1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Arch specific cpu topology information
4 *
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23
24 static DEFINE_PER_CPU(struct scale_freq_data *, sft_data);
25 static struct cpumask scale_freq_counters_mask;
26 static bool scale_freq_invariant;
27
supports_scale_freq_counters(const struct cpumask * cpus)28 static bool supports_scale_freq_counters(const struct cpumask *cpus)
29 {
30 return cpumask_subset(cpus, &scale_freq_counters_mask);
31 }
32
topology_scale_freq_invariant(void)33 bool topology_scale_freq_invariant(void)
34 {
35 return cpufreq_supports_freq_invariance() ||
36 supports_scale_freq_counters(cpu_online_mask);
37 }
38
update_scale_freq_invariant(bool status)39 static void update_scale_freq_invariant(bool status)
40 {
41 if (scale_freq_invariant == status)
42 return;
43
44 /*
45 * Task scheduler behavior depends on frequency invariance support,
46 * either cpufreq or counter driven. If the support status changes as
47 * a result of counter initialisation and use, retrigger the build of
48 * scheduling domains to ensure the information is propagated properly.
49 */
50 if (topology_scale_freq_invariant() == status) {
51 scale_freq_invariant = status;
52 rebuild_sched_domains_energy();
53 }
54 }
55
topology_set_scale_freq_source(struct scale_freq_data * data,const struct cpumask * cpus)56 void topology_set_scale_freq_source(struct scale_freq_data *data,
57 const struct cpumask *cpus)
58 {
59 struct scale_freq_data *sfd;
60 int cpu;
61
62 /*
63 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
64 * supported by cpufreq.
65 */
66 if (cpumask_empty(&scale_freq_counters_mask))
67 scale_freq_invariant = topology_scale_freq_invariant();
68
69 for_each_cpu(cpu, cpus) {
70 sfd = per_cpu(sft_data, cpu);
71
72 /* Use ARCH provided counters whenever possible */
73 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
74 per_cpu(sft_data, cpu) = data;
75 cpumask_set_cpu(cpu, &scale_freq_counters_mask);
76 }
77 }
78
79 update_scale_freq_invariant(true);
80 }
81 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
82
topology_clear_scale_freq_source(enum scale_freq_source source,const struct cpumask * cpus)83 void topology_clear_scale_freq_source(enum scale_freq_source source,
84 const struct cpumask *cpus)
85 {
86 struct scale_freq_data *sfd;
87 int cpu;
88
89 for_each_cpu(cpu, cpus) {
90 sfd = per_cpu(sft_data, cpu);
91
92 if (sfd && sfd->source == source) {
93 per_cpu(sft_data, cpu) = NULL;
94 cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
95 }
96 }
97
98 update_scale_freq_invariant(false);
99 }
100 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
101
topology_scale_freq_tick(void)102 void topology_scale_freq_tick(void)
103 {
104 struct scale_freq_data *sfd = *this_cpu_ptr(&sft_data);
105
106 if (sfd)
107 sfd->set_freq_scale();
108 }
109
110 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
111 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
112
topology_set_freq_scale(const struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)113 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
114 unsigned long max_freq)
115 {
116 unsigned long scale;
117 int i;
118
119 if (WARN_ON_ONCE(!cur_freq || !max_freq))
120 return;
121
122 /*
123 * If the use of counters for FIE is enabled, just return as we don't
124 * want to update the scale factor with information from CPUFREQ.
125 * Instead the scale factor will be updated from arch_scale_freq_tick.
126 */
127 if (supports_scale_freq_counters(cpus))
128 return;
129
130 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
131
132 for_each_cpu(i, cpus)
133 per_cpu(arch_freq_scale, i) = scale;
134 }
135
136 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
137
topology_set_cpu_scale(unsigned int cpu,unsigned long capacity)138 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
139 {
140 per_cpu(cpu_scale, cpu) = capacity;
141 }
142
143 DEFINE_PER_CPU(unsigned long, thermal_pressure);
144
topology_set_thermal_pressure(const struct cpumask * cpus,unsigned long th_pressure)145 void topology_set_thermal_pressure(const struct cpumask *cpus,
146 unsigned long th_pressure)
147 {
148 int cpu;
149
150 for_each_cpu(cpu, cpus)
151 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
152 }
153
cpu_capacity_show(struct device * dev,struct device_attribute * attr,char * buf)154 static ssize_t cpu_capacity_show(struct device *dev,
155 struct device_attribute *attr,
156 char *buf)
157 {
158 struct cpu *cpu = container_of(dev, struct cpu, dev);
159
160 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
161 }
162
163 static void update_topology_flags_workfn(struct work_struct *work);
164 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
165
166 static DEVICE_ATTR_RO(cpu_capacity);
167
register_cpu_capacity_sysctl(void)168 static int register_cpu_capacity_sysctl(void)
169 {
170 int i;
171 struct device *cpu;
172
173 for_each_possible_cpu(i) {
174 cpu = get_cpu_device(i);
175 if (!cpu) {
176 pr_err("%s: too early to get CPU%d device!\n",
177 __func__, i);
178 continue;
179 }
180 device_create_file(cpu, &dev_attr_cpu_capacity);
181 }
182
183 return 0;
184 }
185 subsys_initcall(register_cpu_capacity_sysctl);
186
187 static int update_topology;
188
topology_update_cpu_topology(void)189 int topology_update_cpu_topology(void)
190 {
191 return update_topology;
192 }
193
194 /*
195 * Updating the sched_domains can't be done directly from cpufreq callbacks
196 * due to locking, so queue the work for later.
197 */
update_topology_flags_workfn(struct work_struct * work)198 static void update_topology_flags_workfn(struct work_struct *work)
199 {
200 update_topology = 1;
201 rebuild_sched_domains();
202 pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
203 update_topology = 0;
204 }
205
206 static DEFINE_PER_CPU(u32, freq_factor) = 1;
207 static u32 *raw_capacity;
208
free_raw_capacity(void)209 static int free_raw_capacity(void)
210 {
211 kfree(raw_capacity);
212 raw_capacity = NULL;
213
214 return 0;
215 }
216
topology_normalize_cpu_scale(void)217 void topology_normalize_cpu_scale(void)
218 {
219 u64 capacity;
220 u64 capacity_scale;
221 int cpu;
222
223 if (!raw_capacity)
224 return;
225
226 capacity_scale = 1;
227 for_each_possible_cpu(cpu) {
228 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
229 capacity_scale = max(capacity, capacity_scale);
230 }
231
232 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
233 for_each_possible_cpu(cpu) {
234 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
235 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
236 capacity_scale);
237 topology_set_cpu_scale(cpu, capacity);
238 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
239 cpu, topology_get_cpu_scale(cpu));
240 }
241 }
242
topology_parse_cpu_capacity(struct device_node * cpu_node,int cpu)243 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
244 {
245 struct clk *cpu_clk;
246 static bool cap_parsing_failed;
247 int ret;
248 u32 cpu_capacity;
249
250 if (cap_parsing_failed)
251 return false;
252
253 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
254 &cpu_capacity);
255 if (!ret) {
256 if (!raw_capacity) {
257 raw_capacity = kcalloc(num_possible_cpus(),
258 sizeof(*raw_capacity),
259 GFP_KERNEL);
260 if (!raw_capacity) {
261 cap_parsing_failed = true;
262 return false;
263 }
264 }
265 raw_capacity[cpu] = cpu_capacity;
266 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
267 cpu_node, raw_capacity[cpu]);
268
269 /*
270 * Update freq_factor for calculating early boot cpu capacities.
271 * For non-clk CPU DVFS mechanism, there's no way to get the
272 * frequency value now, assuming they are running at the same
273 * frequency (by keeping the initial freq_factor value).
274 */
275 cpu_clk = of_clk_get(cpu_node, 0);
276 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
277 per_cpu(freq_factor, cpu) =
278 clk_get_rate(cpu_clk) / 1000;
279 clk_put(cpu_clk);
280 }
281 } else {
282 if (raw_capacity) {
283 pr_err("cpu_capacity: missing %pOF raw capacity\n",
284 cpu_node);
285 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
286 }
287 cap_parsing_failed = true;
288 free_raw_capacity();
289 }
290
291 return !ret;
292 }
293
294 #ifdef CONFIG_CPU_FREQ
295 static cpumask_var_t cpus_to_visit;
296 static void parsing_done_workfn(struct work_struct *work);
297 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
298
299 static int
init_cpu_capacity_callback(struct notifier_block * nb,unsigned long val,void * data)300 init_cpu_capacity_callback(struct notifier_block *nb,
301 unsigned long val,
302 void *data)
303 {
304 struct cpufreq_policy *policy = data;
305 int cpu;
306
307 if (!raw_capacity)
308 return 0;
309
310 if (val != CPUFREQ_CREATE_POLICY)
311 return 0;
312
313 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
314 cpumask_pr_args(policy->related_cpus),
315 cpumask_pr_args(cpus_to_visit));
316
317 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
318
319 for_each_cpu(cpu, policy->related_cpus)
320 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
321
322 if (cpumask_empty(cpus_to_visit)) {
323 topology_normalize_cpu_scale();
324 schedule_work(&update_topology_flags_work);
325 free_raw_capacity();
326 pr_debug("cpu_capacity: parsing done\n");
327 schedule_work(&parsing_done_work);
328 }
329
330 return 0;
331 }
332
333 static struct notifier_block init_cpu_capacity_notifier = {
334 .notifier_call = init_cpu_capacity_callback,
335 };
336
register_cpufreq_notifier(void)337 static int __init register_cpufreq_notifier(void)
338 {
339 int ret;
340
341 /*
342 * on ACPI-based systems we need to use the default cpu capacity
343 * until we have the necessary code to parse the cpu capacity, so
344 * skip registering cpufreq notifier.
345 */
346 if (!acpi_disabled || !raw_capacity)
347 return -EINVAL;
348
349 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
350 return -ENOMEM;
351
352 cpumask_copy(cpus_to_visit, cpu_possible_mask);
353
354 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
355 CPUFREQ_POLICY_NOTIFIER);
356
357 if (ret)
358 free_cpumask_var(cpus_to_visit);
359
360 return ret;
361 }
362 core_initcall(register_cpufreq_notifier);
363
parsing_done_workfn(struct work_struct * work)364 static void parsing_done_workfn(struct work_struct *work)
365 {
366 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
367 CPUFREQ_POLICY_NOTIFIER);
368 free_cpumask_var(cpus_to_visit);
369 }
370
371 #else
372 core_initcall(free_raw_capacity);
373 #endif
374
375 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
376 /*
377 * This function returns the logic cpu number of the node.
378 * There are basically three kinds of return values:
379 * (1) logic cpu number which is > 0.
380 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
381 * there is no possible logical CPU in the kernel to match. This happens
382 * when CONFIG_NR_CPUS is configure to be smaller than the number of
383 * CPU nodes in DT. We need to just ignore this case.
384 * (3) -1 if the node does not exist in the device tree
385 */
get_cpu_for_node(struct device_node * node)386 static int __init get_cpu_for_node(struct device_node *node)
387 {
388 struct device_node *cpu_node;
389 int cpu;
390
391 cpu_node = of_parse_phandle(node, "cpu", 0);
392 if (!cpu_node)
393 return -1;
394
395 cpu = of_cpu_node_to_id(cpu_node);
396 if (cpu >= 0)
397 topology_parse_cpu_capacity(cpu_node, cpu);
398 else
399 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
400 cpu_node, cpumask_pr_args(cpu_possible_mask));
401
402 of_node_put(cpu_node);
403 return cpu;
404 }
405
parse_core(struct device_node * core,int package_id,int core_id)406 static int __init parse_core(struct device_node *core, int package_id,
407 int core_id)
408 {
409 char name[20];
410 bool leaf = true;
411 int i = 0;
412 int cpu;
413 struct device_node *t;
414
415 do {
416 snprintf(name, sizeof(name), "thread%d", i);
417 t = of_get_child_by_name(core, name);
418 if (t) {
419 leaf = false;
420 cpu = get_cpu_for_node(t);
421 if (cpu >= 0) {
422 cpu_topology[cpu].package_id = package_id;
423 cpu_topology[cpu].core_id = core_id;
424 cpu_topology[cpu].thread_id = i;
425 } else if (cpu != -ENODEV) {
426 pr_err("%pOF: Can't get CPU for thread\n", t);
427 of_node_put(t);
428 return -EINVAL;
429 }
430 of_node_put(t);
431 }
432 i++;
433 } while (t);
434
435 cpu = get_cpu_for_node(core);
436 if (cpu >= 0) {
437 if (!leaf) {
438 pr_err("%pOF: Core has both threads and CPU\n",
439 core);
440 return -EINVAL;
441 }
442
443 cpu_topology[cpu].package_id = package_id;
444 cpu_topology[cpu].core_id = core_id;
445 } else if (leaf && cpu != -ENODEV) {
446 pr_err("%pOF: Can't get CPU for leaf core\n", core);
447 return -EINVAL;
448 }
449
450 return 0;
451 }
452
parse_cluster(struct device_node * cluster,int depth)453 static int __init parse_cluster(struct device_node *cluster, int depth)
454 {
455 char name[20];
456 bool leaf = true;
457 bool has_cores = false;
458 struct device_node *c;
459 static int package_id __initdata;
460 int core_id = 0;
461 int i, ret;
462
463 /*
464 * First check for child clusters; we currently ignore any
465 * information about the nesting of clusters and present the
466 * scheduler with a flat list of them.
467 */
468 i = 0;
469 do {
470 snprintf(name, sizeof(name), "cluster%d", i);
471 c = of_get_child_by_name(cluster, name);
472 if (c) {
473 leaf = false;
474 ret = parse_cluster(c, depth + 1);
475 of_node_put(c);
476 if (ret != 0)
477 return ret;
478 }
479 i++;
480 } while (c);
481
482 /* Now check for cores */
483 i = 0;
484 do {
485 snprintf(name, sizeof(name), "core%d", i);
486 c = of_get_child_by_name(cluster, name);
487 if (c) {
488 has_cores = true;
489
490 if (depth == 0) {
491 pr_err("%pOF: cpu-map children should be clusters\n",
492 c);
493 of_node_put(c);
494 return -EINVAL;
495 }
496
497 if (leaf) {
498 ret = parse_core(c, package_id, core_id++);
499 } else {
500 pr_err("%pOF: Non-leaf cluster with core %s\n",
501 cluster, name);
502 ret = -EINVAL;
503 }
504
505 of_node_put(c);
506 if (ret != 0)
507 return ret;
508 }
509 i++;
510 } while (c);
511
512 if (leaf && !has_cores)
513 pr_warn("%pOF: empty cluster\n", cluster);
514
515 if (leaf)
516 package_id++;
517
518 return 0;
519 }
520
parse_dt_topology(void)521 static int __init parse_dt_topology(void)
522 {
523 struct device_node *cn, *map;
524 int ret = 0;
525 int cpu;
526
527 cn = of_find_node_by_path("/cpus");
528 if (!cn) {
529 pr_err("No CPU information found in DT\n");
530 return 0;
531 }
532
533 /*
534 * When topology is provided cpu-map is essentially a root
535 * cluster with restricted subnodes.
536 */
537 map = of_get_child_by_name(cn, "cpu-map");
538 if (!map)
539 goto out;
540
541 ret = parse_cluster(map, 0);
542 if (ret != 0)
543 goto out_map;
544
545 topology_normalize_cpu_scale();
546
547 /*
548 * Check that all cores are in the topology; the SMP code will
549 * only mark cores described in the DT as possible.
550 */
551 for_each_possible_cpu(cpu)
552 if (cpu_topology[cpu].package_id == -1)
553 ret = -EINVAL;
554
555 out_map:
556 of_node_put(map);
557 out:
558 of_node_put(cn);
559 return ret;
560 }
561 #endif
562
563 /*
564 * cpu topology table
565 */
566 struct cpu_topology cpu_topology[NR_CPUS];
567 EXPORT_SYMBOL_GPL(cpu_topology);
568
cpu_coregroup_mask(int cpu)569 const struct cpumask *cpu_coregroup_mask(int cpu)
570 {
571 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
572
573 /* Find the smaller of NUMA, core or LLC siblings */
574 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
575 /* not numa in package, lets use the package siblings */
576 core_mask = &cpu_topology[cpu].core_sibling;
577 }
578 if (cpu_topology[cpu].llc_id != -1) {
579 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
580 core_mask = &cpu_topology[cpu].llc_sibling;
581 }
582
583 return core_mask;
584 }
585
update_siblings_masks(unsigned int cpuid)586 void update_siblings_masks(unsigned int cpuid)
587 {
588 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
589 int cpu;
590
591 /* update core and thread sibling masks */
592 for_each_online_cpu(cpu) {
593 cpu_topo = &cpu_topology[cpu];
594
595 if (cpuid_topo->llc_id == cpu_topo->llc_id) {
596 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
597 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
598 }
599
600 if (cpuid_topo->package_id != cpu_topo->package_id)
601 continue;
602
603 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
604 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
605
606 if (cpuid_topo->core_id != cpu_topo->core_id)
607 continue;
608
609 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
610 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
611 }
612 }
613
clear_cpu_topology(int cpu)614 static void clear_cpu_topology(int cpu)
615 {
616 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
617
618 cpumask_clear(&cpu_topo->llc_sibling);
619 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
620
621 cpumask_clear(&cpu_topo->core_sibling);
622 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
623 cpumask_clear(&cpu_topo->thread_sibling);
624 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
625 }
626
reset_cpu_topology(void)627 void __init reset_cpu_topology(void)
628 {
629 unsigned int cpu;
630
631 for_each_possible_cpu(cpu) {
632 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
633
634 cpu_topo->thread_id = -1;
635 cpu_topo->core_id = -1;
636 cpu_topo->package_id = -1;
637 cpu_topo->llc_id = -1;
638
639 clear_cpu_topology(cpu);
640 }
641 }
642
remove_cpu_topology(unsigned int cpu)643 void remove_cpu_topology(unsigned int cpu)
644 {
645 int sibling;
646
647 for_each_cpu(sibling, topology_core_cpumask(cpu))
648 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
649 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
650 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
651 for_each_cpu(sibling, topology_llc_cpumask(cpu))
652 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
653
654 clear_cpu_topology(cpu);
655 }
656
parse_acpi_topology(void)657 __weak int __init parse_acpi_topology(void)
658 {
659 return 0;
660 }
661
662 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
init_cpu_topology(void)663 void __init init_cpu_topology(void)
664 {
665 reset_cpu_topology();
666
667 /*
668 * Discard anything that was parsed if we hit an error so we
669 * don't use partial information.
670 */
671 if (parse_acpi_topology())
672 reset_cpu_topology();
673 else if (of_have_populated_dt() && parse_dt_topology())
674 reset_cpu_topology();
675 }
676 #endif
677