142063e-003</threshold> 652 <left_val>-0.8367894887924194</left_val> 653 <right_val>0.1638997048139572</right_val></_></_> 654 <_> 655 <!-- tree 6 --> 656 <_> 657 <!-- root node --> 658 <feature> 659 <rects> 660 <_> 661 15 0 5 2 -1.</_> 662 <_> 663 15 1 5 1 2.</_></rects> 664 <tilted>0</tilted></feature> 665 <threshold>-1.6347350319847465e-003</threshold> 666 <left_val>0.3731253147125244</left_val> 667 <right_val>-0.4079189002513886</right_val></_></_> 668 <_> 669 <!-- tree 7 --> 670 <_> 671 <!-- root node --> 672 <feature> 673 <rects> 674 <_> 675 5 15 4 5 -1.</_> 676 <_> 677 5 15 2 5 2.</_></rects> 678 <tilted>1</tilted></feature> 679 <threshold>-2.9642079025506973e-003</threshold> 680 <left_val>-0.7973154187202454</left_val> 681 <right_val>0.1886135041713715</right_val></_></_></trees> 682 <stage_threshold>-0.8849025964736939</stage_threshold> 683 <parent>6</parent> 684 <next>-1</next></_> 685 <_> 686 <!-- stage 8 --> 687 <trees> 688 <_> 689 <!-- tree 0 --> 690 <_> 691 <!-- root node --> 692 <feature> 693 <rects> 694 <_> 695 12 16 2 8 -1.</_> 696 <_> 697 12 20 2 4 2.</_></rects> 698 <tilted>0</tilted></feature> 699 <threshold>-2.6686030905693769e-003</threshold> 700 <left_val>0.2950133979320526</left_val> 701 <right_val>-0.6534382104873657</right_val></_></_> 702 <_> 703 <!-- tree 1 --> 704 <_> 705 <!-- root node --> 706 <feature> 707 <rects> 708 <_> 709 0 18 2 4 -1.</_> 710 <_> 711 1 18 1 4 2.</_></rects> 712 <tilted>0</tilted></feature> 713 <threshold>-7.9764809925109148e-004</threshold> 714 <left_val>0.3938421010971069</left_val> 715 <right_val>-0.4435322880744934</right_val></_></_> 716 <_> 717 <!-- tree 2 --> 718 <_> 719 <!-- root node --> 720 <feature> 721 <rects> 722 <_> 723 8 3 12 4 -1.</_> 724 <_> 725 8 3 12 2 2.</_></rects> 726 <tilted>1</tilted></feature> 727 <threshold>-5.1704752258956432e-003</threshold> 728 <left_val>-0.7686781883239746</left_val> 729 <right_val>0.2110860049724579</right_val></_></_> 730 <_> 731 <!-- tree 3 --> 732 <_> 733 <!-- root node --> 734 <feature> 735 <rects> 736 <_> 737 6 17 3 2 -1.</_> 738 <_> 739 7 18 1 2 3.</_></rects> 740 <tilted>1</tilted></feature> 741 <threshold>-1.5294969780370593e-003</threshold> 742 <left_val>-0.8944628238677979</left_val> 743 <right_val>0.1583137959241867</right_val></_></_> 744 <_> 745 <!-- tree 4 --> 746 <_> 747 <!-- root node --> 748 <feature> 749 <rects> 750 <_> 751 1 0 10 6 -1.</_> 752 <_> 753 6 0 5 6 2.</_></rects> 754 <tilted>0</tilted></feature> 755 <threshold>-6.3780639320611954e-003</threshold> 756 <left_val>0.3393965959548950</left_val> 757 <right_val>-0.4529472887516022</right_val></_></_> 758 <_> 759 <!-- tree 5 --> 760 <_> 761 <!-- root node --> 762 <feature> 763 <rects> 764 <_> 765 12 9 3 2 -1.</_> 766 <_> 767 12 10 3 1 2.</_></rects> 768 <tilted>0</tilted></feature> 769 <threshold>-2.6243639877066016e-004</threshold> 770 <left_val>0.2850841879844666</left_val> 771 <right_val>-0.4983885884284973</right_val></_></_> 772 <_> 773 <!-- tree 6 --> 774 <_> 775 <!-- root node --> 776 <feature> 777 <rects> 778 <_> 779 11 1 12 11 -1.</_> 780 <_> 781 11 1 6 11 2.</_></rects> 782 <tilted>1</tilted></feature> 783 <threshold>0.0361888185143471</threshold> 784 <left_val>0.2132015973329544</left_val> 785 <right_val>-0.7394319772720337</right_val></_></_> 786 <_> 787 <!-- tree 7 --> 788 <_> 789 <!-- root node --> 790 <feature> 791 <rects> 792 <_> 793 21 13 2 10 -1.</_> 794 <_> 795 21 18 2 5 2.</_></rects> 796 <tilted>0</tilted></feature> 797 <threshold>7.7682351693511009e-003</threshold> 798 <left_val>-0.4052247107028961</left_val> 799 <right_val>0.4112299978733063</right_val></_></_> 800 <_> 801 <!-- tree 8 --> 802 <_> 803 <!-- root node --> 804 <feature> 805 <rects> 806 <_> 807 15 16 1 2 -1.</_> 808 <_> 809 15 16 1 1 2.</_></rects> 810 <tilted>1</tilted></feature> 811 <threshold>-2.3738530580885708e-004</threshold> 812 <left_val>-0.7753518819808960</left_val> 813 <right_val>0.1911296993494034</right_val></_></_> 814 <_> 815 <!-- tree 9 --> 816 <_> 817 <!-- root node --> 818 <feature> 819 <rects> 820 <_> 821 0 11 8 8 -1.</_> 822 <_> 823 0 11 4 4 2.</_> 824 <_> 825 4 15 4 4 2.</_></rects> 826 <tilted>0</tilted></feature> 827 <threshold>4.2231627739965916e-003</threshold> 828 <left_val>-0.7229338884353638</left_val> 829 <right_val>0.1739158928394318</right_val></_></_></trees> 830 <stage_threshold>-1.0250910520553589</stage_threshold> 831 <parent>7</parent> 832 <next>-1</next></_> 833 <_> 834 <!-- stage 9 --> 835 <trees> 836 <_> 837 <!-- tree 0 --> 838 <_> 839 <!-- root node --> 840 <feature> 841 <rects> 842 <_> 843 11 11 7 6 -1.</_> 844 <_> 845 11 13 7 2 3.</_></rects> 846 <tilted>0</tilted></feature> 847 <threshold>2.9137390665709972e-003</threshold> 848 <left_val>-0.5349493026733398</left_val> 849 <right_val>0.3337337076663971</right_val></_></_> 850 <_> 851 <!-- tree 1 --> 852 <_> 853 <!-- root node --> 854 <feature> 855 <rects> 856 <_> 857 12 17 3 3 -1.</_> 858 <_> 859 13 18 1 1 9.</_></rects> 860 <tilted>0</tilted></feature> 861 <threshold>-1.6270120395347476e-003</threshold> 862 <left_val>-0.8804692029953003</left_val> 863 <right_val>0.1722342073917389</right_val></_></_> 864 <_> 865 <!-- tree 2 --> 866 <_> 867 <!-- root node --> 868 <feature> 869 <rects> 870 <_> 871 0 9 2 2 -1.</_> 872 <_> 873 1 9 1 2 2.</_></rects> 874 <tilted>0</tilted></feature> 875 <threshold>-2.9037619242444634e-004</threshold> 876 <left_val>0.2734786868095398</left_val> 877 <right_val>-0.5733091235160828</right_val></_></_> 878 <_> 879 <!-- tree 3 --> 880 <_> 881 <!-- root node --> 882 <feature> 883 <rects> 884 <_> 885 13 17 1 2 -1.</_> 886 <_> 887 13 18 1 1 2.</_></rects> 888 <tilted>0</tilted></feature> 889 <threshold>-1.4552129869116470e-005</threshold> 890 <left_val>0.2491019070148468</left_val> 891 <right_val>-0.5995762944221497</right_val></_></_> 892 <_> 893 <!-- tree 4 --> 894 <_> 895 <!-- root node --> 896 <feature> 897 <rects> 898 <_> 899 7 0 17 18 -1.</_> 900 <_> 901 7 9 17 9 2.</_></rects> 902 <tilted>0</tilted></feature> 903 <threshold>0.0141834802925587</threshold> 904 <left_val>0.1507173925638199</left_val> 905 <right_val>-0.8961830139160156</right_val></_></_> 906 <_> 907 <!-- tree 5 --> 908 <_> 909 <!-- root node --> 910 <feature> 911 <rects> 912 <_> 913 8 11 8 2 -1.</_> 914 <_> 915 8 11 8 1 2.</_></rects> 916 <tilted>1</tilted></feature> 917 <threshold>-5.8600129705155268e-005</threshold> 918 <left_val>0.1771630048751831</left_val> 919 <right_val>-0.7106314897537231</right_val></_></_> 920 <_> 921 <!-- tree 6 --> 922 <_> 923 <!-- root node --> 924 <feature> 925 <rects> 926 <_> 927 18 17 6 7 -1.</_> 928 <_> 929 21 17 3 7 2.</_></rects> 930 <tilted>0</tilted></feature> 931 <threshold>7.3492531664669514e-003</threshold> 932 <left_val>-0.5106546878814697</left_val> 933 <right_val>0.2574213147163391</right_val></_></_> 934 <_> 935 <!-- tree 7 --> 936 <_> 937 <!-- root node --> 938 <feature> 939 <rects> 940 <_> 941 2 19 8 1 -1.</_> 942 <_> 943 6 19 4 1 2.</_></rects> 944 <tilted>0</tilted></feature> 945 <threshold>-1.7738100141286850e-003</threshold> 946 <left_val>-0.8705360293388367</left_val> 947 <right_val>0.1460683941841126</right_val></_></_></trees> 948 <stage_threshold>-0.9740471243858337</stage_threshold> 949 <parent>8</parent> 950 <next>-1</next></_> 951 <_> 952 <!-- stage 10 --> 953 <trees> 954 <_> 955 <!-- tree 0 --> 956 <_> 957 <!-- root node --> 958 <feature> 959 <rects> 960 <_> 961 12 10 10 6 -1.</_> 962 <_> 963 12 10 5 3 2.</_> 964 <_> 965 17 13 5 3 2.</_></rects> 966 <tilted>0</tilted></feature> 967 <threshold>-8.5521116852760315e-003</threshold> 968 <left_val>0.3413020968437195</left_val> 969 <right_val>-0.4556924998760223</right_val></_></_> 970 <_> 971 <!-- tree 1 --> 972 <_> 973 <!-- root node --> 974 <feature> 975 <rects> 976 <_> 977 5 20 18 4 -1.</_> 978 <_> 979 5 20 9 2 2.</_> 980 <_> 981 14 22 9 2 2.</_></rects> 982 <tilted>0</tilted></feature> 983 <threshold>2.9570560436695814e-003</threshold> 984 <left_val>-0.5616099834442139</left_val> 985 <right_val>0.2246744036674500</right_val></_></_> 986 <_> 987 <!-- tree 2 --> 988 <_> 989 <!-- root node --> 990 <feature> 991 <rects> 992 <_> 993 1 10 22 5 -1.</_> 994 <_> 995 12 10 11 5 2.</_></rects> 996 <tilted>0</tilted></feature> 997 <threshold>-0.0195402801036835</threshold> 998 <left_val>-0.8423789739608765</left_val> 999 <right_val>0.1363316029310226</right_val></_></_> 1000 <_> 1001 <!-- tree 3 --> 1002 <_> 1003 <!-- root node --> 1004 <feature> 1005 <rects> 1006 <_> 1007 1 11 12 1 -1.</_> 1008 <_> 1009 1 11 6 1 2.</_></rects> 1010 <tilted>1</tilted></feature> 1011 <threshold>-3.2073149923235178e-003</threshold> 1012 <left_val>-0.7569847702980042</left_val> 1013 <right_val>0.1883326023817062</right_val></_></_> 1014 <_> 1015 <!-- tree 4 --> 1016 <_> 1017 <!-- root node --> 1018 <feature> 1019 <rects> 1020 <_> 1021 12 0 12 24 -1.</_> 1022 <_> 1023 12 6 12 12 2.</_></rects> 1024 <tilted>0</tilted></feature> 1025 <threshold>-8.4488727152347565e-003</threshold> 1026 <left_val>0.1382011026144028</left_val> 1027 <right_val>-0.8026102185249329</right_val></_></_> 1028 <_> 1029 <!-- tree 5 --> 1030 <_> 1031 <!-- root node --> 1032 <feature> 1033 <rects> 1034 <_> 1035 4 15 5 6 -1.</_> 1036 <_> 1037 4 17 5 2 3.</_></rects> 1038 <tilted>0</tilted></feature> 1039 <threshold>1.1350389831932262e-004</threshold> 1040 <left_val>-0.7027189135551453</left_val> 1041 <right_val>0.1435786038637161</right_val></_></_> 1042 <_> 1043 <!-- tree 6 --> 1044 <_> 1045 <!-- root node --> 1046 <feature> 1047 <rects> 1048 <_> 1049 12 2 6 4 -1.</_> 1050 <_> 1051 14 4 2 4 3.</_></rects> 1052 <tilted>1</tilted></feature> 1053 <threshold>-5.8187649119645357e-004</threshold> 1054 <left_val>-0.4507982134819031</left_val> 1055 <right_val>0.2510882019996643</right_val></_></_> 1056 <_> 1057 <!-- tree 7 --> 1058 <_> 1059 <!-- root node --> 1060 <feature> 1061 <rects> 1062 <_> 1063 0 7 2 17 -1.</_> 1064 <_> 1065 1 7 1 17 2.</_></rects> 1066 <tilted>0</tilted></feature> 1067 <threshold>-0.0161978900432587</threshold> 1068 <left_val>0.6447368860244751</left_val> 1069 <right_val>-0.2079977989196777</right_val></_></_> 1070 <_> 1071 <!-- tree 8 --> 1072 <_> 1073 <!-- root node --> 1074 <feature> 1075 <rects> 1076 <_> 1077 13 15 3 9 -1.</_> 1078 <_> 1079 14 15 1 9 3.</_></rects> 1080 <tilted>0</tilted></feature> 1081 <threshold>6.6894508199766278e-004</threshold> 1082 <left_val>0.1998561024665833</left_val> 1083 <right_val>-0.7483944892883301</right_val></_></_> 1084 <_> 1085 <!-- tree 9 --> 1086 <_> 1087 <!-- root node --> 1088 <feature> 1089 <rects> 1090 <_> 1091 13 18 3 3 -1.</_> 1092 <_> 1093 14 19 1 1 9.</_></rects> 1094 <tilted>0</tilted></feature> 1095 <threshold>-1.8372290069237351e-003</threshold> 1096 <left_val>-0.8788912892341614</left_val> 1097 <right_val>0.1146014034748077</right_val></_></_> 1098 <_> 1099 <!-- tree 10 --> 1100 <_> 1101 <!-- root node --> 1102 <feature> 1103 <rects> 1104 <_> 1105 17 17 1 2 -1.</_> 1106 <_> 1107 17 18 1 1 2.</_></rects> 1108 <tilted>0</tilted></feature> 1109 <threshold>-4.3397278204793110e-005</threshold> 1110 <left_val>0.2129840999841690</left_val> 1111 <right_val>-0.5028128027915955</right_val></_></_></trees> 1112 <stage_threshold>-1.4024209976196289</stage_threshold> 1113 <parent>9</parent> 1114 <next>-1</next></_> 1115 <_> 1116 <!-- stage 11 --> 1117 <trees> 1118 <_> 1119 <!-- tree 0 --> 1120 <_> 1121 <!-- root node --> 1122 <feature> 1123 <rects> 1124 <_> 1125 10 11 4 12 -1.</_> 1126 <_> 1127 10 11 2 6 2.</_> 1128 <_> 1129 12 17 2 6 2.</_></rects> 1130 <tilted>0</tilted></feature> 1131 <threshold>-2.0713880658149719e-003</threshold> 1132 <left_val>0.2486661970615387</left_val> 1133 <right_val>-0.5756726861000061</right_val></_></_> 1134 <_> 1135 <!-- tree 1 --> 1136 <_> 1137 <!-- root node --> 1138 <feature> 1139 <rects> 1140 <_> 1141 12 23 12 1 -1.</_> 1142 <_> 1143 18 23 6 1 2.</_></rects> 1144 <tilted>0</tilted></feature> 1145 <threshold>3.6768750287592411e-003</threshold> 1146 <left_val>-0.5755078196525574</left_val> 1147 <right_val>0.2280506044626236</right_val></_></_> 1148 <_> 1149 <!-- tree 2 --> 1150 <_> 1151 <!-- root node --> 1152 <feature> 1153 <rects> 1154 <_> 1155 13 10 3 4 -1.</_> 1156 <_> 1157 13 10 3 2 2.</_></rects> 1158 <tilted>1</tilted></feature> 1159 <threshold>-3.0887479078955948e-004</threshold> 1160 <left_val>0.2362288981676102</left_val> 1161 <right_val>-0.6454687118530273</right_val></_></_> 1162 <_> 1163 <!-- tree 3 --> 1164 <_> 1165 <!-- root node --> 1166 <feature> 1167 <rects> 1168 <_> 1169 0 0 24 24 -1.</_> 1170 <_> 1171 0 0 12 12 2.</_> 1172 <_> 1173 12 12 12 12 2.</_></rects> 1174 <tilted>0</tilted></feature> 1175 <threshold>-0.0257820300757885</threshold> 1176 <left_val>-0.7496209144592285</left_val> 1177 <right_val>0.1617882996797562</right_val></_></_> 1178 <_> 1179 <!-- tree 4 --> 1180 <_> 1181 <!-- root node --> 1182 <feature> 1183 <rects> 1184 <_> 1185 2 10 2 6 -1.</_> 1186 <_> 1187 2 13 2 3 2.</_></rects> 1188 <tilted>0</tilted></feature> 1189 <threshold>-1.2850989587605000e-003</threshold> 1190 <left_val>-0.7813286781311035</left_val> 1191 <right_val>0.1440877020359039</right_val></_></_> 1192 <_> 1193 <!-- tree 5 --> 1194 <_> 1195 <!-- root node --> 1196 <feature> 1197 <rects> 1198 <_> 1199 0 11 2 6 -1.</_> 1200 <_> 1201 0 14 2 3 2.</_></rects> 1202 <tilted>0</tilted></feature> 1203 <threshold>3.3493789378553629e-003</threshold> 1204 <left_val>0.1375873982906342</left_val> 1205 <right_val>-0.7505543231964111</right_val></_></_> 1206 <_> 1207 <!-- tree 6 --> 1208 <_> 1209 <!-- root node --> 1210 <feature> 1211 <rects> 1212 <_> 1213 0 1 24 1 -1.</_> 1214 <_> 1215 8 1 8 1 3.</_></rects> 1216 <tilted>0</tilted></feature> 1217 <threshold>-2.6788329705595970e-003</threshold> 1218 <left_val>0.2596372067928314</left_val> 1219 <right_val>-0.4255296885967255</right_val></_></_> 1220 <_> 1221 <!-- tree 7 --> 1222 <_> 1223 <!-- root node --> 1224 <feature> 1225 <rects> 1226 <_> 1227 13 7 4 2 -1.</_> 1228 <_> 1229 13 8 4 1 2.</_></rects> 1230 <tilted>0</tilted></feature> 1231 <threshold>-2.8834199838456698e-005</threshold> 1232 <left_val>0.1635348945856094</left_val> 1233 <right_val>-0.7050843238830566</right_val></_></_> 1234 <_> 1235 <!-- tree 8 --> 1236 <_> 1237 <!-- root node --> 1238 <feature> 1239 <rects> 1240 <_> 1241 0 13 3 10 -1.</_> 1242 <_> 1243 1 13 1 10 3.</_></rects> 1244 <tilted>0</tilted></feature> 1245 <threshold>-1.6196980141103268e-003</threshold> 1246 <left_val>0.3419960141181946</left_val> 1247 <right_val>-0.3415850102901459</right_val></_></_> 1248 <_> 1249 <!-- tree 9 --> 1250 <_> 1251 <!-- root node --> 1252 <feature> 1253 <rects> 1254 <_> 1255 1 10 10 10 -1.</_> 1256 <_> 1257 6 10 5 10 2.</_></rects> 1258 <tilted>0</tilted></feature> 1259 <threshold>1.0517919436097145e-003</threshold> 1260 <left_val>0.1479195058345795</left_val> 1261 <right_val>-0.7929052114486694</right_val></_></_> 1262 <_> 1263 <!-- tree 10 --> 1264 <_> 1265 <!-- root node --> 1266 <feature> 1267 <rects> 1268 <_> 1269 9 0 4 6 -1.</_> 1270 <_> 1271 9 0 4 3 2.</_></rects> 1272 <tilted>1</tilted></feature> 1273 <threshold>-2.4886541068553925e-003</threshold> 1274 <left_val>-0.8937227129936218</left_val> 1275 <right_val>0.1043419018387795</right_val></_></_></trees> 1276 <stage_threshold>-1.1141099929809570</stage_threshold> 1277 <parent>10</parent> 1278 <next>-1</next></_> 1279 <_> 1280 <!-- stage 12 --> 1281 <trees> 1282 <_> 1283 <!-- tree 0 --> 1284 <_> 1285 <!-- root node --> 1286 <feature> 1287 <rects> 1288 <_> 1289 16 18 1 2 -1.</_> 1290 <_> 1291 16 19 1 1 2.</_></rects> 1292 <tilted>0</tilted></feature> 1293 <threshold>-5.7590808864915743e-005</threshold> 1294 <left_val>0.2734906971454620</left_val> 1295 <right_val>-0.6426038742065430</right_val></_></_> 1296 <_> 1297 <!-- tree 1 --> 1298 <_> 1299 <!-- root node --> 1300 <feature> 1301 <rects> 1302 <_> 1303 21 14 2 8 -1.</_> 1304 <_> 1305 22 14 1 8 2.</_></rects> 1306 <tilted>0</tilted></feature> 1307 <threshold>7.1206100983545184e-004</threshold> 1308 <left_val>-0.5435984134674072</left_val> 1309 <right_val>0.2552855014801025</right_val></_></_> 1310 <_> 1311 <!-- tree 2 --> 1312 <_> 1313 <!-- root node --> 1314 <feature> 1315 <rects> 1316 <_> 1317 0 7 21 9 -1.</_> 1318 <_> 1319 7 10 7 3 9.</_></rects> 1320 <tilted>0</tilted></feature> 1321 <threshold>-0.3888005912303925</threshold> 1322 <left_val>0.6930956840515137</left_val> 1323 <right_val>-0.1862079948186874</right_val></_></_> 1324 <_> 1325 <!-- tree 3 --> 1326 <_> 1327 <!-- root node --> 1328 <feature> 1329 <rects> 1330 <_> 1331 16 16 1 4 -1.</_> 1332 <_> 1333 16 17 1 2 2.</_></rects> 1334 <tilted>0</tilted></feature> 1335 <threshold>2.5288251345045865e-004</threshold> 1336 <left_val>0.2914173901081085</left_val> 1337 <right_val>-0.5620415806770325</right_val></_></_> 1338 <_> 1339 <!-- tree 4 --> 1340 <_> 1341 <!-- root node --> 1342 <feature> 1343 <rects> 1344 <_> 1345 19 15 2 6 -1.</_> 1346 <_> 1347 17 17 2 2 3.</_></rects> 1348 <tilted>1</tilted></feature> 1349 <threshold>-2.1006830502301455e-003</threshold> 1350 <left_val>-0.6822040081024170</left_val> 1351 <right_val>0.1185996010899544</right_val></_></_> 1352 <_> 1353 <!-- tree 5 --> 1354 <_> 1355 <!-- root node --> 1356 <feature> 1357 <rects> 1358 <_> 1359 6 0 15 4 -1.</_> 1360 <_> 1361 6 1 15 2 2.</_></rects> 1362 <tilted>0</tilted></feature> 1363 <threshold>-3.2310429960489273e-003</threshold> 1364 <left_val>0.3972072899341583</left_val> 1365 <right_val>-0.2774995863437653</right_val></_></_> 1366 <_> 1367 <!-- tree 6 --> 1368 <_> 1369 <!-- root node --> 1370 <feature> 1371 <rects> 1372 <_> 1373 9 16 1 4 -1.</_> 1374 <_> 1375 9 17 1 2 2.</_></rects> 1376 <tilted>0</tilted></feature> 1377 <threshold>1.4478569937637076e-005</threshold> 1378 <left_val>-0.5476933717727661</left_val> 1379 <right_val>0.2119608968496323</right_val></_></_> 1380 <_> 1381 <!-- tree 7 --> 1382 <_> 1383 <!-- root node --> 1384 <feature> 1385 <rects> 1386 <_> 1387 8 20 8 2 -1.</_> 1388 <_> 1389 8 20 4 1 2.</_> 1390 <_> 1391 12 21 4 1 2.</_></rects> 1392 <tilted>0</tilted></feature> 1393 <threshold>-9.0244162129238248e-004</threshold> 1394 <left_val>-0.8646997213363648</left_val> 1395 <right_val>0.1194489970803261</right_val></_></_> 1396 <_> 1397 <!-- tree 8 --> 1398 <_> 1399 <!-- root node --> 1400 <feature> 1401 <rects> 1402 <_> 1403 0 9 3 14 -1.</_> 1404 <_> 1405 1 9 1 14 3.</_></rects> 1406 <tilted>0</tilted></feature> 1407 <threshold>-1.5906910412013531e-003</threshold> 1408 <left_val>0.2919914126396179</left_val> 1409 <right_val>-0.3928124904632568</right_val></_></_> 1410 <_> 1411 <!-- tree 9 --> 1412 <_> 1413 <!-- root node --> 1414 <feature> 1415 <rects> 1416 <_> 1417 11 1 11 4 -1.</_> 1418 <_> 1419 11 1 11 2 2.</_></rects> 1420 <tilted>1</tilted></feature> 1421 <threshold>7.4913240969181061e-003</threshold> 1422 <left_val>0.2679530084133148</left_val> 1423 <right_val>-0.4020768105983734</right_val></_></_></trees> 1424 <stage_threshold>-1.0776710510253906</stage_threshold> 1425 <parent>11</parent> 1426 <next>-1</next></_> 1427 <_> 1428 <!-- stage 13 --> 1429 <trees> 1430 <_> 1431 <!-- tree 0 --> 1432 <_> 1433 <!-- root node --> 1434 <feature> 1435 <rects> 1436 <_> 1437 15 20 1 2 -1.</_> 1438 <_> 1439 15 21 1 1 2.</_></rects> 1440 <tilted>0</tilted></feature> 1441 <threshold>-7.1240079705603421e-005</threshold> 1442 <left_val>0.2823083102703095</left_val> 1443 <right_val>-0.4779424071311951</right_val></_></_> 1444 <_> 1445 <!-- tree 1 --> 1446 <_> 1447 <!-- root node --> 1448 <feature> 1449 <rects> 1450 <_> 1451 2 18 1 2 -1.</_> 1452 <_> 1453 2 18 1 1 2.</_></rects> 1454 <tilted>1</tilted></feature> 1455 <threshold>-2.6417701155878603e-004</threshold> 1456 <left_val>0.3084900975227356</left_val> 1457 <right_val>-0.4036655128002167</right_val></_></_> 1458 <_> 1459 <!-- tree 2 --> 1460 <_> 1461 <!-- root node --> 1462 <feature> 1463 <rects> 1464 <_> 1465 0 14 12 6 -1.</_> 1466 <_> 1467 0 16 12 2 3.</_></rects> 1468 <tilted>0</tilted></feature> 1469 <threshold>5.2890321239829063e-004</threshold> 1470 <left_val>-0.7423822879791260</left_val> 1471 <right_val>0.1605536937713623</right_val></_></_> 1472 <_> 1473 <!-- tree 3 --> 1474 <_> 1475 <!-- root node --> 1476 <feature> 1477 <rects> 1478 <_> 1479 4 10 2 14 -1.</_> 1480 <_> 1481 4 10 1 7 2.</_> 1482 <_> 1483 5 17 1 7 2.</_></rects> 1484 <tilted>0</tilted></feature> 1485 <threshold>3.8283021422103047e-004</threshold> 1486 <left_val>-0.6108828783035278</left_val> 1487 <right_val>0.1794416010379791</right_val></_></_> 1488 <_> 1489 <!-- tree 4 --> 1490 <_> 1491 <!-- root node --> 1492 <feature> 1493 <rects> 1494 <_> 1495 22 3 2 15 -1.</_> 1496 <_> 1497 23 3 1 15 2.</_></rects> 1498 <tilted>0</tilted></feature> 1499 <threshold>5.4077422246336937e-003</threshold> 1500 <left_val>-0.2767061889171600</left_val> 1501 <right_val>0.4017147123813629</right_val></_></_> 1502 <_> 1503 <!-- tree 5 --> 1504 <_> 1505 <!-- root node --> 1506 <feature> 1507 <rects> 1508 <_> 1509 4 17 3 1 -1.</_> 1510 <_> 1511 5 18 1 1 3.</_></rects> 1512 <tilted>1</tilted></feature> 1513 <threshold>-8.2620367174968123e-004</threshold> 1514 <left_val>-0.8456827998161316</left_val> 1515 <right_val>0.1641048043966293</right_val></_></_> 1516 <_> 1517 <!-- tree 6 --> 1518 <_> 1519 <!-- root node --> 1520 <feature> 1521 <rects> 1522 <_> 1523 21 6 3 9 -1.</_> 1524 <_> 1525 21 9 3 3 3.</_></rects> 1526 <tilted>0</tilted></feature> 1527 <threshold>-8.9606801047921181e-003</threshold> 1528 <left_val>-0.6698572039604187</left_val> 1529 <right_val>0.1270485967397690</right_val></_></_> 1530 <_> 1531 <!-- tree 7 --> 1532 <_> 1533 <!-- root node --> 1534 <feature> 1535 <rects> 1536 <_> 1537 1 7 23 4 -1.</_> 1538 <_> 1539 1 9 23 2 2.</_></rects> 1540 <tilted>0</tilted></feature> 1541 <threshold>-3.0286349356174469e-003</threshold> 1542 <left_val>0.1227105036377907</left_val> 1543 <right_val>-0.7880274057388306</right_val></_></_> 1544 <_> 1545 <!-- tree 8 --> 1546 <_> 1547 <!-- root node --> 1548 <feature> 1549 <rects> 1550 <_> 1551 4 3 20 20 -1.</_> 1552 <_> 1553 4 13 20 10 2.</_></rects> 1554 <tilted>0</tilted></feature> 1555 <threshold>-0.0262723900377750</threshold> 1556 <left_val>-0.7226560711860657</left_val> 1557 <right_val>0.1347829997539520</right_val></_></_> 1558 <_> 1559 <!-- tree 9 --> 1560 <_> 1561 <!-- root node --> 1562 <feature> 1563 <rects> 1564 <_> 1565 14 13 7 4 -1.</_> 1566 <_> 1567 14 15 7 2 2.</_></rects> 1568 <tilted>0</tilted></feature> 1569 <threshold>-5.0153239862993360e-004</threshold> 1570 <left_val>0.2890014052391052</left_val> 1571 <right_val>-0.3537223935127258</right_val></_></_> 1572 <_> 1573 <!-- tree 10 --> 1574 <_> 1575 <!-- root node --> 1576 <feature> 1577 <rects> 1578 <_> 1579 2 6 2 2 -1.</_> 1580 <_> 1581 2 6 2 1 2.</_></rects> 1582 <tilted>1</tilted></feature> 1583 <threshold>-1.9847620569635183e-004</threshold> 1584 <left_val>0.2491115033626556</left_val> 1585 <right_val>-0.4667024016380310</right_val></_></_></trees> 1586 <stage_threshold>-1.1201709508895874</stage_threshold> 1587 <parent>12</parent> 1588 <next>-1</next></_> 1589 <_> 1590 <!-- stage 14 --> 1591 <trees> 1592 <_> 1593 <!-- tree 0 --> 1594 <_> 1595 <!-- root node --> 1596 <feature> 1597 <rects> 1598 <_> 1599 13 15 6 4 -1.</_> 1600 <_> 1601 13 17 6 2 2.</_></rects> 1602 <tilted>0</tilted></feature> 1603 <threshold>-1.6098109772428870e-003</threshold> 1604 <left_val>0.2436411976814270</left_val> 1605 <right_val>-0.5425583124160767</right_val></_></_> 1606 <_> 1607 <!-- tree 1 --> 1608 <_> 1609 <!-- root node --> 1610 <feature> 1611 <rects> 1612 <_> 1613 17 0 7 24 -1.</_> 1614 <_> 1615 17 8 7 8 3.</_></rects> 1616 <tilted>0</tilted></feature> 1617 <threshold>3.0391800682991743e-003</threshold> 1618 <left_val>0.1427879035472870</left_val> 1619 <right_val>-0.7677937150001526</right_val></_></_> 1620 <_> 1621 <!-- tree 2 --> 1622 <_> 1623 <!-- root node --> 1624 <feature> 1625 <rects> 1626 <_> 1627 3 7 20 8 -1.</_> 1628 <_> 1629 13 7 10 8 2.</_></rects> 1630 <tilted>0</tilted></feature> 1631 <threshold>-0.0111625995486975</threshold> 1632 <left_val>-0.7964649796485901</left_val> 1633 <right_val>0.1309580951929092</right_val></_></_> 1634 <_> 1635 <!-- tree 3 --> 1636 <_> 1637 <!-- root node --> 1638 <feature> 1639 <rects> 1640 <_> 1641 0 7 22 1 -1.</_> 1642 <_> 1643 11 7 11 1 2.</_></rects> 1644 <tilted>0</tilted></feature> 1645 <threshold>-1.6689340118318796e-003</threshold> 1646 <left_val>0.2306797951459885</left_val> 1647 <right_val>-0.4947401881217957</right_val></_></_> 1648 <_> 1649 <!-- tree 4 --> 1650 <_> 1651 <!-- root node --> 1652 <feature> 1653 <rects> 1654 <_> 1655 7 9 8 2 -1.</_> 1656 <_> 1657 7 10 8 1 2.</_></rects> 1658 <tilted>0</tilted></feature> 1659 <threshold>-8.8481552666053176e-004</threshold> 1660 <left_val>0.2005017995834351</left_val> 1661 <right_val>-0.5158239006996155</right_val></_></_> 1662 <_> 1663 <!-- tree 5 --> 1664 <_> 1665 <!-- root node --> 1666 <feature> 1667 <rects> 1668 <_> 1669 2 0 3 18 -1.</_> 1670 <_> 1671 2 6 3 6 3.</_></rects> 1672 <tilted>0</tilted></feature> 1673 <threshold>-2.6040559168905020e-003</threshold> 1674 <left_val>0.1298092007637024</left_val> 1675 <right_val>-0.7818121910095215</right_val></_></_> 1676 <_> 1677 <!-- tree 6 --> 1678 <_> 1679 <!-- root node --> 1680 <feature> 1681 <rects> 1682 <_> 1683 2 13 3 5 -1.</_> 1684 <_> 1685 3 13 1 5 3.</_></rects> 1686 <tilted>0</tilted></feature> 1687 <threshold>-2.3444599355570972e-004</threshold> 1688 <left_val>-0.5695487260818481</left_val> 1689 <right_val>0.1478334069252014</right_val></_></_> 1690 <_> 1691 <!-- tree 7 --> 1692 <_> 1693 <!-- root node --> 1694 <feature> 1695 <rects> 1696 <_> 1697 14 16 3 4 -1.</_> 1698 <_> 1699 15 16 1 4 3.</_></rects> 1700 <tilted>0</tilted></feature> 1701 <threshold>8.4604357834905386e-004</threshold> 1702 <left_val>0.1037243008613586</left_val> 1703 <right_val>-0.8308842182159424</right_val></_></_> 1704 <_> 1705 <!-- tree 8 --> 1706 <_> 1707 <!-- root node --> 1708 <feature> 1709 <rects> 1710 <_> 1711 10 0 12 3 -1.</_> 1712 <_> 1713 10 1 12 1 3.</_></rects> 1714 <tilted>0</tilted></feature> 1715 <threshold>-2.4807569570839405e-003</threshold> 1716 <left_val>0.3425926864147186</left_val> 1717 <right_val>-0.2719523906707764</right_val></_></_> 1718 <_> 1719 <!-- tree 9 --> 1720 <_> 1721 <!-- root node --> 1722 <feature> 1723 <rects> 1724 <_> 1725 15 16 3 1 -1.</_> 1726 <_> 1727 16 17 1 1 3.</_></rects> 1728 <tilted>1</tilted></feature> 1729 <threshold>-1.1127090547233820e-003</threshold> 1730 <left_val>-0.8275328278541565</left_val> 1731 <right_val>0.1176175028085709</right_val></_></_> 1732 <_> 1733 <!-- tree 10 --> 1734 <_> 1735 <!-- root node --> 1736 <feature> 1737 <rects> 1738 <_> 1739 22 13 2 5 -1.</_> 1740 <_> 1741 23 13 1 5 2.</_></rects> 1742 <tilted>0</tilted></feature> 1743 <threshold>1.4298419700935483e-003</threshold> 1744 <left_val>-0.3477616012096405</left_val> 1745 <right_val>0.2652699053287506</right_val></_></_> 1746 <_> 1747 <!-- tree 11 --> 1748 <_> 1749 <!-- root node --> 1750 <feature> 1751 <rects> 1752 <_> 1753 11 14 4 6 -1.</_> 1754 <_> 1755 11 16 4 2 3.</_></rects> 1756 <tilted>0</tilted></feature> 1757 <threshold>-1.4572150539606810e-003</threshold> 1758 <left_val>-0.8802363276481628</left_val> 1759 <right_val>0.1092033982276917</right_val></_></_></trees> 1760 <stage_threshold>-1.0063530206680298</stage_threshold> 1761 <parent>13</parent> 1762 <next>-1</next></_> 1763 <_> 1764 <!-- stage 15 --> 1765 <trees> 1766 <_> 1767 <!-- tree 0 --> 1768 <_> 1769 <!-- root node --> 1770 <feature> 1771 <rects> 1772 <_> 1773 14 15 1 2 -1.</_> 1774 <_> 1775 14 16 1 1 2.</_></rects> 1776 <tilted>0</tilted></feature> 1777 <threshold>-1.4507149899145588e-005</threshold> 1778 <left_val>0.2605004012584686</left_val> 1779 <right_val>-0.4580149054527283</right_val></_></_> 1780 <_> 1781 <!-- tree 1 --> 1782 <_> 1783 <!-- root node --> 1784 <feature> 1785 <rects> 1786 <_> 1787 6 3 6 5 -1.</_> 1788 <_> 1789 6 3 3 5 2.</_></rects> 1790 <tilted>1</tilted></feature> 1791 <threshold>0.0136784398928285</threshold> 1792 <left_val>-0.7149971723556519</left_val> 1793 <right_val>0.1477705985307694</right_val></_></_> 1794 <_> 1795 <!-- tree 2 --> 1796 <_> 1797 <!-- root node --> 1798 <feature> 1799 <rects> 1800 <_> 1801 2 8 1 2 -1.</_> 1802 <_> 1803 2 8 1 1 2.</_></rects> 1804 <tilted>1</tilted></feature> 1805 <threshold>-7.3151881224475801e-005</threshold> 1806 <left_val>0.2058611065149307</left_val> 1807 <right_val>-0.4995836019515991</right_val></_></_> 1808 <_> 1809 <!-- tree 3 --> 1810 <_> 1811 <!-- root node --> 1812 <feature> 1813 <rects> 1814 <_> 1815 9 17 4 4 -1.</_> 1816 <_> 1817 9 18 4 2 2.</_></rects> 1818 <tilted>0</tilted></feature> 1819 <threshold>-6.7043182207271457e-004</threshold> 1820 <left_val>-0.7319483757019043</left_val> 1821 <right_val>0.1358278989791870</right_val></_></_> 1822 <_> 1823 <!-- tree 4 --> 1824 <_> 1825 <!-- root node --> 1826 <feature> 1827 <rects> 1828 <_> 1829 10 6 4 5 -1.</_> 1830 <_> 1831 11 6 2 5 2.</_></rects> 1832 <tilted>0</tilted></feature> 1833 <threshold>-1.1992789804935455e-003</threshold> 1834 <left_val>0.4456472992897034</left_val> 1835 <right_val>-0.2521241009235382</right_val></_></_> 1836 <_> 1837 <!-- tree 5 --> 1838 <_> 1839 <!-- root node --> 1840 <feature> 1841 <rects> 1842 <_> 1843 2 21 12 2 -1.</_> 1844 <_> 1845 8 21 6 2 2.</_></rects> 1846 <tilted>0</tilted></feature> 1847 <threshold>-0.0117351496592164</threshold> 1848 <left_val>-0.7972438931465149</left_val> 1849 <right_val>0.1424607038497925</right_val></_></_> 1850 <_> 1851 <!-- tree 6 --> 1852 <_> 1853 <!-- root node --> 1854 <feature> 1855 <rects> 1856 <_> 1857 12 8 12 15 -1.</_> 1858 <_> 1859 16 8 4 15 3.</_></rects> 1860 <tilted>0</tilted></feature> 1861 <threshold>-4.7361929900944233e-003</threshold> 1862 <left_val>0.1624221056699753</left_val> 1863 <right_val>-0.5223402976989746</right_val></_></_> 1864 <_> 1865 <!-- tree 7 --> 1866 <_> 1867 <!-- root node --> 1868 <feature> 1869 <rects> 1870 <_> 1871 0 3 20 20 -1.</_> 1872 <_> 1873 0 13 20 10 2.</_></rects> 1874 <tilted>0</tilted></feature> 1875 <threshold>-0.1084595024585724</threshold> 1876 <left_val>-0.7962973713874817</left_val> 1877 <right_val>0.1265926957130432</right_val></_></_> 1878 <_> 1879 <!-- tree 8 --> 1880 <_> 1881 <!-- root node --> 1882 <feature> 1883 <rects> 1884 <_> 1885 16 17 4 2 -1.</_> 1886 <_> 1887 16 17 4 1 2.</_></rects> 1888 <tilted>1</tilted></feature> 1889 <threshold>-3.2293208641931415e-004</threshold> 1890 <left_val>-0.7129234075546265</left_val> 1891 <right_val>0.0899520069360733</right_val></_></_> 1892 <_> 1893 <!-- tree 9 --> 1894 <_> 1895 <!-- root node --> 1896 <feature> 1897 <rects> 1898 <_> 1899 21 14 2 5 -1.</_> 1900 <_> 1901 21 14 1 5 2.</_></rects> 1902 <tilted>1</tilted></feature> 1903 <threshold>2.5980910286307335e-003</threshold> 1904 <left_val>-0.2800100147724152</left_val> 1905 <right_val>0.3197942078113556</right_val></_></_> 1906 <_> 1907 <!-- tree 10 --> 1908 <_> 1909 <!-- root node --> 1910 <feature> 1911 <rects> 1912 <_> 1913 12 0 12 8 -1.</_> 1914 <_> 1915 12 0 12 4 2.</_></rects> 1916 <tilted>1</tilted></feature> 1917 <threshold>-7.5798099860548973e-003</threshold> 1918 <left_val>-0.7153301239013672</left_val> 1919 <right_val>0.1406804025173187</right_val></_></_> 1920 <_> 1921 <!-- tree 11 --> 1922 <_> 1923 <!-- root node --> 1924 <feature> 1925 <rects> 1926 <_> 1927 17 0 7 24 -1.</_> 1928 <_> 1929 17 6 7 12 2.</_></rects> 1930 <tilted>0</tilted></feature> 1931 <threshold>-8.4003582596778870e-003</threshold> 1932 <left_val>0.1168404966592789</left_val> 1933 <right_val>-0.6506950259208679</right_val></_></_> 1934 <_> 1935 <!-- tree 12 --> 1936 <_> 1937 <!-- root node --> 1938 <feature> 1939 <rects> 1940 <_> 1941 13 10 3 6 -1.</_> 1942 <_> 1943 13 12 3 2 3.</_></rects> 1944 <tilted>0</tilted></feature> 1945 <threshold>3.6820198874920607e-003</threshold> 1946 <left_val>-0.2631436884403229</left_val> 1947 <right_val>0.3865979909896851</right_val></_></_></trees> 1948 <stage_threshold>-1.0373339653015137</stage_threshold> 1949 <parent>14</parent> 1950 <next>-1</next></_> 1951 <_> 1952 <!-- stage 16 --> 1953 <trees> 1954 <_> 1955 <!-- tree 0 --> 1956 <_> 1957 <!-- root node --> 1958 <feature> 1959 <rects> 1960 <_> 1961 8 11 9 9 -1.</_> 1962 <_> 1963 11 14 3 3 9.</_></rects> 1964 <tilted>0</tilted></feature> 1965 <threshold>0.0240733902901411</threshold> 1966 <left_val>-0.4794333875179291</left_val> 1967 <right_val>0.2617827057838440</right_val></_></_> 1968 <_> 1969 <!-- tree 1 --> 1970 <_> 1971 <!-- root node --> 1972 <feature> 1973 <rects> 1974 <_> 1975 17 18 7 6 -1.</_> 1976 <_> 1977 17 21 7 3 2.</_></rects> 1978 <tilted>0</tilted></feature> 1979 <threshold>1.9582170061767101e-003</threshold> 1980 <left_val>-0.4434475898742676</left_val> 1981 <right_val>0.2301298975944519</right_val></_></_> 1982 <_> 1983 <!-- tree 2 --> 1984 <_> 1985 <!-- root node --> 1986 <feature> 1987 <rects> 1988 <_> 1989 9 8 4 2 -1.</_> 1990 <_> 1991 9 9 4 1 2.</_></rects> 1992 <tilted>0</tilted></feature> 1993 <threshold>-2.0559200493153185e-004</threshold> 1994 <left_val>0.1224080994725227</left_val> 1995 <right_val>-0.7277694940567017</right_val></_></_> 1996 <_> 1997 <!-- tree 3 --> 1998 <_> 1999 <!-- root node --> 2000 <feature> 2001 <rects> 2002 <_> 2003 7 7 7 6 -1.</_> 2004 <_> 2005 7 9 7 2 3.</_></rects> 2006 <tilted>0</tilted></feature> 2007 <threshold>1.0637210216373205e-003</threshold> 2008 <left_val>-0.1582341045141220</left_val> 2009 <right_val>0.6447200775146484</right_val></_></_> 2010 <_> 2011 <!-- tree 4 --> 2012 <_> 2013 <!-- root node --> 2014 <feature> 2015 <rects> 2016 <_> 2017 2 9 1 9 -1.</_> 2018 <_> 2019 2 12 1 3 3.</_></rects> 2020 <tilted>0</tilted></feature> 2021 <threshold>-3.5040560760535300e-004</threshold> 2022 <left_val>-0.5160586237907410</left_val> 2023 <right_val>0.2033808976411820</right_val></_></_> 2024 <_> 2025 <!-- tree 5 --> 2026 <_> 2027 <!-- root node --> 2028 <feature> 2029 <rects> 2030 <_> 2031 1 0 1 20 -1.</_> 2032 <_> 2033 1 10 1 10 2.</_></rects> 2034 <tilted>0</tilted></feature> 2035 <threshold>-1.5382179990410805e-003</threshold> 2036 <left_val>0.2029495984315872</left_val> 2037 <right_val>-0.5412080287933350</right_val></_></_> 2038 <_> 2039 <!-- tree 6 --> 2040 <_> 2041 <!-- root node --> 2042 <feature> 2043 <rects> 2044 <_> 2045 5 11 4 3 -1.</_> 2046 <_> 2047 5 11 2 3 2.</_></rects> 2048 <tilted>1</tilted></feature> 2049 <threshold>4.2215911671519279e-003</threshold> 2050 <left_val>0.1420246958732605</left_val> 2051 <right_val>-0.6884710788726807</right_val></_></_> 2052 <_> 2053 <!-- tree 7 --> 2054 <_> 2055 <!-- root node --> 2056 <feature> 2057 <rects> 2058 <_> 2059 1 6 14 13 -1.</_> 2060 <_> 2061 8 6 7 13 2.</_></rects> 2062 <tilted>0</tilted></feature> 2063 <threshold>4.0536639280617237e-003</threshold> 2064 <left_val>0.0946411192417145</left_val> 2065 <right_val>-0.8890265226364136</right_val></_></_> 2066 <_> 2067 <!-- tree 8 --> 2068 <_> 2069 <!-- root node --> 2070 <feature> 2071 <rects> 2072 <_> 2073 11 6 6 4 -1.</_> 2074 <_> 2075 13 6 2 4 3.</_></rects> 2076 <tilted>0</tilted></feature> 2077 <threshold>3.9104130119085312e-003</threshold> 2078 <left_val>-0.2211245000362396</left_val> 2079 <right_val>0.4553441107273102</right_val></_></_> 2080 <_> 2081 <!-- tree 9 --> 2082 <_> 2083 <!-- root node --> 2084 <feature> 2085 <rects> 2086 <_> 2087 15 20 2 2 -1.</_> 2088 <_> 2089 15 20 2 1 2.</_></rects> 2090 <tilted>1</tilted></feature> 2091 <threshold>-5.8839347911998630e-004</threshold> 2092 <left_val>-0.7423400878906250</left_val> 2093 <right_val>0.1466006040573120</right_val></_></_> 2094 <_> 2095 <!-- tree 10 --> 2096 <_> 2097 <!-- root node --> 2098 <feature> 2099 <rects> 2100 <_> 2101 11 7 11 2 -1.</_> 2102 <_> 2103 11 8 11 1 2.</_></rects> 2104 <tilted>0</tilted></feature> 2105 <threshold>4.7331111272796988e-004</threshold> 2106 <left_val>0.0803736001253128</left_val> 2107 <right_val>-0.8416292071342468</right_val></_></_> 2108 <_> 2109 <!-- tree 11 --> 2110 <_> 2111 <!-- root node --> 2112 <feature> 2113 <rects> 2114 <_> 2115 14 0 7 4 -1.</_> 2116 <_> 2117 14 1 7 2 2.</_></rects> 2118 <tilted>0</tilted></feature> 2119 <threshold>-1.4589539496228099e-003</threshold> 2120 <left_val>0.2730404138565064</left_val> 2121 <right_val>-0.2989330887794495</right_val></_></_></trees> 2122 <stage_threshold>-0.9257612824440002</stage_threshold> 2123 <parent>15</parent> 2124 <next>-1</next></_></stages></A_gest> 2125</opencv_storage> 2126