1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Madge Horizon ATM Adapter driver.
4 Copyright (C) 1995-1999 Madge Networks Ltd.
5
6 */
7
8 /*
9 IMPORTANT NOTE: Madge Networks no longer makes the adapters
10 supported by this driver and makes no commitment to maintain it.
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/sched/signal.h>
16 #include <linux/mm.h>
17 #include <linux/pci.h>
18 #include <linux/errno.h>
19 #include <linux/atm.h>
20 #include <linux/atmdev.h>
21 #include <linux/sonet.h>
22 #include <linux/skbuff.h>
23 #include <linux/time.h>
24 #include <linux/delay.h>
25 #include <linux/uio.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/ioport.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31
32 #include <asm/io.h>
33 #include <linux/atomic.h>
34 #include <linux/uaccess.h>
35 #include <asm/string.h>
36 #include <asm/byteorder.h>
37
38 #include "horizon.h"
39
40 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
41 #define description_string "Madge ATM Horizon [Ultra] driver"
42 #define version_string "1.2.1"
43
show_version(void)44 static inline void __init show_version (void) {
45 printk ("%s version %s\n", description_string, version_string);
46 }
47
48 /*
49
50 CREDITS
51
52 Driver and documentation by:
53
54 Chris Aston Madge Networks
55 Giuliano Procida Madge Networks
56 Simon Benham Madge Networks
57 Simon Johnson Madge Networks
58 Various Others Madge Networks
59
60 Some inspiration taken from other drivers by:
61
62 Alexandru Cucos UTBv
63 Kari Mettinen University of Helsinki
64 Werner Almesberger EPFL LRC
65
66 Theory of Operation
67
68 I Hardware, detection, initialisation and shutdown.
69
70 1. Supported Hardware
71
72 This driver should handle all variants of the PCI Madge ATM adapters
73 with the Horizon chipset. These are all PCI cards supporting PIO, BM
74 DMA and a form of MMIO (registers only, not internal RAM).
75
76 The driver is only known to work with SONET and UTP Horizon Ultra
77 cards at 155Mb/s. However, code is in place to deal with both the
78 original Horizon and 25Mb/s operation.
79
80 There are two revisions of the Horizon ASIC: the original and the
81 Ultra. Details of hardware bugs are in section III.
82
83 The ASIC version can be distinguished by chip markings but is NOT
84 indicated by the PCI revision (all adapters seem to have PCI rev 1).
85
86 I believe that:
87
88 Horizon => Collage 25 PCI Adapter (UTP and STP)
89 Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
90 Ambassador x => Collage 155 PCI Server (completely different)
91
92 Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
93 have a Madge B154 plus glue logic serializer. I have also found a
94 really ancient version of this with slightly different glue. It
95 comes with the revision 0 (140-025-01) ASIC.
96
97 Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
98 output (UTP) or an HP HFBR 5205 output (SONET). It has either
99 Madge's SAMBA framer or a SUNI-lite device (early versions). It
100 comes with the revision 1 (140-027-01) ASIC.
101
102 2. Detection
103
104 All Horizon-based cards present with the same PCI Vendor and Device
105 IDs. The standard Linux 2.2 PCI API is used to locate any cards and
106 to enable bus-mastering (with appropriate latency).
107
108 ATM_LAYER_STATUS in the control register distinguishes between the
109 two possible physical layers (25 and 155). It is not clear whether
110 the 155 cards can also operate at 25Mbps. We rely on the fact that a
111 card operates at 155 if and only if it has the newer Horizon Ultra
112 ASIC.
113
114 For 155 cards the two possible framers are probed for and then set
115 up for loop-timing.
116
117 3. Initialisation
118
119 The card is reset and then put into a known state. The physical
120 layer is configured for normal operation at the appropriate speed;
121 in the case of the 155 cards, the framer is initialised with
122 line-based timing; the internal RAM is zeroed and the allocation of
123 buffers for RX and TX is made; the Burnt In Address is read and
124 copied to the ATM ESI; various policy settings for RX (VPI bits,
125 unknown VCs, oam cells) are made. Ideally all policy items should be
126 configurable at module load (if not actually on-demand), however,
127 only the vpi vs vci bit allocation can be specified at insmod.
128
129 4. Shutdown
130
131 This is in response to module_cleaup. No VCs are in use and the card
132 should be idle; it is reset.
133
134 II Driver software (as it should be)
135
136 0. Traffic Parameters
137
138 The traffic classes (not an enumeration) are currently: ATM_NONE (no
139 traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
140 (compatible with everything). Together with (perhaps only some of)
141 the following items they make up the traffic specification.
142
143 struct atm_trafprm {
144 unsigned char traffic_class; traffic class (ATM_UBR, ...)
145 int max_pcr; maximum PCR in cells per second
146 int pcr; desired PCR in cells per second
147 int min_pcr; minimum PCR in cells per second
148 int max_cdv; maximum CDV in microseconds
149 int max_sdu; maximum SDU in bytes
150 };
151
152 Note that these denote bandwidth available not bandwidth used; the
153 possibilities according to ATMF are:
154
155 Real Time (cdv and max CDT given)
156
157 CBR(pcr) pcr bandwidth always available
158 rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
159
160 Non Real Time
161
162 nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
163 UBR()
164 ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too
165
166 mbs is max burst size (bucket)
167 pcr and scr have associated cdvt values
168 mcr is like scr but has no cdtv
169 cdtv may differ at each hop
170
171 Some of the above items are qos items (as opposed to traffic
172 parameters). We have nothing to do with qos. All except ABR can have
173 their traffic parameters converted to GCRA parameters. The GCRA may
174 be implemented as a (real-number) leaky bucket. The GCRA can be used
175 in complicated ways by switches and in simpler ways by end-stations.
176 It can be used both to filter incoming cells and shape out-going
177 cells.
178
179 ATM Linux actually supports:
180
181 ATM_NONE() (no traffic in this direction)
182 ATM_UBR(max_frame_size)
183 ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
184
185 0 or ATM_MAX_PCR are used to indicate maximum available PCR
186
187 A traffic specification consists of the AAL type and separate
188 traffic specifications for either direction. In ATM Linux it is:
189
190 struct atm_qos {
191 struct atm_trafprm txtp;
192 struct atm_trafprm rxtp;
193 unsigned char aal;
194 };
195
196 AAL types are:
197
198 ATM_NO_AAL AAL not specified
199 ATM_AAL0 "raw" ATM cells
200 ATM_AAL1 AAL1 (CBR)
201 ATM_AAL2 AAL2 (VBR)
202 ATM_AAL34 AAL3/4 (data)
203 ATM_AAL5 AAL5 (data)
204 ATM_SAAL signaling AAL
205
206 The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
207 it does not implement AAL 3/4 SAR and it has a different notion of
208 "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
209 supported by this driver.
210
211 The Horizon has limited support for ABR (including UBR), VBR and
212 CBR. Each TX channel has a bucket (containing up to 31 cell units)
213 and two timers (PCR and SCR) associated with it that can be used to
214 govern cell emissions and host notification (in the case of ABR this
215 is presumably so that RM cells may be emitted at appropriate times).
216 The timers may either be disabled or may be set to any of 240 values
217 (determined by the clock crystal, a fixed (?) per-device divider, a
218 configurable divider and a configurable timer preload value).
219
220 At the moment only UBR and CBR are supported by the driver. VBR will
221 be supported as soon as ATM for Linux supports it. ABR support is
222 very unlikely as RM cell handling is completely up to the driver.
223
224 1. TX (TX channel setup and TX transfer)
225
226 The TX half of the driver owns the TX Horizon registers. The TX
227 component in the IRQ handler is the BM completion handler. This can
228 only be entered when tx_busy is true (enforced by hardware). The
229 other TX component can only be entered when tx_busy is false
230 (enforced by driver). So TX is single-threaded.
231
232 Apart from a minor optimisation to not re-select the last channel,
233 the TX send component works as follows:
234
235 Atomic test and set tx_busy until we succeed; we should implement
236 some sort of timeout so that tx_busy will never be stuck at true.
237
238 If no TX channel is set up for this VC we wait for an idle one (if
239 necessary) and set it up.
240
241 At this point we have a TX channel ready for use. We wait for enough
242 buffers to become available then start a TX transmit (set the TX
243 descriptor, schedule transfer, exit).
244
245 The IRQ component handles TX completion (stats, free buffer, tx_busy
246 unset, exit). We also re-schedule further transfers for the same
247 frame if needed.
248
249 TX setup in more detail:
250
251 TX open is a nop, the relevant information is held in the hrz_vcc
252 (vcc->dev_data) structure and is "cached" on the card.
253
254 TX close gets the TX lock and clears the channel from the "cache".
255
256 2. RX (Data Available and RX transfer)
257
258 The RX half of the driver owns the RX registers. There are two RX
259 components in the IRQ handler: the data available handler deals with
260 fresh data that has arrived on the card, the BM completion handler
261 is very similar to the TX completion handler. The data available
262 handler grabs the rx_lock and it is only released once the data has
263 been discarded or completely transferred to the host. The BM
264 completion handler only runs when the lock is held; the data
265 available handler is locked out over the same period.
266
267 Data available on the card triggers an interrupt. If the data is not
268 suitable for our existing RX channels or we cannot allocate a buffer
269 it is flushed. Otherwise an RX receive is scheduled. Multiple RX
270 transfers may be scheduled for the same frame.
271
272 RX setup in more detail:
273
274 RX open...
275 RX close...
276
277 III Hardware Bugs
278
279 0. Byte vs Word addressing of adapter RAM.
280
281 A design feature; see the .h file (especially the memory map).
282
283 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
284
285 The host must not start a transmit direction transfer at a
286 non-four-byte boundary in host memory. Instead the host should
287 perform a byte, or a two byte, or one byte followed by two byte
288 transfer in order to start the rest of the transfer on a four byte
289 boundary. RX is OK.
290
291 Simultaneous transmit and receive direction bus master transfers are
292 not allowed.
293
294 The simplest solution to these two is to always do PIO (never DMA)
295 in the TX direction on the original Horizon. More complicated
296 solutions are likely to hurt my brain.
297
298 2. Loss of buffer on close VC
299
300 When a VC is being closed, the buffer associated with it is not
301 returned to the pool. The host must store the reference to this
302 buffer and when opening a new VC then give it to that new VC.
303
304 The host intervention currently consists of stacking such a buffer
305 pointer at VC close and checking the stack at VC open.
306
307 3. Failure to close a VC
308
309 If a VC is currently receiving a frame then closing the VC may fail
310 and the frame continues to be received.
311
312 The solution is to make sure any received frames are flushed when
313 ready. This is currently done just before the solution to 2.
314
315 4. PCI bus (original Horizon only, fixed in Ultra)
316
317 Reading from the data port prior to initialisation will hang the PCI
318 bus. Just don't do that then! We don't.
319
320 IV To Do List
321
322 . Timer code may be broken.
323
324 . Allow users to specify buffer allocation split for TX and RX.
325
326 . Deal once and for all with buggy VC close.
327
328 . Handle interrupted and/or non-blocking operations.
329
330 . Change some macros to functions and move from .h to .c.
331
332 . Try to limit the number of TX frames each VC may have queued, in
333 order to reduce the chances of TX buffer exhaustion.
334
335 . Implement VBR (bucket and timers not understood) and ABR (need to
336 do RM cells manually); also no Linux support for either.
337
338 . Implement QoS changes on open VCs (involves extracting parts of VC open
339 and close into separate functions and using them to make changes).
340
341 */
342
343 /********** globals **********/
344
345 static void do_housekeeping (struct timer_list *t);
346
347 static unsigned short debug = 0;
348 static unsigned short vpi_bits = 0;
349 static int max_tx_size = 9000;
350 static int max_rx_size = 9000;
351 static unsigned char pci_lat = 0;
352
353 /********** access functions **********/
354
355 /* Read / Write Horizon registers */
wr_regl(const hrz_dev * dev,unsigned char reg,u32 data)356 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
357 outl (cpu_to_le32 (data), dev->iobase + reg);
358 }
359
rd_regl(const hrz_dev * dev,unsigned char reg)360 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
361 return le32_to_cpu (inl (dev->iobase + reg));
362 }
363
wr_regw(const hrz_dev * dev,unsigned char reg,u16 data)364 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
365 outw (cpu_to_le16 (data), dev->iobase + reg);
366 }
367
rd_regw(const hrz_dev * dev,unsigned char reg)368 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
369 return le16_to_cpu (inw (dev->iobase + reg));
370 }
371
wrs_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)372 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
373 outsb (dev->iobase + reg, addr, len);
374 }
375
rds_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)376 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
377 insb (dev->iobase + reg, addr, len);
378 }
379
380 /* Read / Write to a given address in Horizon buffer memory.
381 Interrupts must be disabled between the address register and data
382 port accesses as these must form an atomic operation. */
wr_mem(const hrz_dev * dev,HDW * addr,u32 data)383 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
384 // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
385 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
386 wr_regl (dev, MEMORY_PORT_OFF, data);
387 }
388
rd_mem(const hrz_dev * dev,HDW * addr)389 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
390 // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
391 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
392 return rd_regl (dev, MEMORY_PORT_OFF);
393 }
394
wr_framer(const hrz_dev * dev,u32 addr,u32 data)395 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
396 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
397 wr_regl (dev, MEMORY_PORT_OFF, data);
398 }
399
rd_framer(const hrz_dev * dev,u32 addr)400 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
401 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
402 return rd_regl (dev, MEMORY_PORT_OFF);
403 }
404
405 /********** specialised access functions **********/
406
407 /* RX */
408
FLUSH_RX_CHANNEL(hrz_dev * dev,u16 channel)409 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
410 wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
411 return;
412 }
413
WAIT_FLUSH_RX_COMPLETE(hrz_dev * dev)414 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
415 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
416 ;
417 return;
418 }
419
SELECT_RX_CHANNEL(hrz_dev * dev,u16 channel)420 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
421 wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
422 return;
423 }
424
WAIT_UPDATE_COMPLETE(hrz_dev * dev)425 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
426 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
427 ;
428 return;
429 }
430
431 /* TX */
432
SELECT_TX_CHANNEL(hrz_dev * dev,u16 tx_channel)433 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
434 wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
435 return;
436 }
437
438 /* Update or query one configuration parameter of a particular channel. */
439
update_tx_channel_config(hrz_dev * dev,short chan,u8 mode,u16 value)440 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
441 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
442 chan * TX_CHANNEL_CONFIG_MULT | mode);
443 wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
444 return;
445 }
446
447 /********** dump functions **********/
448
dump_skb(char * prefix,unsigned int vc,struct sk_buff * skb)449 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
450 #ifdef DEBUG_HORIZON
451 unsigned int i;
452 unsigned char * data = skb->data;
453 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
454 for (i=0; i<skb->len && i < 256;i++)
455 PRINTDM (DBG_DATA, "%02x ", data[i]);
456 PRINTDE (DBG_DATA,"");
457 #else
458 (void) prefix;
459 (void) vc;
460 (void) skb;
461 #endif
462 return;
463 }
464
dump_regs(hrz_dev * dev)465 static inline void dump_regs (hrz_dev * dev) {
466 #ifdef DEBUG_HORIZON
467 PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
468 PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
469 PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
470 PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
471 PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
472 PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
473 #else
474 (void) dev;
475 #endif
476 return;
477 }
478
dump_framer(hrz_dev * dev)479 static inline void dump_framer (hrz_dev * dev) {
480 #ifdef DEBUG_HORIZON
481 unsigned int i;
482 PRINTDB (DBG_REGS, "framer registers:");
483 for (i = 0; i < 0x10; ++i)
484 PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
485 PRINTDE (DBG_REGS,"");
486 #else
487 (void) dev;
488 #endif
489 return;
490 }
491
492 /********** VPI/VCI <-> (RX) channel conversions **********/
493
494 /* RX channels are 10 bit integers, these fns are quite paranoid */
495
vpivci_to_channel(u16 * channel,const short vpi,const int vci)496 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
497 unsigned short vci_bits = 10 - vpi_bits;
498 if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
499 *channel = vpi<<vci_bits | vci;
500 return *channel ? 0 : -EINVAL;
501 }
502 return -EINVAL;
503 }
504
505 /********** decode RX queue entries **********/
506
rx_q_entry_to_length(u32 x)507 static inline u16 rx_q_entry_to_length (u32 x) {
508 return x & RX_Q_ENTRY_LENGTH_MASK;
509 }
510
rx_q_entry_to_rx_channel(u32 x)511 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
512 return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
513 }
514
515 /* Cell Transmit Rate Values
516 *
517 * the cell transmit rate (cells per sec) can be set to a variety of
518 * different values by specifying two parameters: a timer preload from
519 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
520 * an exponent from 0 to 14; the special value 15 disables the timer).
521 *
522 * cellrate = baserate / (preload * 2^divider)
523 *
524 * The maximum cell rate that can be specified is therefore just the
525 * base rate. Halving the preload is equivalent to adding 1 to the
526 * divider and so values 1 to 8 of the preload are redundant except
527 * in the case of a maximal divider (14).
528 *
529 * Given a desired cell rate, an algorithm to determine the preload
530 * and divider is:
531 *
532 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
533 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
534 * if x <= 16 then set p = x, d = 0 (high rates), done
535 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
536 * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
537 * we find the range (n will be between 1 and 14), set d = n
538 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
539 *
540 * The algorithm used below is a minor variant of the above.
541 *
542 * The base rate is derived from the oscillator frequency (Hz) using a
543 * fixed divider:
544 *
545 * baserate = freq / 32 in the case of some Unknown Card
546 * baserate = freq / 8 in the case of the Horizon 25
547 * baserate = freq / 8 in the case of the Horizon Ultra 155
548 *
549 * The Horizon cards have oscillators and base rates as follows:
550 *
551 * Card Oscillator Base Rate
552 * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
553 * Horizon 25 32 MHz 4 MHz
554 * Horizon Ultra 155 40 MHz 5 MHz
555 *
556 * The following defines give the base rates in Hz. These were
557 * previously a factor of 100 larger, no doubt someone was using
558 * cps*100.
559 */
560
561 #define BR_UKN 1031250l
562 #define BR_HRZ 4000000l
563 #define BR_ULT 5000000l
564
565 // d is an exponent
566 #define CR_MIND 0
567 #define CR_MAXD 14
568
569 // p ranges from 1 to a power of 2
570 #define CR_MAXPEXP 4
571
make_rate(const hrz_dev * dev,u32 c,rounding r,u16 * bits,unsigned int * actual)572 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
573 u16 * bits, unsigned int * actual)
574 {
575 // note: rounding the rate down means rounding 'p' up
576 const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
577
578 u32 div = CR_MIND;
579 u32 pre;
580
581 // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
582 // the tests below. We could think harder about exact possibilities
583 // of failure...
584
585 unsigned long br_man = br;
586 unsigned int br_exp = 0;
587
588 PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
589 r == round_up ? "up" : r == round_down ? "down" : "nearest");
590
591 // avoid div by zero
592 if (!c) {
593 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
594 return -EINVAL;
595 }
596
597 while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
598 br_man = br_man >> 1;
599 ++br_exp;
600 }
601 // (br >>br_exp) <<br_exp == br and
602 // br_exp <= CR_MAXPEXP+CR_MIND
603
604 if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
605 // Equivalent to: B <= (c << (MAXPEXP+MIND))
606 // take care of rounding
607 switch (r) {
608 case round_down:
609 pre = DIV_ROUND_UP(br, c<<div);
610 // but p must be non-zero
611 if (!pre)
612 pre = 1;
613 break;
614 case round_nearest:
615 pre = DIV_ROUND_CLOSEST(br, c<<div);
616 // but p must be non-zero
617 if (!pre)
618 pre = 1;
619 break;
620 default: /* round_up */
621 pre = br/(c<<div);
622 // but p must be non-zero
623 if (!pre)
624 return -EINVAL;
625 }
626 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
627 goto got_it;
628 }
629
630 // at this point we have
631 // d == MIND and (c << (MAXPEXP+MIND)) < B
632 while (div < CR_MAXD) {
633 div++;
634 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
635 // Equivalent to: B <= (c << (MAXPEXP+d))
636 // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
637 // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
638 // MAXP/2 < B/c2^d <= MAXP
639 // take care of rounding
640 switch (r) {
641 case round_down:
642 pre = DIV_ROUND_UP(br, c<<div);
643 break;
644 case round_nearest:
645 pre = DIV_ROUND_CLOSEST(br, c<<div);
646 break;
647 default: /* round_up */
648 pre = br/(c<<div);
649 }
650 PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
651 goto got_it;
652 }
653 }
654 // at this point we have
655 // d == MAXD and (c << (MAXPEXP+MAXD)) < B
656 // but we cannot go any higher
657 // take care of rounding
658 if (r == round_down)
659 return -EINVAL;
660 pre = 1 << CR_MAXPEXP;
661 PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
662 got_it:
663 // paranoia
664 if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
665 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
666 div, pre);
667 return -EINVAL;
668 } else {
669 if (bits)
670 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
671 if (actual) {
672 *actual = DIV_ROUND_UP(br, pre<<div);
673 PRINTD (DBG_QOS, "actual rate: %u", *actual);
674 }
675 return 0;
676 }
677 }
678
make_rate_with_tolerance(const hrz_dev * dev,u32 c,rounding r,unsigned int tol,u16 * bit_pattern,unsigned int * actual)679 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
680 u16 * bit_pattern, unsigned int * actual) {
681 unsigned int my_actual;
682
683 PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
684 c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
685
686 if (!actual)
687 // actual rate is not returned
688 actual = &my_actual;
689
690 if (make_rate (dev, c, round_nearest, bit_pattern, actual))
691 // should never happen as round_nearest always succeeds
692 return -1;
693
694 if (c - tol <= *actual && *actual <= c + tol)
695 // within tolerance
696 return 0;
697 else
698 // intolerant, try rounding instead
699 return make_rate (dev, c, r, bit_pattern, actual);
700 }
701
702 /********** Listen on a VC **********/
703
hrz_open_rx(hrz_dev * dev,u16 channel)704 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
705 // is there any guarantee that we don't get two simulataneous
706 // identical calls of this function from different processes? yes
707 // rate_lock
708 unsigned long flags;
709 u32 channel_type; // u16?
710
711 u16 buf_ptr = RX_CHANNEL_IDLE;
712
713 rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
714
715 PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
716
717 spin_lock_irqsave (&dev->mem_lock, flags);
718 channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
719 spin_unlock_irqrestore (&dev->mem_lock, flags);
720
721 // very serious error, should never occur
722 if (channel_type != RX_CHANNEL_DISABLED) {
723 PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
724 return -EBUSY; // clean up?
725 }
726
727 // Give back spare buffer
728 if (dev->noof_spare_buffers) {
729 buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
730 PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
731 // should never occur
732 if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
733 // but easy to recover from
734 PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
735 buf_ptr = RX_CHANNEL_IDLE;
736 }
737 } else {
738 PRINTD (DBG_VCC, "using IDLE buffer pointer");
739 }
740
741 // Channel is currently disabled so change its status to idle
742
743 // do we really need to save the flags again?
744 spin_lock_irqsave (&dev->mem_lock, flags);
745
746 wr_mem (dev, &rx_desc->wr_buf_type,
747 buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
748 if (buf_ptr != RX_CHANNEL_IDLE)
749 wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
750
751 spin_unlock_irqrestore (&dev->mem_lock, flags);
752
753 // rxer->rate = make_rate (qos->peak_cells);
754
755 PRINTD (DBG_FLOW, "hrz_open_rx ok");
756
757 return 0;
758 }
759
760 #if 0
761 /********** change vc rate for a given vc **********/
762
763 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
764 rxer->rate = make_rate (qos->peak_cells);
765 }
766 #endif
767
768 /********** free an skb (as per ATM device driver documentation) **********/
769
hrz_kfree_skb(struct sk_buff * skb)770 static void hrz_kfree_skb (struct sk_buff * skb) {
771 if (ATM_SKB(skb)->vcc->pop) {
772 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
773 } else {
774 dev_kfree_skb_any (skb);
775 }
776 }
777
778 /********** cancel listen on a VC **********/
779
hrz_close_rx(hrz_dev * dev,u16 vc)780 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
781 unsigned long flags;
782
783 u32 value;
784
785 u32 r1, r2;
786
787 rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
788
789 int was_idle = 0;
790
791 spin_lock_irqsave (&dev->mem_lock, flags);
792 value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
793 spin_unlock_irqrestore (&dev->mem_lock, flags);
794
795 if (value == RX_CHANNEL_DISABLED) {
796 // I suppose this could happen once we deal with _NONE traffic properly
797 PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
798 return;
799 }
800 if (value == RX_CHANNEL_IDLE)
801 was_idle = 1;
802
803 spin_lock_irqsave (&dev->mem_lock, flags);
804
805 for (;;) {
806 wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
807
808 if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
809 break;
810
811 was_idle = 0;
812 }
813
814 if (was_idle) {
815 spin_unlock_irqrestore (&dev->mem_lock, flags);
816 return;
817 }
818
819 WAIT_FLUSH_RX_COMPLETE(dev);
820
821 // XXX Is this all really necessary? We can rely on the rx_data_av
822 // handler to discard frames that remain queued for delivery. If the
823 // worry is that immediately reopening the channel (perhaps by a
824 // different process) may cause some data to be mis-delivered then
825 // there may still be a simpler solution (such as busy-waiting on
826 // rx_busy once the channel is disabled or before a new one is
827 // opened - does this leave any holes?). Arguably setting up and
828 // tearing down the TX and RX halves of each virtual circuit could
829 // most safely be done within ?x_busy protected regions.
830
831 // OK, current changes are that Simon's marker is disabled and we DO
832 // look for NULL rxer elsewhere. The code here seems flush frames
833 // and then remember the last dead cell belonging to the channel
834 // just disabled - the cell gets relinked at the next vc_open.
835 // However, when all VCs are closed or only a few opened there are a
836 // handful of buffers that are unusable.
837
838 // Does anyone feel like documenting spare_buffers properly?
839 // Does anyone feel like fixing this in a nicer way?
840
841 // Flush any data which is left in the channel
842 for (;;) {
843 // Change the rx channel port to something different to the RX
844 // channel we are trying to close to force Horizon to flush the rx
845 // channel read and write pointers.
846
847 u16 other = vc^(RX_CHANS/2);
848
849 SELECT_RX_CHANNEL (dev, other);
850 WAIT_UPDATE_COMPLETE (dev);
851
852 r1 = rd_mem (dev, &rx_desc->rd_buf_type);
853
854 // Select this RX channel. Flush doesn't seem to work unless we
855 // select an RX channel before hand
856
857 SELECT_RX_CHANNEL (dev, vc);
858 WAIT_UPDATE_COMPLETE (dev);
859
860 // Attempt to flush a frame on this RX channel
861
862 FLUSH_RX_CHANNEL (dev, vc);
863 WAIT_FLUSH_RX_COMPLETE (dev);
864
865 // Force Horizon to flush rx channel read and write pointers as before
866
867 SELECT_RX_CHANNEL (dev, other);
868 WAIT_UPDATE_COMPLETE (dev);
869
870 r2 = rd_mem (dev, &rx_desc->rd_buf_type);
871
872 PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
873
874 if (r1 == r2) {
875 dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
876 break;
877 }
878 }
879
880 #if 0
881 {
882 rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
883 rx_q_entry * rd_ptr = dev->rx_q_entry;
884
885 PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
886
887 while (rd_ptr != wr_ptr) {
888 u32 x = rd_mem (dev, (HDW *) rd_ptr);
889
890 if (vc == rx_q_entry_to_rx_channel (x)) {
891 x |= SIMONS_DODGEY_MARKER;
892
893 PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
894
895 wr_mem (dev, (HDW *) rd_ptr, x);
896 }
897
898 if (rd_ptr == dev->rx_q_wrap)
899 rd_ptr = dev->rx_q_reset;
900 else
901 rd_ptr++;
902 }
903 }
904 #endif
905
906 spin_unlock_irqrestore (&dev->mem_lock, flags);
907
908 return;
909 }
910
911 /********** schedule RX transfers **********/
912
913 // Note on tail recursion: a GCC developer said that it is not likely
914 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
915 // are sure it does as you may otherwise overflow the kernel stack.
916
917 // giving this fn a return value would help GCC, allegedly
918
rx_schedule(hrz_dev * dev,int irq)919 static void rx_schedule (hrz_dev * dev, int irq) {
920 unsigned int rx_bytes;
921
922 int pio_instead = 0;
923 #ifndef TAILRECURSIONWORKS
924 pio_instead = 1;
925 while (pio_instead) {
926 #endif
927 // bytes waiting for RX transfer
928 rx_bytes = dev->rx_bytes;
929
930 #if 0
931 spin_count = 0;
932 while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
933 PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
934 if (++spin_count > 10) {
935 PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
936 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
937 clear_bit (rx_busy, &dev->flags);
938 hrz_kfree_skb (dev->rx_skb);
939 return;
940 }
941 }
942 #endif
943
944 // this code follows the TX code but (at the moment) there is only
945 // one region - the skb itself. I don't know if this will change,
946 // but it doesn't hurt to have the code here, disabled.
947
948 if (rx_bytes) {
949 // start next transfer within same region
950 if (rx_bytes <= MAX_PIO_COUNT) {
951 PRINTD (DBG_RX|DBG_BUS, "(pio)");
952 pio_instead = 1;
953 }
954 if (rx_bytes <= MAX_TRANSFER_COUNT) {
955 PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
956 dev->rx_bytes = 0;
957 } else {
958 PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
959 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
960 rx_bytes = MAX_TRANSFER_COUNT;
961 }
962 } else {
963 // rx_bytes == 0 -- we're between regions
964 // regions remaining to transfer
965 #if 0
966 unsigned int rx_regions = dev->rx_regions;
967 #else
968 unsigned int rx_regions = 0;
969 #endif
970
971 if (rx_regions) {
972 #if 0
973 // start a new region
974 dev->rx_addr = dev->rx_iovec->iov_base;
975 rx_bytes = dev->rx_iovec->iov_len;
976 ++dev->rx_iovec;
977 dev->rx_regions = rx_regions - 1;
978
979 if (rx_bytes <= MAX_PIO_COUNT) {
980 PRINTD (DBG_RX|DBG_BUS, "(pio)");
981 pio_instead = 1;
982 }
983 if (rx_bytes <= MAX_TRANSFER_COUNT) {
984 PRINTD (DBG_RX|DBG_BUS, "(full region)");
985 dev->rx_bytes = 0;
986 } else {
987 PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
988 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
989 rx_bytes = MAX_TRANSFER_COUNT;
990 }
991 #endif
992 } else {
993 // rx_regions == 0
994 // that's all folks - end of frame
995 struct sk_buff * skb = dev->rx_skb;
996 // dev->rx_iovec = 0;
997
998 FLUSH_RX_CHANNEL (dev, dev->rx_channel);
999
1000 dump_skb ("<<<", dev->rx_channel, skb);
1001
1002 PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1003
1004 {
1005 struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1006 // VC layer stats
1007 atomic_inc(&vcc->stats->rx);
1008 __net_timestamp(skb);
1009 // end of our responsibility
1010 vcc->push (vcc, skb);
1011 }
1012 }
1013 }
1014
1015 // note: writing RX_COUNT clears any interrupt condition
1016 if (rx_bytes) {
1017 if (pio_instead) {
1018 if (irq)
1019 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1020 rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1021 } else {
1022 wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1023 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1024 }
1025 dev->rx_addr += rx_bytes;
1026 } else {
1027 if (irq)
1028 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1029 // allow another RX thread to start
1030 YELLOW_LED_ON(dev);
1031 clear_bit (rx_busy, &dev->flags);
1032 PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1033 }
1034
1035 #ifdef TAILRECURSIONWORKS
1036 // and we all bless optimised tail calls
1037 if (pio_instead)
1038 return rx_schedule (dev, 0);
1039 return;
1040 #else
1041 // grrrrrrr!
1042 irq = 0;
1043 }
1044 return;
1045 #endif
1046 }
1047
1048 /********** handle RX bus master complete events **********/
1049
rx_bus_master_complete_handler(hrz_dev * dev)1050 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1051 if (test_bit (rx_busy, &dev->flags)) {
1052 rx_schedule (dev, 1);
1053 } else {
1054 PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1055 // clear interrupt condition on adapter
1056 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1057 }
1058 return;
1059 }
1060
1061 /********** (queue to) become the next TX thread **********/
1062
tx_hold(hrz_dev * dev)1063 static int tx_hold (hrz_dev * dev) {
1064 PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1065 wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1066 PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1067 if (signal_pending (current))
1068 return -1;
1069 PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1070 return 0;
1071 }
1072
1073 /********** allow another TX thread to start **********/
1074
tx_release(hrz_dev * dev)1075 static inline void tx_release (hrz_dev * dev) {
1076 clear_bit (tx_busy, &dev->flags);
1077 PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1078 wake_up_interruptible (&dev->tx_queue);
1079 }
1080
1081 /********** schedule TX transfers **********/
1082
tx_schedule(hrz_dev * const dev,int irq)1083 static void tx_schedule (hrz_dev * const dev, int irq) {
1084 unsigned int tx_bytes;
1085
1086 int append_desc = 0;
1087
1088 int pio_instead = 0;
1089 #ifndef TAILRECURSIONWORKS
1090 pio_instead = 1;
1091 while (pio_instead) {
1092 #endif
1093 // bytes in current region waiting for TX transfer
1094 tx_bytes = dev->tx_bytes;
1095
1096 #if 0
1097 spin_count = 0;
1098 while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1099 PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1100 if (++spin_count > 10) {
1101 PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1102 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1103 tx_release (dev);
1104 hrz_kfree_skb (dev->tx_skb);
1105 return;
1106 }
1107 }
1108 #endif
1109
1110 if (tx_bytes) {
1111 // start next transfer within same region
1112 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1113 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1114 pio_instead = 1;
1115 }
1116 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1117 PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1118 if (!dev->tx_iovec) {
1119 // end of last region
1120 append_desc = 1;
1121 }
1122 dev->tx_bytes = 0;
1123 } else {
1124 PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1125 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1126 tx_bytes = MAX_TRANSFER_COUNT;
1127 }
1128 } else {
1129 // tx_bytes == 0 -- we're between regions
1130 // regions remaining to transfer
1131 unsigned int tx_regions = dev->tx_regions;
1132
1133 if (tx_regions) {
1134 // start a new region
1135 dev->tx_addr = dev->tx_iovec->iov_base;
1136 tx_bytes = dev->tx_iovec->iov_len;
1137 ++dev->tx_iovec;
1138 dev->tx_regions = tx_regions - 1;
1139
1140 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1141 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1142 pio_instead = 1;
1143 }
1144 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1145 PRINTD (DBG_TX|DBG_BUS, "(full region)");
1146 dev->tx_bytes = 0;
1147 } else {
1148 PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1149 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1150 tx_bytes = MAX_TRANSFER_COUNT;
1151 }
1152 } else {
1153 // tx_regions == 0
1154 // that's all folks - end of frame
1155 struct sk_buff * skb = dev->tx_skb;
1156 dev->tx_iovec = NULL;
1157
1158 // VC layer stats
1159 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1160
1161 // free the skb
1162 hrz_kfree_skb (skb);
1163 }
1164 }
1165
1166 // note: writing TX_COUNT clears any interrupt condition
1167 if (tx_bytes) {
1168 if (pio_instead) {
1169 if (irq)
1170 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1171 wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1172 if (append_desc)
1173 wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1174 } else {
1175 wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1176 if (append_desc)
1177 wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1178 wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1179 append_desc
1180 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1181 : tx_bytes);
1182 }
1183 dev->tx_addr += tx_bytes;
1184 } else {
1185 if (irq)
1186 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1187 YELLOW_LED_ON(dev);
1188 tx_release (dev);
1189 }
1190
1191 #ifdef TAILRECURSIONWORKS
1192 // and we all bless optimised tail calls
1193 if (pio_instead)
1194 return tx_schedule (dev, 0);
1195 return;
1196 #else
1197 // grrrrrrr!
1198 irq = 0;
1199 }
1200 return;
1201 #endif
1202 }
1203
1204 /********** handle TX bus master complete events **********/
1205
tx_bus_master_complete_handler(hrz_dev * dev)1206 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1207 if (test_bit (tx_busy, &dev->flags)) {
1208 tx_schedule (dev, 1);
1209 } else {
1210 PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1211 // clear interrupt condition on adapter
1212 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1213 }
1214 return;
1215 }
1216
1217 /********** move RX Q pointer to next item in circular buffer **********/
1218
1219 // called only from IRQ sub-handler
rx_queue_entry_next(hrz_dev * dev)1220 static u32 rx_queue_entry_next (hrz_dev * dev) {
1221 u32 rx_queue_entry;
1222 spin_lock (&dev->mem_lock);
1223 rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1224 if (dev->rx_q_entry == dev->rx_q_wrap)
1225 dev->rx_q_entry = dev->rx_q_reset;
1226 else
1227 dev->rx_q_entry++;
1228 wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1229 spin_unlock (&dev->mem_lock);
1230 return rx_queue_entry;
1231 }
1232
1233 /********** handle RX data received by device **********/
1234
1235 // called from IRQ handler
rx_data_av_handler(hrz_dev * dev)1236 static void rx_data_av_handler (hrz_dev * dev) {
1237 u32 rx_queue_entry;
1238 u32 rx_queue_entry_flags;
1239 u16 rx_len;
1240 u16 rx_channel;
1241
1242 PRINTD (DBG_FLOW, "hrz_data_av_handler");
1243
1244 // try to grab rx lock (not possible during RX bus mastering)
1245 if (test_and_set_bit (rx_busy, &dev->flags)) {
1246 PRINTD (DBG_RX, "locked out of rx lock");
1247 return;
1248 }
1249 PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1250 // lock is cleared if we fail now, o/w after bus master completion
1251
1252 YELLOW_LED_OFF(dev);
1253
1254 rx_queue_entry = rx_queue_entry_next (dev);
1255
1256 rx_len = rx_q_entry_to_length (rx_queue_entry);
1257 rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1258
1259 WAIT_FLUSH_RX_COMPLETE (dev);
1260
1261 SELECT_RX_CHANNEL (dev, rx_channel);
1262
1263 PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1264 rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1265
1266 if (!rx_len) {
1267 // (at least) bus-mastering breaks if we try to handle a
1268 // zero-length frame, besides AAL5 does not support them
1269 PRINTK (KERN_ERR, "zero-length frame!");
1270 rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1271 }
1272
1273 if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1274 PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1275 }
1276 if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1277 struct atm_vcc * atm_vcc;
1278
1279 PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1280
1281 atm_vcc = dev->rxer[rx_channel];
1282 // if no vcc is assigned to this channel, we should drop the frame
1283 // (is this what SIMONS etc. was trying to achieve?)
1284
1285 if (atm_vcc) {
1286
1287 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1288
1289 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1290
1291 struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1292 if (skb) {
1293 // remember this so we can push it later
1294 dev->rx_skb = skb;
1295 // remember this so we can flush it later
1296 dev->rx_channel = rx_channel;
1297
1298 // prepare socket buffer
1299 skb_put (skb, rx_len);
1300 ATM_SKB(skb)->vcc = atm_vcc;
1301
1302 // simple transfer
1303 // dev->rx_regions = 0;
1304 // dev->rx_iovec = 0;
1305 dev->rx_bytes = rx_len;
1306 dev->rx_addr = skb->data;
1307 PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1308 skb->data, rx_len);
1309
1310 // do the business
1311 rx_schedule (dev, 0);
1312 return;
1313
1314 } else {
1315 PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1316 }
1317
1318 } else {
1319 PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1320 // do we count this?
1321 }
1322
1323 } else {
1324 PRINTK (KERN_WARNING, "dropped over-size frame");
1325 // do we count this?
1326 }
1327
1328 } else {
1329 PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1330 // do we count this?
1331 }
1332
1333 } else {
1334 // Wait update complete ? SPONG
1335 }
1336
1337 // RX was aborted
1338 YELLOW_LED_ON(dev);
1339
1340 FLUSH_RX_CHANNEL (dev,rx_channel);
1341 clear_bit (rx_busy, &dev->flags);
1342
1343 return;
1344 }
1345
1346 /********** interrupt handler **********/
1347
interrupt_handler(int irq,void * dev_id)1348 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1349 {
1350 hrz_dev *dev = dev_id;
1351 u32 int_source;
1352 unsigned int irq_ok;
1353
1354 PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1355
1356 // definitely for us
1357 irq_ok = 0;
1358 while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1359 & INTERESTING_INTERRUPTS)) {
1360 // In the interests of fairness, the handlers below are
1361 // called in sequence and without immediate return to the head of
1362 // the while loop. This is only of issue for slow hosts (or when
1363 // debugging messages are on). Really slow hosts may find a fast
1364 // sender keeps them permanently in the IRQ handler. :(
1365
1366 // (only an issue for slow hosts) RX completion goes before
1367 // rx_data_av as the former implies rx_busy and so the latter
1368 // would just abort. If it reschedules another transfer
1369 // (continuing the same frame) then it will not clear rx_busy.
1370
1371 // (only an issue for slow hosts) TX completion goes before RX
1372 // data available as it is a much shorter routine - there is the
1373 // chance that any further transfers it schedules will be complete
1374 // by the time of the return to the head of the while loop
1375
1376 if (int_source & RX_BUS_MASTER_COMPLETE) {
1377 ++irq_ok;
1378 PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1379 rx_bus_master_complete_handler (dev);
1380 }
1381 if (int_source & TX_BUS_MASTER_COMPLETE) {
1382 ++irq_ok;
1383 PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1384 tx_bus_master_complete_handler (dev);
1385 }
1386 if (int_source & RX_DATA_AV) {
1387 ++irq_ok;
1388 PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1389 rx_data_av_handler (dev);
1390 }
1391 }
1392 if (irq_ok) {
1393 PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1394 } else {
1395 PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1396 }
1397
1398 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1399 if (irq_ok)
1400 return IRQ_HANDLED;
1401 return IRQ_NONE;
1402 }
1403
1404 /********** housekeeping **********/
1405
do_housekeeping(struct timer_list * t)1406 static void do_housekeeping (struct timer_list *t) {
1407 // just stats at the moment
1408 hrz_dev * dev = from_timer(dev, t, housekeeping);
1409
1410 // collect device-specific (not driver/atm-linux) stats here
1411 dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1412 dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1413 dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1414 dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1415
1416 mod_timer (&dev->housekeeping, jiffies + HZ/10);
1417
1418 return;
1419 }
1420
1421 /********** find an idle channel for TX and set it up **********/
1422
1423 // called with tx_busy set
setup_idle_tx_channel(hrz_dev * dev,hrz_vcc * vcc)1424 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1425 unsigned short idle_channels;
1426 short tx_channel = -1;
1427 unsigned int spin_count;
1428 PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1429
1430 // better would be to fail immediately, the caller can then decide whether
1431 // to wait or drop (depending on whether this is UBR etc.)
1432 spin_count = 0;
1433 while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1434 PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1435 // delay a bit here
1436 if (++spin_count > 100) {
1437 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1438 return -EBUSY;
1439 }
1440 }
1441
1442 // got an idle channel
1443 {
1444 // tx_idle ensures we look for idle channels in RR order
1445 int chan = dev->tx_idle;
1446
1447 int keep_going = 1;
1448 while (keep_going) {
1449 if (idle_channels & (1<<chan)) {
1450 tx_channel = chan;
1451 keep_going = 0;
1452 }
1453 ++chan;
1454 if (chan == TX_CHANS)
1455 chan = 0;
1456 }
1457
1458 dev->tx_idle = chan;
1459 }
1460
1461 // set up the channel we found
1462 {
1463 // Initialise the cell header in the transmit channel descriptor
1464 // a.k.a. prepare the channel and remember that we have done so.
1465
1466 tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1467 u32 rd_ptr;
1468 u32 wr_ptr;
1469 u16 channel = vcc->channel;
1470
1471 unsigned long flags;
1472 spin_lock_irqsave (&dev->mem_lock, flags);
1473
1474 // Update the transmit channel record.
1475 dev->tx_channel_record[tx_channel] = channel;
1476
1477 // xBR channel
1478 update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1479 vcc->tx_xbr_bits);
1480
1481 // Update the PCR counter preload value etc.
1482 update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1483 vcc->tx_pcr_bits);
1484
1485 #if 0
1486 if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1487 // SCR timer
1488 update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1489 vcc->tx_scr_bits);
1490
1491 // Bucket size...
1492 update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1493 vcc->tx_bucket_bits);
1494
1495 // ... and fullness
1496 update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1497 vcc->tx_bucket_bits);
1498 }
1499 #endif
1500
1501 // Initialise the read and write buffer pointers
1502 rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1503 wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1504
1505 // idle TX channels should have identical pointers
1506 if (rd_ptr != wr_ptr) {
1507 PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1508 // spin_unlock... return -E...
1509 // I wonder if gcc would get rid of one of the pointer aliases
1510 }
1511 PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1512 rd_ptr, wr_ptr);
1513
1514 switch (vcc->aal) {
1515 case aal0:
1516 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1517 rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1518 wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1519 break;
1520 case aal34:
1521 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1522 rd_ptr |= CHANNEL_TYPE_AAL3_4;
1523 wr_ptr |= CHANNEL_TYPE_AAL3_4;
1524 break;
1525 case aal5:
1526 rd_ptr |= CHANNEL_TYPE_AAL5;
1527 wr_ptr |= CHANNEL_TYPE_AAL5;
1528 // Initialise the CRC
1529 wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1530 break;
1531 }
1532
1533 wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1534 wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1535
1536 // Write the Cell Header
1537 // Payload Type, CLP and GFC would go here if non-zero
1538 wr_mem (dev, &tx_desc->cell_header, channel);
1539
1540 spin_unlock_irqrestore (&dev->mem_lock, flags);
1541 }
1542
1543 return tx_channel;
1544 }
1545
1546 /********** send a frame **********/
1547
hrz_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1548 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1549 unsigned int spin_count;
1550 int free_buffers;
1551 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1552 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1553 u16 channel = vcc->channel;
1554
1555 u32 buffers_required;
1556
1557 /* signed for error return */
1558 short tx_channel;
1559
1560 PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1561 channel, skb->data, skb->len);
1562
1563 dump_skb (">>>", channel, skb);
1564
1565 if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1566 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1567 hrz_kfree_skb (skb);
1568 return -EIO;
1569 }
1570
1571 // don't understand this
1572 ATM_SKB(skb)->vcc = atm_vcc;
1573
1574 if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1575 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1576 hrz_kfree_skb (skb);
1577 return -EIO;
1578 }
1579
1580 if (!channel) {
1581 PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1582 hrz_kfree_skb (skb);
1583 return -EIO;
1584 }
1585
1586 #if 0
1587 {
1588 // where would be a better place for this? housekeeping?
1589 u16 status;
1590 pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1591 if (status & PCI_STATUS_REC_MASTER_ABORT) {
1592 PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1593 status &= ~PCI_STATUS_REC_MASTER_ABORT;
1594 pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1595 if (test_bit (tx_busy, &dev->flags)) {
1596 hrz_kfree_skb (dev->tx_skb);
1597 tx_release (dev);
1598 }
1599 }
1600 }
1601 #endif
1602
1603 #ifdef DEBUG_HORIZON
1604 /* wey-hey! */
1605 if (channel == 1023) {
1606 unsigned int i;
1607 unsigned short d = 0;
1608 char * s = skb->data;
1609 if (*s++ == 'D') {
1610 for (i = 0; i < 4; ++i)
1611 d = (d << 4) | hex_to_bin(*s++);
1612 PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1613 }
1614 }
1615 #endif
1616
1617 // wait until TX is free and grab lock
1618 if (tx_hold (dev)) {
1619 hrz_kfree_skb (skb);
1620 return -ERESTARTSYS;
1621 }
1622
1623 // Wait for enough space to be available in transmit buffer memory.
1624
1625 // should be number of cells needed + 2 (according to hardware docs)
1626 // = ((framelen+8)+47) / 48 + 2
1627 // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1628 buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1629
1630 // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1631 spin_count = 0;
1632 while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1633 PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1634 free_buffers, buffers_required);
1635 // what is the appropriate delay? implement a timeout? (depending on line speed?)
1636 // mdelay (1);
1637 // what happens if we kill (current_pid, SIGKILL) ?
1638 schedule();
1639 if (++spin_count > 1000) {
1640 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1641 free_buffers, buffers_required);
1642 tx_release (dev);
1643 hrz_kfree_skb (skb);
1644 return -ERESTARTSYS;
1645 }
1646 }
1647
1648 // Select a channel to transmit the frame on.
1649 if (channel == dev->last_vc) {
1650 PRINTD (DBG_TX, "last vc hack: hit");
1651 tx_channel = dev->tx_last;
1652 } else {
1653 PRINTD (DBG_TX, "last vc hack: miss");
1654 // Are we currently transmitting this VC on one of the channels?
1655 for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1656 if (dev->tx_channel_record[tx_channel] == channel) {
1657 PRINTD (DBG_TX, "vc already on channel: hit");
1658 break;
1659 }
1660 if (tx_channel == TX_CHANS) {
1661 PRINTD (DBG_TX, "vc already on channel: miss");
1662 // Find and set up an idle channel.
1663 tx_channel = setup_idle_tx_channel (dev, vcc);
1664 if (tx_channel < 0) {
1665 PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1666 tx_release (dev);
1667 return tx_channel;
1668 }
1669 }
1670
1671 PRINTD (DBG_TX, "got channel");
1672 SELECT_TX_CHANNEL(dev, tx_channel);
1673
1674 dev->last_vc = channel;
1675 dev->tx_last = tx_channel;
1676 }
1677
1678 PRINTD (DBG_TX, "using channel %u", tx_channel);
1679
1680 YELLOW_LED_OFF(dev);
1681
1682 // TX start transfer
1683
1684 {
1685 unsigned int tx_len = skb->len;
1686 unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1687 // remember this so we can free it later
1688 dev->tx_skb = skb;
1689
1690 if (tx_iovcnt) {
1691 // scatter gather transfer
1692 dev->tx_regions = tx_iovcnt;
1693 dev->tx_iovec = NULL; /* @@@ needs rewritten */
1694 dev->tx_bytes = 0;
1695 PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1696 skb->data, tx_len);
1697 tx_release (dev);
1698 hrz_kfree_skb (skb);
1699 return -EIO;
1700 } else {
1701 // simple transfer
1702 dev->tx_regions = 0;
1703 dev->tx_iovec = NULL;
1704 dev->tx_bytes = tx_len;
1705 dev->tx_addr = skb->data;
1706 PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1707 skb->data, tx_len);
1708 }
1709
1710 // and do the business
1711 tx_schedule (dev, 0);
1712
1713 }
1714
1715 return 0;
1716 }
1717
1718 /********** reset a card **********/
1719
hrz_reset(const hrz_dev * dev)1720 static void hrz_reset (const hrz_dev * dev) {
1721 u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1722
1723 // why not set RESET_HORIZON to one and wait for the card to
1724 // reassert that bit as zero? Like so:
1725 control_0_reg = control_0_reg & RESET_HORIZON;
1726 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1727 while (control_0_reg & RESET_HORIZON)
1728 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1729
1730 // old reset code retained:
1731 wr_regl (dev, CONTROL_0_REG, control_0_reg |
1732 RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1733 // just guessing here
1734 udelay (1000);
1735
1736 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1737 }
1738
1739 /********** read the burnt in address **********/
1740
WRITE_IT_WAIT(const hrz_dev * dev,u32 ctrl)1741 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1742 {
1743 wr_regl (dev, CONTROL_0_REG, ctrl);
1744 udelay (5);
1745 }
1746
CLOCK_IT(const hrz_dev * dev,u32 ctrl)1747 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1748 {
1749 // DI must be valid around rising SK edge
1750 WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1751 WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1752 }
1753
read_bia(const hrz_dev * dev,u16 addr)1754 static u16 read_bia(const hrz_dev *dev, u16 addr)
1755 {
1756 u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1757
1758 const unsigned int addr_bits = 6;
1759 const unsigned int data_bits = 16;
1760
1761 unsigned int i;
1762
1763 u16 res;
1764
1765 ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1766 WRITE_IT_WAIT(dev, ctrl);
1767
1768 // wake Serial EEPROM and send 110 (READ) command
1769 ctrl |= (SEEPROM_CS | SEEPROM_DI);
1770 CLOCK_IT(dev, ctrl);
1771
1772 ctrl |= SEEPROM_DI;
1773 CLOCK_IT(dev, ctrl);
1774
1775 ctrl &= ~SEEPROM_DI;
1776 CLOCK_IT(dev, ctrl);
1777
1778 for (i=0; i<addr_bits; i++) {
1779 if (addr & (1 << (addr_bits-1)))
1780 ctrl |= SEEPROM_DI;
1781 else
1782 ctrl &= ~SEEPROM_DI;
1783
1784 CLOCK_IT(dev, ctrl);
1785
1786 addr = addr << 1;
1787 }
1788
1789 // we could check that we have DO = 0 here
1790 ctrl &= ~SEEPROM_DI;
1791
1792 res = 0;
1793 for (i=0;i<data_bits;i++) {
1794 res = res >> 1;
1795
1796 CLOCK_IT(dev, ctrl);
1797
1798 if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1799 res |= (1 << (data_bits-1));
1800 }
1801
1802 ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1803 WRITE_IT_WAIT(dev, ctrl);
1804
1805 return res;
1806 }
1807
1808 /********** initialise a card **********/
1809
hrz_init(hrz_dev * dev)1810 static int hrz_init(hrz_dev *dev)
1811 {
1812 int onefivefive;
1813
1814 u16 chan;
1815
1816 int buff_count;
1817
1818 HDW * mem;
1819
1820 cell_buf * tx_desc;
1821 cell_buf * rx_desc;
1822
1823 u32 ctrl;
1824
1825 ctrl = rd_regl (dev, CONTROL_0_REG);
1826 PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1827 onefivefive = ctrl & ATM_LAYER_STATUS;
1828
1829 if (onefivefive)
1830 printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1831 else
1832 printk (DEV_LABEL ": Horizon (at 25 MBps)");
1833
1834 printk (":");
1835 // Reset the card to get everything in a known state
1836
1837 printk (" reset");
1838 hrz_reset (dev);
1839
1840 // Clear all the buffer memory
1841
1842 printk (" clearing memory");
1843
1844 for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1845 wr_mem (dev, mem, 0);
1846
1847 printk (" tx channels");
1848
1849 // All transmit eight channels are set up as AAL5 ABR channels with
1850 // a 16us cell spacing. Why?
1851
1852 // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1853 // buffer at 110h etc.
1854
1855 for (chan = 0; chan < TX_CHANS; ++chan) {
1856 tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1857 cell_buf * buf = &memmap->inittxbufs[chan];
1858
1859 // initialise the read and write buffer pointers
1860 wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1861 wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1862
1863 // set the status of the initial buffers to empty
1864 wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1865 }
1866
1867 // Use space bufn3 at the moment for tx buffers
1868
1869 printk (" tx buffers");
1870
1871 tx_desc = memmap->bufn3;
1872
1873 wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1874
1875 for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1876 wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1877 tx_desc++;
1878 }
1879
1880 wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1881
1882 // Initialise the transmit free buffer count
1883 wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1884
1885 printk (" rx channels");
1886
1887 // Initialise all of the receive channels to be AAL5 disabled with
1888 // an interrupt threshold of 0
1889
1890 for (chan = 0; chan < RX_CHANS; ++chan) {
1891 rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1892
1893 wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1894 }
1895
1896 printk (" rx buffers");
1897
1898 // Use space bufn4 at the moment for rx buffers
1899
1900 rx_desc = memmap->bufn4;
1901
1902 wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1903
1904 for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1905 wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1906
1907 rx_desc++;
1908 }
1909
1910 wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1911
1912 // Initialise the receive free buffer count
1913 wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1914
1915 // Initialize Horizons registers
1916
1917 // TX config
1918 wr_regw (dev, TX_CONFIG_OFF,
1919 ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1920
1921 // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1922 wr_regw (dev, RX_CONFIG_OFF,
1923 DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1924
1925 // RX line config
1926 wr_regw (dev, RX_LINE_CONFIG_OFF,
1927 LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1928
1929 // Set the max AAL5 cell count to be just enough to contain the
1930 // largest AAL5 frame that the user wants to receive
1931 wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1932 DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1933
1934 // Enable receive
1935 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1936
1937 printk (" control");
1938
1939 // Drive the OE of the LEDs then turn the green LED on
1940 ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1941 wr_regl (dev, CONTROL_0_REG, ctrl);
1942
1943 // Test for a 155-capable card
1944
1945 if (onefivefive) {
1946 // Select 155 mode... make this a choice (or: how do we detect
1947 // external line speed and switch?)
1948 ctrl |= ATM_LAYER_SELECT;
1949 wr_regl (dev, CONTROL_0_REG, ctrl);
1950
1951 // test SUNI-lite vs SAMBA
1952
1953 // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1954 // they will always be zero for the SAMBA. Ha! Bloody hardware
1955 // engineers. It'll never work.
1956
1957 if (rd_framer (dev, 0) & 0x00f0) {
1958 // SUNI
1959 printk (" SUNI");
1960
1961 // Reset, just in case
1962 wr_framer (dev, 0x00, 0x0080);
1963 wr_framer (dev, 0x00, 0x0000);
1964
1965 // Configure transmit FIFO
1966 wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1967
1968 // Set line timed mode
1969 wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1970 } else {
1971 // SAMBA
1972 printk (" SAMBA");
1973
1974 // Reset, just in case
1975 wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1976 wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1977
1978 // Turn off diagnostic loopback and enable line-timed mode
1979 wr_framer (dev, 0, 0x0002);
1980
1981 // Turn on transmit outputs
1982 wr_framer (dev, 2, 0x0B80);
1983 }
1984 } else {
1985 // Select 25 mode
1986 ctrl &= ~ATM_LAYER_SELECT;
1987
1988 // Madge B154 setup
1989 // none required?
1990 }
1991
1992 printk (" LEDs");
1993
1994 GREEN_LED_ON(dev);
1995 YELLOW_LED_ON(dev);
1996
1997 printk (" ESI=");
1998
1999 {
2000 u16 b = 0;
2001 int i;
2002 u8 * esi = dev->atm_dev->esi;
2003
2004 // in the card I have, EEPROM
2005 // addresses 0, 1, 2 contain 0
2006 // addresess 5, 6 etc. contain ffff
2007 // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2008 // the read_bia routine gets the BIA in Ethernet bit order
2009
2010 for (i=0; i < ESI_LEN; ++i) {
2011 if (i % 2 == 0)
2012 b = read_bia (dev, i/2 + 2);
2013 else
2014 b = b >> 8;
2015 esi[i] = b & 0xFF;
2016 printk ("%02x", esi[i]);
2017 }
2018 }
2019
2020 // Enable RX_Q and ?X_COMPLETE interrupts only
2021 wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2022 printk (" IRQ on");
2023
2024 printk (".\n");
2025
2026 return onefivefive;
2027 }
2028
2029 /********** check max_sdu **********/
2030
check_max_sdu(hrz_aal aal,struct atm_trafprm * tp,unsigned int max_frame_size)2031 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2032 PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2033
2034 switch (aal) {
2035 case aal0:
2036 if (!(tp->max_sdu)) {
2037 PRINTD (DBG_QOS, "defaulting max_sdu");
2038 tp->max_sdu = ATM_AAL0_SDU;
2039 } else if (tp->max_sdu != ATM_AAL0_SDU) {
2040 PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2041 return -EINVAL;
2042 }
2043 break;
2044 case aal34:
2045 if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2046 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2047 tp->max_sdu = ATM_MAX_AAL34_PDU;
2048 }
2049 break;
2050 case aal5:
2051 if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2052 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2053 tp->max_sdu = max_frame_size;
2054 }
2055 break;
2056 }
2057 return 0;
2058 }
2059
2060 /********** check pcr **********/
2061
2062 // something like this should be part of ATM Linux
atm_pcr_check(struct atm_trafprm * tp,unsigned int pcr)2063 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2064 // we are assuming non-UBR, and non-special values of pcr
2065 if (tp->min_pcr == ATM_MAX_PCR)
2066 PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2067 else if (tp->min_pcr < 0)
2068 PRINTD (DBG_QOS, "luser gave negative min_pcr");
2069 else if (tp->min_pcr && tp->min_pcr > pcr)
2070 PRINTD (DBG_QOS, "pcr less than min_pcr");
2071 else
2072 // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2073 // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2074 // [this would get rid of next two conditionals]
2075 if ((0) && tp->max_pcr == ATM_MAX_PCR)
2076 PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2077 else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2078 PRINTD (DBG_QOS, "luser gave negative max_pcr");
2079 else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2080 PRINTD (DBG_QOS, "pcr greater than max_pcr");
2081 else {
2082 // each limit unspecified or not violated
2083 PRINTD (DBG_QOS, "xBR(pcr) OK");
2084 return 0;
2085 }
2086 PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2087 pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2088 return -EINVAL;
2089 }
2090
2091 /********** open VC **********/
2092
hrz_open(struct atm_vcc * atm_vcc)2093 static int hrz_open (struct atm_vcc *atm_vcc)
2094 {
2095 int error;
2096 u16 channel;
2097
2098 struct atm_qos * qos;
2099 struct atm_trafprm * txtp;
2100 struct atm_trafprm * rxtp;
2101
2102 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2103 hrz_vcc vcc;
2104 hrz_vcc * vccp; // allocated late
2105 short vpi = atm_vcc->vpi;
2106 int vci = atm_vcc->vci;
2107 PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2108
2109 #ifdef ATM_VPI_UNSPEC
2110 // UNSPEC is deprecated, remove this code eventually
2111 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2112 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2113 return -EINVAL;
2114 }
2115 #endif
2116
2117 error = vpivci_to_channel (&channel, vpi, vci);
2118 if (error) {
2119 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2120 return error;
2121 }
2122
2123 vcc.channel = channel;
2124 // max speed for the moment
2125 vcc.tx_rate = 0x0;
2126
2127 qos = &atm_vcc->qos;
2128
2129 // check AAL and remember it
2130 switch (qos->aal) {
2131 case ATM_AAL0:
2132 // we would if it were 48 bytes and not 52!
2133 PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2134 vcc.aal = aal0;
2135 break;
2136 case ATM_AAL34:
2137 // we would if I knew how do the SAR!
2138 PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2139 vcc.aal = aal34;
2140 break;
2141 case ATM_AAL5:
2142 PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2143 vcc.aal = aal5;
2144 break;
2145 default:
2146 PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2147 return -EINVAL;
2148 }
2149
2150 // TX traffic parameters
2151
2152 // there are two, interrelated problems here: 1. the reservation of
2153 // PCR is not a binary choice, we are given bounds and/or a
2154 // desirable value; 2. the device is only capable of certain values,
2155 // most of which are not integers. It is almost certainly acceptable
2156 // to be off by a maximum of 1 to 10 cps.
2157
2158 // Pragmatic choice: always store an integral PCR as that which has
2159 // been allocated, even if we allocate a little (or a lot) less,
2160 // after rounding. The actual allocation depends on what we can
2161 // manage with our rate selection algorithm. The rate selection
2162 // algorithm is given an integral PCR and a tolerance and told
2163 // whether it should round the value up or down if the tolerance is
2164 // exceeded; it returns: a) the actual rate selected (rounded up to
2165 // the nearest integer), b) a bit pattern to feed to the timer
2166 // register, and c) a failure value if no applicable rate exists.
2167
2168 // Part of the job is done by atm_pcr_goal which gives us a PCR
2169 // specification which says: EITHER grab the maximum available PCR
2170 // (and perhaps a lower bound which we musn't pass), OR grab this
2171 // amount, rounding down if you have to (and perhaps a lower bound
2172 // which we musn't pass) OR grab this amount, rounding up if you
2173 // have to (and perhaps an upper bound which we musn't pass). If any
2174 // bounds ARE passed we fail. Note that rounding is only rounding to
2175 // match device limitations, we do not round down to satisfy
2176 // bandwidth availability even if this would not violate any given
2177 // lower bound.
2178
2179 // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2180 // (say) so this is not even a binary fixpoint cell rate (but this
2181 // device can do it). To avoid this sort of hassle we use a
2182 // tolerance parameter (currently fixed at 10 cps).
2183
2184 PRINTD (DBG_QOS, "TX:");
2185
2186 txtp = &qos->txtp;
2187
2188 // set up defaults for no traffic
2189 vcc.tx_rate = 0;
2190 // who knows what would actually happen if you try and send on this?
2191 vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2192 vcc.tx_pcr_bits = CLOCK_DISABLE;
2193 #if 0
2194 vcc.tx_scr_bits = CLOCK_DISABLE;
2195 vcc.tx_bucket_bits = 0;
2196 #endif
2197
2198 if (txtp->traffic_class != ATM_NONE) {
2199 error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2200 if (error) {
2201 PRINTD (DBG_QOS, "TX max_sdu check failed");
2202 return error;
2203 }
2204
2205 switch (txtp->traffic_class) {
2206 case ATM_UBR: {
2207 // we take "the PCR" as a rate-cap
2208 // not reserved
2209 vcc.tx_rate = 0;
2210 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2211 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2212 break;
2213 }
2214 #if 0
2215 case ATM_ABR: {
2216 // reserve min, allow up to max
2217 vcc.tx_rate = 0; // ?
2218 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2219 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2220 break;
2221 }
2222 #endif
2223 case ATM_CBR: {
2224 int pcr = atm_pcr_goal (txtp);
2225 rounding r;
2226 if (!pcr) {
2227 // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2228 // should really have: once someone gets unlimited bandwidth
2229 // that no more non-UBR channels can be opened until the
2230 // unlimited one closes?? For the moment, round_down means
2231 // greedy people actually get something and not nothing
2232 r = round_down;
2233 // slight race (no locking) here so we may get -EAGAIN
2234 // later; the greedy bastards would deserve it :)
2235 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2236 pcr = dev->tx_avail;
2237 } else if (pcr < 0) {
2238 r = round_down;
2239 pcr = -pcr;
2240 } else {
2241 r = round_up;
2242 }
2243 error = make_rate_with_tolerance (dev, pcr, r, 10,
2244 &vcc.tx_pcr_bits, &vcc.tx_rate);
2245 if (error) {
2246 PRINTD (DBG_QOS, "could not make rate from TX PCR");
2247 return error;
2248 }
2249 // not really clear what further checking is needed
2250 error = atm_pcr_check (txtp, vcc.tx_rate);
2251 if (error) {
2252 PRINTD (DBG_QOS, "TX PCR failed consistency check");
2253 return error;
2254 }
2255 vcc.tx_xbr_bits = CBR_RATE_TYPE;
2256 break;
2257 }
2258 #if 0
2259 case ATM_VBR: {
2260 int pcr = atm_pcr_goal (txtp);
2261 // int scr = atm_scr_goal (txtp);
2262 int scr = pcr/2; // just for fun
2263 unsigned int mbs = 60; // just for fun
2264 rounding pr;
2265 rounding sr;
2266 unsigned int bucket;
2267 if (!pcr) {
2268 pr = round_nearest;
2269 pcr = 1<<30;
2270 } else if (pcr < 0) {
2271 pr = round_down;
2272 pcr = -pcr;
2273 } else {
2274 pr = round_up;
2275 }
2276 error = make_rate_with_tolerance (dev, pcr, pr, 10,
2277 &vcc.tx_pcr_bits, 0);
2278 if (!scr) {
2279 // see comments for PCR with CBR above
2280 sr = round_down;
2281 // slight race (no locking) here so we may get -EAGAIN
2282 // later; the greedy bastards would deserve it :)
2283 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2284 scr = dev->tx_avail;
2285 } else if (scr < 0) {
2286 sr = round_down;
2287 scr = -scr;
2288 } else {
2289 sr = round_up;
2290 }
2291 error = make_rate_with_tolerance (dev, scr, sr, 10,
2292 &vcc.tx_scr_bits, &vcc.tx_rate);
2293 if (error) {
2294 PRINTD (DBG_QOS, "could not make rate from TX SCR");
2295 return error;
2296 }
2297 // not really clear what further checking is needed
2298 // error = atm_scr_check (txtp, vcc.tx_rate);
2299 if (error) {
2300 PRINTD (DBG_QOS, "TX SCR failed consistency check");
2301 return error;
2302 }
2303 // bucket calculations (from a piece of paper...) cell bucket
2304 // capacity must be largest integer smaller than m(p-s)/p + 1
2305 // where m = max burst size, p = pcr, s = scr
2306 bucket = mbs*(pcr-scr)/pcr;
2307 if (bucket*pcr != mbs*(pcr-scr))
2308 bucket += 1;
2309 if (bucket > BUCKET_MAX_SIZE) {
2310 PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2311 bucket, BUCKET_MAX_SIZE);
2312 bucket = BUCKET_MAX_SIZE;
2313 }
2314 vcc.tx_xbr_bits = VBR_RATE_TYPE;
2315 vcc.tx_bucket_bits = bucket;
2316 break;
2317 }
2318 #endif
2319 default: {
2320 PRINTD (DBG_QOS, "unsupported TX traffic class");
2321 return -EINVAL;
2322 }
2323 }
2324 }
2325
2326 // RX traffic parameters
2327
2328 PRINTD (DBG_QOS, "RX:");
2329
2330 rxtp = &qos->rxtp;
2331
2332 // set up defaults for no traffic
2333 vcc.rx_rate = 0;
2334
2335 if (rxtp->traffic_class != ATM_NONE) {
2336 error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2337 if (error) {
2338 PRINTD (DBG_QOS, "RX max_sdu check failed");
2339 return error;
2340 }
2341 switch (rxtp->traffic_class) {
2342 case ATM_UBR: {
2343 // not reserved
2344 break;
2345 }
2346 #if 0
2347 case ATM_ABR: {
2348 // reserve min
2349 vcc.rx_rate = 0; // ?
2350 break;
2351 }
2352 #endif
2353 case ATM_CBR: {
2354 int pcr = atm_pcr_goal (rxtp);
2355 if (!pcr) {
2356 // slight race (no locking) here so we may get -EAGAIN
2357 // later; the greedy bastards would deserve it :)
2358 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2359 pcr = dev->rx_avail;
2360 } else if (pcr < 0) {
2361 pcr = -pcr;
2362 }
2363 vcc.rx_rate = pcr;
2364 // not really clear what further checking is needed
2365 error = atm_pcr_check (rxtp, vcc.rx_rate);
2366 if (error) {
2367 PRINTD (DBG_QOS, "RX PCR failed consistency check");
2368 return error;
2369 }
2370 break;
2371 }
2372 #if 0
2373 case ATM_VBR: {
2374 // int scr = atm_scr_goal (rxtp);
2375 int scr = 1<<16; // just for fun
2376 if (!scr) {
2377 // slight race (no locking) here so we may get -EAGAIN
2378 // later; the greedy bastards would deserve it :)
2379 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2380 scr = dev->rx_avail;
2381 } else if (scr < 0) {
2382 scr = -scr;
2383 }
2384 vcc.rx_rate = scr;
2385 // not really clear what further checking is needed
2386 // error = atm_scr_check (rxtp, vcc.rx_rate);
2387 if (error) {
2388 PRINTD (DBG_QOS, "RX SCR failed consistency check");
2389 return error;
2390 }
2391 break;
2392 }
2393 #endif
2394 default: {
2395 PRINTD (DBG_QOS, "unsupported RX traffic class");
2396 return -EINVAL;
2397 }
2398 }
2399 }
2400
2401
2402 // late abort useful for diagnostics
2403 if (vcc.aal != aal5) {
2404 PRINTD (DBG_QOS, "AAL not supported");
2405 return -EINVAL;
2406 }
2407
2408 // get space for our vcc stuff and copy parameters into it
2409 vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2410 if (!vccp) {
2411 PRINTK (KERN_ERR, "out of memory!");
2412 return -ENOMEM;
2413 }
2414 *vccp = vcc;
2415
2416 // clear error and grab cell rate resource lock
2417 error = 0;
2418 spin_lock (&dev->rate_lock);
2419
2420 if (vcc.tx_rate > dev->tx_avail) {
2421 PRINTD (DBG_QOS, "not enough TX PCR left");
2422 error = -EAGAIN;
2423 }
2424
2425 if (vcc.rx_rate > dev->rx_avail) {
2426 PRINTD (DBG_QOS, "not enough RX PCR left");
2427 error = -EAGAIN;
2428 }
2429
2430 if (!error) {
2431 // really consume cell rates
2432 dev->tx_avail -= vcc.tx_rate;
2433 dev->rx_avail -= vcc.rx_rate;
2434 PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2435 vcc.tx_rate, vcc.rx_rate);
2436 }
2437
2438 // release lock and exit on error
2439 spin_unlock (&dev->rate_lock);
2440 if (error) {
2441 PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2442 kfree (vccp);
2443 return error;
2444 }
2445
2446 // this is "immediately before allocating the connection identifier
2447 // in hardware" - so long as the next call does not fail :)
2448 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2449
2450 // any errors here are very serious and should never occur
2451
2452 if (rxtp->traffic_class != ATM_NONE) {
2453 if (dev->rxer[channel]) {
2454 PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2455 error = -EBUSY;
2456 }
2457 if (!error)
2458 error = hrz_open_rx (dev, channel);
2459 if (error) {
2460 kfree (vccp);
2461 return error;
2462 }
2463 // this link allows RX frames through
2464 dev->rxer[channel] = atm_vcc;
2465 }
2466
2467 // success, set elements of atm_vcc
2468 atm_vcc->dev_data = (void *) vccp;
2469
2470 // indicate readiness
2471 set_bit(ATM_VF_READY,&atm_vcc->flags);
2472
2473 return 0;
2474 }
2475
2476 /********** close VC **********/
2477
hrz_close(struct atm_vcc * atm_vcc)2478 static void hrz_close (struct atm_vcc * atm_vcc) {
2479 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2480 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2481 u16 channel = vcc->channel;
2482 PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2483
2484 // indicate unreadiness
2485 clear_bit(ATM_VF_READY,&atm_vcc->flags);
2486
2487 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2488 unsigned int i;
2489
2490 // let any TX on this channel that has started complete
2491 // no restart, just keep trying
2492 while (tx_hold (dev))
2493 ;
2494 // remove record of any tx_channel having been setup for this channel
2495 for (i = 0; i < TX_CHANS; ++i)
2496 if (dev->tx_channel_record[i] == channel) {
2497 dev->tx_channel_record[i] = -1;
2498 break;
2499 }
2500 if (dev->last_vc == channel)
2501 dev->tx_last = -1;
2502 tx_release (dev);
2503 }
2504
2505 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2506 // disable RXing - it tries quite hard
2507 hrz_close_rx (dev, channel);
2508 // forget the vcc - no more skbs will be pushed
2509 if (atm_vcc != dev->rxer[channel])
2510 PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2511 "arghhh! we're going to die!",
2512 atm_vcc, dev->rxer[channel]);
2513 dev->rxer[channel] = NULL;
2514 }
2515
2516 // atomically release our rate reservation
2517 spin_lock (&dev->rate_lock);
2518 PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2519 vcc->tx_rate, vcc->rx_rate);
2520 dev->tx_avail += vcc->tx_rate;
2521 dev->rx_avail += vcc->rx_rate;
2522 spin_unlock (&dev->rate_lock);
2523
2524 // free our structure
2525 kfree (vcc);
2526 // say the VPI/VCI is free again
2527 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2528 }
2529
2530 #if 0
2531 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2532 hrz_dev * dev = HRZ_DEV(atm_dev);
2533 PRINTD (DBG_FLOW, "hrz_ioctl");
2534 return -1;
2535 }
2536
2537 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2538 hrz_dev * dev = HRZ_DEV(atm_dev);
2539 PRINTD (DBG_FLOW, "hrz_phy_get");
2540 return 0;
2541 }
2542
2543 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2544 unsigned long addr) {
2545 hrz_dev * dev = HRZ_DEV(atm_dev);
2546 PRINTD (DBG_FLOW, "hrz_phy_put");
2547 }
2548
2549 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2550 hrz_dev * dev = HRZ_DEV(vcc->dev);
2551 PRINTD (DBG_FLOW, "hrz_change_qos");
2552 return -1;
2553 }
2554 #endif
2555
2556 /********** proc file contents **********/
2557
hrz_proc_read(struct atm_dev * atm_dev,loff_t * pos,char * page)2558 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2559 hrz_dev * dev = HRZ_DEV(atm_dev);
2560 int left = *pos;
2561 PRINTD (DBG_FLOW, "hrz_proc_read");
2562
2563 /* more diagnostics here? */
2564
2565 #if 0
2566 if (!left--) {
2567 unsigned int count = sprintf (page, "vbr buckets:");
2568 unsigned int i;
2569 for (i = 0; i < TX_CHANS; ++i)
2570 count += sprintf (page, " %u/%u",
2571 query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2572 query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2573 count += sprintf (page+count, ".\n");
2574 return count;
2575 }
2576 #endif
2577
2578 if (!left--)
2579 return sprintf (page,
2580 "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2581 dev->tx_cell_count, dev->rx_cell_count,
2582 dev->hec_error_count, dev->unassigned_cell_count);
2583
2584 if (!left--)
2585 return sprintf (page,
2586 "free cell buffers: TX %hu, RX %hu+%hu.\n",
2587 rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2588 rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2589 dev->noof_spare_buffers);
2590
2591 if (!left--)
2592 return sprintf (page,
2593 "cps remaining: TX %u, RX %u\n",
2594 dev->tx_avail, dev->rx_avail);
2595
2596 return 0;
2597 }
2598
2599 static const struct atmdev_ops hrz_ops = {
2600 .open = hrz_open,
2601 .close = hrz_close,
2602 .send = hrz_send,
2603 .proc_read = hrz_proc_read,
2604 .owner = THIS_MODULE,
2605 };
2606
hrz_probe(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)2607 static int hrz_probe(struct pci_dev *pci_dev,
2608 const struct pci_device_id *pci_ent)
2609 {
2610 hrz_dev * dev;
2611 int err = 0;
2612
2613 // adapter slot free, read resources from PCI configuration space
2614 u32 iobase = pci_resource_start (pci_dev, 0);
2615 u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2616 unsigned int irq;
2617 unsigned char lat;
2618
2619 PRINTD (DBG_FLOW, "hrz_probe");
2620
2621 if (pci_enable_device(pci_dev))
2622 return -EINVAL;
2623
2624 /* XXX DEV_LABEL is a guess */
2625 if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2626 err = -EINVAL;
2627 goto out_disable;
2628 }
2629
2630 dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2631 if (!dev) {
2632 // perhaps we should be nice: deregister all adapters and abort?
2633 PRINTD(DBG_ERR, "out of memory");
2634 err = -ENOMEM;
2635 goto out_release;
2636 }
2637
2638 pci_set_drvdata(pci_dev, dev);
2639
2640 // grab IRQ and install handler - move this someplace more sensible
2641 irq = pci_dev->irq;
2642 if (request_irq(irq,
2643 interrupt_handler,
2644 IRQF_SHARED, /* irqflags guess */
2645 DEV_LABEL, /* name guess */
2646 dev)) {
2647 PRINTD(DBG_WARN, "request IRQ failed!");
2648 err = -EINVAL;
2649 goto out_free;
2650 }
2651
2652 PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2653 iobase, irq, membase);
2654
2655 dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2656 NULL);
2657 if (!(dev->atm_dev)) {
2658 PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2659 err = -EINVAL;
2660 goto out_free_irq;
2661 }
2662
2663 PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2664 dev->atm_dev->number, dev, dev->atm_dev);
2665 dev->atm_dev->dev_data = (void *) dev;
2666 dev->pci_dev = pci_dev;
2667
2668 // enable bus master accesses
2669 pci_set_master(pci_dev);
2670
2671 // frobnicate latency (upwards, usually)
2672 pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2673 if (pci_lat) {
2674 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2675 "changing", lat, pci_lat);
2676 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2677 } else if (lat < MIN_PCI_LATENCY) {
2678 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2679 "increasing", lat, MIN_PCI_LATENCY);
2680 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2681 }
2682
2683 dev->iobase = iobase;
2684 dev->irq = irq;
2685 dev->membase = membase;
2686
2687 dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2688 dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2689
2690 // these next three are performance hacks
2691 dev->last_vc = -1;
2692 dev->tx_last = -1;
2693 dev->tx_idle = 0;
2694
2695 dev->tx_regions = 0;
2696 dev->tx_bytes = 0;
2697 dev->tx_skb = NULL;
2698 dev->tx_iovec = NULL;
2699
2700 dev->tx_cell_count = 0;
2701 dev->rx_cell_count = 0;
2702 dev->hec_error_count = 0;
2703 dev->unassigned_cell_count = 0;
2704
2705 dev->noof_spare_buffers = 0;
2706
2707 {
2708 unsigned int i;
2709 for (i = 0; i < TX_CHANS; ++i)
2710 dev->tx_channel_record[i] = -1;
2711 }
2712
2713 dev->flags = 0;
2714
2715 // Allocate cell rates and remember ASIC version
2716 // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2717 // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2718 // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2719
2720 if (hrz_init(dev)) {
2721 // to be really pedantic, this should be ATM_OC3c_PCR
2722 dev->tx_avail = ATM_OC3_PCR;
2723 dev->rx_avail = ATM_OC3_PCR;
2724 set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2725 } else {
2726 dev->tx_avail = ((25600000/8)*26)/(27*53);
2727 dev->rx_avail = ((25600000/8)*26)/(27*53);
2728 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2729 }
2730
2731 // rate changes spinlock
2732 spin_lock_init(&dev->rate_lock);
2733
2734 // on-board memory access spinlock; we want atomic reads and
2735 // writes to adapter memory (handles IRQ and SMP)
2736 spin_lock_init(&dev->mem_lock);
2737
2738 init_waitqueue_head(&dev->tx_queue);
2739
2740 // vpi in 0..4, vci in 6..10
2741 dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2742 dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2743
2744 timer_setup(&dev->housekeeping, do_housekeeping, 0);
2745 mod_timer(&dev->housekeeping, jiffies);
2746
2747 out:
2748 return err;
2749
2750 out_free_irq:
2751 free_irq(irq, dev);
2752 out_free:
2753 kfree(dev);
2754 out_release:
2755 release_region(iobase, HRZ_IO_EXTENT);
2756 out_disable:
2757 pci_disable_device(pci_dev);
2758 goto out;
2759 }
2760
hrz_remove_one(struct pci_dev * pci_dev)2761 static void hrz_remove_one(struct pci_dev *pci_dev)
2762 {
2763 hrz_dev *dev;
2764
2765 dev = pci_get_drvdata(pci_dev);
2766
2767 PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2768 del_timer_sync(&dev->housekeeping);
2769 hrz_reset(dev);
2770 atm_dev_deregister(dev->atm_dev);
2771 free_irq(dev->irq, dev);
2772 release_region(dev->iobase, HRZ_IO_EXTENT);
2773 kfree(dev);
2774
2775 pci_disable_device(pci_dev);
2776 }
2777
hrz_check_args(void)2778 static void __init hrz_check_args (void) {
2779 #ifdef DEBUG_HORIZON
2780 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2781 #else
2782 if (debug)
2783 PRINTK (KERN_NOTICE, "no debug support in this image");
2784 #endif
2785
2786 if (vpi_bits > HRZ_MAX_VPI)
2787 PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2788 vpi_bits = HRZ_MAX_VPI);
2789
2790 if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2791 PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2792 max_tx_size = TX_AAL5_LIMIT);
2793
2794 if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2795 PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2796 max_rx_size = RX_AAL5_LIMIT);
2797
2798 return;
2799 }
2800
2801 MODULE_AUTHOR(maintainer_string);
2802 MODULE_DESCRIPTION(description_string);
2803 MODULE_LICENSE("GPL");
2804 module_param(debug, ushort, 0644);
2805 module_param(vpi_bits, ushort, 0);
2806 module_param(max_tx_size, int, 0);
2807 module_param(max_rx_size, int, 0);
2808 module_param(pci_lat, byte, 0);
2809 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2810 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2811 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2812 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2813 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2814
2815 static const struct pci_device_id hrz_pci_tbl[] = {
2816 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2817 0, 0, 0 },
2818 { 0, }
2819 };
2820
2821 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2822
2823 static struct pci_driver hrz_driver = {
2824 .name = "horizon",
2825 .probe = hrz_probe,
2826 .remove = hrz_remove_one,
2827 .id_table = hrz_pci_tbl,
2828 };
2829
2830 /********** module entry **********/
2831
hrz_module_init(void)2832 static int __init hrz_module_init (void) {
2833 BUILD_BUG_ON(sizeof(struct MEMMAP) != 128*1024/4);
2834
2835 show_version();
2836
2837 // check arguments
2838 hrz_check_args();
2839
2840 // get the juice
2841 return pci_register_driver(&hrz_driver);
2842 }
2843
2844 /********** module exit **********/
2845
hrz_module_exit(void)2846 static void __exit hrz_module_exit (void) {
2847 PRINTD (DBG_FLOW, "cleanup_module");
2848
2849 pci_unregister_driver(&hrz_driver);
2850 }
2851
2852 module_init(hrz_module_init);
2853 module_exit(hrz_module_exit);
2854