1 /*****************************************************************************
2  * Copyright (C) 2013-2020 MulticoreWare, Inc
3  *
4  * Authors: Steve Borho <steve@borho.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
19  *
20  * This program is also available under a commercial proprietary license.
21  * For more information, contact us at license @ x265.com.
22  *****************************************************************************/
23 
24 #ifndef X265_YUV_H
25 #define X265_YUV_H
26 
27 #include "common.h"
28 #include "primitives.h"
29 
30 namespace X265_NS {
31 // private namespace
32 
33 class ShortYuv;
34 class PicYuv;
35 
36 /* A Yuv instance holds pixels for a square CU (64x64 down to 8x8) for all three planes
37  * these are typically used to hold fenc, predictions, or reconstructed blocks */
38 class Yuv
39 {
40 public:
41     pixel*   m_buf[3];
42 
43     uint32_t m_size;
44     uint32_t m_csize;
45     int      m_part;         // cached partition enum size
46 
47     int      m_csp;
48     int      m_hChromaShift;
49     int      m_vChromaShift;
50     uint32_t *m_integral[2][MAX_NUM_REF][INTEGRAL_PLANE_NUM];
51 
52     Yuv();
53 
54     bool   create(uint32_t size, int csp);
55     void   destroy();
56 
57     // Copy YUV buffer to picture buffer
58     void   copyToPicYuv(PicYuv& destPicYuv, uint32_t cuAddr, uint32_t absPartIdx) const;
59 
60     // Copy YUV buffer from picture buffer
61     void   copyFromPicYuv(const PicYuv& srcPicYuv, uint32_t cuAddr, uint32_t absPartIdx);
62 
63     // Copy from same size YUV buffer
64     void   copyFromYuv(const Yuv& srcYuv);
65 
66     // Copy portion of srcYuv into ME prediction buffer
67     void   copyPUFromYuv(const Yuv& srcYuv, uint32_t absPartIdx, int partEnum, bool bChroma);
68 
69     // Copy Small YUV buffer to the part of other Big YUV buffer
70     void   copyToPartYuv(Yuv& dstYuv, uint32_t absPartIdx) const;
71 
72     // Copy the part of Big YUV buffer to other Small YUV buffer
73     void   copyPartToYuv(Yuv& dstYuv, uint32_t absPartIdx) const;
74 
75     // Clip(srcYuv0 + srcYuv1) -> m_buf .. aka recon = clip(pred + residual)
76     void   addClip(const Yuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t log2SizeL, int picCsp);
77 
78     // (srcYuv0 + srcYuv1)/2 for YUV partition (bidir averaging)
79     void   addAvg(const ShortYuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t absPartIdx, uint32_t width, uint32_t height, bool bLuma, bool bChroma);
80 
81     void copyPartToPartLuma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2Size) const;
82     void copyPartToPartChroma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2SizeL) const;
83 
getLumaAddr(uint32_t absPartIdx)84     pixel* getLumaAddr(uint32_t absPartIdx)                      { return m_buf[0] + getAddrOffset(absPartIdx, m_size); }
getCbAddr(uint32_t absPartIdx)85     pixel* getCbAddr(uint32_t absPartIdx)                        { return m_buf[1] + getChromaAddrOffset(absPartIdx); }
getCrAddr(uint32_t absPartIdx)86     pixel* getCrAddr(uint32_t absPartIdx)                        { return m_buf[2] + getChromaAddrOffset(absPartIdx); }
getChromaAddr(uint32_t chromaId,uint32_t absPartIdx)87     pixel* getChromaAddr(uint32_t chromaId, uint32_t absPartIdx) { return m_buf[chromaId] + getChromaAddrOffset(absPartIdx); }
88 
getLumaAddr(uint32_t absPartIdx)89     const pixel* getLumaAddr(uint32_t absPartIdx) const                      { return m_buf[0] + getAddrOffset(absPartIdx, m_size); }
getCbAddr(uint32_t absPartIdx)90     const pixel* getCbAddr(uint32_t absPartIdx) const                        { return m_buf[1] + getChromaAddrOffset(absPartIdx); }
getCrAddr(uint32_t absPartIdx)91     const pixel* getCrAddr(uint32_t absPartIdx) const                        { return m_buf[2] + getChromaAddrOffset(absPartIdx); }
getChromaAddr(uint32_t chromaId,uint32_t absPartIdx)92     const pixel* getChromaAddr(uint32_t chromaId, uint32_t absPartIdx) const { return m_buf[chromaId] + getChromaAddrOffset(absPartIdx); }
93 
getChromaAddrOffset(uint32_t absPartIdx)94     int getChromaAddrOffset(uint32_t absPartIdx) const
95     {
96         int blkX = g_zscanToPelX[absPartIdx] >> m_hChromaShift;
97         int blkY = g_zscanToPelY[absPartIdx] >> m_vChromaShift;
98 
99         return blkX + blkY * m_csize;
100     }
101 
getAddrOffset(uint32_t absPartIdx,uint32_t width)102     static int getAddrOffset(uint32_t absPartIdx, uint32_t width)
103     {
104         int blkX = g_zscanToPelX[absPartIdx];
105         int blkY = g_zscanToPelY[absPartIdx];
106 
107         return blkX + blkY * width;
108     }
109 };
110 }
111 
112 #endif
113