1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * icp_multi.c
4  * Comedi driver for Inova ICP_MULTI board
5  *
6  * COMEDI - Linux Control and Measurement Device Interface
7  * Copyright (C) 1997-2002 David A. Schleef <ds@schleef.org>
8  */
9 
10 /*
11  * Driver: icp_multi
12  * Description: Inova ICP_MULTI
13  * Devices: [Inova] ICP_MULTI (icp_multi)
14  * Author: Anne Smorthit <anne.smorthit@sfwte.ch>
15  * Status: works
16  *
17  * Configuration options: not applicable, uses PCI auto config
18  *
19  * The driver works for analog input and output and digital input and
20  * output. It does not work with interrupts or with the counters. Currently
21  * no support for DMA.
22  *
23  * It has 16 single-ended or 8 differential Analogue Input channels with
24  * 12-bit resolution.  Ranges : 5V, 10V, +/-5V, +/-10V, 0..20mA and 4..20mA.
25  * Input ranges can be individually programmed for each channel.  Voltage or
26  * current measurement is selected by jumper.
27  *
28  * There are 4 x 12-bit Analogue Outputs.  Ranges : 5V, 10V, +/-5V, +/-10V
29  *
30  * 16 x Digital Inputs, 24V
31  *
32  * 8 x Digital Outputs, 24V, 1A
33  *
34  * 4 x 16-bit counters - not implemented
35  */
36 
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 
40 #include "../comedi_pci.h"
41 
42 #define ICP_MULTI_ADC_CSR	0x00	/* R/W: ADC command/status register */
43 #define ICP_MULTI_ADC_CSR_ST	BIT(0)	/* Start ADC */
44 #define ICP_MULTI_ADC_CSR_BSY	BIT(0)	/* ADC busy */
45 #define ICP_MULTI_ADC_CSR_BI	BIT(4)	/* Bipolar input range */
46 #define ICP_MULTI_ADC_CSR_RA	BIT(5)	/* Input range 0 = 5V, 1 = 10V */
47 #define ICP_MULTI_ADC_CSR_DI	BIT(6)	/* Input mode 1 = differential */
48 #define ICP_MULTI_ADC_CSR_DI_CHAN(x) (((x) & 0x7) << 9)
49 #define ICP_MULTI_ADC_CSR_SE_CHAN(x) (((x) & 0xf) << 8)
50 #define ICP_MULTI_AI		2	/* R:   Analogue input data */
51 #define ICP_MULTI_DAC_CSR	0x04	/* R/W: DAC command/status register */
52 #define ICP_MULTI_DAC_CSR_ST	BIT(0)	/* Start DAC */
53 #define ICP_MULTI_DAC_CSR_BSY	BIT(0)	/* DAC busy */
54 #define ICP_MULTI_DAC_CSR_BI	BIT(4)	/* Bipolar output range */
55 #define ICP_MULTI_DAC_CSR_RA	BIT(5)	/* Output range 0 = 5V, 1 = 10V */
56 #define ICP_MULTI_DAC_CSR_CHAN(x) (((x) & 0x3) << 8)
57 #define ICP_MULTI_AO		6	/* R/W: Analogue output data */
58 #define ICP_MULTI_DI		8	/* R/W: Digital inputs */
59 #define ICP_MULTI_DO		0x0A	/* R/W: Digital outputs */
60 #define ICP_MULTI_INT_EN	0x0c	/* R/W: Interrupt enable register */
61 #define ICP_MULTI_INT_STAT	0x0e	/* R/W: Interrupt status register */
62 #define ICP_MULTI_INT_ADC_RDY	BIT(0)	/* A/D conversion ready interrupt */
63 #define ICP_MULTI_INT_DAC_RDY	BIT(1)	/* D/A conversion ready interrupt */
64 #define ICP_MULTI_INT_DOUT_ERR	BIT(2)	/* Digital output error interrupt */
65 #define ICP_MULTI_INT_DIN_STAT	BIT(3)	/* Digital input status change int. */
66 #define ICP_MULTI_INT_CIE0	BIT(4)	/* Counter 0 overrun interrupt */
67 #define ICP_MULTI_INT_CIE1	BIT(5)	/* Counter 1 overrun interrupt */
68 #define ICP_MULTI_INT_CIE2	BIT(6)	/* Counter 2 overrun interrupt */
69 #define ICP_MULTI_INT_CIE3	BIT(7)	/* Counter 3 overrun interrupt */
70 #define ICP_MULTI_INT_MASK	0xff	/* All interrupts */
71 #define ICP_MULTI_CNTR0		0x10	/* R/W: Counter 0 */
72 #define ICP_MULTI_CNTR1		0x12	/* R/W: counter 1 */
73 #define ICP_MULTI_CNTR2		0x14	/* R/W: Counter 2 */
74 #define ICP_MULTI_CNTR3		0x16	/* R/W: Counter 3 */
75 
76 /* analog input and output have the same range options */
77 static const struct comedi_lrange icp_multi_ranges = {
78 	4, {
79 		UNI_RANGE(5),
80 		UNI_RANGE(10),
81 		BIP_RANGE(5),
82 		BIP_RANGE(10)
83 	}
84 };
85 
86 static const char range_codes_analog[] = { 0x00, 0x20, 0x10, 0x30 };
87 
icp_multi_ai_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)88 static int icp_multi_ai_eoc(struct comedi_device *dev,
89 			    struct comedi_subdevice *s,
90 			    struct comedi_insn *insn,
91 			    unsigned long context)
92 {
93 	unsigned int status;
94 
95 	status = readw(dev->mmio + ICP_MULTI_ADC_CSR);
96 	if ((status & ICP_MULTI_ADC_CSR_BSY) == 0)
97 		return 0;
98 	return -EBUSY;
99 }
100 
icp_multi_ai_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)101 static int icp_multi_ai_insn_read(struct comedi_device *dev,
102 				  struct comedi_subdevice *s,
103 				  struct comedi_insn *insn,
104 				  unsigned int *data)
105 {
106 	unsigned int chan = CR_CHAN(insn->chanspec);
107 	unsigned int range = CR_RANGE(insn->chanspec);
108 	unsigned int aref = CR_AREF(insn->chanspec);
109 	unsigned int adc_csr;
110 	int ret = 0;
111 	int n;
112 
113 	/* Set mode and range data for specified channel */
114 	if (aref == AREF_DIFF) {
115 		adc_csr = ICP_MULTI_ADC_CSR_DI_CHAN(chan) |
116 			  ICP_MULTI_ADC_CSR_DI;
117 	} else {
118 		adc_csr = ICP_MULTI_ADC_CSR_SE_CHAN(chan);
119 	}
120 	adc_csr |= range_codes_analog[range];
121 	writew(adc_csr, dev->mmio + ICP_MULTI_ADC_CSR);
122 
123 	for (n = 0; n < insn->n; n++) {
124 		/*  Set start ADC bit */
125 		writew(adc_csr | ICP_MULTI_ADC_CSR_ST,
126 		       dev->mmio + ICP_MULTI_ADC_CSR);
127 
128 		udelay(1);
129 
130 		/*  Wait for conversion to complete, or get fed up waiting */
131 		ret = comedi_timeout(dev, s, insn, icp_multi_ai_eoc, 0);
132 		if (ret)
133 			break;
134 
135 		data[n] = (readw(dev->mmio + ICP_MULTI_AI) >> 4) & 0x0fff;
136 	}
137 
138 	return ret ? ret : n;
139 }
140 
icp_multi_ao_ready(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)141 static int icp_multi_ao_ready(struct comedi_device *dev,
142 			      struct comedi_subdevice *s,
143 			      struct comedi_insn *insn,
144 			      unsigned long context)
145 {
146 	unsigned int status;
147 
148 	status = readw(dev->mmio + ICP_MULTI_DAC_CSR);
149 	if ((status & ICP_MULTI_DAC_CSR_BSY) == 0)
150 		return 0;
151 	return -EBUSY;
152 }
153 
icp_multi_ao_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)154 static int icp_multi_ao_insn_write(struct comedi_device *dev,
155 				   struct comedi_subdevice *s,
156 				   struct comedi_insn *insn,
157 				   unsigned int *data)
158 {
159 	unsigned int chan = CR_CHAN(insn->chanspec);
160 	unsigned int range = CR_RANGE(insn->chanspec);
161 	unsigned int dac_csr;
162 	int i;
163 
164 	/* Select channel and range */
165 	dac_csr = ICP_MULTI_DAC_CSR_CHAN(chan);
166 	dac_csr |= range_codes_analog[range];
167 	writew(dac_csr, dev->mmio + ICP_MULTI_DAC_CSR);
168 
169 	for (i = 0; i < insn->n; i++) {
170 		unsigned int val = data[i];
171 		int ret;
172 
173 		/* Wait for analog output to be ready for new data */
174 		ret = comedi_timeout(dev, s, insn, icp_multi_ao_ready, 0);
175 		if (ret)
176 			return ret;
177 
178 		writew(val, dev->mmio + ICP_MULTI_AO);
179 
180 		/* Set start conversion bit to write data to channel */
181 		writew(dac_csr | ICP_MULTI_DAC_CSR_ST,
182 		       dev->mmio + ICP_MULTI_DAC_CSR);
183 
184 		s->readback[chan] = val;
185 	}
186 
187 	return insn->n;
188 }
189 
icp_multi_di_insn_bits(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)190 static int icp_multi_di_insn_bits(struct comedi_device *dev,
191 				  struct comedi_subdevice *s,
192 				  struct comedi_insn *insn,
193 				  unsigned int *data)
194 {
195 	data[1] = readw(dev->mmio + ICP_MULTI_DI);
196 
197 	return insn->n;
198 }
199 
icp_multi_do_insn_bits(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)200 static int icp_multi_do_insn_bits(struct comedi_device *dev,
201 				  struct comedi_subdevice *s,
202 				  struct comedi_insn *insn,
203 				  unsigned int *data)
204 {
205 	if (comedi_dio_update_state(s, data))
206 		writew(s->state, dev->mmio + ICP_MULTI_DO);
207 
208 	data[1] = s->state;
209 
210 	return insn->n;
211 }
212 
icp_multi_reset(struct comedi_device * dev)213 static int icp_multi_reset(struct comedi_device *dev)
214 {
215 	int i;
216 
217 	/* Disable all interrupts and clear any requests */
218 	writew(0, dev->mmio + ICP_MULTI_INT_EN);
219 	writew(ICP_MULTI_INT_MASK, dev->mmio + ICP_MULTI_INT_STAT);
220 
221 	/* Reset the analog output channels to 0V */
222 	for (i = 0; i < 4; i++) {
223 		unsigned int dac_csr = ICP_MULTI_DAC_CSR_CHAN(i);
224 
225 		/* Select channel and 0..5V range */
226 		writew(dac_csr, dev->mmio + ICP_MULTI_DAC_CSR);
227 
228 		/* Output 0V */
229 		writew(0, dev->mmio + ICP_MULTI_AO);
230 
231 		/* Set start conversion bit to write data to channel */
232 		writew(dac_csr | ICP_MULTI_DAC_CSR_ST,
233 		       dev->mmio + ICP_MULTI_DAC_CSR);
234 		udelay(1);
235 	}
236 
237 	/* Digital outputs to 0 */
238 	writew(0, dev->mmio + ICP_MULTI_DO);
239 
240 	return 0;
241 }
242 
icp_multi_auto_attach(struct comedi_device * dev,unsigned long context_unused)243 static int icp_multi_auto_attach(struct comedi_device *dev,
244 				 unsigned long context_unused)
245 {
246 	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
247 	struct comedi_subdevice *s;
248 	int ret;
249 
250 	ret = comedi_pci_enable(dev);
251 	if (ret)
252 		return ret;
253 
254 	dev->mmio = pci_ioremap_bar(pcidev, 2);
255 	if (!dev->mmio)
256 		return -ENOMEM;
257 
258 	ret = comedi_alloc_subdevices(dev, 4);
259 	if (ret)
260 		return ret;
261 
262 	icp_multi_reset(dev);
263 
264 	/* Analog Input subdevice */
265 	s = &dev->subdevices[0];
266 	s->type		= COMEDI_SUBD_AI;
267 	s->subdev_flags	= SDF_READABLE | SDF_COMMON | SDF_GROUND | SDF_DIFF;
268 	s->n_chan	= 16;
269 	s->maxdata	= 0x0fff;
270 	s->range_table	= &icp_multi_ranges;
271 	s->insn_read	= icp_multi_ai_insn_read;
272 
273 	/* Analog Output subdevice */
274 	s = &dev->subdevices[1];
275 	s->type		= COMEDI_SUBD_AO;
276 	s->subdev_flags	= SDF_WRITABLE | SDF_GROUND | SDF_COMMON;
277 	s->n_chan	= 4;
278 	s->maxdata	= 0x0fff;
279 	s->range_table	= &icp_multi_ranges;
280 	s->insn_write	= icp_multi_ao_insn_write;
281 
282 	ret = comedi_alloc_subdev_readback(s);
283 	if (ret)
284 		return ret;
285 
286 	/* Digital Input subdevice */
287 	s = &dev->subdevices[2];
288 	s->type		= COMEDI_SUBD_DI;
289 	s->subdev_flags	= SDF_READABLE;
290 	s->n_chan	= 16;
291 	s->maxdata	= 1;
292 	s->range_table	= &range_digital;
293 	s->insn_bits	= icp_multi_di_insn_bits;
294 
295 	/* Digital Output subdevice */
296 	s = &dev->subdevices[3];
297 	s->type		= COMEDI_SUBD_DO;
298 	s->subdev_flags	= SDF_WRITABLE;
299 	s->n_chan	= 8;
300 	s->maxdata	= 1;
301 	s->range_table	= &range_digital;
302 	s->insn_bits	= icp_multi_do_insn_bits;
303 
304 	return 0;
305 }
306 
307 static struct comedi_driver icp_multi_driver = {
308 	.driver_name	= "icp_multi",
309 	.module		= THIS_MODULE,
310 	.auto_attach	= icp_multi_auto_attach,
311 	.detach		= comedi_pci_detach,
312 };
313 
icp_multi_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)314 static int icp_multi_pci_probe(struct pci_dev *dev,
315 			       const struct pci_device_id *id)
316 {
317 	return comedi_pci_auto_config(dev, &icp_multi_driver, id->driver_data);
318 }
319 
320 static const struct pci_device_id icp_multi_pci_table[] = {
321 	{ PCI_DEVICE(PCI_VENDOR_ID_ICP, 0x8000) },
322 	{ 0 }
323 };
324 MODULE_DEVICE_TABLE(pci, icp_multi_pci_table);
325 
326 static struct pci_driver icp_multi_pci_driver = {
327 	.name		= "icp_multi",
328 	.id_table	= icp_multi_pci_table,
329 	.probe		= icp_multi_pci_probe,
330 	.remove		= comedi_pci_auto_unconfig,
331 };
332 module_comedi_pci_driver(icp_multi_driver, icp_multi_pci_driver);
333 
334 MODULE_AUTHOR("Comedi https://www.comedi.org");
335 MODULE_DESCRIPTION("Comedi driver for Inova ICP_MULTI board");
336 MODULE_LICENSE("GPL");
337