1 /*****************************************************************************
2 * This file is part of Kvazaar HEVC encoder.
3 *
4 * Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modification,
8 * are permitted provided that the following conditions are met:
9 *
10 * * Redistributions of source code must retain the above copyright notice, this
11 * list of conditions and the following disclaimer.
12 *
13 * * Redistributions in binary form must reproduce the above copyright notice, this
14 * list of conditions and the following disclaimer in the documentation and/or
15 * other materials provided with the distribution.
16 *
17 * * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
18 * contributors may be used to endorse or promote products derived from
19 * this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
25 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON
28 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
31 ****************************************************************************/
32
33 /*
34 * \file
35 */
36
37 #include "global.h"
38
39 #if COMPILE_INTEL_AVX2
40 #include "kvazaar.h"
41 #if KVZ_BIT_DEPTH == 8
42 #include "strategies/avx2/picture-avx2.h"
43 #include "strategies/avx2/reg_sad_pow2_widths-avx2.h"
44
45 #include <immintrin.h>
46 #include <emmintrin.h>
47 #include <mmintrin.h>
48 #include <xmmintrin.h>
49 #include <string.h>
50 #include "strategies/strategies-picture.h"
51 #include "strategyselector.h"
52 #include "strategies/generic/picture-generic.h"
53
54 /**
55 * \brief Calculate Sum of Absolute Differences (SAD)
56 *
57 * Calculate Sum of Absolute Differences (SAD) between two rectangular regions
58 * located in arbitrary points in the picture.
59 *
60 * \param data1 Starting point of the first picture.
61 * \param data2 Starting point of the second picture.
62 * \param width Width of the region for which SAD is calculated.
63 * \param height Height of the region for which SAD is calculated.
64 * \param stride Width of the pixel array.
65 *
66 * \returns Sum of Absolute Differences
67 */
kvz_reg_sad_avx2(const uint8_t * const data1,const uint8_t * const data2,const int width,const int height,const unsigned stride1,const unsigned stride2)68 uint32_t kvz_reg_sad_avx2(const uint8_t * const data1, const uint8_t * const data2,
69 const int width, const int height, const unsigned stride1, const unsigned stride2)
70 {
71 if (width == 0)
72 return 0;
73 if (width == 4)
74 return reg_sad_w4(data1, data2, height, stride1, stride2);
75 if (width == 8)
76 return reg_sad_w8(data1, data2, height, stride1, stride2);
77 if (width == 12)
78 return reg_sad_w12(data1, data2, height, stride1, stride2);
79 if (width == 16)
80 return reg_sad_w16(data1, data2, height, stride1, stride2);
81 if (width == 24)
82 return reg_sad_w24(data1, data2, height, stride1, stride2);
83 if (width == 32)
84 return reg_sad_w32(data1, data2, height, stride1, stride2);
85 if (width == 64)
86 return reg_sad_w64(data1, data2, height, stride1, stride2);
87 else
88 return reg_sad_arbitrary(data1, data2, width, height, stride1, stride2);
89 }
90
91 /**
92 * \brief Calculate SAD for 8x8 bytes in continuous memory.
93 */
inline_8bit_sad_8x8_avx2(const __m256i * const a,const __m256i * const b)94 static INLINE __m256i inline_8bit_sad_8x8_avx2(const __m256i *const a, const __m256i *const b)
95 {
96 __m256i sum0, sum1;
97 sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0));
98 sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1));
99
100 return _mm256_add_epi32(sum0, sum1);
101 }
102
103
104 /**
105 * \brief Calculate SAD for 16x16 bytes in continuous memory.
106 */
inline_8bit_sad_16x16_avx2(const __m256i * const a,const __m256i * const b)107 static INLINE __m256i inline_8bit_sad_16x16_avx2(const __m256i *const a, const __m256i *const b)
108 {
109 const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i);
110
111 // Calculate in 4 chunks of 16x4.
112 __m256i sum0, sum1, sum2, sum3;
113 sum0 = inline_8bit_sad_8x8_avx2(a + 0 * size_of_8x8, b + 0 * size_of_8x8);
114 sum1 = inline_8bit_sad_8x8_avx2(a + 1 * size_of_8x8, b + 1 * size_of_8x8);
115 sum2 = inline_8bit_sad_8x8_avx2(a + 2 * size_of_8x8, b + 2 * size_of_8x8);
116 sum3 = inline_8bit_sad_8x8_avx2(a + 3 * size_of_8x8, b + 3 * size_of_8x8);
117
118 sum0 = _mm256_add_epi32(sum0, sum1);
119 sum2 = _mm256_add_epi32(sum2, sum3);
120
121 return _mm256_add_epi32(sum0, sum2);
122 }
123
124
125 /**
126 * \brief Get sum of the low 32 bits of four 64 bit numbers from __m256i as uint32_t.
127 */
m256i_horizontal_sum(const __m256i sum)128 static INLINE uint32_t m256i_horizontal_sum(const __m256i sum)
129 {
130 // Add the high 128 bits to low 128 bits.
131 __m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1));
132 // Add the high 64 bits to low 64 bits.
133 uint32_t result[4];
134 _mm_storeu_si128((__m128i*)result, mm128_result);
135 return result[0] + result[2];
136 }
137
138
sad_8bit_8x8_avx2(const uint8_t * buf1,const uint8_t * buf2)139 static unsigned sad_8bit_8x8_avx2(const uint8_t *buf1, const uint8_t *buf2)
140 {
141 const __m256i *const a = (const __m256i *)buf1;
142 const __m256i *const b = (const __m256i *)buf2;
143 __m256i sum = inline_8bit_sad_8x8_avx2(a, b);
144
145 return m256i_horizontal_sum(sum);
146 }
147
148
sad_8bit_16x16_avx2(const uint8_t * buf1,const uint8_t * buf2)149 static unsigned sad_8bit_16x16_avx2(const uint8_t *buf1, const uint8_t *buf2)
150 {
151 const __m256i *const a = (const __m256i *)buf1;
152 const __m256i *const b = (const __m256i *)buf2;
153 __m256i sum = inline_8bit_sad_16x16_avx2(a, b);
154
155 return m256i_horizontal_sum(sum);
156 }
157
158
sad_8bit_32x32_avx2(const uint8_t * buf1,const uint8_t * buf2)159 static unsigned sad_8bit_32x32_avx2(const uint8_t *buf1, const uint8_t *buf2)
160 {
161 const __m256i *const a = (const __m256i *)buf1;
162 const __m256i *const b = (const __m256i *)buf2;
163
164 const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i);
165 const unsigned size_of_32x32 = 32 * 32 / sizeof(__m256i);
166
167 // Looping 512 bytes at a time seems faster than letting VC figure it out
168 // through inlining, like inline_8bit_sad_16x16_avx2 does.
169 __m256i sum0 = inline_8bit_sad_8x8_avx2(a, b);
170 for (unsigned i = size_of_8x8; i < size_of_32x32; i += size_of_8x8) {
171 __m256i sum1 = inline_8bit_sad_8x8_avx2(a + i, b + i);
172 sum0 = _mm256_add_epi32(sum0, sum1);
173 }
174
175 return m256i_horizontal_sum(sum0);
176 }
177
178
sad_8bit_64x64_avx2(const uint8_t * buf1,const uint8_t * buf2)179 static unsigned sad_8bit_64x64_avx2(const uint8_t * buf1, const uint8_t * buf2)
180 {
181 const __m256i *const a = (const __m256i *)buf1;
182 const __m256i *const b = (const __m256i *)buf2;
183
184 const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i);
185 const unsigned size_of_64x64 = 64 * 64 / sizeof(__m256i);
186
187 // Looping 512 bytes at a time seems faster than letting VC figure it out
188 // through inlining, like inline_8bit_sad_16x16_avx2 does.
189 __m256i sum0 = inline_8bit_sad_8x8_avx2(a, b);
190 for (unsigned i = size_of_8x8; i < size_of_64x64; i += size_of_8x8) {
191 __m256i sum1 = inline_8bit_sad_8x8_avx2(a + i, b + i);
192 sum0 = _mm256_add_epi32(sum0, sum1);
193 }
194
195 return m256i_horizontal_sum(sum0);
196 }
197
satd_4x4_8bit_avx2(const uint8_t * org,const uint8_t * cur)198 static unsigned satd_4x4_8bit_avx2(const uint8_t *org, const uint8_t *cur)
199 {
200
201 __m128i original = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)org));
202 __m128i current = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)cur));
203
204 __m128i diff_lo = _mm_sub_epi16(current, original);
205
206 original = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(org + 8)));
207 current = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(cur + 8)));
208
209 __m128i diff_hi = _mm_sub_epi16(current, original);
210
211
212 //Hor
213 __m128i row0 = _mm_hadd_epi16(diff_lo, diff_hi);
214 __m128i row1 = _mm_hsub_epi16(diff_lo, diff_hi);
215
216 __m128i row2 = _mm_hadd_epi16(row0, row1);
217 __m128i row3 = _mm_hsub_epi16(row0, row1);
218
219 //Ver
220 row0 = _mm_hadd_epi16(row2, row3);
221 row1 = _mm_hsub_epi16(row2, row3);
222
223 row2 = _mm_hadd_epi16(row0, row1);
224 row3 = _mm_hsub_epi16(row0, row1);
225
226 //Abs and sum
227 row2 = _mm_abs_epi16(row2);
228 row3 = _mm_abs_epi16(row3);
229
230 row3 = _mm_add_epi16(row2, row3);
231
232 row3 = _mm_add_epi16(row3, _mm_shuffle_epi32(row3, _MM_SHUFFLE(1, 0, 3, 2) ));
233 row3 = _mm_add_epi16(row3, _mm_shuffle_epi32(row3, _MM_SHUFFLE(0, 1, 0, 1) ));
234 row3 = _mm_add_epi16(row3, _mm_shufflelo_epi16(row3, _MM_SHUFFLE(0, 1, 0, 1) ));
235
236 unsigned sum = _mm_extract_epi16(row3, 0);
237 unsigned satd = (sum + 1) >> 1;
238
239 return satd;
240 }
241
242
satd_8bit_4x4_dual_avx2(const pred_buffer preds,const uint8_t * const orig,unsigned num_modes,unsigned * satds_out)243 static void satd_8bit_4x4_dual_avx2(
244 const pred_buffer preds, const uint8_t * const orig, unsigned num_modes, unsigned *satds_out)
245 {
246
247 __m256i original = _mm256_broadcastsi128_si256(_mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)orig)));
248 __m256i pred = _mm256_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)preds[0]));
249 pred = _mm256_inserti128_si256(pred, _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)preds[1])), 1);
250
251 __m256i diff_lo = _mm256_sub_epi16(pred, original);
252
253 original = _mm256_broadcastsi128_si256(_mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(orig + 8))));
254 pred = _mm256_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(preds[0] + 8)));
255 pred = _mm256_inserti128_si256(pred, _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(preds[1] + 8))), 1);
256
257 __m256i diff_hi = _mm256_sub_epi16(pred, original);
258
259 //Hor
260 __m256i row0 = _mm256_hadd_epi16(diff_lo, diff_hi);
261 __m256i row1 = _mm256_hsub_epi16(diff_lo, diff_hi);
262
263 __m256i row2 = _mm256_hadd_epi16(row0, row1);
264 __m256i row3 = _mm256_hsub_epi16(row0, row1);
265
266 //Ver
267 row0 = _mm256_hadd_epi16(row2, row3);
268 row1 = _mm256_hsub_epi16(row2, row3);
269
270 row2 = _mm256_hadd_epi16(row0, row1);
271 row3 = _mm256_hsub_epi16(row0, row1);
272
273 //Abs and sum
274 row2 = _mm256_abs_epi16(row2);
275 row3 = _mm256_abs_epi16(row3);
276
277 row3 = _mm256_add_epi16(row2, row3);
278
279 row3 = _mm256_add_epi16(row3, _mm256_shuffle_epi32(row3, _MM_SHUFFLE(1, 0, 3, 2) ));
280 row3 = _mm256_add_epi16(row3, _mm256_shuffle_epi32(row3, _MM_SHUFFLE(0, 1, 0, 1) ));
281 row3 = _mm256_add_epi16(row3, _mm256_shufflelo_epi16(row3, _MM_SHUFFLE(0, 1, 0, 1) ));
282
283 unsigned sum1 = _mm_extract_epi16(_mm256_castsi256_si128(row3), 0);
284 sum1 = (sum1 + 1) >> 1;
285
286 unsigned sum2 = _mm_extract_epi16(_mm256_extracti128_si256(row3, 1), 0);
287 sum2 = (sum2 + 1) >> 1;
288
289 satds_out[0] = sum1;
290 satds_out[1] = sum2;
291 }
292
hor_transform_row_avx2(__m128i * row)293 static INLINE void hor_transform_row_avx2(__m128i* row){
294
295 __m128i mask_pos = _mm_set1_epi16(1);
296 __m128i mask_neg = _mm_set1_epi16(-1);
297 __m128i sign_mask = _mm_unpacklo_epi64(mask_pos, mask_neg);
298 __m128i temp = _mm_shuffle_epi32(*row, _MM_SHUFFLE(1, 0, 3, 2));
299 *row = _mm_sign_epi16(*row, sign_mask);
300 *row = _mm_add_epi16(*row, temp);
301
302 sign_mask = _mm_unpacklo_epi32(mask_pos, mask_neg);
303 temp = _mm_shuffle_epi32(*row, _MM_SHUFFLE(2, 3, 0, 1));
304 *row = _mm_sign_epi16(*row, sign_mask);
305 *row = _mm_add_epi16(*row, temp);
306
307 sign_mask = _mm_unpacklo_epi16(mask_pos, mask_neg);
308 temp = _mm_shufflelo_epi16(*row, _MM_SHUFFLE(2,3,0,1));
309 temp = _mm_shufflehi_epi16(temp, _MM_SHUFFLE(2,3,0,1));
310 *row = _mm_sign_epi16(*row, sign_mask);
311 *row = _mm_add_epi16(*row, temp);
312 }
313
hor_transform_row_dual_avx2(__m256i * row)314 static INLINE void hor_transform_row_dual_avx2(__m256i* row){
315
316 __m256i mask_pos = _mm256_set1_epi16(1);
317 __m256i mask_neg = _mm256_set1_epi16(-1);
318 __m256i sign_mask = _mm256_unpacklo_epi64(mask_pos, mask_neg);
319 __m256i temp = _mm256_shuffle_epi32(*row, _MM_SHUFFLE(1, 0, 3, 2));
320 *row = _mm256_sign_epi16(*row, sign_mask);
321 *row = _mm256_add_epi16(*row, temp);
322
323 sign_mask = _mm256_unpacklo_epi32(mask_pos, mask_neg);
324 temp = _mm256_shuffle_epi32(*row, _MM_SHUFFLE(2, 3, 0, 1));
325 *row = _mm256_sign_epi16(*row, sign_mask);
326 *row = _mm256_add_epi16(*row, temp);
327
328 sign_mask = _mm256_unpacklo_epi16(mask_pos, mask_neg);
329 temp = _mm256_shufflelo_epi16(*row, _MM_SHUFFLE(2,3,0,1));
330 temp = _mm256_shufflehi_epi16(temp, _MM_SHUFFLE(2,3,0,1));
331 *row = _mm256_sign_epi16(*row, sign_mask);
332 *row = _mm256_add_epi16(*row, temp);
333 }
334
add_sub_avx2(__m128i * out,__m128i * in,unsigned out_idx0,unsigned out_idx1,unsigned in_idx0,unsigned in_idx1)335 static INLINE void add_sub_avx2(__m128i *out, __m128i *in, unsigned out_idx0, unsigned out_idx1, unsigned in_idx0, unsigned in_idx1)
336 {
337 out[out_idx0] = _mm_add_epi16(in[in_idx0], in[in_idx1]);
338 out[out_idx1] = _mm_sub_epi16(in[in_idx0], in[in_idx1]);
339 }
340
ver_transform_block_avx2(__m128i (* rows)[8])341 static INLINE void ver_transform_block_avx2(__m128i (*rows)[8]){
342
343 __m128i temp0[8];
344 add_sub_avx2(temp0, (*rows), 0, 1, 0, 1);
345 add_sub_avx2(temp0, (*rows), 2, 3, 2, 3);
346 add_sub_avx2(temp0, (*rows), 4, 5, 4, 5);
347 add_sub_avx2(temp0, (*rows), 6, 7, 6, 7);
348
349 __m128i temp1[8];
350 add_sub_avx2(temp1, temp0, 0, 1, 0, 2);
351 add_sub_avx2(temp1, temp0, 2, 3, 1, 3);
352 add_sub_avx2(temp1, temp0, 4, 5, 4, 6);
353 add_sub_avx2(temp1, temp0, 6, 7, 5, 7);
354
355 add_sub_avx2((*rows), temp1, 0, 1, 0, 4);
356 add_sub_avx2((*rows), temp1, 2, 3, 1, 5);
357 add_sub_avx2((*rows), temp1, 4, 5, 2, 6);
358 add_sub_avx2((*rows), temp1, 6, 7, 3, 7);
359
360 }
361
add_sub_dual_avx2(__m256i * out,__m256i * in,unsigned out_idx0,unsigned out_idx1,unsigned in_idx0,unsigned in_idx1)362 static INLINE void add_sub_dual_avx2(__m256i *out, __m256i *in, unsigned out_idx0, unsigned out_idx1, unsigned in_idx0, unsigned in_idx1)
363 {
364 out[out_idx0] = _mm256_add_epi16(in[in_idx0], in[in_idx1]);
365 out[out_idx1] = _mm256_sub_epi16(in[in_idx0], in[in_idx1]);
366 }
367
368
ver_transform_block_dual_avx2(__m256i (* rows)[8])369 static INLINE void ver_transform_block_dual_avx2(__m256i (*rows)[8]){
370
371 __m256i temp0[8];
372 add_sub_dual_avx2(temp0, (*rows), 0, 1, 0, 1);
373 add_sub_dual_avx2(temp0, (*rows), 2, 3, 2, 3);
374 add_sub_dual_avx2(temp0, (*rows), 4, 5, 4, 5);
375 add_sub_dual_avx2(temp0, (*rows), 6, 7, 6, 7);
376
377 __m256i temp1[8];
378 add_sub_dual_avx2(temp1, temp0, 0, 1, 0, 2);
379 add_sub_dual_avx2(temp1, temp0, 2, 3, 1, 3);
380 add_sub_dual_avx2(temp1, temp0, 4, 5, 4, 6);
381 add_sub_dual_avx2(temp1, temp0, 6, 7, 5, 7);
382
383 add_sub_dual_avx2((*rows), temp1, 0, 1, 0, 4);
384 add_sub_dual_avx2((*rows), temp1, 2, 3, 1, 5);
385 add_sub_dual_avx2((*rows), temp1, 4, 5, 2, 6);
386 add_sub_dual_avx2((*rows), temp1, 6, 7, 3, 7);
387
388 }
389
haddwd_accumulate_avx2(__m128i * accumulate,__m128i * ver_row)390 INLINE static void haddwd_accumulate_avx2(__m128i *accumulate, __m128i *ver_row)
391 {
392 __m128i abs_value = _mm_abs_epi16(*ver_row);
393 *accumulate = _mm_add_epi32(*accumulate, _mm_madd_epi16(abs_value, _mm_set1_epi16(1)));
394 }
395
haddwd_accumulate_dual_avx2(__m256i * accumulate,__m256i * ver_row)396 INLINE static void haddwd_accumulate_dual_avx2(__m256i *accumulate, __m256i *ver_row)
397 {
398 __m256i abs_value = _mm256_abs_epi16(*ver_row);
399 *accumulate = _mm256_add_epi32(*accumulate, _mm256_madd_epi16(abs_value, _mm256_set1_epi16(1)));
400 }
401
sum_block_avx2(__m128i * ver_row)402 INLINE static unsigned sum_block_avx2(__m128i *ver_row)
403 {
404 __m128i sad = _mm_setzero_si128();
405 haddwd_accumulate_avx2(&sad, ver_row + 0);
406 haddwd_accumulate_avx2(&sad, ver_row + 1);
407 haddwd_accumulate_avx2(&sad, ver_row + 2);
408 haddwd_accumulate_avx2(&sad, ver_row + 3);
409 haddwd_accumulate_avx2(&sad, ver_row + 4);
410 haddwd_accumulate_avx2(&sad, ver_row + 5);
411 haddwd_accumulate_avx2(&sad, ver_row + 6);
412 haddwd_accumulate_avx2(&sad, ver_row + 7);
413
414 sad = _mm_add_epi32(sad, _mm_shuffle_epi32(sad, _MM_SHUFFLE(1, 0, 3, 2)));
415 sad = _mm_add_epi32(sad, _mm_shuffle_epi32(sad, _MM_SHUFFLE(0, 1, 0, 1)));
416
417 return _mm_cvtsi128_si32(sad);
418 }
419
sum_block_dual_avx2(__m256i * ver_row,unsigned * sum0,unsigned * sum1)420 INLINE static void sum_block_dual_avx2(__m256i *ver_row, unsigned *sum0, unsigned *sum1)
421 {
422 __m256i sad = _mm256_setzero_si256();
423 haddwd_accumulate_dual_avx2(&sad, ver_row + 0);
424 haddwd_accumulate_dual_avx2(&sad, ver_row + 1);
425 haddwd_accumulate_dual_avx2(&sad, ver_row + 2);
426 haddwd_accumulate_dual_avx2(&sad, ver_row + 3);
427 haddwd_accumulate_dual_avx2(&sad, ver_row + 4);
428 haddwd_accumulate_dual_avx2(&sad, ver_row + 5);
429 haddwd_accumulate_dual_avx2(&sad, ver_row + 6);
430 haddwd_accumulate_dual_avx2(&sad, ver_row + 7);
431
432 sad = _mm256_add_epi32(sad, _mm256_shuffle_epi32(sad, _MM_SHUFFLE(1, 0, 3, 2)));
433 sad = _mm256_add_epi32(sad, _mm256_shuffle_epi32(sad, _MM_SHUFFLE(0, 1, 0, 1)));
434
435 *sum0 = _mm_cvtsi128_si32(_mm256_extracti128_si256(sad, 0));
436 *sum1 = _mm_cvtsi128_si32(_mm256_extracti128_si256(sad, 1));
437 }
438
diff_row_avx2(const uint8_t * buf1,const uint8_t * buf2)439 INLINE static __m128i diff_row_avx2(const uint8_t *buf1, const uint8_t *buf2)
440 {
441 __m128i buf1_row = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)buf1));
442 __m128i buf2_row = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)buf2));
443 return _mm_sub_epi16(buf1_row, buf2_row);
444 }
445
diff_row_dual_avx2(const uint8_t * buf1,const uint8_t * buf2,const uint8_t * orig)446 INLINE static __m256i diff_row_dual_avx2(const uint8_t *buf1, const uint8_t *buf2, const uint8_t *orig)
447 {
448 __m128i temp1 = _mm_loadl_epi64((__m128i*)buf1);
449 __m128i temp2 = _mm_loadl_epi64((__m128i*)buf2);
450 __m128i temp3 = _mm_loadl_epi64((__m128i*)orig);
451 __m256i buf1_row = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(temp1, temp2));
452 __m256i buf2_row = _mm256_cvtepu8_epi16(_mm_broadcastq_epi64(temp3));
453
454 return _mm256_sub_epi16(buf1_row, buf2_row);
455 }
456
diff_blocks_avx2(__m128i (* row_diff)[8],const uint8_t * buf1,unsigned stride1,const uint8_t * orig,unsigned stride_orig)457 INLINE static void diff_blocks_avx2(__m128i (*row_diff)[8],
458 const uint8_t * buf1, unsigned stride1,
459 const uint8_t * orig, unsigned stride_orig)
460 {
461 (*row_diff)[0] = diff_row_avx2(buf1 + 0 * stride1, orig + 0 * stride_orig);
462 (*row_diff)[1] = diff_row_avx2(buf1 + 1 * stride1, orig + 1 * stride_orig);
463 (*row_diff)[2] = diff_row_avx2(buf1 + 2 * stride1, orig + 2 * stride_orig);
464 (*row_diff)[3] = diff_row_avx2(buf1 + 3 * stride1, orig + 3 * stride_orig);
465 (*row_diff)[4] = diff_row_avx2(buf1 + 4 * stride1, orig + 4 * stride_orig);
466 (*row_diff)[5] = diff_row_avx2(buf1 + 5 * stride1, orig + 5 * stride_orig);
467 (*row_diff)[6] = diff_row_avx2(buf1 + 6 * stride1, orig + 6 * stride_orig);
468 (*row_diff)[7] = diff_row_avx2(buf1 + 7 * stride1, orig + 7 * stride_orig);
469
470 }
471
diff_blocks_dual_avx2(__m256i (* row_diff)[8],const uint8_t * buf1,unsigned stride1,const uint8_t * buf2,unsigned stride2,const uint8_t * orig,unsigned stride_orig)472 INLINE static void diff_blocks_dual_avx2(__m256i (*row_diff)[8],
473 const uint8_t * buf1, unsigned stride1,
474 const uint8_t * buf2, unsigned stride2,
475 const uint8_t * orig, unsigned stride_orig)
476 {
477 (*row_diff)[0] = diff_row_dual_avx2(buf1 + 0 * stride1, buf2 + 0 * stride2, orig + 0 * stride_orig);
478 (*row_diff)[1] = diff_row_dual_avx2(buf1 + 1 * stride1, buf2 + 1 * stride2, orig + 1 * stride_orig);
479 (*row_diff)[2] = diff_row_dual_avx2(buf1 + 2 * stride1, buf2 + 2 * stride2, orig + 2 * stride_orig);
480 (*row_diff)[3] = diff_row_dual_avx2(buf1 + 3 * stride1, buf2 + 3 * stride2, orig + 3 * stride_orig);
481 (*row_diff)[4] = diff_row_dual_avx2(buf1 + 4 * stride1, buf2 + 4 * stride2, orig + 4 * stride_orig);
482 (*row_diff)[5] = diff_row_dual_avx2(buf1 + 5 * stride1, buf2 + 5 * stride2, orig + 5 * stride_orig);
483 (*row_diff)[6] = diff_row_dual_avx2(buf1 + 6 * stride1, buf2 + 6 * stride2, orig + 6 * stride_orig);
484 (*row_diff)[7] = diff_row_dual_avx2(buf1 + 7 * stride1, buf2 + 7 * stride2, orig + 7 * stride_orig);
485
486 }
487
hor_transform_block_avx2(__m128i (* row_diff)[8])488 INLINE static void hor_transform_block_avx2(__m128i (*row_diff)[8])
489 {
490 hor_transform_row_avx2((*row_diff) + 0);
491 hor_transform_row_avx2((*row_diff) + 1);
492 hor_transform_row_avx2((*row_diff) + 2);
493 hor_transform_row_avx2((*row_diff) + 3);
494 hor_transform_row_avx2((*row_diff) + 4);
495 hor_transform_row_avx2((*row_diff) + 5);
496 hor_transform_row_avx2((*row_diff) + 6);
497 hor_transform_row_avx2((*row_diff) + 7);
498 }
499
hor_transform_block_dual_avx2(__m256i (* row_diff)[8])500 INLINE static void hor_transform_block_dual_avx2(__m256i (*row_diff)[8])
501 {
502 hor_transform_row_dual_avx2((*row_diff) + 0);
503 hor_transform_row_dual_avx2((*row_diff) + 1);
504 hor_transform_row_dual_avx2((*row_diff) + 2);
505 hor_transform_row_dual_avx2((*row_diff) + 3);
506 hor_transform_row_dual_avx2((*row_diff) + 4);
507 hor_transform_row_dual_avx2((*row_diff) + 5);
508 hor_transform_row_dual_avx2((*row_diff) + 6);
509 hor_transform_row_dual_avx2((*row_diff) + 7);
510 }
511
kvz_satd_8bit_8x8_general_dual_avx2(const uint8_t * buf1,unsigned stride1,const uint8_t * buf2,unsigned stride2,const uint8_t * orig,unsigned stride_orig,unsigned * sum0,unsigned * sum1)512 static void kvz_satd_8bit_8x8_general_dual_avx2(const uint8_t * buf1, unsigned stride1,
513 const uint8_t * buf2, unsigned stride2,
514 const uint8_t * orig, unsigned stride_orig,
515 unsigned *sum0, unsigned *sum1)
516 {
517 __m256i temp[8];
518
519 diff_blocks_dual_avx2(&temp, buf1, stride1, buf2, stride2, orig, stride_orig);
520 hor_transform_block_dual_avx2(&temp);
521 ver_transform_block_dual_avx2(&temp);
522
523 sum_block_dual_avx2(temp, sum0, sum1);
524
525 *sum0 = (*sum0 + 2) >> 2;
526 *sum1 = (*sum1 + 2) >> 2;
527 }
528
529 /**
530 * \brief Calculate SATD between two 4x4 blocks inside bigger arrays.
531 */
kvz_satd_4x4_subblock_8bit_avx2(const uint8_t * buf1,const int32_t stride1,const uint8_t * buf2,const int32_t stride2)532 static unsigned kvz_satd_4x4_subblock_8bit_avx2(const uint8_t * buf1,
533 const int32_t stride1,
534 const uint8_t * buf2,
535 const int32_t stride2)
536 {
537 // TODO: AVX2 implementation
538 return kvz_satd_4x4_subblock_generic(buf1, stride1, buf2, stride2);
539 }
540
kvz_satd_4x4_subblock_quad_avx2(const uint8_t * preds[4],const int stride,const uint8_t * orig,const int orig_stride,unsigned costs[4])541 static void kvz_satd_4x4_subblock_quad_avx2(const uint8_t *preds[4],
542 const int stride,
543 const uint8_t *orig,
544 const int orig_stride,
545 unsigned costs[4])
546 {
547 // TODO: AVX2 implementation
548 kvz_satd_4x4_subblock_quad_generic(preds, stride, orig, orig_stride, costs);
549 }
550
satd_8x8_subblock_8bit_avx2(const uint8_t * buf1,unsigned stride1,const uint8_t * buf2,unsigned stride2)551 static unsigned satd_8x8_subblock_8bit_avx2(const uint8_t * buf1, unsigned stride1, const uint8_t * buf2, unsigned stride2)
552 {
553 __m128i temp[8];
554
555 diff_blocks_avx2(&temp, buf1, stride1, buf2, stride2);
556 hor_transform_block_avx2(&temp);
557 ver_transform_block_avx2(&temp);
558
559 unsigned sad = sum_block_avx2(temp);
560
561 unsigned result = (sad + 2) >> 2;
562 return result;
563 }
564
satd_8x8_subblock_quad_avx2(const uint8_t ** preds,const int stride,const uint8_t * orig,const int orig_stride,unsigned * costs)565 static void satd_8x8_subblock_quad_avx2(const uint8_t **preds,
566 const int stride,
567 const uint8_t *orig,
568 const int orig_stride,
569 unsigned *costs)
570 {
571 kvz_satd_8bit_8x8_general_dual_avx2(preds[0], stride, preds[1], stride, orig, orig_stride, &costs[0], &costs[1]);
572 kvz_satd_8bit_8x8_general_dual_avx2(preds[2], stride, preds[3], stride, orig, orig_stride, &costs[2], &costs[3]);
573 }
574
575 SATD_NxN(8bit_avx2, 8)
576 SATD_NxN(8bit_avx2, 16)
577 SATD_NxN(8bit_avx2, 32)
578 SATD_NxN(8bit_avx2, 64)
579 SATD_ANY_SIZE(8bit_avx2)
580
581 // Function macro for defining hadamard calculating functions
582 // for fixed size blocks. They calculate hadamard for integer
583 // multiples of 8x8 with the 8x8 hadamard function.
584 #define SATD_NXN_DUAL_AVX2(n) \
585 static void satd_8bit_ ## n ## x ## n ## _dual_avx2( \
586 const pred_buffer preds, const uint8_t * const orig, unsigned num_modes, unsigned *satds_out) \
587 { \
588 unsigned x, y; \
589 satds_out[0] = 0; \
590 satds_out[1] = 0; \
591 unsigned sum1 = 0; \
592 unsigned sum2 = 0; \
593 for (y = 0; y < (n); y += 8) { \
594 unsigned row = y * (n); \
595 for (x = 0; x < (n); x += 8) { \
596 kvz_satd_8bit_8x8_general_dual_avx2(&preds[0][row + x], (n), &preds[1][row + x], (n), &orig[row + x], (n), &sum1, &sum2); \
597 satds_out[0] += sum1; \
598 satds_out[1] += sum2; \
599 } \
600 } \
601 satds_out[0] >>= (KVZ_BIT_DEPTH-8); \
602 satds_out[1] >>= (KVZ_BIT_DEPTH-8); \
603 }
604
satd_8bit_8x8_dual_avx2(const pred_buffer preds,const uint8_t * const orig,unsigned num_modes,unsigned * satds_out)605 static void satd_8bit_8x8_dual_avx2(
606 const pred_buffer preds, const uint8_t * const orig, unsigned num_modes, unsigned *satds_out)
607 {
608 unsigned x, y;
609 satds_out[0] = 0;
610 satds_out[1] = 0;
611 unsigned sum1 = 0;
612 unsigned sum2 = 0;
613 for (y = 0; y < (8); y += 8) {
614 unsigned row = y * (8);
615 for (x = 0; x < (8); x += 8) {
616 kvz_satd_8bit_8x8_general_dual_avx2(&preds[0][row + x], (8), &preds[1][row + x], (8), &orig[row + x], (8), &sum1, &sum2);
617 satds_out[0] += sum1;
618 satds_out[1] += sum2;
619 }
620 }
621 satds_out[0] >>= (KVZ_BIT_DEPTH-8);
622 satds_out[1] >>= (KVZ_BIT_DEPTH-8);
623 }
624
625 //SATD_NXN_DUAL_AVX2(8) //Use the non-macro version
626 SATD_NXN_DUAL_AVX2(16)
627 SATD_NXN_DUAL_AVX2(32)
628 SATD_NXN_DUAL_AVX2(64)
629
630 #define SATD_ANY_SIZE_MULTI_AVX2(suffix, num_parallel_blocks) \
631 static cost_pixel_any_size_multi_func satd_any_size_## suffix; \
632 static void satd_any_size_ ## suffix ( \
633 int width, int height, \
634 const uint8_t **preds, \
635 const int stride, \
636 const uint8_t *orig, \
637 const int orig_stride, \
638 unsigned num_modes, \
639 unsigned *costs_out, \
640 int8_t *valid) \
641 { \
642 unsigned sums[num_parallel_blocks] = { 0 }; \
643 const uint8_t *pred_ptrs[4] = { preds[0], preds[1], preds[2], preds[3] };\
644 const uint8_t *orig_ptr = orig; \
645 costs_out[0] = 0; costs_out[1] = 0; costs_out[2] = 0; costs_out[3] = 0; \
646 if (width % 8 != 0) { \
647 /* Process the first column using 4x4 blocks. */ \
648 for (int y = 0; y < height; y += 4) { \
649 kvz_satd_4x4_subblock_ ## suffix(preds, stride, orig, orig_stride, sums); \
650 } \
651 orig_ptr += 4; \
652 for(int blk = 0; blk < num_parallel_blocks; ++blk){\
653 pred_ptrs[blk] += 4; \
654 }\
655 width -= 4; \
656 } \
657 if (height % 8 != 0) { \
658 /* Process the first row using 4x4 blocks. */ \
659 for (int x = 0; x < width; x += 4 ) { \
660 kvz_satd_4x4_subblock_ ## suffix(pred_ptrs, stride, orig_ptr, orig_stride, sums); \
661 } \
662 orig_ptr += 4 * orig_stride; \
663 for(int blk = 0; blk < num_parallel_blocks; ++blk){\
664 pred_ptrs[blk] += 4 * stride; \
665 }\
666 height -= 4; \
667 } \
668 /* The rest can now be processed with 8x8 blocks. */ \
669 for (int y = 0; y < height; y += 8) { \
670 orig_ptr = &orig[y * orig_stride]; \
671 pred_ptrs[0] = &preds[0][y * stride]; \
672 pred_ptrs[1] = &preds[1][y * stride]; \
673 pred_ptrs[2] = &preds[2][y * stride]; \
674 pred_ptrs[3] = &preds[3][y * stride]; \
675 for (int x = 0; x < width; x += 8) { \
676 satd_8x8_subblock_ ## suffix(pred_ptrs, stride, orig_ptr, orig_stride, sums); \
677 orig_ptr += 8; \
678 pred_ptrs[0] += 8; \
679 pred_ptrs[1] += 8; \
680 pred_ptrs[2] += 8; \
681 pred_ptrs[3] += 8; \
682 costs_out[0] += sums[0]; \
683 costs_out[1] += sums[1]; \
684 costs_out[2] += sums[2]; \
685 costs_out[3] += sums[3]; \
686 } \
687 } \
688 for(int i = 0; i < num_parallel_blocks; ++i){\
689 costs_out[i] = costs_out[i] >> (KVZ_BIT_DEPTH - 8);\
690 } \
691 return; \
692 }
693
694 SATD_ANY_SIZE_MULTI_AVX2(quad_avx2, 4)
695
696
pixels_calc_ssd_avx2(const uint8_t * const ref,const uint8_t * const rec,const int ref_stride,const int rec_stride,const int width)697 static unsigned pixels_calc_ssd_avx2(const uint8_t *const ref, const uint8_t *const rec,
698 const int ref_stride, const int rec_stride,
699 const int width)
700 {
701 __m256i ssd_part;
702 __m256i diff = _mm256_setzero_si256();
703 __m128i sum;
704
705 __m256i ref_epi16;
706 __m256i rec_epi16;
707
708 __m128i ref_row0, ref_row1, ref_row2, ref_row3;
709 __m128i rec_row0, rec_row1, rec_row2, rec_row3;
710
711 int ssd;
712
713 switch (width) {
714
715 case 4:
716
717 ref_row0 = _mm_cvtsi32_si128(*(int32_t*)&(ref[0 * ref_stride]));
718 ref_row1 = _mm_cvtsi32_si128(*(int32_t*)&(ref[1 * ref_stride]));
719 ref_row2 = _mm_cvtsi32_si128(*(int32_t*)&(ref[2 * ref_stride]));
720 ref_row3 = _mm_cvtsi32_si128(*(int32_t*)&(ref[3 * ref_stride]));
721
722 ref_row0 = _mm_unpacklo_epi32(ref_row0, ref_row1);
723 ref_row1 = _mm_unpacklo_epi32(ref_row2, ref_row3);
724 ref_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(ref_row0, ref_row1) );
725
726 rec_row0 = _mm_cvtsi32_si128(*(int32_t*)&(rec[0 * rec_stride]));
727 rec_row1 = _mm_cvtsi32_si128(*(int32_t*)&(rec[1 * rec_stride]));
728 rec_row2 = _mm_cvtsi32_si128(*(int32_t*)&(rec[2 * rec_stride]));
729 rec_row3 = _mm_cvtsi32_si128(*(int32_t*)&(rec[3 * rec_stride]));
730
731 rec_row0 = _mm_unpacklo_epi32(rec_row0, rec_row1);
732 rec_row1 = _mm_unpacklo_epi32(rec_row2, rec_row3);
733 rec_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(rec_row0, rec_row1) );
734
735 diff = _mm256_sub_epi16(ref_epi16, rec_epi16);
736 ssd_part = _mm256_madd_epi16(diff, diff);
737
738 sum = _mm_add_epi32(_mm256_castsi256_si128(ssd_part), _mm256_extracti128_si256(ssd_part, 1));
739 sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2)));
740 sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(0, 1, 0, 1)));
741
742 ssd = _mm_cvtsi128_si32(sum);
743
744 return ssd >> (2*(KVZ_BIT_DEPTH-8));
745 break;
746
747 default:
748
749 ssd_part = _mm256_setzero_si256();
750 for (int y = 0; y < width; y += 8) {
751 for (int x = 0; x < width; x += 8) {
752 for (int i = 0; i < 8; i += 2) {
753 ref_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(_mm_loadl_epi64((__m128i*)&(ref[x + (y + i) * ref_stride])), _mm_loadl_epi64((__m128i*)&(ref[x + (y + i + 1) * ref_stride]))));
754 rec_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(_mm_loadl_epi64((__m128i*)&(rec[x + (y + i) * rec_stride])), _mm_loadl_epi64((__m128i*)&(rec[x + (y + i + 1) * rec_stride]))));
755 diff = _mm256_sub_epi16(ref_epi16, rec_epi16);
756 ssd_part = _mm256_add_epi32(ssd_part, _mm256_madd_epi16(diff, diff));
757 }
758 }
759 }
760
761 sum = _mm_add_epi32(_mm256_castsi256_si128(ssd_part), _mm256_extracti128_si256(ssd_part, 1));
762 sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2)));
763 sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(0, 1, 0, 1)));
764
765 ssd = _mm_cvtsi128_si32(sum);
766
767 return ssd >> (2*(KVZ_BIT_DEPTH-8));
768 break;
769 }
770 }
771
inter_recon_bipred_avx2(const int hi_prec_luma_rec0,const int hi_prec_luma_rec1,const int hi_prec_chroma_rec0,const int hi_prec_chroma_rec1,const int height,const int width,const int ypos,const int xpos,const hi_prec_buf_t * high_precision_rec0,const hi_prec_buf_t * high_precision_rec1,lcu_t * lcu,uint8_t * temp_lcu_y,uint8_t * temp_lcu_u,uint8_t * temp_lcu_v,bool predict_luma,bool predict_chroma)772 static void inter_recon_bipred_avx2(const int hi_prec_luma_rec0,
773 const int hi_prec_luma_rec1,
774 const int hi_prec_chroma_rec0,
775 const int hi_prec_chroma_rec1,
776 const int height,
777 const int width,
778 const int ypos,
779 const int xpos,
780 const hi_prec_buf_t*high_precision_rec0,
781 const hi_prec_buf_t*high_precision_rec1,
782 lcu_t* lcu,
783 uint8_t* temp_lcu_y,
784 uint8_t* temp_lcu_u,
785 uint8_t* temp_lcu_v,
786 bool predict_luma,
787 bool predict_chroma)
788 {
789 int y_in_lcu, x_in_lcu;
790 int shift = 15 - KVZ_BIT_DEPTH;
791 int offset = 1 << (shift - 1);
792 __m256i temp_epi8, temp_y_epi32, sample0_epi32, sample1_epi32, temp_epi16;
793 int32_t * pointer = 0;
794 __m256i offset_epi32 = _mm256_set1_epi32(offset);
795
796 for (int temp_y = 0; temp_y < height; ++temp_y) {
797
798 y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1));
799
800 for (int temp_x = 0; temp_x < width; temp_x += 8) {
801 x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1));
802
803 if (predict_luma) {
804 bool use_8_elements = ((temp_x + 8) <= width);
805
806 if (!use_8_elements) {
807 if (width < 4) {
808 // If width is smaller than 4 there's no need to use SIMD
809 for (int temp_i = 0; temp_i < width; ++temp_i) {
810 x_in_lcu = ((xpos + temp_i) & ((LCU_WIDTH)-1));
811
812 int sample0_y = (hi_prec_luma_rec0 ? high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
813 int sample1_y = (hi_prec_luma_rec1 ? high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
814
815 lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_y + sample1_y + offset) >> shift);
816 }
817 }
818
819 else {
820 // Load total of 4 elements from memory to vector
821 sample0_epi32 = hi_prec_luma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) :
822 _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*)&(temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
823
824
825 sample1_epi32 = hi_prec_luma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) :
826 _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
827
828
829 // (sample1 + sample2 + offset)>>shift
830 temp_y_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
831 temp_y_epi32 = _mm256_add_epi32(temp_y_epi32, offset_epi32);
832 temp_y_epi32 = _mm256_srai_epi32(temp_y_epi32, shift);
833
834 // Pack the bits from 32-bit to 8-bit
835 temp_epi16 = _mm256_packs_epi32(temp_y_epi32, temp_y_epi32);
836 temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
837 temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
838
839 pointer = (int32_t*)&(lcu->rec.y[(y_in_lcu)* LCU_WIDTH + x_in_lcu]);
840 *pointer = _mm_cvtsi128_si32(_mm256_castsi256_si128(temp_epi8));
841
842
843
844 for (int temp_i = temp_x + 4; temp_i < width; ++temp_i) {
845 x_in_lcu = ((xpos + temp_i) & ((LCU_WIDTH)-1));
846
847 int16_t sample0_y = (hi_prec_luma_rec0 ? high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
848 int16_t sample1_y = (hi_prec_luma_rec1 ? high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
849
850 lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_y + sample1_y + offset) >> shift);
851 }
852
853 }
854 } else {
855 // Load total of 8 elements from memory to vector
856 sample0_epi32 = hi_prec_luma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) :
857 _mm256_slli_epi32(_mm256_cvtepu8_epi32((_mm_loadl_epi64((__m128i*) &(temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu])))), 14 - KVZ_BIT_DEPTH);
858
859 sample1_epi32 = hi_prec_luma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) :
860 _mm256_slli_epi32(_mm256_cvtepu8_epi32((_mm_loadl_epi64((__m128i*) &(lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu])))), 14 - KVZ_BIT_DEPTH);
861
862 // (sample1 + sample2 + offset)>>shift
863 temp_y_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
864 temp_y_epi32 = _mm256_add_epi32(temp_y_epi32, offset_epi32);
865 temp_y_epi32 = _mm256_srai_epi32(temp_y_epi32, shift);
866
867 // Pack the bits from 32-bit to 8-bit
868 temp_epi16 = _mm256_packs_epi32(temp_y_epi32, temp_y_epi32);
869 temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
870 temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
871
872 // Store 64-bits from vector to memory
873 _mm_storel_epi64((__m128i*)&(lcu->rec.y[(y_in_lcu)* LCU_WIDTH + x_in_lcu]), _mm256_castsi256_si128(temp_epi8));
874 }
875 }
876 }
877 }
878 for (int temp_y = 0; temp_y < height >> 1; ++temp_y) {
879 int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1));
880
881 for (int temp_x = 0; temp_x < width >> 1; temp_x += 8) {
882
883 int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1));
884
885 if (predict_chroma) {
886 if ((width >> 1) < 4) {
887 // If width>>1 is smaller than 4 there's no need to use SIMD
888
889 for (int temp_i = 0; temp_i < width >> 1; ++temp_i) {
890 int temp_x_in_lcu = (((xpos >> 1) + temp_i) & (LCU_WIDTH_C - 1));
891 int16_t sample0_u = (hi_prec_chroma_rec0 ? high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
892 int16_t sample1_u = (hi_prec_chroma_rec1 ? high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
893 lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_u + sample1_u + offset) >> shift);
894
895 int16_t sample0_v = (hi_prec_chroma_rec0 ? high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
896 int16_t sample1_v = (hi_prec_chroma_rec1 ? high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
897 lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_v + sample1_v + offset) >> shift);
898 }
899 }
900
901 else {
902
903 bool use_8_elements = ((temp_x + 8) <= (width >> 1));
904
905 __m256i temp_u_epi32, temp_v_epi32;
906
907 if (!use_8_elements) {
908 // Load 4 pixels to vector
909 sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
910 _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
911
912 sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
913 _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
914
915 // (sample1 + sample2 + offset)>>shift
916 temp_u_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
917 temp_u_epi32 = _mm256_add_epi32(temp_u_epi32, offset_epi32);
918 temp_u_epi32 = _mm256_srai_epi32(temp_u_epi32, shift);
919
920
921
922 sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
923 _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
924
925 sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
926 _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
927
928
929 // (sample1 + sample2 + offset)>>shift
930 temp_v_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
931 temp_v_epi32 = _mm256_add_epi32(temp_v_epi32, offset_epi32);
932 temp_v_epi32 = _mm256_srai_epi32(temp_v_epi32, shift);
933
934
935 temp_epi16 = _mm256_packs_epi32(temp_u_epi32, temp_u_epi32);
936 temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
937 temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
938
939 pointer = (int32_t*)&(lcu->rec.u[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]);
940 *pointer = _mm_cvtsi128_si32(_mm256_castsi256_si128(temp_epi8));
941
942
943 temp_epi16 = _mm256_packs_epi32(temp_v_epi32, temp_v_epi32);
944 temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
945 temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
946
947 pointer = (int32_t*)&(lcu->rec.v[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]);
948 *pointer = _mm_cvtsi128_si32(_mm256_castsi256_si128(temp_epi8));
949
950 for (int temp_i = 4; temp_i < width >> 1; ++temp_i) {
951
952 // Use only if width>>1 is not divideble by 4
953 int temp_x_in_lcu = (((xpos >> 1) + temp_i) & (LCU_WIDTH_C - 1));
954 int16_t sample0_u = (hi_prec_chroma_rec0 ? high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
955 int16_t sample1_u = (hi_prec_chroma_rec1 ? high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
956 lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_u + sample1_u + offset) >> shift);
957
958 int16_t sample0_v = (hi_prec_chroma_rec0 ? high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
959 int16_t sample1_v = (hi_prec_chroma_rec1 ? high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
960 lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_v + sample1_v + offset) >> shift);
961 }
962 } else {
963 // Load 8 pixels to vector
964 sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
965 _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
966
967 sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
968 _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
969
970 // (sample1 + sample2 + offset)>>shift
971 temp_u_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
972 temp_u_epi32 = _mm256_add_epi32(temp_u_epi32, offset_epi32);
973 temp_u_epi32 = _mm256_srai_epi32(temp_u_epi32, shift);
974
975 sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
976 _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
977
978 sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
979 _mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
980
981
982 // (sample1 + sample2 + offset)>>shift
983 temp_v_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
984 temp_v_epi32 = _mm256_add_epi32(temp_v_epi32, offset_epi32);
985 temp_v_epi32 = _mm256_srai_epi32(temp_v_epi32, shift);
986
987 temp_epi16 = _mm256_packs_epi32(temp_u_epi32, temp_u_epi32);
988 temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
989 temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
990
991 // Store 64-bit integer into memory
992 _mm_storel_epi64((__m128i*)&(lcu->rec.u[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]), _mm256_castsi256_si128(temp_epi8));
993
994 temp_epi16 = _mm256_packs_epi32(temp_v_epi32, temp_v_epi32);
995 temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
996 temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
997
998 // Store 64-bit integer into memory
999 _mm_storel_epi64((__m128i*)&(lcu->rec.v[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]), _mm256_castsi256_si128(temp_epi8));
1000 }
1001 }
1002 }
1003 }
1004 }
1005 }
1006
get_optimized_sad_avx2(int32_t width)1007 static optimized_sad_func_ptr_t get_optimized_sad_avx2(int32_t width)
1008 {
1009 if (width == 0)
1010 return reg_sad_w0;
1011 if (width == 4)
1012 return reg_sad_w4;
1013 if (width == 8)
1014 return reg_sad_w8;
1015 if (width == 12)
1016 return reg_sad_w12;
1017 if (width == 16)
1018 return reg_sad_w16;
1019 if (width == 24)
1020 return reg_sad_w24;
1021 if (width == 32)
1022 return reg_sad_w32;
1023 if (width == 64)
1024 return reg_sad_w64;
1025 else
1026 return NULL;
1027 }
1028
ver_sad_avx2(const uint8_t * pic_data,const uint8_t * ref_data,int32_t width,int32_t height,uint32_t stride)1029 static uint32_t ver_sad_avx2(const uint8_t *pic_data, const uint8_t *ref_data,
1030 int32_t width, int32_t height, uint32_t stride)
1031 {
1032 if (width == 0)
1033 return 0;
1034 if (width == 4)
1035 return ver_sad_w4(pic_data, ref_data, height, stride);
1036 if (width == 8)
1037 return ver_sad_w8(pic_data, ref_data, height, stride);
1038 if (width == 12)
1039 return ver_sad_w12(pic_data, ref_data, height, stride);
1040 if (width == 16)
1041 return ver_sad_w16(pic_data, ref_data, height, stride);
1042 else
1043 return ver_sad_arbitrary(pic_data, ref_data, width, height, stride);
1044 }
1045
hor_sad_avx2(const uint8_t * pic_data,const uint8_t * ref_data,int32_t width,int32_t height,uint32_t pic_stride,uint32_t ref_stride,uint32_t left,uint32_t right)1046 static uint32_t hor_sad_avx2(const uint8_t *pic_data, const uint8_t *ref_data,
1047 int32_t width, int32_t height, uint32_t pic_stride,
1048 uint32_t ref_stride, uint32_t left, uint32_t right)
1049 {
1050 if (width == 4)
1051 return hor_sad_sse41_w4(pic_data, ref_data, height,
1052 pic_stride, ref_stride, left, right);
1053 if (width == 8)
1054 return hor_sad_sse41_w8(pic_data, ref_data, height,
1055 pic_stride, ref_stride, left, right);
1056 if (width == 16)
1057 return hor_sad_sse41_w16(pic_data, ref_data, height,
1058 pic_stride, ref_stride, left, right);
1059 if (width == 32)
1060 return hor_sad_avx2_w32 (pic_data, ref_data, height,
1061 pic_stride, ref_stride, left, right);
1062 else
1063 return hor_sad_sse41_arbitrary(pic_data, ref_data, width, height,
1064 pic_stride, ref_stride, left, right);
1065 }
1066
pixel_var_avx2_largebuf(const uint8_t * buf,const uint32_t len)1067 static double pixel_var_avx2_largebuf(const uint8_t *buf, const uint32_t len)
1068 {
1069 const float len_f = (float)len;
1070 const __m256i zero = _mm256_setzero_si256();
1071
1072 int64_t sum;
1073 size_t i;
1074 __m256i sums = zero;
1075 for (i = 0; i + 31 < len; i += 32) {
1076 __m256i curr = _mm256_loadu_si256((const __m256i *)(buf + i));
1077 __m256i curr_sum = _mm256_sad_epu8(curr, zero);
1078 sums = _mm256_add_epi64(sums, curr_sum);
1079 }
1080 __m128i sum_lo = _mm256_castsi256_si128 (sums);
1081 __m128i sum_hi = _mm256_extracti128_si256(sums, 1);
1082 __m128i sum_3 = _mm_add_epi64 (sum_lo, sum_hi);
1083 __m128i sum_4 = _mm_shuffle_epi32 (sum_3, _MM_SHUFFLE(1, 0, 3, 2));
1084 __m128i sum_5 = _mm_add_epi64 (sum_3, sum_4);
1085
1086 _mm_storel_epi64((__m128i *)&sum, sum_5);
1087
1088 // Remaining len mod 32 pixels
1089 for (; i < len; ++i) {
1090 sum += buf[i];
1091 }
1092
1093 float mean_f = (float)sum / len_f;
1094 __m256 mean = _mm256_set1_ps(mean_f);
1095 __m256 accum = _mm256_setzero_ps();
1096
1097 for (i = 0; i + 31 < len; i += 32) {
1098 __m128i curr0 = _mm_loadl_epi64((const __m128i *)(buf + i + 0));
1099 __m128i curr1 = _mm_loadl_epi64((const __m128i *)(buf + i + 8));
1100 __m128i curr2 = _mm_loadl_epi64((const __m128i *)(buf + i + 16));
1101 __m128i curr3 = _mm_loadl_epi64((const __m128i *)(buf + i + 24));
1102
1103 __m256i curr0_32 = _mm256_cvtepu8_epi32(curr0);
1104 __m256i curr1_32 = _mm256_cvtepu8_epi32(curr1);
1105 __m256i curr2_32 = _mm256_cvtepu8_epi32(curr2);
1106 __m256i curr3_32 = _mm256_cvtepu8_epi32(curr3);
1107
1108 __m256 curr0_f = _mm256_cvtepi32_ps (curr0_32);
1109 __m256 curr1_f = _mm256_cvtepi32_ps (curr1_32);
1110 __m256 curr2_f = _mm256_cvtepi32_ps (curr2_32);
1111 __m256 curr3_f = _mm256_cvtepi32_ps (curr3_32);
1112
1113 __m256 curr0_sd = _mm256_sub_ps (curr0_f, mean);
1114 __m256 curr1_sd = _mm256_sub_ps (curr1_f, mean);
1115 __m256 curr2_sd = _mm256_sub_ps (curr2_f, mean);
1116 __m256 curr3_sd = _mm256_sub_ps (curr3_f, mean);
1117
1118 __m256 curr0_v = _mm256_mul_ps (curr0_sd, curr0_sd);
1119 __m256 curr1_v = _mm256_mul_ps (curr1_sd, curr1_sd);
1120 __m256 curr2_v = _mm256_mul_ps (curr2_sd, curr2_sd);
1121 __m256 curr3_v = _mm256_mul_ps (curr3_sd, curr3_sd);
1122
1123 __m256 curr01 = _mm256_add_ps (curr0_v, curr1_v);
1124 __m256 curr23 = _mm256_add_ps (curr2_v, curr3_v);
1125 __m256 curr = _mm256_add_ps (curr01, curr23);
1126 accum = _mm256_add_ps (accum, curr);
1127 }
1128 __m256d accum_d = _mm256_castps_pd (accum);
1129 __m256d accum2_d = _mm256_permute4x64_pd(accum_d, _MM_SHUFFLE(1, 0, 3, 2));
1130 __m256 accum2 = _mm256_castpd_ps (accum2_d);
1131
1132 __m256 accum3 = _mm256_add_ps (accum, accum2);
1133 __m256 accum4 = _mm256_permute_ps (accum3, _MM_SHUFFLE(1, 0, 3, 2));
1134 __m256 accum5 = _mm256_add_ps (accum3, accum4);
1135 __m256 accum6 = _mm256_permute_ps (accum5, _MM_SHUFFLE(2, 3, 0, 1));
1136 __m256 accum7 = _mm256_add_ps (accum5, accum6);
1137
1138 __m128 accum8 = _mm256_castps256_ps128(accum7);
1139 float var_sum = _mm_cvtss_f32 (accum8);
1140
1141 // Remaining len mod 32 pixels
1142 for (; i < len; ++i) {
1143 float diff = buf[i] - mean_f;
1144 var_sum += diff * diff;
1145 }
1146
1147 return var_sum / len_f;
1148 }
1149
1150 #ifdef INACCURATE_VARIANCE_CALCULATION
1151
1152 // Assumes that u is a power of two
ilog2(uint32_t u)1153 static INLINE uint32_t ilog2(uint32_t u)
1154 {
1155 return _tzcnt_u32(u);
1156 }
1157
1158 // A B C D | E F G H (8x32b)
1159 // ==>
1160 // A+B C+D | E+F G+H (4x64b)
hsum_epi32_to_epi64(const __m256i v)1161 static __m256i hsum_epi32_to_epi64(const __m256i v)
1162 {
1163 const __m256i zero = _mm256_setzero_si256();
1164 __m256i v_shufd = _mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1));
1165 __m256i sums_32 = _mm256_add_epi32 (v, v_shufd);
1166 __m256i sums_64 = _mm256_blend_epi32 (sums_32, zero, 0xaa);
1167 return sums_64;
1168 }
1169
pixel_var_avx2(const uint8_t * buf,const uint32_t len)1170 static double pixel_var_avx2(const uint8_t *buf, const uint32_t len)
1171 {
1172 assert(sizeof(*buf) == 1);
1173 assert((len & 31) == 0);
1174
1175 // Uses Q8.7 numbers to measure mean and deviation, so variances are Q16.14
1176 const uint64_t sum_maxwid = ilog2(len) + (8 * sizeof(*buf));
1177 const __m128i normalize_sum = _mm_cvtsi32_si128(sum_maxwid - 15); // Normalize mean to [0, 32767], so signed 16-bit subtraction never overflows
1178 const __m128i debias_sum = _mm_cvtsi32_si128(1 << (sum_maxwid - 16));
1179 const float varsum_to_f = 1.0f / (float)(1 << (14 + ilog2(len)));
1180
1181 const bool power_of_two = (len & (len - 1)) == 0;
1182 if (sum_maxwid > 32 || sum_maxwid < 15 || !power_of_two) {
1183 return pixel_var_avx2_largebuf(buf, len);
1184 }
1185
1186 const __m256i zero = _mm256_setzero_si256();
1187 const __m256i himask_15 = _mm256_set1_epi16(0x7f00);
1188
1189 uint64_t vars;
1190 size_t i;
1191 __m256i sums = zero;
1192 for (i = 0; i < len; i += 32) {
1193 __m256i curr = _mm256_loadu_si256((const __m256i *)(buf + i));
1194 __m256i curr_sum = _mm256_sad_epu8(curr, zero);
1195 sums = _mm256_add_epi64(sums, curr_sum);
1196 }
1197 __m128i sum_lo = _mm256_castsi256_si128 (sums);
1198 __m128i sum_hi = _mm256_extracti128_si256(sums, 1);
1199 __m128i sum_3 = _mm_add_epi64 (sum_lo, sum_hi);
1200 __m128i sum_4 = _mm_shuffle_epi32 (sum_3, _MM_SHUFFLE(1, 0, 3, 2));
1201 __m128i sum_5 = _mm_add_epi64 (sum_3, sum_4);
1202 __m128i sum_5n = _mm_srl_epi32 (sum_5, normalize_sum);
1203 sum_5n = _mm_add_epi32 (sum_5n, debias_sum);
1204
1205 __m256i sum_n = _mm256_broadcastw_epi16 (sum_5n);
1206
1207 __m256i accum = zero;
1208 for (i = 0; i < len; i += 32) {
1209 __m256i curr = _mm256_loadu_si256((const __m256i *)(buf + i));
1210
1211 __m256i curr0 = _mm256_slli_epi16 (curr, 7);
1212 __m256i curr1 = _mm256_srli_epi16 (curr, 1);
1213 curr0 = _mm256_and_si256 (curr0, himask_15);
1214 curr1 = _mm256_and_si256 (curr1, himask_15);
1215
1216 __m256i dev0 = _mm256_sub_epi16 (curr0, sum_n);
1217 __m256i dev1 = _mm256_sub_epi16 (curr1, sum_n);
1218
1219 __m256i vars0 = _mm256_madd_epi16 (dev0, dev0);
1220 __m256i vars1 = _mm256_madd_epi16 (dev1, dev1);
1221
1222 __m256i varsum = _mm256_add_epi32 (vars0, vars1);
1223 varsum = hsum_epi32_to_epi64(varsum);
1224 accum = _mm256_add_epi64 (accum, varsum);
1225 }
1226 __m256i accum2 = _mm256_permute4x64_epi64(accum, _MM_SHUFFLE(1, 0, 3, 2));
1227 __m256i accum3 = _mm256_add_epi64 (accum, accum2);
1228 __m256i accum4 = _mm256_permute4x64_epi64(accum3, _MM_SHUFFLE(2, 3, 1, 0));
1229 __m256i v_tot = _mm256_add_epi64 (accum3, accum4);
1230 __m128i vt128 = _mm256_castsi256_si128 (v_tot);
1231
1232 _mm_storel_epi64((__m128i *)&vars, vt128);
1233
1234 return (float)vars * varsum_to_f;
1235 }
1236
1237 #else // INACCURATE_VARIANCE_CALCULATION
1238
pixel_var_avx2(const uint8_t * buf,const uint32_t len)1239 static double pixel_var_avx2(const uint8_t *buf, const uint32_t len)
1240 {
1241 return pixel_var_avx2_largebuf(buf, len);
1242 }
1243
1244 #endif // !INACCURATE_VARIANCE_CALCULATION
1245
1246 #endif // KVZ_BIT_DEPTH == 8
1247 #endif //COMPILE_INTEL_AVX2
1248
kvz_strategy_register_picture_avx2(void * opaque,uint8_t bitdepth)1249 int kvz_strategy_register_picture_avx2(void* opaque, uint8_t bitdepth)
1250 {
1251 bool success = true;
1252 #if COMPILE_INTEL_AVX2
1253 #if KVZ_BIT_DEPTH == 8
1254 // We don't actually use SAD for intra right now, other than 4x4 for
1255 // transform skip, but we might again one day and this is some of the
1256 // simplest code to look at for anyone interested in doing more
1257 // optimizations, so it's worth it to keep this maintained.
1258 if (bitdepth == 8){
1259
1260 success &= kvz_strategyselector_register(opaque, "reg_sad", "avx2", 40, &kvz_reg_sad_avx2);
1261 success &= kvz_strategyselector_register(opaque, "sad_8x8", "avx2", 40, &sad_8bit_8x8_avx2);
1262 success &= kvz_strategyselector_register(opaque, "sad_16x16", "avx2", 40, &sad_8bit_16x16_avx2);
1263 success &= kvz_strategyselector_register(opaque, "sad_32x32", "avx2", 40, &sad_8bit_32x32_avx2);
1264 success &= kvz_strategyselector_register(opaque, "sad_64x64", "avx2", 40, &sad_8bit_64x64_avx2);
1265
1266 success &= kvz_strategyselector_register(opaque, "satd_4x4", "avx2", 40, &satd_4x4_8bit_avx2);
1267 success &= kvz_strategyselector_register(opaque, "satd_8x8", "avx2", 40, &satd_8x8_8bit_avx2);
1268 success &= kvz_strategyselector_register(opaque, "satd_16x16", "avx2", 40, &satd_16x16_8bit_avx2);
1269 success &= kvz_strategyselector_register(opaque, "satd_32x32", "avx2", 40, &satd_32x32_8bit_avx2);
1270 success &= kvz_strategyselector_register(opaque, "satd_64x64", "avx2", 40, &satd_64x64_8bit_avx2);
1271
1272 success &= kvz_strategyselector_register(opaque, "satd_4x4_dual", "avx2", 40, &satd_8bit_4x4_dual_avx2);
1273 success &= kvz_strategyselector_register(opaque, "satd_8x8_dual", "avx2", 40, &satd_8bit_8x8_dual_avx2);
1274 success &= kvz_strategyselector_register(opaque, "satd_16x16_dual", "avx2", 40, &satd_8bit_16x16_dual_avx2);
1275 success &= kvz_strategyselector_register(opaque, "satd_32x32_dual", "avx2", 40, &satd_8bit_32x32_dual_avx2);
1276 success &= kvz_strategyselector_register(opaque, "satd_64x64_dual", "avx2", 40, &satd_8bit_64x64_dual_avx2);
1277 success &= kvz_strategyselector_register(opaque, "satd_any_size", "avx2", 40, &satd_any_size_8bit_avx2);
1278 success &= kvz_strategyselector_register(opaque, "satd_any_size_quad", "avx2", 40, &satd_any_size_quad_avx2);
1279
1280 success &= kvz_strategyselector_register(opaque, "pixels_calc_ssd", "avx2", 40, &pixels_calc_ssd_avx2);
1281 success &= kvz_strategyselector_register(opaque, "inter_recon_bipred", "avx2", 40, &inter_recon_bipred_avx2);
1282 success &= kvz_strategyselector_register(opaque, "get_optimized_sad", "avx2", 40, &get_optimized_sad_avx2);
1283 success &= kvz_strategyselector_register(opaque, "ver_sad", "avx2", 40, &ver_sad_avx2);
1284 success &= kvz_strategyselector_register(opaque, "hor_sad", "avx2", 40, &hor_sad_avx2);
1285
1286 success &= kvz_strategyselector_register(opaque, "pixel_var", "avx2", 40, &pixel_var_avx2);
1287
1288 }
1289 #endif // KVZ_BIT_DEPTH == 8
1290 #endif
1291 return success;
1292 }
1293