1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kfence.h>		/* kfence_handle_page_fault	*/
13 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
14 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
15 #include <linux/perf_event.h>		/* perf_sw_event		*/
16 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
17 #include <linux/prefetch.h>		/* prefetchw			*/
18 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
19 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
20 #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22 
23 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
24 #include <asm/traps.h>			/* dotraplinkage, ...		*/
25 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
26 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
27 #include <asm/vm86.h>			/* struct vm86			*/
28 #include <asm/mmu_context.h>		/* vma_pkey()			*/
29 #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
30 #include <asm/desc.h>			/* store_idt(), ...		*/
31 #include <asm/cpu_entry_area.h>		/* exception stack		*/
32 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
33 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
34 #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
35 
36 #define CREATE_TRACE_POINTS
37 #include <asm/trace/exceptions.h>
38 
39 /*
40  * Returns 0 if mmiotrace is disabled, or if the fault is not
41  * handled by mmiotrace:
42  */
43 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)44 kmmio_fault(struct pt_regs *regs, unsigned long addr)
45 {
46 	if (unlikely(is_kmmio_active()))
47 		if (kmmio_handler(regs, addr) == 1)
48 			return -1;
49 	return 0;
50 }
51 
52 /*
53  * Prefetch quirks:
54  *
55  * 32-bit mode:
56  *
57  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
58  *   Check that here and ignore it.  This is AMD erratum #91.
59  *
60  * 64-bit mode:
61  *
62  *   Sometimes the CPU reports invalid exceptions on prefetch.
63  *   Check that here and ignore it.
64  *
65  * Opcode checker based on code by Richard Brunner.
66  */
67 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)68 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
69 		      unsigned char opcode, int *prefetch)
70 {
71 	unsigned char instr_hi = opcode & 0xf0;
72 	unsigned char instr_lo = opcode & 0x0f;
73 
74 	switch (instr_hi) {
75 	case 0x20:
76 	case 0x30:
77 		/*
78 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
79 		 * In X86_64 long mode, the CPU will signal invalid
80 		 * opcode if some of these prefixes are present so
81 		 * X86_64 will never get here anyway
82 		 */
83 		return ((instr_lo & 7) == 0x6);
84 #ifdef CONFIG_X86_64
85 	case 0x40:
86 		/*
87 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
88 		 */
89 		return (!user_mode(regs) || user_64bit_mode(regs));
90 #endif
91 	case 0x60:
92 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
93 		return (instr_lo & 0xC) == 0x4;
94 	case 0xF0:
95 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
96 		return !instr_lo || (instr_lo>>1) == 1;
97 	case 0x00:
98 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
99 		if (get_kernel_nofault(opcode, instr))
100 			return 0;
101 
102 		*prefetch = (instr_lo == 0xF) &&
103 			(opcode == 0x0D || opcode == 0x18);
104 		return 0;
105 	default:
106 		return 0;
107 	}
108 }
109 
is_amd_k8_pre_npt(void)110 static bool is_amd_k8_pre_npt(void)
111 {
112 	struct cpuinfo_x86 *c = &boot_cpu_data;
113 
114 	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
115 			c->x86_vendor == X86_VENDOR_AMD &&
116 			c->x86 == 0xf && c->x86_model < 0x40);
117 }
118 
119 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)120 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
121 {
122 	unsigned char *max_instr;
123 	unsigned char *instr;
124 	int prefetch = 0;
125 
126 	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
127 	if (!is_amd_k8_pre_npt())
128 		return 0;
129 
130 	/*
131 	 * If it was a exec (instruction fetch) fault on NX page, then
132 	 * do not ignore the fault:
133 	 */
134 	if (error_code & X86_PF_INSTR)
135 		return 0;
136 
137 	instr = (void *)convert_ip_to_linear(current, regs);
138 	max_instr = instr + 15;
139 
140 	/*
141 	 * This code has historically always bailed out if IP points to a
142 	 * not-present page (e.g. due to a race).  No one has ever
143 	 * complained about this.
144 	 */
145 	pagefault_disable();
146 
147 	while (instr < max_instr) {
148 		unsigned char opcode;
149 
150 		if (user_mode(regs)) {
151 			if (get_user(opcode, instr))
152 				break;
153 		} else {
154 			if (get_kernel_nofault(opcode, instr))
155 				break;
156 		}
157 
158 		instr++;
159 
160 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
161 			break;
162 	}
163 
164 	pagefault_enable();
165 	return prefetch;
166 }
167 
168 DEFINE_SPINLOCK(pgd_lock);
169 LIST_HEAD(pgd_list);
170 
171 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)172 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
173 {
174 	unsigned index = pgd_index(address);
175 	pgd_t *pgd_k;
176 	p4d_t *p4d, *p4d_k;
177 	pud_t *pud, *pud_k;
178 	pmd_t *pmd, *pmd_k;
179 
180 	pgd += index;
181 	pgd_k = init_mm.pgd + index;
182 
183 	if (!pgd_present(*pgd_k))
184 		return NULL;
185 
186 	/*
187 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
188 	 * and redundant with the set_pmd() on non-PAE. As would
189 	 * set_p4d/set_pud.
190 	 */
191 	p4d = p4d_offset(pgd, address);
192 	p4d_k = p4d_offset(pgd_k, address);
193 	if (!p4d_present(*p4d_k))
194 		return NULL;
195 
196 	pud = pud_offset(p4d, address);
197 	pud_k = pud_offset(p4d_k, address);
198 	if (!pud_present(*pud_k))
199 		return NULL;
200 
201 	pmd = pmd_offset(pud, address);
202 	pmd_k = pmd_offset(pud_k, address);
203 
204 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
205 		set_pmd(pmd, *pmd_k);
206 
207 	if (!pmd_present(*pmd_k))
208 		return NULL;
209 	else
210 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
211 
212 	return pmd_k;
213 }
214 
215 /*
216  *   Handle a fault on the vmalloc or module mapping area
217  *
218  *   This is needed because there is a race condition between the time
219  *   when the vmalloc mapping code updates the PMD to the point in time
220  *   where it synchronizes this update with the other page-tables in the
221  *   system.
222  *
223  *   In this race window another thread/CPU can map an area on the same
224  *   PMD, finds it already present and does not synchronize it with the
225  *   rest of the system yet. As a result v[mz]alloc might return areas
226  *   which are not mapped in every page-table in the system, causing an
227  *   unhandled page-fault when they are accessed.
228  */
vmalloc_fault(unsigned long address)229 static noinline int vmalloc_fault(unsigned long address)
230 {
231 	unsigned long pgd_paddr;
232 	pmd_t *pmd_k;
233 	pte_t *pte_k;
234 
235 	/* Make sure we are in vmalloc area: */
236 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
237 		return -1;
238 
239 	/*
240 	 * Synchronize this task's top level page-table
241 	 * with the 'reference' page table.
242 	 *
243 	 * Do _not_ use "current" here. We might be inside
244 	 * an interrupt in the middle of a task switch..
245 	 */
246 	pgd_paddr = read_cr3_pa();
247 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
248 	if (!pmd_k)
249 		return -1;
250 
251 	if (pmd_large(*pmd_k))
252 		return 0;
253 
254 	pte_k = pte_offset_kernel(pmd_k, address);
255 	if (!pte_present(*pte_k))
256 		return -1;
257 
258 	return 0;
259 }
260 NOKPROBE_SYMBOL(vmalloc_fault);
261 
arch_sync_kernel_mappings(unsigned long start,unsigned long end)262 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
263 {
264 	unsigned long addr;
265 
266 	for (addr = start & PMD_MASK;
267 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
268 	     addr += PMD_SIZE) {
269 		struct page *page;
270 
271 		spin_lock(&pgd_lock);
272 		list_for_each_entry(page, &pgd_list, lru) {
273 			spinlock_t *pgt_lock;
274 
275 			/* the pgt_lock only for Xen */
276 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
277 
278 			spin_lock(pgt_lock);
279 			vmalloc_sync_one(page_address(page), addr);
280 			spin_unlock(pgt_lock);
281 		}
282 		spin_unlock(&pgd_lock);
283 	}
284 }
285 
low_pfn(unsigned long pfn)286 static bool low_pfn(unsigned long pfn)
287 {
288 	return pfn < max_low_pfn;
289 }
290 
dump_pagetable(unsigned long address)291 static void dump_pagetable(unsigned long address)
292 {
293 	pgd_t *base = __va(read_cr3_pa());
294 	pgd_t *pgd = &base[pgd_index(address)];
295 	p4d_t *p4d;
296 	pud_t *pud;
297 	pmd_t *pmd;
298 	pte_t *pte;
299 
300 #ifdef CONFIG_X86_PAE
301 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
302 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
303 		goto out;
304 #define pr_pde pr_cont
305 #else
306 #define pr_pde pr_info
307 #endif
308 	p4d = p4d_offset(pgd, address);
309 	pud = pud_offset(p4d, address);
310 	pmd = pmd_offset(pud, address);
311 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
312 #undef pr_pde
313 
314 	/*
315 	 * We must not directly access the pte in the highpte
316 	 * case if the page table is located in highmem.
317 	 * And let's rather not kmap-atomic the pte, just in case
318 	 * it's allocated already:
319 	 */
320 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
321 		goto out;
322 
323 	pte = pte_offset_kernel(pmd, address);
324 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
325 out:
326 	pr_cont("\n");
327 }
328 
329 #else /* CONFIG_X86_64: */
330 
331 #ifdef CONFIG_CPU_SUP_AMD
332 static const char errata93_warning[] =
333 KERN_ERR
334 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
335 "******* Working around it, but it may cause SEGVs or burn power.\n"
336 "******* Please consider a BIOS update.\n"
337 "******* Disabling USB legacy in the BIOS may also help.\n";
338 #endif
339 
bad_address(void * p)340 static int bad_address(void *p)
341 {
342 	unsigned long dummy;
343 
344 	return get_kernel_nofault(dummy, (unsigned long *)p);
345 }
346 
dump_pagetable(unsigned long address)347 static void dump_pagetable(unsigned long address)
348 {
349 	pgd_t *base = __va(read_cr3_pa());
350 	pgd_t *pgd = base + pgd_index(address);
351 	p4d_t *p4d;
352 	pud_t *pud;
353 	pmd_t *pmd;
354 	pte_t *pte;
355 
356 	if (bad_address(pgd))
357 		goto bad;
358 
359 	pr_info("PGD %lx ", pgd_val(*pgd));
360 
361 	if (!pgd_present(*pgd))
362 		goto out;
363 
364 	p4d = p4d_offset(pgd, address);
365 	if (bad_address(p4d))
366 		goto bad;
367 
368 	pr_cont("P4D %lx ", p4d_val(*p4d));
369 	if (!p4d_present(*p4d) || p4d_large(*p4d))
370 		goto out;
371 
372 	pud = pud_offset(p4d, address);
373 	if (bad_address(pud))
374 		goto bad;
375 
376 	pr_cont("PUD %lx ", pud_val(*pud));
377 	if (!pud_present(*pud) || pud_large(*pud))
378 		goto out;
379 
380 	pmd = pmd_offset(pud, address);
381 	if (bad_address(pmd))
382 		goto bad;
383 
384 	pr_cont("PMD %lx ", pmd_val(*pmd));
385 	if (!pmd_present(*pmd) || pmd_large(*pmd))
386 		goto out;
387 
388 	pte = pte_offset_kernel(pmd, address);
389 	if (bad_address(pte))
390 		goto bad;
391 
392 	pr_cont("PTE %lx", pte_val(*pte));
393 out:
394 	pr_cont("\n");
395 	return;
396 bad:
397 	pr_info("BAD\n");
398 }
399 
400 #endif /* CONFIG_X86_64 */
401 
402 /*
403  * Workaround for K8 erratum #93 & buggy BIOS.
404  *
405  * BIOS SMM functions are required to use a specific workaround
406  * to avoid corruption of the 64bit RIP register on C stepping K8.
407  *
408  * A lot of BIOS that didn't get tested properly miss this.
409  *
410  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
411  * Try to work around it here.
412  *
413  * Note we only handle faults in kernel here.
414  * Does nothing on 32-bit.
415  */
is_errata93(struct pt_regs * regs,unsigned long address)416 static int is_errata93(struct pt_regs *regs, unsigned long address)
417 {
418 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
419 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
420 	    || boot_cpu_data.x86 != 0xf)
421 		return 0;
422 
423 	if (user_mode(regs))
424 		return 0;
425 
426 	if (address != regs->ip)
427 		return 0;
428 
429 	if ((address >> 32) != 0)
430 		return 0;
431 
432 	address |= 0xffffffffUL << 32;
433 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
434 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
435 		printk_once(errata93_warning);
436 		regs->ip = address;
437 		return 1;
438 	}
439 #endif
440 	return 0;
441 }
442 
443 /*
444  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
445  * to illegal addresses >4GB.
446  *
447  * We catch this in the page fault handler because these addresses
448  * are not reachable. Just detect this case and return.  Any code
449  * segment in LDT is compatibility mode.
450  */
is_errata100(struct pt_regs * regs,unsigned long address)451 static int is_errata100(struct pt_regs *regs, unsigned long address)
452 {
453 #ifdef CONFIG_X86_64
454 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
455 		return 1;
456 #endif
457 	return 0;
458 }
459 
460 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long error_code,unsigned long address)461 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
462 		       unsigned long address)
463 {
464 #ifdef CONFIG_X86_F00F_BUG
465 	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
466 	    idt_is_f00f_address(address)) {
467 		handle_invalid_op(regs);
468 		return 1;
469 	}
470 #endif
471 	return 0;
472 }
473 
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)474 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
475 {
476 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
477 	unsigned long addr;
478 	struct ldttss_desc desc;
479 
480 	if (index == 0) {
481 		pr_alert("%s: NULL\n", name);
482 		return;
483 	}
484 
485 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
486 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
487 		return;
488 	}
489 
490 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
491 			      sizeof(struct ldttss_desc))) {
492 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
493 			 name, index);
494 		return;
495 	}
496 
497 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
498 #ifdef CONFIG_X86_64
499 	addr |= ((u64)desc.base3 << 32);
500 #endif
501 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
502 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
503 }
504 
505 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)506 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
507 {
508 	if (!oops_may_print())
509 		return;
510 
511 	if (error_code & X86_PF_INSTR) {
512 		unsigned int level;
513 		pgd_t *pgd;
514 		pte_t *pte;
515 
516 		pgd = __va(read_cr3_pa());
517 		pgd += pgd_index(address);
518 
519 		pte = lookup_address_in_pgd(pgd, address, &level);
520 
521 		if (pte && pte_present(*pte) && !pte_exec(*pte))
522 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
523 				from_kuid(&init_user_ns, current_uid()));
524 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
525 				(pgd_flags(*pgd) & _PAGE_USER) &&
526 				(__read_cr4() & X86_CR4_SMEP))
527 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
528 				from_kuid(&init_user_ns, current_uid()));
529 	}
530 
531 	if (address < PAGE_SIZE && !user_mode(regs))
532 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
533 			(void *)address);
534 	else
535 		pr_alert("BUG: unable to handle page fault for address: %px\n",
536 			(void *)address);
537 
538 	pr_alert("#PF: %s %s in %s mode\n",
539 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
540 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
541 		 (error_code & X86_PF_WRITE) ? "write access" :
542 					       "read access",
543 			     user_mode(regs) ? "user" : "kernel");
544 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
545 		 !(error_code & X86_PF_PROT) ? "not-present page" :
546 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
547 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
548 					       "permissions violation");
549 
550 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
551 		struct desc_ptr idt, gdt;
552 		u16 ldtr, tr;
553 
554 		/*
555 		 * This can happen for quite a few reasons.  The more obvious
556 		 * ones are faults accessing the GDT, or LDT.  Perhaps
557 		 * surprisingly, if the CPU tries to deliver a benign or
558 		 * contributory exception from user code and gets a page fault
559 		 * during delivery, the page fault can be delivered as though
560 		 * it originated directly from user code.  This could happen
561 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
562 		 * kernel or IST stack.
563 		 */
564 		store_idt(&idt);
565 
566 		/* Usable even on Xen PV -- it's just slow. */
567 		native_store_gdt(&gdt);
568 
569 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
570 			 idt.address, idt.size, gdt.address, gdt.size);
571 
572 		store_ldt(ldtr);
573 		show_ldttss(&gdt, "LDTR", ldtr);
574 
575 		store_tr(tr);
576 		show_ldttss(&gdt, "TR", tr);
577 	}
578 
579 	dump_pagetable(address);
580 }
581 
582 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)583 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
584 	    unsigned long address)
585 {
586 	struct task_struct *tsk;
587 	unsigned long flags;
588 	int sig;
589 
590 	flags = oops_begin();
591 	tsk = current;
592 	sig = SIGKILL;
593 
594 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
595 	       tsk->comm, address);
596 	dump_pagetable(address);
597 
598 	if (__die("Bad pagetable", regs, error_code))
599 		sig = 0;
600 
601 	oops_end(flags, regs, sig);
602 }
603 
sanitize_error_code(unsigned long address,unsigned long * error_code)604 static void sanitize_error_code(unsigned long address,
605 				unsigned long *error_code)
606 {
607 	/*
608 	 * To avoid leaking information about the kernel page
609 	 * table layout, pretend that user-mode accesses to
610 	 * kernel addresses are always protection faults.
611 	 *
612 	 * NB: This means that failed vsyscalls with vsyscall=none
613 	 * will have the PROT bit.  This doesn't leak any
614 	 * information and does not appear to cause any problems.
615 	 */
616 	if (address >= TASK_SIZE_MAX)
617 		*error_code |= X86_PF_PROT;
618 }
619 
set_signal_archinfo(unsigned long address,unsigned long error_code)620 static void set_signal_archinfo(unsigned long address,
621 				unsigned long error_code)
622 {
623 	struct task_struct *tsk = current;
624 
625 	tsk->thread.trap_nr = X86_TRAP_PF;
626 	tsk->thread.error_code = error_code | X86_PF_USER;
627 	tsk->thread.cr2 = address;
628 }
629 
630 static noinline void
page_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)631 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
632 		unsigned long address)
633 {
634 	unsigned long flags;
635 	int sig;
636 
637 	if (user_mode(regs)) {
638 		/*
639 		 * Implicit kernel access from user mode?  Skip the stack
640 		 * overflow and EFI special cases.
641 		 */
642 		goto oops;
643 	}
644 
645 #ifdef CONFIG_VMAP_STACK
646 	/*
647 	 * Stack overflow?  During boot, we can fault near the initial
648 	 * stack in the direct map, but that's not an overflow -- check
649 	 * that we're in vmalloc space to avoid this.
650 	 */
651 	if (is_vmalloc_addr((void *)address) &&
652 	    (((unsigned long)current->stack - 1 - address < PAGE_SIZE) ||
653 	     address - ((unsigned long)current->stack + THREAD_SIZE) < PAGE_SIZE)) {
654 		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
655 		/*
656 		 * We're likely to be running with very little stack space
657 		 * left.  It's plausible that we'd hit this condition but
658 		 * double-fault even before we get this far, in which case
659 		 * we're fine: the double-fault handler will deal with it.
660 		 *
661 		 * We don't want to make it all the way into the oops code
662 		 * and then double-fault, though, because we're likely to
663 		 * break the console driver and lose most of the stack dump.
664 		 */
665 		asm volatile ("movq %[stack], %%rsp\n\t"
666 			      "call handle_stack_overflow\n\t"
667 			      "1: jmp 1b"
668 			      : ASM_CALL_CONSTRAINT
669 			      : "D" ("kernel stack overflow (page fault)"),
670 				"S" (regs), "d" (address),
671 				[stack] "rm" (stack));
672 		unreachable();
673 	}
674 #endif
675 
676 	/*
677 	 * Buggy firmware could access regions which might page fault.  If
678 	 * this happens, EFI has a special OOPS path that will try to
679 	 * avoid hanging the system.
680 	 */
681 	if (IS_ENABLED(CONFIG_EFI))
682 		efi_crash_gracefully_on_page_fault(address);
683 
684 	/* Only not-present faults should be handled by KFENCE. */
685 	if (!(error_code & X86_PF_PROT) &&
686 	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
687 		return;
688 
689 oops:
690 	/*
691 	 * Oops. The kernel tried to access some bad page. We'll have to
692 	 * terminate things with extreme prejudice:
693 	 */
694 	flags = oops_begin();
695 
696 	show_fault_oops(regs, error_code, address);
697 
698 	if (task_stack_end_corrupted(current))
699 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
700 
701 	sig = SIGKILL;
702 	if (__die("Oops", regs, error_code))
703 		sig = 0;
704 
705 	/* Executive summary in case the body of the oops scrolled away */
706 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
707 
708 	oops_end(flags, regs, sig);
709 }
710 
711 static noinline void
kernelmode_fixup_or_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code)712 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
713 			 unsigned long address, int signal, int si_code)
714 {
715 	WARN_ON_ONCE(user_mode(regs));
716 
717 	/* Are we prepared to handle this kernel fault? */
718 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
719 		/*
720 		 * Any interrupt that takes a fault gets the fixup. This makes
721 		 * the below recursive fault logic only apply to a faults from
722 		 * task context.
723 		 */
724 		if (in_interrupt())
725 			return;
726 
727 		/*
728 		 * Per the above we're !in_interrupt(), aka. task context.
729 		 *
730 		 * In this case we need to make sure we're not recursively
731 		 * faulting through the emulate_vsyscall() logic.
732 		 */
733 		if (current->thread.sig_on_uaccess_err && signal) {
734 			sanitize_error_code(address, &error_code);
735 
736 			set_signal_archinfo(address, error_code);
737 
738 			/* XXX: hwpoison faults will set the wrong code. */
739 			force_sig_fault(signal, si_code, (void __user *)address);
740 		}
741 
742 		/*
743 		 * Barring that, we can do the fixup and be happy.
744 		 */
745 		return;
746 	}
747 
748 	/*
749 	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
750 	 * instruction.
751 	 */
752 	if (is_prefetch(regs, error_code, address))
753 		return;
754 
755 	page_fault_oops(regs, error_code, address);
756 }
757 
758 /*
759  * Print out info about fatal segfaults, if the show_unhandled_signals
760  * sysctl is set:
761  */
762 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)763 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
764 		unsigned long address, struct task_struct *tsk)
765 {
766 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
767 
768 	if (!unhandled_signal(tsk, SIGSEGV))
769 		return;
770 
771 	if (!printk_ratelimit())
772 		return;
773 
774 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
775 		loglvl, tsk->comm, task_pid_nr(tsk), address,
776 		(void *)regs->ip, (void *)regs->sp, error_code);
777 
778 	print_vma_addr(KERN_CONT " in ", regs->ip);
779 
780 	printk(KERN_CONT "\n");
781 
782 	show_opcodes(regs, loglvl);
783 }
784 
785 /*
786  * The (legacy) vsyscall page is the long page in the kernel portion
787  * of the address space that has user-accessible permissions.
788  */
is_vsyscall_vaddr(unsigned long vaddr)789 static bool is_vsyscall_vaddr(unsigned long vaddr)
790 {
791 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
792 }
793 
794 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)795 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
796 		       unsigned long address, u32 pkey, int si_code)
797 {
798 	struct task_struct *tsk = current;
799 
800 	if (!user_mode(regs)) {
801 		kernelmode_fixup_or_oops(regs, error_code, address, pkey, si_code);
802 		return;
803 	}
804 
805 	if (!(error_code & X86_PF_USER)) {
806 		/* Implicit user access to kernel memory -- just oops */
807 		page_fault_oops(regs, error_code, address);
808 		return;
809 	}
810 
811 	/*
812 	 * User mode accesses just cause a SIGSEGV.
813 	 * It's possible to have interrupts off here:
814 	 */
815 	local_irq_enable();
816 
817 	/*
818 	 * Valid to do another page fault here because this one came
819 	 * from user space:
820 	 */
821 	if (is_prefetch(regs, error_code, address))
822 		return;
823 
824 	if (is_errata100(regs, address))
825 		return;
826 
827 	sanitize_error_code(address, &error_code);
828 
829 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
830 		return;
831 
832 	if (likely(show_unhandled_signals))
833 		show_signal_msg(regs, error_code, address, tsk);
834 
835 	set_signal_archinfo(address, error_code);
836 
837 	if (si_code == SEGV_PKUERR)
838 		force_sig_pkuerr((void __user *)address, pkey);
839 
840 	force_sig_fault(SIGSEGV, si_code, (void __user *)address);
841 
842 	local_irq_disable();
843 }
844 
845 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)846 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
847 		     unsigned long address)
848 {
849 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
850 }
851 
852 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)853 __bad_area(struct pt_regs *regs, unsigned long error_code,
854 	   unsigned long address, u32 pkey, int si_code)
855 {
856 	struct mm_struct *mm = current->mm;
857 	/*
858 	 * Something tried to access memory that isn't in our memory map..
859 	 * Fix it, but check if it's kernel or user first..
860 	 */
861 	mmap_read_unlock(mm);
862 
863 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
864 }
865 
866 static noinline void
bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address)867 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
868 {
869 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
870 }
871 
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)872 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
873 		struct vm_area_struct *vma)
874 {
875 	/* This code is always called on the current mm */
876 	bool foreign = false;
877 
878 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
879 		return false;
880 	if (error_code & X86_PF_PK)
881 		return true;
882 	/* this checks permission keys on the VMA: */
883 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
884 				       (error_code & X86_PF_INSTR), foreign))
885 		return true;
886 	return false;
887 }
888 
889 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct vm_area_struct * vma)890 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
891 		      unsigned long address, struct vm_area_struct *vma)
892 {
893 	/*
894 	 * This OSPKE check is not strictly necessary at runtime.
895 	 * But, doing it this way allows compiler optimizations
896 	 * if pkeys are compiled out.
897 	 */
898 	if (bad_area_access_from_pkeys(error_code, vma)) {
899 		/*
900 		 * A protection key fault means that the PKRU value did not allow
901 		 * access to some PTE.  Userspace can figure out what PKRU was
902 		 * from the XSAVE state.  This function captures the pkey from
903 		 * the vma and passes it to userspace so userspace can discover
904 		 * which protection key was set on the PTE.
905 		 *
906 		 * If we get here, we know that the hardware signaled a X86_PF_PK
907 		 * fault and that there was a VMA once we got in the fault
908 		 * handler.  It does *not* guarantee that the VMA we find here
909 		 * was the one that we faulted on.
910 		 *
911 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
912 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
913 		 * 3. T1   : faults...
914 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
915 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
916 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
917 		 *	     faulted on a pte with its pkey=4.
918 		 */
919 		u32 pkey = vma_pkey(vma);
920 
921 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
922 	} else {
923 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
924 	}
925 }
926 
927 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)928 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
929 	  vm_fault_t fault)
930 {
931 	/* Kernel mode? Handle exceptions or die: */
932 	if (!user_mode(regs)) {
933 		kernelmode_fixup_or_oops(regs, error_code, address, SIGBUS, BUS_ADRERR);
934 		return;
935 	}
936 
937 	/* User-space => ok to do another page fault: */
938 	if (is_prefetch(regs, error_code, address))
939 		return;
940 
941 	sanitize_error_code(address, &error_code);
942 
943 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
944 		return;
945 
946 	set_signal_archinfo(address, error_code);
947 
948 #ifdef CONFIG_MEMORY_FAILURE
949 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
950 		struct task_struct *tsk = current;
951 		unsigned lsb = 0;
952 
953 		pr_err(
954 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
955 			tsk->comm, tsk->pid, address);
956 		if (fault & VM_FAULT_HWPOISON_LARGE)
957 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
958 		if (fault & VM_FAULT_HWPOISON)
959 			lsb = PAGE_SHIFT;
960 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
961 		return;
962 	}
963 #endif
964 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
965 }
966 
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)967 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
968 {
969 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
970 		return 0;
971 
972 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
973 		return 0;
974 
975 	return 1;
976 }
977 
978 /*
979  * Handle a spurious fault caused by a stale TLB entry.
980  *
981  * This allows us to lazily refresh the TLB when increasing the
982  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
983  * eagerly is very expensive since that implies doing a full
984  * cross-processor TLB flush, even if no stale TLB entries exist
985  * on other processors.
986  *
987  * Spurious faults may only occur if the TLB contains an entry with
988  * fewer permission than the page table entry.  Non-present (P = 0)
989  * and reserved bit (R = 1) faults are never spurious.
990  *
991  * There are no security implications to leaving a stale TLB when
992  * increasing the permissions on a page.
993  *
994  * Returns non-zero if a spurious fault was handled, zero otherwise.
995  *
996  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
997  * (Optional Invalidation).
998  */
999 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)1000 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1001 {
1002 	pgd_t *pgd;
1003 	p4d_t *p4d;
1004 	pud_t *pud;
1005 	pmd_t *pmd;
1006 	pte_t *pte;
1007 	int ret;
1008 
1009 	/*
1010 	 * Only writes to RO or instruction fetches from NX may cause
1011 	 * spurious faults.
1012 	 *
1013 	 * These could be from user or supervisor accesses but the TLB
1014 	 * is only lazily flushed after a kernel mapping protection
1015 	 * change, so user accesses are not expected to cause spurious
1016 	 * faults.
1017 	 */
1018 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1019 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1020 		return 0;
1021 
1022 	pgd = init_mm.pgd + pgd_index(address);
1023 	if (!pgd_present(*pgd))
1024 		return 0;
1025 
1026 	p4d = p4d_offset(pgd, address);
1027 	if (!p4d_present(*p4d))
1028 		return 0;
1029 
1030 	if (p4d_large(*p4d))
1031 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1032 
1033 	pud = pud_offset(p4d, address);
1034 	if (!pud_present(*pud))
1035 		return 0;
1036 
1037 	if (pud_large(*pud))
1038 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1039 
1040 	pmd = pmd_offset(pud, address);
1041 	if (!pmd_present(*pmd))
1042 		return 0;
1043 
1044 	if (pmd_large(*pmd))
1045 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1046 
1047 	pte = pte_offset_kernel(pmd, address);
1048 	if (!pte_present(*pte))
1049 		return 0;
1050 
1051 	ret = spurious_kernel_fault_check(error_code, pte);
1052 	if (!ret)
1053 		return 0;
1054 
1055 	/*
1056 	 * Make sure we have permissions in PMD.
1057 	 * If not, then there's a bug in the page tables:
1058 	 */
1059 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1060 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1061 
1062 	return ret;
1063 }
1064 NOKPROBE_SYMBOL(spurious_kernel_fault);
1065 
1066 int show_unhandled_signals = 1;
1067 
1068 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1069 access_error(unsigned long error_code, struct vm_area_struct *vma)
1070 {
1071 	/* This is only called for the current mm, so: */
1072 	bool foreign = false;
1073 
1074 	/*
1075 	 * Read or write was blocked by protection keys.  This is
1076 	 * always an unconditional error and can never result in
1077 	 * a follow-up action to resolve the fault, like a COW.
1078 	 */
1079 	if (error_code & X86_PF_PK)
1080 		return 1;
1081 
1082 	/*
1083 	 * SGX hardware blocked the access.  This usually happens
1084 	 * when the enclave memory contents have been destroyed, like
1085 	 * after a suspend/resume cycle. In any case, the kernel can't
1086 	 * fix the cause of the fault.  Handle the fault as an access
1087 	 * error even in cases where no actual access violation
1088 	 * occurred.  This allows userspace to rebuild the enclave in
1089 	 * response to the signal.
1090 	 */
1091 	if (unlikely(error_code & X86_PF_SGX))
1092 		return 1;
1093 
1094 	/*
1095 	 * Make sure to check the VMA so that we do not perform
1096 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1097 	 * page.
1098 	 */
1099 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1100 				       (error_code & X86_PF_INSTR), foreign))
1101 		return 1;
1102 
1103 	if (error_code & X86_PF_WRITE) {
1104 		/* write, present and write, not present: */
1105 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1106 			return 1;
1107 		return 0;
1108 	}
1109 
1110 	/* read, present: */
1111 	if (unlikely(error_code & X86_PF_PROT))
1112 		return 1;
1113 
1114 	/* read, not present: */
1115 	if (unlikely(!vma_is_accessible(vma)))
1116 		return 1;
1117 
1118 	return 0;
1119 }
1120 
fault_in_kernel_space(unsigned long address)1121 bool fault_in_kernel_space(unsigned long address)
1122 {
1123 	/*
1124 	 * On 64-bit systems, the vsyscall page is at an address above
1125 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1126 	 * address space.
1127 	 */
1128 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1129 		return false;
1130 
1131 	return address >= TASK_SIZE_MAX;
1132 }
1133 
1134 /*
1135  * Called for all faults where 'address' is part of the kernel address
1136  * space.  Might get called for faults that originate from *code* that
1137  * ran in userspace or the kernel.
1138  */
1139 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1140 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1141 		   unsigned long address)
1142 {
1143 	/*
1144 	 * Protection keys exceptions only happen on user pages.  We
1145 	 * have no user pages in the kernel portion of the address
1146 	 * space, so do not expect them here.
1147 	 */
1148 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1149 
1150 #ifdef CONFIG_X86_32
1151 	/*
1152 	 * We can fault-in kernel-space virtual memory on-demand. The
1153 	 * 'reference' page table is init_mm.pgd.
1154 	 *
1155 	 * NOTE! We MUST NOT take any locks for this case. We may
1156 	 * be in an interrupt or a critical region, and should
1157 	 * only copy the information from the master page table,
1158 	 * nothing more.
1159 	 *
1160 	 * Before doing this on-demand faulting, ensure that the
1161 	 * fault is not any of the following:
1162 	 * 1. A fault on a PTE with a reserved bit set.
1163 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1164 	 *    fault kernel memory due to user-mode accesses).
1165 	 * 3. A fault caused by a page-level protection violation.
1166 	 *    (A demand fault would be on a non-present page which
1167 	 *     would have X86_PF_PROT==0).
1168 	 *
1169 	 * This is only needed to close a race condition on x86-32 in
1170 	 * the vmalloc mapping/unmapping code. See the comment above
1171 	 * vmalloc_fault() for details. On x86-64 the race does not
1172 	 * exist as the vmalloc mappings don't need to be synchronized
1173 	 * there.
1174 	 */
1175 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1176 		if (vmalloc_fault(address) >= 0)
1177 			return;
1178 	}
1179 #endif
1180 
1181 	if (is_f00f_bug(regs, hw_error_code, address))
1182 		return;
1183 
1184 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1185 	if (spurious_kernel_fault(hw_error_code, address))
1186 		return;
1187 
1188 	/* kprobes don't want to hook the spurious faults: */
1189 	if (kprobe_page_fault(regs, X86_TRAP_PF))
1190 		return;
1191 
1192 	/*
1193 	 * Note, despite being a "bad area", there are quite a few
1194 	 * acceptable reasons to get here, such as erratum fixups
1195 	 * and handling kernel code that can fault, like get_user().
1196 	 *
1197 	 * Don't take the mm semaphore here. If we fixup a prefetch
1198 	 * fault we could otherwise deadlock:
1199 	 */
1200 	bad_area_nosemaphore(regs, hw_error_code, address);
1201 }
1202 NOKPROBE_SYMBOL(do_kern_addr_fault);
1203 
1204 /*
1205  * Handle faults in the user portion of the address space.  Nothing in here
1206  * should check X86_PF_USER without a specific justification: for almost
1207  * all purposes, we should treat a normal kernel access to user memory
1208  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1209  * The one exception is AC flag handling, which is, per the x86
1210  * architecture, special for WRUSS.
1211  */
1212 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1213 void do_user_addr_fault(struct pt_regs *regs,
1214 			unsigned long error_code,
1215 			unsigned long address)
1216 {
1217 	struct vm_area_struct *vma;
1218 	struct task_struct *tsk;
1219 	struct mm_struct *mm;
1220 	vm_fault_t fault;
1221 	unsigned int flags = FAULT_FLAG_DEFAULT;
1222 
1223 	tsk = current;
1224 	mm = tsk->mm;
1225 
1226 	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1227 		/*
1228 		 * Whoops, this is kernel mode code trying to execute from
1229 		 * user memory.  Unless this is AMD erratum #93, which
1230 		 * corrupts RIP such that it looks like a user address,
1231 		 * this is unrecoverable.  Don't even try to look up the
1232 		 * VMA or look for extable entries.
1233 		 */
1234 		if (is_errata93(regs, address))
1235 			return;
1236 
1237 		page_fault_oops(regs, error_code, address);
1238 		return;
1239 	}
1240 
1241 	/* kprobes don't want to hook the spurious faults: */
1242 	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1243 		return;
1244 
1245 	/*
1246 	 * Reserved bits are never expected to be set on
1247 	 * entries in the user portion of the page tables.
1248 	 */
1249 	if (unlikely(error_code & X86_PF_RSVD))
1250 		pgtable_bad(regs, error_code, address);
1251 
1252 	/*
1253 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1254 	 * pages in the user address space.  The odd case here is WRUSS,
1255 	 * which, according to the preliminary documentation, does not respect
1256 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1257 	 * enforcement appears to be consistent with the USER bit.
1258 	 */
1259 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1260 		     !(error_code & X86_PF_USER) &&
1261 		     !(regs->flags & X86_EFLAGS_AC))) {
1262 		/*
1263 		 * No extable entry here.  This was a kernel access to an
1264 		 * invalid pointer.  get_kernel_nofault() will not get here.
1265 		 */
1266 		page_fault_oops(regs, error_code, address);
1267 		return;
1268 	}
1269 
1270 	/*
1271 	 * If we're in an interrupt, have no user context or are running
1272 	 * in a region with pagefaults disabled then we must not take the fault
1273 	 */
1274 	if (unlikely(faulthandler_disabled() || !mm)) {
1275 		bad_area_nosemaphore(regs, error_code, address);
1276 		return;
1277 	}
1278 
1279 	/*
1280 	 * It's safe to allow irq's after cr2 has been saved and the
1281 	 * vmalloc fault has been handled.
1282 	 *
1283 	 * User-mode registers count as a user access even for any
1284 	 * potential system fault or CPU buglet:
1285 	 */
1286 	if (user_mode(regs)) {
1287 		local_irq_enable();
1288 		flags |= FAULT_FLAG_USER;
1289 	} else {
1290 		if (regs->flags & X86_EFLAGS_IF)
1291 			local_irq_enable();
1292 	}
1293 
1294 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1295 
1296 	if (error_code & X86_PF_WRITE)
1297 		flags |= FAULT_FLAG_WRITE;
1298 	if (error_code & X86_PF_INSTR)
1299 		flags |= FAULT_FLAG_INSTRUCTION;
1300 
1301 #ifdef CONFIG_X86_64
1302 	/*
1303 	 * Faults in the vsyscall page might need emulation.  The
1304 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1305 	 * considered to be part of the user address space.
1306 	 *
1307 	 * The vsyscall page does not have a "real" VMA, so do this
1308 	 * emulation before we go searching for VMAs.
1309 	 *
1310 	 * PKRU never rejects instruction fetches, so we don't need
1311 	 * to consider the PF_PK bit.
1312 	 */
1313 	if (is_vsyscall_vaddr(address)) {
1314 		if (emulate_vsyscall(error_code, regs, address))
1315 			return;
1316 	}
1317 #endif
1318 
1319 	/*
1320 	 * Kernel-mode access to the user address space should only occur
1321 	 * on well-defined single instructions listed in the exception
1322 	 * tables.  But, an erroneous kernel fault occurring outside one of
1323 	 * those areas which also holds mmap_lock might deadlock attempting
1324 	 * to validate the fault against the address space.
1325 	 *
1326 	 * Only do the expensive exception table search when we might be at
1327 	 * risk of a deadlock.  This happens if we
1328 	 * 1. Failed to acquire mmap_lock, and
1329 	 * 2. The access did not originate in userspace.
1330 	 */
1331 	if (unlikely(!mmap_read_trylock(mm))) {
1332 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1333 			/*
1334 			 * Fault from code in kernel from
1335 			 * which we do not expect faults.
1336 			 */
1337 			bad_area_nosemaphore(regs, error_code, address);
1338 			return;
1339 		}
1340 retry:
1341 		mmap_read_lock(mm);
1342 	} else {
1343 		/*
1344 		 * The above down_read_trylock() might have succeeded in
1345 		 * which case we'll have missed the might_sleep() from
1346 		 * down_read():
1347 		 */
1348 		might_sleep();
1349 	}
1350 
1351 	vma = find_vma(mm, address);
1352 	if (unlikely(!vma)) {
1353 		bad_area(regs, error_code, address);
1354 		return;
1355 	}
1356 	if (likely(vma->vm_start <= address))
1357 		goto good_area;
1358 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1359 		bad_area(regs, error_code, address);
1360 		return;
1361 	}
1362 	if (unlikely(expand_stack(vma, address))) {
1363 		bad_area(regs, error_code, address);
1364 		return;
1365 	}
1366 
1367 	/*
1368 	 * Ok, we have a good vm_area for this memory access, so
1369 	 * we can handle it..
1370 	 */
1371 good_area:
1372 	if (unlikely(access_error(error_code, vma))) {
1373 		bad_area_access_error(regs, error_code, address, vma);
1374 		return;
1375 	}
1376 
1377 	/*
1378 	 * If for any reason at all we couldn't handle the fault,
1379 	 * make sure we exit gracefully rather than endlessly redo
1380 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1381 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1382 	 *
1383 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1384 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1385 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1386 	 * (potentially after handling any pending signal during the return to
1387 	 * userland). The return to userland is identified whenever
1388 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1389 	 */
1390 	fault = handle_mm_fault(vma, address, flags, regs);
1391 
1392 	if (fault_signal_pending(fault, regs)) {
1393 		/*
1394 		 * Quick path to respond to signals.  The core mm code
1395 		 * has unlocked the mm for us if we get here.
1396 		 */
1397 		if (!user_mode(regs))
1398 			kernelmode_fixup_or_oops(regs, error_code, address,
1399 						 SIGBUS, BUS_ADRERR);
1400 		return;
1401 	}
1402 
1403 	/*
1404 	 * If we need to retry the mmap_lock has already been released,
1405 	 * and if there is a fatal signal pending there is no guarantee
1406 	 * that we made any progress. Handle this case first.
1407 	 */
1408 	if (unlikely((fault & VM_FAULT_RETRY) &&
1409 		     (flags & FAULT_FLAG_ALLOW_RETRY))) {
1410 		flags |= FAULT_FLAG_TRIED;
1411 		goto retry;
1412 	}
1413 
1414 	mmap_read_unlock(mm);
1415 	if (likely(!(fault & VM_FAULT_ERROR)))
1416 		return;
1417 
1418 	if (fatal_signal_pending(current) && !user_mode(regs)) {
1419 		kernelmode_fixup_or_oops(regs, error_code, address, 0, 0);
1420 		return;
1421 	}
1422 
1423 	if (fault & VM_FAULT_OOM) {
1424 		/* Kernel mode? Handle exceptions or die: */
1425 		if (!user_mode(regs)) {
1426 			kernelmode_fixup_or_oops(regs, error_code, address,
1427 						 SIGSEGV, SEGV_MAPERR);
1428 			return;
1429 		}
1430 
1431 		/*
1432 		 * We ran out of memory, call the OOM killer, and return the
1433 		 * userspace (which will retry the fault, or kill us if we got
1434 		 * oom-killed):
1435 		 */
1436 		pagefault_out_of_memory();
1437 	} else {
1438 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1439 			     VM_FAULT_HWPOISON_LARGE))
1440 			do_sigbus(regs, error_code, address, fault);
1441 		else if (fault & VM_FAULT_SIGSEGV)
1442 			bad_area_nosemaphore(regs, error_code, address);
1443 		else
1444 			BUG();
1445 	}
1446 }
1447 NOKPROBE_SYMBOL(do_user_addr_fault);
1448 
1449 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1450 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1451 			 unsigned long address)
1452 {
1453 	if (!trace_pagefault_enabled())
1454 		return;
1455 
1456 	if (user_mode(regs))
1457 		trace_page_fault_user(address, regs, error_code);
1458 	else
1459 		trace_page_fault_kernel(address, regs, error_code);
1460 }
1461 
1462 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1463 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1464 			      unsigned long address)
1465 {
1466 	trace_page_fault_entries(regs, error_code, address);
1467 
1468 	if (unlikely(kmmio_fault(regs, address)))
1469 		return;
1470 
1471 	/* Was the fault on kernel-controlled part of the address space? */
1472 	if (unlikely(fault_in_kernel_space(address))) {
1473 		do_kern_addr_fault(regs, error_code, address);
1474 	} else {
1475 		do_user_addr_fault(regs, error_code, address);
1476 		/*
1477 		 * User address page fault handling might have reenabled
1478 		 * interrupts. Fixing up all potential exit points of
1479 		 * do_user_addr_fault() and its leaf functions is just not
1480 		 * doable w/o creating an unholy mess or turning the code
1481 		 * upside down.
1482 		 */
1483 		local_irq_disable();
1484 	}
1485 }
1486 
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1487 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1488 {
1489 	unsigned long address = read_cr2();
1490 	irqentry_state_t state;
1491 
1492 	prefetchw(&current->mm->mmap_lock);
1493 
1494 	/*
1495 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1496 	 * (asynchronous page fault mechanism). The event happens when a
1497 	 * userspace task is trying to access some valid (from guest's point of
1498 	 * view) memory which is not currently mapped by the host (e.g. the
1499 	 * memory is swapped out). Note, the corresponding "page ready" event
1500 	 * which is injected when the memory becomes available, is delivered via
1501 	 * an interrupt mechanism and not a #PF exception
1502 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1503 	 *
1504 	 * We are relying on the interrupted context being sane (valid RSP,
1505 	 * relevant locks not held, etc.), which is fine as long as the
1506 	 * interrupted context had IF=1.  We are also relying on the KVM
1507 	 * async pf type field and CR2 being read consistently instead of
1508 	 * getting values from real and async page faults mixed up.
1509 	 *
1510 	 * Fingers crossed.
1511 	 *
1512 	 * The async #PF handling code takes care of idtentry handling
1513 	 * itself.
1514 	 */
1515 	if (kvm_handle_async_pf(regs, (u32)address))
1516 		return;
1517 
1518 	/*
1519 	 * Entry handling for valid #PF from kernel mode is slightly
1520 	 * different: RCU is already watching and rcu_irq_enter() must not
1521 	 * be invoked because a kernel fault on a user space address might
1522 	 * sleep.
1523 	 *
1524 	 * In case the fault hit a RCU idle region the conditional entry
1525 	 * code reenabled RCU to avoid subsequent wreckage which helps
1526 	 * debuggability.
1527 	 */
1528 	state = irqentry_enter(regs);
1529 
1530 	instrumentation_begin();
1531 	handle_page_fault(regs, error_code, address);
1532 	instrumentation_end();
1533 
1534 	irqentry_exit(regs, state);
1535 }
1536