1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
6 *
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
10
11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13 #include <linux/arch_topology.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/dmi.h>
20 #include <linux/irq_work.h>
21 #include <linux/kthread.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <uapi/linux/sched/types.h>
25
26 #include <asm/unaligned.h>
27
28 #include <acpi/cppc_acpi.h>
29
30 /* Minimum struct length needed for the DMI processor entry we want */
31 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
32
33 /* Offset in the DMI processor structure for the max frequency */
34 #define DMI_PROCESSOR_MAX_SPEED 0x14
35
36 /*
37 * This list contains information parsed from per CPU ACPI _CPC and _PSD
38 * structures: e.g. the highest and lowest supported performance, capabilities,
39 * desired performance, level requested etc. Depending on the share_type, not
40 * all CPUs will have an entry in the list.
41 */
42 static LIST_HEAD(cpu_data_list);
43
44 static bool boost_supported;
45
46 struct cppc_workaround_oem_info {
47 char oem_id[ACPI_OEM_ID_SIZE + 1];
48 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
49 u32 oem_revision;
50 };
51
52 static struct cppc_workaround_oem_info wa_info[] = {
53 {
54 .oem_id = "HISI ",
55 .oem_table_id = "HIP07 ",
56 .oem_revision = 0,
57 }, {
58 .oem_id = "HISI ",
59 .oem_table_id = "HIP08 ",
60 .oem_revision = 0,
61 }
62 };
63
64 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
65
66 /* Frequency invariance support */
67 struct cppc_freq_invariance {
68 int cpu;
69 struct irq_work irq_work;
70 struct kthread_work work;
71 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
72 struct cppc_cpudata *cpu_data;
73 };
74
75 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
76 static struct kthread_worker *kworker_fie;
77 static bool fie_disabled;
78
79 static struct cpufreq_driver cppc_cpufreq_driver;
80 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu);
81 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
82 struct cppc_perf_fb_ctrs fb_ctrs_t0,
83 struct cppc_perf_fb_ctrs fb_ctrs_t1);
84
85 /**
86 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
87 * @work: The work item.
88 *
89 * The CPPC driver register itself with the topology core to provide its own
90 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
91 * gets called by the scheduler on every tick.
92 *
93 * Note that the arch specific counters have higher priority than CPPC counters,
94 * if available, though the CPPC driver doesn't need to have any special
95 * handling for that.
96 *
97 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
98 * reach here from hard-irq context), which then schedules a normal work item
99 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
100 * based on the counter updates since the last tick.
101 */
cppc_scale_freq_workfn(struct kthread_work * work)102 static void cppc_scale_freq_workfn(struct kthread_work *work)
103 {
104 struct cppc_freq_invariance *cppc_fi;
105 struct cppc_perf_fb_ctrs fb_ctrs = {0};
106 struct cppc_cpudata *cpu_data;
107 unsigned long local_freq_scale;
108 u64 perf;
109
110 cppc_fi = container_of(work, struct cppc_freq_invariance, work);
111 cpu_data = cppc_fi->cpu_data;
112
113 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
114 pr_warn("%s: failed to read perf counters\n", __func__);
115 return;
116 }
117
118 cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
119 perf = cppc_perf_from_fbctrs(cpu_data, cppc_fi->prev_perf_fb_ctrs,
120 fb_ctrs);
121
122 perf <<= SCHED_CAPACITY_SHIFT;
123 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
124 if (WARN_ON(local_freq_scale > 1024))
125 local_freq_scale = 1024;
126
127 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
128 }
129
cppc_irq_work(struct irq_work * irq_work)130 static void cppc_irq_work(struct irq_work *irq_work)
131 {
132 struct cppc_freq_invariance *cppc_fi;
133
134 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
135 kthread_queue_work(kworker_fie, &cppc_fi->work);
136 }
137
cppc_scale_freq_tick(void)138 static void cppc_scale_freq_tick(void)
139 {
140 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
141
142 /*
143 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
144 * context.
145 */
146 irq_work_queue(&cppc_fi->irq_work);
147 }
148
149 static struct scale_freq_data cppc_sftd = {
150 .source = SCALE_FREQ_SOURCE_CPPC,
151 .set_freq_scale = cppc_scale_freq_tick,
152 };
153
cppc_freq_invariance_policy_init(struct cpufreq_policy * policy,struct cppc_cpudata * cpu_data)154 static void cppc_freq_invariance_policy_init(struct cpufreq_policy *policy,
155 struct cppc_cpudata *cpu_data)
156 {
157 struct cppc_perf_fb_ctrs fb_ctrs = {0};
158 struct cppc_freq_invariance *cppc_fi;
159 int i, ret;
160
161 if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
162 return;
163
164 if (fie_disabled)
165 return;
166
167 for_each_cpu(i, policy->cpus) {
168 cppc_fi = &per_cpu(cppc_freq_inv, i);
169 cppc_fi->cpu = i;
170 cppc_fi->cpu_data = cpu_data;
171 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
172 init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
173
174 ret = cppc_get_perf_ctrs(i, &fb_ctrs);
175 if (ret) {
176 pr_warn("%s: failed to read perf counters: %d\n",
177 __func__, ret);
178 fie_disabled = true;
179 } else {
180 cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
181 }
182 }
183 }
184
cppc_freq_invariance_init(void)185 static void __init cppc_freq_invariance_init(void)
186 {
187 struct sched_attr attr = {
188 .size = sizeof(struct sched_attr),
189 .sched_policy = SCHED_DEADLINE,
190 .sched_nice = 0,
191 .sched_priority = 0,
192 /*
193 * Fake (unused) bandwidth; workaround to "fix"
194 * priority inheritance.
195 */
196 .sched_runtime = 1000000,
197 .sched_deadline = 10000000,
198 .sched_period = 10000000,
199 };
200 int ret;
201
202 if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
203 return;
204
205 if (fie_disabled)
206 return;
207
208 kworker_fie = kthread_create_worker(0, "cppc_fie");
209 if (IS_ERR(kworker_fie))
210 return;
211
212 ret = sched_setattr_nocheck(kworker_fie->task, &attr);
213 if (ret) {
214 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
215 ret);
216 kthread_destroy_worker(kworker_fie);
217 return;
218 }
219
220 /* Register for freq-invariance */
221 topology_set_scale_freq_source(&cppc_sftd, cpu_present_mask);
222 }
223
cppc_freq_invariance_exit(void)224 static void cppc_freq_invariance_exit(void)
225 {
226 struct cppc_freq_invariance *cppc_fi;
227 int i;
228
229 if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
230 return;
231
232 if (fie_disabled)
233 return;
234
235 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, cpu_present_mask);
236
237 for_each_possible_cpu(i) {
238 cppc_fi = &per_cpu(cppc_freq_inv, i);
239 irq_work_sync(&cppc_fi->irq_work);
240 }
241
242 kthread_destroy_worker(kworker_fie);
243 kworker_fie = NULL;
244 }
245
246 #else
247 static inline void
cppc_freq_invariance_policy_init(struct cpufreq_policy * policy,struct cppc_cpudata * cpu_data)248 cppc_freq_invariance_policy_init(struct cpufreq_policy *policy,
249 struct cppc_cpudata *cpu_data)
250 {
251 }
252
cppc_freq_invariance_init(void)253 static inline void cppc_freq_invariance_init(void)
254 {
255 }
256
cppc_freq_invariance_exit(void)257 static inline void cppc_freq_invariance_exit(void)
258 {
259 }
260 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
261
262 /* Callback function used to retrieve the max frequency from DMI */
cppc_find_dmi_mhz(const struct dmi_header * dm,void * private)263 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
264 {
265 const u8 *dmi_data = (const u8 *)dm;
266 u16 *mhz = (u16 *)private;
267
268 if (dm->type == DMI_ENTRY_PROCESSOR &&
269 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
270 u16 val = (u16)get_unaligned((const u16 *)
271 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
272 *mhz = val > *mhz ? val : *mhz;
273 }
274 }
275
276 /* Look up the max frequency in DMI */
cppc_get_dmi_max_khz(void)277 static u64 cppc_get_dmi_max_khz(void)
278 {
279 u16 mhz = 0;
280
281 dmi_walk(cppc_find_dmi_mhz, &mhz);
282
283 /*
284 * Real stupid fallback value, just in case there is no
285 * actual value set.
286 */
287 mhz = mhz ? mhz : 1;
288
289 return (1000 * mhz);
290 }
291
292 /*
293 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
294 * use them to convert perf to freq and vice versa
295 *
296 * If the perf/freq point lies between Nominal and Lowest, we can treat
297 * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
298 * and extrapolate the rest
299 * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
300 */
cppc_cpufreq_perf_to_khz(struct cppc_cpudata * cpu_data,unsigned int perf)301 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
302 unsigned int perf)
303 {
304 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
305 static u64 max_khz;
306 u64 mul, div;
307
308 if (caps->lowest_freq && caps->nominal_freq) {
309 if (perf >= caps->nominal_perf) {
310 mul = caps->nominal_freq;
311 div = caps->nominal_perf;
312 } else {
313 mul = caps->nominal_freq - caps->lowest_freq;
314 div = caps->nominal_perf - caps->lowest_perf;
315 }
316 } else {
317 if (!max_khz)
318 max_khz = cppc_get_dmi_max_khz();
319 mul = max_khz;
320 div = caps->highest_perf;
321 }
322 return (u64)perf * mul / div;
323 }
324
cppc_cpufreq_khz_to_perf(struct cppc_cpudata * cpu_data,unsigned int freq)325 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
326 unsigned int freq)
327 {
328 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
329 static u64 max_khz;
330 u64 mul, div;
331
332 if (caps->lowest_freq && caps->nominal_freq) {
333 if (freq >= caps->nominal_freq) {
334 mul = caps->nominal_perf;
335 div = caps->nominal_freq;
336 } else {
337 mul = caps->lowest_perf;
338 div = caps->lowest_freq;
339 }
340 } else {
341 if (!max_khz)
342 max_khz = cppc_get_dmi_max_khz();
343 mul = caps->highest_perf;
344 div = max_khz;
345 }
346
347 return (u64)freq * mul / div;
348 }
349
cppc_cpufreq_set_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)350 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
351 unsigned int target_freq,
352 unsigned int relation)
353
354 {
355 struct cppc_cpudata *cpu_data = policy->driver_data;
356 unsigned int cpu = policy->cpu;
357 struct cpufreq_freqs freqs;
358 u32 desired_perf;
359 int ret = 0;
360
361 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
362 /* Return if it is exactly the same perf */
363 if (desired_perf == cpu_data->perf_ctrls.desired_perf)
364 return ret;
365
366 cpu_data->perf_ctrls.desired_perf = desired_perf;
367 freqs.old = policy->cur;
368 freqs.new = target_freq;
369
370 cpufreq_freq_transition_begin(policy, &freqs);
371 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
372 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
373
374 if (ret)
375 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
376 cpu, ret);
377
378 return ret;
379 }
380
cppc_verify_policy(struct cpufreq_policy_data * policy)381 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
382 {
383 cpufreq_verify_within_cpu_limits(policy);
384 return 0;
385 }
386
cppc_cpufreq_stop_cpu(struct cpufreq_policy * policy)387 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
388 {
389 struct cppc_cpudata *cpu_data = policy->driver_data;
390 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
391 unsigned int cpu = policy->cpu;
392 int ret;
393
394 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
395
396 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
397 if (ret)
398 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
399 caps->lowest_perf, cpu, ret);
400
401 /* Remove CPU node from list and free driver data for policy */
402 free_cpumask_var(cpu_data->shared_cpu_map);
403 list_del(&cpu_data->node);
404 kfree(policy->driver_data);
405 policy->driver_data = NULL;
406 }
407
408 /*
409 * The PCC subspace describes the rate at which platform can accept commands
410 * on the shared PCC channel (including READs which do not count towards freq
411 * transition requests), so ideally we need to use the PCC values as a fallback
412 * if we don't have a platform specific transition_delay_us
413 */
414 #ifdef CONFIG_ARM64
415 #include <asm/cputype.h>
416
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)417 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
418 {
419 unsigned long implementor = read_cpuid_implementor();
420 unsigned long part_num = read_cpuid_part_number();
421
422 switch (implementor) {
423 case ARM_CPU_IMP_QCOM:
424 switch (part_num) {
425 case QCOM_CPU_PART_FALKOR_V1:
426 case QCOM_CPU_PART_FALKOR:
427 return 10000;
428 }
429 }
430 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
431 }
432
433 #else
434
cppc_cpufreq_get_transition_delay_us(unsigned int cpu)435 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
436 {
437 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
438 }
439 #endif
440
441
cppc_cpufreq_get_cpu_data(unsigned int cpu)442 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
443 {
444 struct cppc_cpudata *cpu_data;
445 int ret;
446
447 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
448 if (!cpu_data)
449 goto out;
450
451 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
452 goto free_cpu;
453
454 ret = acpi_get_psd_map(cpu, cpu_data);
455 if (ret) {
456 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
457 goto free_mask;
458 }
459
460 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
461 if (ret) {
462 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
463 goto free_mask;
464 }
465
466 /* Convert the lowest and nominal freq from MHz to KHz */
467 cpu_data->perf_caps.lowest_freq *= 1000;
468 cpu_data->perf_caps.nominal_freq *= 1000;
469
470 list_add(&cpu_data->node, &cpu_data_list);
471
472 return cpu_data;
473
474 free_mask:
475 free_cpumask_var(cpu_data->shared_cpu_map);
476 free_cpu:
477 kfree(cpu_data);
478 out:
479 return NULL;
480 }
481
cppc_cpufreq_cpu_init(struct cpufreq_policy * policy)482 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
483 {
484 unsigned int cpu = policy->cpu;
485 struct cppc_cpudata *cpu_data;
486 struct cppc_perf_caps *caps;
487 int ret;
488
489 cpu_data = cppc_cpufreq_get_cpu_data(cpu);
490 if (!cpu_data) {
491 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
492 return -ENODEV;
493 }
494 caps = &cpu_data->perf_caps;
495 policy->driver_data = cpu_data;
496
497 /*
498 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
499 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
500 */
501 policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
502 caps->lowest_nonlinear_perf);
503 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
504 caps->nominal_perf);
505
506 /*
507 * Set cpuinfo.min_freq to Lowest to make the full range of performance
508 * available if userspace wants to use any perf between lowest & lowest
509 * nonlinear perf
510 */
511 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
512 caps->lowest_perf);
513 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
514 caps->nominal_perf);
515
516 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
517 policy->shared_type = cpu_data->shared_type;
518
519 switch (policy->shared_type) {
520 case CPUFREQ_SHARED_TYPE_HW:
521 case CPUFREQ_SHARED_TYPE_NONE:
522 /* Nothing to be done - we'll have a policy for each CPU */
523 break;
524 case CPUFREQ_SHARED_TYPE_ANY:
525 /*
526 * All CPUs in the domain will share a policy and all cpufreq
527 * operations will use a single cppc_cpudata structure stored
528 * in policy->driver_data.
529 */
530 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
531 break;
532 default:
533 pr_debug("Unsupported CPU co-ord type: %d\n",
534 policy->shared_type);
535 return -EFAULT;
536 }
537
538 /*
539 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
540 * is supported.
541 */
542 if (caps->highest_perf > caps->nominal_perf)
543 boost_supported = true;
544
545 /* Set policy->cur to max now. The governors will adjust later. */
546 policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
547 cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
548
549 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
550 if (ret) {
551 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
552 caps->highest_perf, cpu, ret);
553 } else {
554 cppc_freq_invariance_policy_init(policy, cpu_data);
555 }
556
557 return ret;
558 }
559
get_delta(u64 t1,u64 t0)560 static inline u64 get_delta(u64 t1, u64 t0)
561 {
562 if (t1 > t0 || t0 > ~(u32)0)
563 return t1 - t0;
564
565 return (u32)t1 - (u32)t0;
566 }
567
cppc_perf_from_fbctrs(struct cppc_cpudata * cpu_data,struct cppc_perf_fb_ctrs fb_ctrs_t0,struct cppc_perf_fb_ctrs fb_ctrs_t1)568 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
569 struct cppc_perf_fb_ctrs fb_ctrs_t0,
570 struct cppc_perf_fb_ctrs fb_ctrs_t1)
571 {
572 u64 delta_reference, delta_delivered;
573 u64 reference_perf;
574
575 reference_perf = fb_ctrs_t0.reference_perf;
576
577 delta_reference = get_delta(fb_ctrs_t1.reference,
578 fb_ctrs_t0.reference);
579 delta_delivered = get_delta(fb_ctrs_t1.delivered,
580 fb_ctrs_t0.delivered);
581
582 /* Check to avoid divide-by zero and invalid delivered_perf */
583 if (!delta_reference || !delta_delivered)
584 return cpu_data->perf_ctrls.desired_perf;
585
586 return (reference_perf * delta_delivered) / delta_reference;
587 }
588
cppc_get_rate_from_fbctrs(struct cppc_cpudata * cpu_data,struct cppc_perf_fb_ctrs fb_ctrs_t0,struct cppc_perf_fb_ctrs fb_ctrs_t1)589 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu_data,
590 struct cppc_perf_fb_ctrs fb_ctrs_t0,
591 struct cppc_perf_fb_ctrs fb_ctrs_t1)
592 {
593 u64 delivered_perf;
594
595 delivered_perf = cppc_perf_from_fbctrs(cpu_data, fb_ctrs_t0,
596 fb_ctrs_t1);
597
598 return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
599 }
600
cppc_cpufreq_get_rate(unsigned int cpu)601 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
602 {
603 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
604 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
605 struct cppc_cpudata *cpu_data = policy->driver_data;
606 int ret;
607
608 cpufreq_cpu_put(policy);
609
610 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
611 if (ret)
612 return ret;
613
614 udelay(2); /* 2usec delay between sampling */
615
616 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
617 if (ret)
618 return ret;
619
620 return cppc_get_rate_from_fbctrs(cpu_data, fb_ctrs_t0, fb_ctrs_t1);
621 }
622
cppc_cpufreq_set_boost(struct cpufreq_policy * policy,int state)623 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
624 {
625 struct cppc_cpudata *cpu_data = policy->driver_data;
626 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
627 int ret;
628
629 if (!boost_supported) {
630 pr_err("BOOST not supported by CPU or firmware\n");
631 return -EINVAL;
632 }
633
634 if (state)
635 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
636 caps->highest_perf);
637 else
638 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
639 caps->nominal_perf);
640 policy->cpuinfo.max_freq = policy->max;
641
642 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
643 if (ret < 0)
644 return ret;
645
646 return 0;
647 }
648
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)649 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
650 {
651 struct cppc_cpudata *cpu_data = policy->driver_data;
652
653 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
654 }
655 cpufreq_freq_attr_ro(freqdomain_cpus);
656
657 static struct freq_attr *cppc_cpufreq_attr[] = {
658 &freqdomain_cpus,
659 NULL,
660 };
661
662 static struct cpufreq_driver cppc_cpufreq_driver = {
663 .flags = CPUFREQ_CONST_LOOPS,
664 .verify = cppc_verify_policy,
665 .target = cppc_cpufreq_set_target,
666 .get = cppc_cpufreq_get_rate,
667 .init = cppc_cpufreq_cpu_init,
668 .stop_cpu = cppc_cpufreq_stop_cpu,
669 .set_boost = cppc_cpufreq_set_boost,
670 .attr = cppc_cpufreq_attr,
671 .name = "cppc_cpufreq",
672 };
673
674 /*
675 * HISI platform does not support delivered performance counter and
676 * reference performance counter. It can calculate the performance using the
677 * platform specific mechanism. We reuse the desired performance register to
678 * store the real performance calculated by the platform.
679 */
hisi_cppc_cpufreq_get_rate(unsigned int cpu)680 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
681 {
682 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
683 struct cppc_cpudata *cpu_data = policy->driver_data;
684 u64 desired_perf;
685 int ret;
686
687 cpufreq_cpu_put(policy);
688
689 ret = cppc_get_desired_perf(cpu, &desired_perf);
690 if (ret < 0)
691 return -EIO;
692
693 return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
694 }
695
cppc_check_hisi_workaround(void)696 static void cppc_check_hisi_workaround(void)
697 {
698 struct acpi_table_header *tbl;
699 acpi_status status = AE_OK;
700 int i;
701
702 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
703 if (ACPI_FAILURE(status) || !tbl)
704 return;
705
706 for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
707 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
708 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
709 wa_info[i].oem_revision == tbl->oem_revision) {
710 /* Overwrite the get() callback */
711 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
712 break;
713 }
714 }
715
716 acpi_put_table(tbl);
717 }
718
cppc_cpufreq_init(void)719 static int __init cppc_cpufreq_init(void)
720 {
721 int ret;
722
723 if ((acpi_disabled) || !acpi_cpc_valid())
724 return -ENODEV;
725
726 INIT_LIST_HEAD(&cpu_data_list);
727
728 cppc_check_hisi_workaround();
729
730 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
731 if (!ret)
732 cppc_freq_invariance_init();
733
734 return ret;
735 }
736
free_cpu_data(void)737 static inline void free_cpu_data(void)
738 {
739 struct cppc_cpudata *iter, *tmp;
740
741 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
742 free_cpumask_var(iter->shared_cpu_map);
743 list_del(&iter->node);
744 kfree(iter);
745 }
746
747 }
748
cppc_cpufreq_exit(void)749 static void __exit cppc_cpufreq_exit(void)
750 {
751 cppc_freq_invariance_exit();
752 cpufreq_unregister_driver(&cppc_cpufreq_driver);
753
754 free_cpu_data();
755 }
756
757 module_exit(cppc_cpufreq_exit);
758 MODULE_AUTHOR("Ashwin Chaugule");
759 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
760 MODULE_LICENSE("GPL");
761
762 late_initcall(cppc_cpufreq_init);
763
764 static const struct acpi_device_id cppc_acpi_ids[] __used = {
765 {ACPI_PROCESSOR_DEVICE_HID, },
766 {}
767 };
768
769 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
770