1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29 #include "amdgpu.h"
30 #include "amdgpu_amdkfd.h"
31 
32 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
33  * GPU processor ID are expressed with Bit[31]=1.
34  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
35  * used in the CRAT.
36  */
37 static uint32_t gpu_processor_id_low = 0x80001000;
38 
39 /* Return the next available gpu_processor_id and increment it for next GPU
40  *	@total_cu_count - Total CUs present in the GPU including ones
41  *			  masked off
42  */
get_and_inc_gpu_processor_id(unsigned int total_cu_count)43 static inline unsigned int get_and_inc_gpu_processor_id(
44 				unsigned int total_cu_count)
45 {
46 	int current_id = gpu_processor_id_low;
47 
48 	gpu_processor_id_low += total_cu_count;
49 	return current_id;
50 }
51 
52 /* Static table to describe GPU Cache information */
53 struct kfd_gpu_cache_info {
54 	uint32_t	cache_size;
55 	uint32_t	cache_level;
56 	uint32_t	flags;
57 	/* Indicates how many Compute Units share this cache
58 	 * Value = 1 indicates the cache is not shared
59 	 */
60 	uint32_t	num_cu_shared;
61 };
62 
63 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
64 	{
65 		/* TCP L1 Cache per CU */
66 		.cache_size = 16,
67 		.cache_level = 1,
68 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
69 				CRAT_CACHE_FLAGS_DATA_CACHE |
70 				CRAT_CACHE_FLAGS_SIMD_CACHE),
71 		.num_cu_shared = 1,
72 
73 	},
74 	{
75 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
76 		.cache_size = 16,
77 		.cache_level = 1,
78 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
79 				CRAT_CACHE_FLAGS_INST_CACHE |
80 				CRAT_CACHE_FLAGS_SIMD_CACHE),
81 		.num_cu_shared = 2,
82 	},
83 	{
84 		/* Scalar L1 Data Cache (in SQC module) per bank */
85 		.cache_size = 8,
86 		.cache_level = 1,
87 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
88 				CRAT_CACHE_FLAGS_DATA_CACHE |
89 				CRAT_CACHE_FLAGS_SIMD_CACHE),
90 		.num_cu_shared = 2,
91 	},
92 
93 	/* TODO: Add L2 Cache information */
94 };
95 
96 
97 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
98 	{
99 		/* TCP L1 Cache per CU */
100 		.cache_size = 16,
101 		.cache_level = 1,
102 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
103 				CRAT_CACHE_FLAGS_DATA_CACHE |
104 				CRAT_CACHE_FLAGS_SIMD_CACHE),
105 		.num_cu_shared = 1,
106 	},
107 	{
108 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
109 		.cache_size = 8,
110 		.cache_level = 1,
111 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
112 				CRAT_CACHE_FLAGS_INST_CACHE |
113 				CRAT_CACHE_FLAGS_SIMD_CACHE),
114 		.num_cu_shared = 4,
115 	},
116 	{
117 		/* Scalar L1 Data Cache (in SQC module) per bank. */
118 		.cache_size = 4,
119 		.cache_level = 1,
120 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
121 				CRAT_CACHE_FLAGS_DATA_CACHE |
122 				CRAT_CACHE_FLAGS_SIMD_CACHE),
123 		.num_cu_shared = 4,
124 	},
125 
126 	/* TODO: Add L2 Cache information */
127 };
128 
129 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
130  * the following ASICs may need a separate table.
131  */
132 #define hawaii_cache_info kaveri_cache_info
133 #define tonga_cache_info carrizo_cache_info
134 #define fiji_cache_info  carrizo_cache_info
135 #define polaris10_cache_info carrizo_cache_info
136 #define polaris11_cache_info carrizo_cache_info
137 #define polaris12_cache_info carrizo_cache_info
138 #define vegam_cache_info carrizo_cache_info
139 /* TODO - check & update Vega10 cache details */
140 #define vega10_cache_info carrizo_cache_info
141 #define raven_cache_info carrizo_cache_info
142 #define renoir_cache_info carrizo_cache_info
143 /* TODO - check & update Navi10 cache details */
144 #define navi10_cache_info carrizo_cache_info
145 #define vangogh_cache_info carrizo_cache_info
146 
kfd_populated_cu_info_cpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)147 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
148 		struct crat_subtype_computeunit *cu)
149 {
150 	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
151 	dev->node_props.cpu_core_id_base = cu->processor_id_low;
152 	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
153 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
154 
155 	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
156 			cu->processor_id_low);
157 }
158 
kfd_populated_cu_info_gpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)159 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
160 		struct crat_subtype_computeunit *cu)
161 {
162 	dev->node_props.simd_id_base = cu->processor_id_low;
163 	dev->node_props.simd_count = cu->num_simd_cores;
164 	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
165 	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
166 	dev->node_props.wave_front_size = cu->wave_front_size;
167 	dev->node_props.array_count = cu->array_count;
168 	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
169 	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
170 	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
171 	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
172 		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
173 	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
174 }
175 
176 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
177  * topology device present in the device_list
178  */
kfd_parse_subtype_cu(struct crat_subtype_computeunit * cu,struct list_head * device_list)179 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
180 				struct list_head *device_list)
181 {
182 	struct kfd_topology_device *dev;
183 
184 	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
185 			cu->proximity_domain, cu->hsa_capability);
186 	list_for_each_entry(dev, device_list, list) {
187 		if (cu->proximity_domain == dev->proximity_domain) {
188 			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
189 				kfd_populated_cu_info_cpu(dev, cu);
190 
191 			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
192 				kfd_populated_cu_info_gpu(dev, cu);
193 			break;
194 		}
195 	}
196 
197 	return 0;
198 }
199 
200 static struct kfd_mem_properties *
find_subtype_mem(uint32_t heap_type,uint32_t flags,uint32_t width,struct kfd_topology_device * dev)201 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
202 		struct kfd_topology_device *dev)
203 {
204 	struct kfd_mem_properties *props;
205 
206 	list_for_each_entry(props, &dev->mem_props, list) {
207 		if (props->heap_type == heap_type
208 				&& props->flags == flags
209 				&& props->width == width)
210 			return props;
211 	}
212 
213 	return NULL;
214 }
215 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
216  * topology device present in the device_list
217  */
kfd_parse_subtype_mem(struct crat_subtype_memory * mem,struct list_head * device_list)218 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
219 				struct list_head *device_list)
220 {
221 	struct kfd_mem_properties *props;
222 	struct kfd_topology_device *dev;
223 	uint32_t heap_type;
224 	uint64_t size_in_bytes;
225 	uint32_t flags = 0;
226 	uint32_t width;
227 
228 	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
229 			mem->proximity_domain);
230 	list_for_each_entry(dev, device_list, list) {
231 		if (mem->proximity_domain == dev->proximity_domain) {
232 			/* We're on GPU node */
233 			if (dev->node_props.cpu_cores_count == 0) {
234 				/* APU */
235 				if (mem->visibility_type == 0)
236 					heap_type =
237 						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
238 				/* dGPU */
239 				else
240 					heap_type = mem->visibility_type;
241 			} else
242 				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
243 
244 			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
245 				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
246 			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
247 				flags |= HSA_MEM_FLAGS_NON_VOLATILE;
248 
249 			size_in_bytes =
250 				((uint64_t)mem->length_high << 32) +
251 							mem->length_low;
252 			width = mem->width;
253 
254 			/* Multiple banks of the same type are aggregated into
255 			 * one. User mode doesn't care about multiple physical
256 			 * memory segments. It's managed as a single virtual
257 			 * heap for user mode.
258 			 */
259 			props = find_subtype_mem(heap_type, flags, width, dev);
260 			if (props) {
261 				props->size_in_bytes += size_in_bytes;
262 				break;
263 			}
264 
265 			props = kfd_alloc_struct(props);
266 			if (!props)
267 				return -ENOMEM;
268 
269 			props->heap_type = heap_type;
270 			props->flags = flags;
271 			props->size_in_bytes = size_in_bytes;
272 			props->width = width;
273 
274 			dev->node_props.mem_banks_count++;
275 			list_add_tail(&props->list, &dev->mem_props);
276 
277 			break;
278 		}
279 	}
280 
281 	return 0;
282 }
283 
284 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
285  * topology device present in the device_list
286  */
kfd_parse_subtype_cache(struct crat_subtype_cache * cache,struct list_head * device_list)287 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
288 			struct list_head *device_list)
289 {
290 	struct kfd_cache_properties *props;
291 	struct kfd_topology_device *dev;
292 	uint32_t id;
293 	uint32_t total_num_of_cu;
294 
295 	id = cache->processor_id_low;
296 
297 	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
298 	list_for_each_entry(dev, device_list, list) {
299 		total_num_of_cu = (dev->node_props.array_count *
300 					dev->node_props.cu_per_simd_array);
301 
302 		/* Cache infomration in CRAT doesn't have proximity_domain
303 		 * information as it is associated with a CPU core or GPU
304 		 * Compute Unit. So map the cache using CPU core Id or SIMD
305 		 * (GPU) ID.
306 		 * TODO: This works because currently we can safely assume that
307 		 *  Compute Units are parsed before caches are parsed. In
308 		 *  future, remove this dependency
309 		 */
310 		if ((id >= dev->node_props.cpu_core_id_base &&
311 			id <= dev->node_props.cpu_core_id_base +
312 				dev->node_props.cpu_cores_count) ||
313 			(id >= dev->node_props.simd_id_base &&
314 			id < dev->node_props.simd_id_base +
315 				total_num_of_cu)) {
316 			props = kfd_alloc_struct(props);
317 			if (!props)
318 				return -ENOMEM;
319 
320 			props->processor_id_low = id;
321 			props->cache_level = cache->cache_level;
322 			props->cache_size = cache->cache_size;
323 			props->cacheline_size = cache->cache_line_size;
324 			props->cachelines_per_tag = cache->lines_per_tag;
325 			props->cache_assoc = cache->associativity;
326 			props->cache_latency = cache->cache_latency;
327 			memcpy(props->sibling_map, cache->sibling_map,
328 					sizeof(props->sibling_map));
329 
330 			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
331 				props->cache_type |= HSA_CACHE_TYPE_DATA;
332 			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
333 				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
334 			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
335 				props->cache_type |= HSA_CACHE_TYPE_CPU;
336 			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
337 				props->cache_type |= HSA_CACHE_TYPE_HSACU;
338 
339 			dev->cache_count++;
340 			dev->node_props.caches_count++;
341 			list_add_tail(&props->list, &dev->cache_props);
342 
343 			break;
344 		}
345 	}
346 
347 	return 0;
348 }
349 
350 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
351  * topology device present in the device_list
352  */
kfd_parse_subtype_iolink(struct crat_subtype_iolink * iolink,struct list_head * device_list)353 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
354 					struct list_head *device_list)
355 {
356 	struct kfd_iolink_properties *props = NULL, *props2;
357 	struct kfd_topology_device *dev, *to_dev;
358 	uint32_t id_from;
359 	uint32_t id_to;
360 
361 	id_from = iolink->proximity_domain_from;
362 	id_to = iolink->proximity_domain_to;
363 
364 	pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
365 			id_from, id_to);
366 	list_for_each_entry(dev, device_list, list) {
367 		if (id_from == dev->proximity_domain) {
368 			props = kfd_alloc_struct(props);
369 			if (!props)
370 				return -ENOMEM;
371 
372 			props->node_from = id_from;
373 			props->node_to = id_to;
374 			props->ver_maj = iolink->version_major;
375 			props->ver_min = iolink->version_minor;
376 			props->iolink_type = iolink->io_interface_type;
377 
378 			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
379 				props->weight = 20;
380 			else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
381 				props->weight = 15 * iolink->num_hops_xgmi;
382 			else
383 				props->weight = node_distance(id_from, id_to);
384 
385 			props->min_latency = iolink->minimum_latency;
386 			props->max_latency = iolink->maximum_latency;
387 			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
388 			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
389 			props->rec_transfer_size =
390 					iolink->recommended_transfer_size;
391 
392 			dev->io_link_count++;
393 			dev->node_props.io_links_count++;
394 			list_add_tail(&props->list, &dev->io_link_props);
395 			break;
396 		}
397 	}
398 
399 	/* CPU topology is created before GPUs are detected, so CPU->GPU
400 	 * links are not built at that time. If a PCIe type is discovered, it
401 	 * means a GPU is detected and we are adding GPU->CPU to the topology.
402 	 * At this time, also add the corresponded CPU->GPU link if GPU
403 	 * is large bar.
404 	 * For xGMI, we only added the link with one direction in the crat
405 	 * table, add corresponded reversed direction link now.
406 	 */
407 	if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
408 		to_dev = kfd_topology_device_by_proximity_domain(id_to);
409 		if (!to_dev)
410 			return -ENODEV;
411 		/* same everything but the other direction */
412 		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
413 		props2->node_from = id_to;
414 		props2->node_to = id_from;
415 		props2->kobj = NULL;
416 		to_dev->io_link_count++;
417 		to_dev->node_props.io_links_count++;
418 		list_add_tail(&props2->list, &to_dev->io_link_props);
419 	}
420 
421 	return 0;
422 }
423 
424 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
425  * present in the device_list
426  *	@sub_type_hdr - subtype section of crat_image
427  *	@device_list - list of topology devices present in this crat_image
428  */
kfd_parse_subtype(struct crat_subtype_generic * sub_type_hdr,struct list_head * device_list)429 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
430 				struct list_head *device_list)
431 {
432 	struct crat_subtype_computeunit *cu;
433 	struct crat_subtype_memory *mem;
434 	struct crat_subtype_cache *cache;
435 	struct crat_subtype_iolink *iolink;
436 	int ret = 0;
437 
438 	switch (sub_type_hdr->type) {
439 	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
440 		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
441 		ret = kfd_parse_subtype_cu(cu, device_list);
442 		break;
443 	case CRAT_SUBTYPE_MEMORY_AFFINITY:
444 		mem = (struct crat_subtype_memory *)sub_type_hdr;
445 		ret = kfd_parse_subtype_mem(mem, device_list);
446 		break;
447 	case CRAT_SUBTYPE_CACHE_AFFINITY:
448 		cache = (struct crat_subtype_cache *)sub_type_hdr;
449 		ret = kfd_parse_subtype_cache(cache, device_list);
450 		break;
451 	case CRAT_SUBTYPE_TLB_AFFINITY:
452 		/*
453 		 * For now, nothing to do here
454 		 */
455 		pr_debug("Found TLB entry in CRAT table (not processing)\n");
456 		break;
457 	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
458 		/*
459 		 * For now, nothing to do here
460 		 */
461 		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
462 		break;
463 	case CRAT_SUBTYPE_IOLINK_AFFINITY:
464 		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
465 		ret = kfd_parse_subtype_iolink(iolink, device_list);
466 		break;
467 	default:
468 		pr_warn("Unknown subtype %d in CRAT\n",
469 				sub_type_hdr->type);
470 	}
471 
472 	return ret;
473 }
474 
475 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
476  * create a kfd_topology_device and add in to device_list. Also parse
477  * CRAT subtypes and attach it to appropriate kfd_topology_device
478  *	@crat_image - input image containing CRAT
479  *	@device_list - [OUT] list of kfd_topology_device generated after
480  *		       parsing crat_image
481  *	@proximity_domain - Proximity domain of the first device in the table
482  *
483  *	Return - 0 if successful else -ve value
484  */
kfd_parse_crat_table(void * crat_image,struct list_head * device_list,uint32_t proximity_domain)485 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
486 			 uint32_t proximity_domain)
487 {
488 	struct kfd_topology_device *top_dev = NULL;
489 	struct crat_subtype_generic *sub_type_hdr;
490 	uint16_t node_id;
491 	int ret = 0;
492 	struct crat_header *crat_table = (struct crat_header *)crat_image;
493 	uint16_t num_nodes;
494 	uint32_t image_len;
495 
496 	if (!crat_image)
497 		return -EINVAL;
498 
499 	if (!list_empty(device_list)) {
500 		pr_warn("Error device list should be empty\n");
501 		return -EINVAL;
502 	}
503 
504 	num_nodes = crat_table->num_domains;
505 	image_len = crat_table->length;
506 
507 	pr_debug("Parsing CRAT table with %d nodes\n", num_nodes);
508 
509 	for (node_id = 0; node_id < num_nodes; node_id++) {
510 		top_dev = kfd_create_topology_device(device_list);
511 		if (!top_dev)
512 			break;
513 		top_dev->proximity_domain = proximity_domain++;
514 	}
515 
516 	if (!top_dev) {
517 		ret = -ENOMEM;
518 		goto err;
519 	}
520 
521 	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
522 	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
523 			CRAT_OEMTABLEID_LENGTH);
524 	top_dev->oem_revision = crat_table->oem_revision;
525 
526 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
527 	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
528 			((char *)crat_image) + image_len) {
529 		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
530 			ret = kfd_parse_subtype(sub_type_hdr, device_list);
531 			if (ret)
532 				break;
533 		}
534 
535 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
536 				sub_type_hdr->length);
537 	}
538 
539 err:
540 	if (ret)
541 		kfd_release_topology_device_list(device_list);
542 
543 	return ret;
544 }
545 
546 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_pcache(struct crat_subtype_cache * pcache,struct kfd_gpu_cache_info * pcache_info,struct kfd_cu_info * cu_info,int mem_available,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)547 static int fill_in_pcache(struct crat_subtype_cache *pcache,
548 				struct kfd_gpu_cache_info *pcache_info,
549 				struct kfd_cu_info *cu_info,
550 				int mem_available,
551 				int cu_bitmask,
552 				int cache_type, unsigned int cu_processor_id,
553 				int cu_block)
554 {
555 	unsigned int cu_sibling_map_mask;
556 	int first_active_cu;
557 
558 	/* First check if enough memory is available */
559 	if (sizeof(struct crat_subtype_cache) > mem_available)
560 		return -ENOMEM;
561 
562 	cu_sibling_map_mask = cu_bitmask;
563 	cu_sibling_map_mask >>= cu_block;
564 	cu_sibling_map_mask &=
565 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
566 	first_active_cu = ffs(cu_sibling_map_mask);
567 
568 	/* CU could be inactive. In case of shared cache find the first active
569 	 * CU. and incase of non-shared cache check if the CU is inactive. If
570 	 * inactive active skip it
571 	 */
572 	if (first_active_cu) {
573 		memset(pcache, 0, sizeof(struct crat_subtype_cache));
574 		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
575 		pcache->length = sizeof(struct crat_subtype_cache);
576 		pcache->flags = pcache_info[cache_type].flags;
577 		pcache->processor_id_low = cu_processor_id
578 					 + (first_active_cu - 1);
579 		pcache->cache_level = pcache_info[cache_type].cache_level;
580 		pcache->cache_size = pcache_info[cache_type].cache_size;
581 
582 		/* Sibling map is w.r.t processor_id_low, so shift out
583 		 * inactive CU
584 		 */
585 		cu_sibling_map_mask =
586 			cu_sibling_map_mask >> (first_active_cu - 1);
587 
588 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
589 		pcache->sibling_map[1] =
590 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
591 		pcache->sibling_map[2] =
592 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
593 		pcache->sibling_map[3] =
594 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
595 		return 0;
596 	}
597 	return 1;
598 }
599 
600 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
601  * tables
602  *
603  *	@kdev - [IN] GPU device
604  *	@gpu_processor_id - [IN] GPU processor ID to which these caches
605  *			    associate
606  *	@available_size - [IN] Amount of memory available in pcache
607  *	@cu_info - [IN] Compute Unit info obtained from KGD
608  *	@pcache - [OUT] memory into which cache data is to be filled in.
609  *	@size_filled - [OUT] amount of data used up in pcache.
610  *	@num_of_entries - [OUT] number of caches added
611  */
kfd_fill_gpu_cache_info(struct kfd_dev * kdev,int gpu_processor_id,int available_size,struct kfd_cu_info * cu_info,struct crat_subtype_cache * pcache,int * size_filled,int * num_of_entries)612 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
613 			int gpu_processor_id,
614 			int available_size,
615 			struct kfd_cu_info *cu_info,
616 			struct crat_subtype_cache *pcache,
617 			int *size_filled,
618 			int *num_of_entries)
619 {
620 	struct kfd_gpu_cache_info *pcache_info;
621 	int num_of_cache_types = 0;
622 	int i, j, k;
623 	int ct = 0;
624 	int mem_available = available_size;
625 	unsigned int cu_processor_id;
626 	int ret;
627 
628 	switch (kdev->device_info->asic_family) {
629 	case CHIP_KAVERI:
630 		pcache_info = kaveri_cache_info;
631 		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
632 		break;
633 	case CHIP_HAWAII:
634 		pcache_info = hawaii_cache_info;
635 		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
636 		break;
637 	case CHIP_CARRIZO:
638 		pcache_info = carrizo_cache_info;
639 		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
640 		break;
641 	case CHIP_TONGA:
642 		pcache_info = tonga_cache_info;
643 		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
644 		break;
645 	case CHIP_FIJI:
646 		pcache_info = fiji_cache_info;
647 		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
648 		break;
649 	case CHIP_POLARIS10:
650 		pcache_info = polaris10_cache_info;
651 		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
652 		break;
653 	case CHIP_POLARIS11:
654 		pcache_info = polaris11_cache_info;
655 		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
656 		break;
657 	case CHIP_POLARIS12:
658 		pcache_info = polaris12_cache_info;
659 		num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
660 		break;
661 	case CHIP_VEGAM:
662 		pcache_info = vegam_cache_info;
663 		num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
664 		break;
665 	case CHIP_VEGA10:
666 	case CHIP_VEGA12:
667 	case CHIP_VEGA20:
668 	case CHIP_ARCTURUS:
669 	case CHIP_ALDEBARAN:
670 		pcache_info = vega10_cache_info;
671 		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
672 		break;
673 	case CHIP_RAVEN:
674 		pcache_info = raven_cache_info;
675 		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
676 		break;
677 	case CHIP_RENOIR:
678 		pcache_info = renoir_cache_info;
679 		num_of_cache_types = ARRAY_SIZE(renoir_cache_info);
680 		break;
681 	case CHIP_NAVI10:
682 	case CHIP_NAVI12:
683 	case CHIP_NAVI14:
684 	case CHIP_SIENNA_CICHLID:
685 	case CHIP_NAVY_FLOUNDER:
686 	case CHIP_DIMGREY_CAVEFISH:
687 		pcache_info = navi10_cache_info;
688 		num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
689 		break;
690 	case CHIP_VANGOGH:
691 		pcache_info = vangogh_cache_info;
692 		num_of_cache_types = ARRAY_SIZE(vangogh_cache_info);
693 		break;
694 	default:
695 		return -EINVAL;
696 	}
697 
698 	*size_filled = 0;
699 	*num_of_entries = 0;
700 
701 	/* For each type of cache listed in the kfd_gpu_cache_info table,
702 	 * go through all available Compute Units.
703 	 * The [i,j,k] loop will
704 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
705 	 *			will parse through all available CU
706 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
707 	 *			then it will consider only one CU from
708 	 *			the shared unit
709 	 */
710 
711 	for (ct = 0; ct < num_of_cache_types; ct++) {
712 		cu_processor_id = gpu_processor_id;
713 		for (i = 0; i < cu_info->num_shader_engines; i++) {
714 			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
715 				j++) {
716 				for (k = 0; k < cu_info->num_cu_per_sh;
717 					k += pcache_info[ct].num_cu_shared) {
718 
719 					ret = fill_in_pcache(pcache,
720 						pcache_info,
721 						cu_info,
722 						mem_available,
723 						cu_info->cu_bitmap[i % 4][j + i / 4],
724 						ct,
725 						cu_processor_id,
726 						k);
727 
728 					if (ret < 0)
729 						break;
730 
731 					if (!ret) {
732 						pcache++;
733 						(*num_of_entries)++;
734 						mem_available -=
735 							sizeof(*pcache);
736 						(*size_filled) +=
737 							sizeof(*pcache);
738 					}
739 
740 					/* Move to next CU block */
741 					cu_processor_id +=
742 						pcache_info[ct].num_cu_shared;
743 				}
744 			}
745 		}
746 	}
747 
748 	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
749 
750 	return 0;
751 }
752 
kfd_ignore_crat(void)753 static bool kfd_ignore_crat(void)
754 {
755 	bool ret;
756 
757 	if (ignore_crat)
758 		return true;
759 
760 #ifndef KFD_SUPPORT_IOMMU_V2
761 	ret = true;
762 #else
763 	ret = false;
764 #endif
765 
766 	return ret;
767 }
768 
769 /*
770  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
771  * copies CRAT from ACPI (if available).
772  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
773  *
774  *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
775  *		     crat_image will be NULL
776  *	@size: [OUT] size of crat_image
777  *
778  *	Return 0 if successful else return error code
779  */
kfd_create_crat_image_acpi(void ** crat_image,size_t * size)780 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
781 {
782 	struct acpi_table_header *crat_table;
783 	acpi_status status;
784 	void *pcrat_image;
785 	int rc = 0;
786 
787 	if (!crat_image)
788 		return -EINVAL;
789 
790 	*crat_image = NULL;
791 
792 	if (kfd_ignore_crat()) {
793 		pr_info("CRAT table disabled by module option\n");
794 		return -ENODATA;
795 	}
796 
797 	/* Fetch the CRAT table from ACPI */
798 	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
799 	if (status == AE_NOT_FOUND) {
800 		pr_warn("CRAT table not found\n");
801 		return -ENODATA;
802 	} else if (ACPI_FAILURE(status)) {
803 		const char *err = acpi_format_exception(status);
804 
805 		pr_err("CRAT table error: %s\n", err);
806 		return -EINVAL;
807 	}
808 
809 	pcrat_image = kvmalloc(crat_table->length, GFP_KERNEL);
810 	if (!pcrat_image) {
811 		rc = -ENOMEM;
812 		goto out;
813 	}
814 
815 	memcpy(pcrat_image, crat_table, crat_table->length);
816 	*crat_image = pcrat_image;
817 	*size = crat_table->length;
818 out:
819 	acpi_put_table(crat_table);
820 	return rc;
821 }
822 
823 /* Memory required to create Virtual CRAT.
824  * Since there is no easy way to predict the amount of memory required, the
825  * following amount is allocated for GPU Virtual CRAT. This is
826  * expected to cover all known conditions. But to be safe additional check
827  * is put in the code to ensure we don't overwrite.
828  */
829 #define VCRAT_SIZE_FOR_GPU	(4 * PAGE_SIZE)
830 
831 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
832  *
833  *	@numa_node_id: CPU NUMA node id
834  *	@avail_size: Available size in the memory
835  *	@sub_type_hdr: Memory into which compute info will be filled in
836  *
837  *	Return 0 if successful else return -ve value
838  */
kfd_fill_cu_for_cpu(int numa_node_id,int * avail_size,int proximity_domain,struct crat_subtype_computeunit * sub_type_hdr)839 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
840 				int proximity_domain,
841 				struct crat_subtype_computeunit *sub_type_hdr)
842 {
843 	const struct cpumask *cpumask;
844 
845 	*avail_size -= sizeof(struct crat_subtype_computeunit);
846 	if (*avail_size < 0)
847 		return -ENOMEM;
848 
849 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
850 
851 	/* Fill in subtype header data */
852 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
853 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
854 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
855 
856 	cpumask = cpumask_of_node(numa_node_id);
857 
858 	/* Fill in CU data */
859 	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
860 	sub_type_hdr->proximity_domain = proximity_domain;
861 	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
862 	if (sub_type_hdr->processor_id_low == -1)
863 		return -EINVAL;
864 
865 	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
866 
867 	return 0;
868 }
869 
870 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
871  *
872  *	@numa_node_id: CPU NUMA node id
873  *	@avail_size: Available size in the memory
874  *	@sub_type_hdr: Memory into which compute info will be filled in
875  *
876  *	Return 0 if successful else return -ve value
877  */
kfd_fill_mem_info_for_cpu(int numa_node_id,int * avail_size,int proximity_domain,struct crat_subtype_memory * sub_type_hdr)878 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
879 			int proximity_domain,
880 			struct crat_subtype_memory *sub_type_hdr)
881 {
882 	uint64_t mem_in_bytes = 0;
883 	pg_data_t *pgdat;
884 	int zone_type;
885 
886 	*avail_size -= sizeof(struct crat_subtype_memory);
887 	if (*avail_size < 0)
888 		return -ENOMEM;
889 
890 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
891 
892 	/* Fill in subtype header data */
893 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
894 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
895 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
896 
897 	/* Fill in Memory Subunit data */
898 
899 	/* Unlike si_meminfo, si_meminfo_node is not exported. So
900 	 * the following lines are duplicated from si_meminfo_node
901 	 * function
902 	 */
903 	pgdat = NODE_DATA(numa_node_id);
904 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
905 		mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
906 	mem_in_bytes <<= PAGE_SHIFT;
907 
908 	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
909 	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
910 	sub_type_hdr->proximity_domain = proximity_domain;
911 
912 	return 0;
913 }
914 
915 #ifdef CONFIG_X86_64
kfd_fill_iolink_info_for_cpu(int numa_node_id,int * avail_size,uint32_t * num_entries,struct crat_subtype_iolink * sub_type_hdr)916 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
917 				uint32_t *num_entries,
918 				struct crat_subtype_iolink *sub_type_hdr)
919 {
920 	int nid;
921 	struct cpuinfo_x86 *c = &cpu_data(0);
922 	uint8_t link_type;
923 
924 	if (c->x86_vendor == X86_VENDOR_AMD)
925 		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
926 	else
927 		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
928 
929 	*num_entries = 0;
930 
931 	/* Create IO links from this node to other CPU nodes */
932 	for_each_online_node(nid) {
933 		if (nid == numa_node_id) /* node itself */
934 			continue;
935 
936 		*avail_size -= sizeof(struct crat_subtype_iolink);
937 		if (*avail_size < 0)
938 			return -ENOMEM;
939 
940 		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
941 
942 		/* Fill in subtype header data */
943 		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
944 		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
945 		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
946 
947 		/* Fill in IO link data */
948 		sub_type_hdr->proximity_domain_from = numa_node_id;
949 		sub_type_hdr->proximity_domain_to = nid;
950 		sub_type_hdr->io_interface_type = link_type;
951 
952 		(*num_entries)++;
953 		sub_type_hdr++;
954 	}
955 
956 	return 0;
957 }
958 #endif
959 
960 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
961  *
962  *	@pcrat_image: Fill in VCRAT for CPU
963  *	@size:	[IN] allocated size of crat_image.
964  *		[OUT] actual size of data filled in crat_image
965  */
kfd_create_vcrat_image_cpu(void * pcrat_image,size_t * size)966 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
967 {
968 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
969 	struct acpi_table_header *acpi_table;
970 	acpi_status status;
971 	struct crat_subtype_generic *sub_type_hdr;
972 	int avail_size = *size;
973 	int numa_node_id;
974 #ifdef CONFIG_X86_64
975 	uint32_t entries = 0;
976 #endif
977 	int ret = 0;
978 
979 	if (!pcrat_image)
980 		return -EINVAL;
981 
982 	/* Fill in CRAT Header.
983 	 * Modify length and total_entries as subunits are added.
984 	 */
985 	avail_size -= sizeof(struct crat_header);
986 	if (avail_size < 0)
987 		return -ENOMEM;
988 
989 	memset(crat_table, 0, sizeof(struct crat_header));
990 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
991 			sizeof(crat_table->signature));
992 	crat_table->length = sizeof(struct crat_header);
993 
994 	status = acpi_get_table("DSDT", 0, &acpi_table);
995 	if (status != AE_OK)
996 		pr_warn("DSDT table not found for OEM information\n");
997 	else {
998 		crat_table->oem_revision = acpi_table->revision;
999 		memcpy(crat_table->oem_id, acpi_table->oem_id,
1000 				CRAT_OEMID_LENGTH);
1001 		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
1002 				CRAT_OEMTABLEID_LENGTH);
1003 		acpi_put_table(acpi_table);
1004 	}
1005 	crat_table->total_entries = 0;
1006 	crat_table->num_domains = 0;
1007 
1008 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
1009 
1010 	for_each_online_node(numa_node_id) {
1011 		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
1012 			continue;
1013 
1014 		/* Fill in Subtype: Compute Unit */
1015 		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
1016 			crat_table->num_domains,
1017 			(struct crat_subtype_computeunit *)sub_type_hdr);
1018 		if (ret < 0)
1019 			return ret;
1020 		crat_table->length += sub_type_hdr->length;
1021 		crat_table->total_entries++;
1022 
1023 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1024 			sub_type_hdr->length);
1025 
1026 		/* Fill in Subtype: Memory */
1027 		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
1028 			crat_table->num_domains,
1029 			(struct crat_subtype_memory *)sub_type_hdr);
1030 		if (ret < 0)
1031 			return ret;
1032 		crat_table->length += sub_type_hdr->length;
1033 		crat_table->total_entries++;
1034 
1035 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1036 			sub_type_hdr->length);
1037 
1038 		/* Fill in Subtype: IO Link */
1039 #ifdef CONFIG_X86_64
1040 		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
1041 				&entries,
1042 				(struct crat_subtype_iolink *)sub_type_hdr);
1043 		if (ret < 0)
1044 			return ret;
1045 
1046 		if (entries) {
1047 			crat_table->length += (sub_type_hdr->length * entries);
1048 			crat_table->total_entries += entries;
1049 
1050 			sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1051 					sub_type_hdr->length * entries);
1052 		}
1053 #else
1054 		pr_info("IO link not available for non x86 platforms\n");
1055 #endif
1056 
1057 		crat_table->num_domains++;
1058 	}
1059 
1060 	/* TODO: Add cache Subtype for CPU.
1061 	 * Currently, CPU cache information is available in function
1062 	 * detect_cache_attributes(cpu) defined in the file
1063 	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
1064 	 * exported and to get the same information the code needs to be
1065 	 * duplicated.
1066 	 */
1067 
1068 	*size = crat_table->length;
1069 	pr_info("Virtual CRAT table created for CPU\n");
1070 
1071 	return 0;
1072 }
1073 
kfd_fill_gpu_memory_affinity(int * avail_size,struct kfd_dev * kdev,uint8_t type,uint64_t size,struct crat_subtype_memory * sub_type_hdr,uint32_t proximity_domain,const struct kfd_local_mem_info * local_mem_info)1074 static int kfd_fill_gpu_memory_affinity(int *avail_size,
1075 		struct kfd_dev *kdev, uint8_t type, uint64_t size,
1076 		struct crat_subtype_memory *sub_type_hdr,
1077 		uint32_t proximity_domain,
1078 		const struct kfd_local_mem_info *local_mem_info)
1079 {
1080 	*avail_size -= sizeof(struct crat_subtype_memory);
1081 	if (*avail_size < 0)
1082 		return -ENOMEM;
1083 
1084 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1085 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1086 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1087 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1088 
1089 	sub_type_hdr->proximity_domain = proximity_domain;
1090 
1091 	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1092 			type, size);
1093 
1094 	sub_type_hdr->length_low = lower_32_bits(size);
1095 	sub_type_hdr->length_high = upper_32_bits(size);
1096 
1097 	sub_type_hdr->width = local_mem_info->vram_width;
1098 	sub_type_hdr->visibility_type = type;
1099 
1100 	return 0;
1101 }
1102 
1103 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1104  * to its NUMA node
1105  *	@avail_size: Available size in the memory
1106  *	@kdev - [IN] GPU device
1107  *	@sub_type_hdr: Memory into which io link info will be filled in
1108  *	@proximity_domain - proximity domain of the GPU node
1109  *
1110  *	Return 0 if successful else return -ve value
1111  */
kfd_fill_gpu_direct_io_link_to_cpu(int * avail_size,struct kfd_dev * kdev,struct crat_subtype_iolink * sub_type_hdr,uint32_t proximity_domain)1112 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1113 			struct kfd_dev *kdev,
1114 			struct crat_subtype_iolink *sub_type_hdr,
1115 			uint32_t proximity_domain)
1116 {
1117 	struct amdgpu_device *adev = (struct amdgpu_device *)kdev->kgd;
1118 
1119 	*avail_size -= sizeof(struct crat_subtype_iolink);
1120 	if (*avail_size < 0)
1121 		return -ENOMEM;
1122 
1123 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1124 
1125 	/* Fill in subtype header data */
1126 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1127 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1128 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1129 	if (kfd_dev_is_large_bar(kdev))
1130 		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1131 
1132 	/* Fill in IOLINK subtype.
1133 	 * TODO: Fill-in other fields of iolink subtype
1134 	 */
1135 	if (adev->gmc.xgmi.connected_to_cpu) {
1136 		/*
1137 		 * with host gpu xgmi link, host can access gpu memory whether
1138 		 * or not pcie bar type is large, so always create bidirectional
1139 		 * io link.
1140 		 */
1141 		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1142 		sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1143 	} else {
1144 		sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1145 	}
1146 
1147 	sub_type_hdr->proximity_domain_from = proximity_domain;
1148 #ifdef CONFIG_NUMA
1149 	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1150 		sub_type_hdr->proximity_domain_to = 0;
1151 	else
1152 		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1153 #else
1154 	sub_type_hdr->proximity_domain_to = 0;
1155 #endif
1156 	return 0;
1157 }
1158 
kfd_fill_gpu_xgmi_link_to_gpu(int * avail_size,struct kfd_dev * kdev,struct kfd_dev * peer_kdev,struct crat_subtype_iolink * sub_type_hdr,uint32_t proximity_domain_from,uint32_t proximity_domain_to)1159 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
1160 			struct kfd_dev *kdev,
1161 			struct kfd_dev *peer_kdev,
1162 			struct crat_subtype_iolink *sub_type_hdr,
1163 			uint32_t proximity_domain_from,
1164 			uint32_t proximity_domain_to)
1165 {
1166 	*avail_size -= sizeof(struct crat_subtype_iolink);
1167 	if (*avail_size < 0)
1168 		return -ENOMEM;
1169 
1170 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1171 
1172 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1173 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1174 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
1175 			       CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1176 
1177 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1178 	sub_type_hdr->proximity_domain_from = proximity_domain_from;
1179 	sub_type_hdr->proximity_domain_to = proximity_domain_to;
1180 	sub_type_hdr->num_hops_xgmi =
1181 		amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
1182 	return 0;
1183 }
1184 
1185 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1186  *
1187  *	@pcrat_image: Fill in VCRAT for GPU
1188  *	@size:	[IN] allocated size of crat_image.
1189  *		[OUT] actual size of data filled in crat_image
1190  */
kfd_create_vcrat_image_gpu(void * pcrat_image,size_t * size,struct kfd_dev * kdev,uint32_t proximity_domain)1191 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1192 				      size_t *size, struct kfd_dev *kdev,
1193 				      uint32_t proximity_domain)
1194 {
1195 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1196 	struct crat_subtype_generic *sub_type_hdr;
1197 	struct kfd_local_mem_info local_mem_info;
1198 	struct kfd_topology_device *peer_dev;
1199 	struct crat_subtype_computeunit *cu;
1200 	struct kfd_cu_info cu_info;
1201 	int avail_size = *size;
1202 	uint32_t total_num_of_cu;
1203 	int num_of_cache_entries = 0;
1204 	int cache_mem_filled = 0;
1205 	uint32_t nid = 0;
1206 	int ret = 0;
1207 
1208 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1209 		return -EINVAL;
1210 
1211 	/* Fill the CRAT Header.
1212 	 * Modify length and total_entries as subunits are added.
1213 	 */
1214 	avail_size -= sizeof(struct crat_header);
1215 	if (avail_size < 0)
1216 		return -ENOMEM;
1217 
1218 	memset(crat_table, 0, sizeof(struct crat_header));
1219 
1220 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1221 			sizeof(crat_table->signature));
1222 	/* Change length as we add more subtypes*/
1223 	crat_table->length = sizeof(struct crat_header);
1224 	crat_table->num_domains = 1;
1225 	crat_table->total_entries = 0;
1226 
1227 	/* Fill in Subtype: Compute Unit
1228 	 * First fill in the sub type header and then sub type data
1229 	 */
1230 	avail_size -= sizeof(struct crat_subtype_computeunit);
1231 	if (avail_size < 0)
1232 		return -ENOMEM;
1233 
1234 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1235 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1236 
1237 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1238 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1239 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1240 
1241 	/* Fill CU subtype data */
1242 	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1243 	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1244 	cu->proximity_domain = proximity_domain;
1245 
1246 	amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
1247 	cu->num_simd_per_cu = cu_info.simd_per_cu;
1248 	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1249 	cu->max_waves_simd = cu_info.max_waves_per_simd;
1250 
1251 	cu->wave_front_size = cu_info.wave_front_size;
1252 	cu->array_count = cu_info.num_shader_arrays_per_engine *
1253 		cu_info.num_shader_engines;
1254 	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1255 	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1256 	cu->num_cu_per_array = cu_info.num_cu_per_sh;
1257 	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1258 	cu->num_banks = cu_info.num_shader_engines;
1259 	cu->lds_size_in_kb = cu_info.lds_size;
1260 
1261 	cu->hsa_capability = 0;
1262 
1263 	/* Check if this node supports IOMMU. During parsing this flag will
1264 	 * translate to HSA_CAP_ATS_PRESENT
1265 	 */
1266 	if (!kfd_iommu_check_device(kdev))
1267 		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1268 
1269 	crat_table->length += sub_type_hdr->length;
1270 	crat_table->total_entries++;
1271 
1272 	/* Fill in Subtype: Memory. Only on systems with large BAR (no
1273 	 * private FB), report memory as public. On other systems
1274 	 * report the total FB size (public+private) as a single
1275 	 * private heap.
1276 	 */
1277 	amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
1278 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1279 			sub_type_hdr->length);
1280 
1281 	if (debug_largebar)
1282 		local_mem_info.local_mem_size_private = 0;
1283 
1284 	if (local_mem_info.local_mem_size_private == 0)
1285 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1286 				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1287 				local_mem_info.local_mem_size_public,
1288 				(struct crat_subtype_memory *)sub_type_hdr,
1289 				proximity_domain,
1290 				&local_mem_info);
1291 	else
1292 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1293 				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1294 				local_mem_info.local_mem_size_public +
1295 				local_mem_info.local_mem_size_private,
1296 				(struct crat_subtype_memory *)sub_type_hdr,
1297 				proximity_domain,
1298 				&local_mem_info);
1299 	if (ret < 0)
1300 		return ret;
1301 
1302 	crat_table->length += sizeof(struct crat_subtype_memory);
1303 	crat_table->total_entries++;
1304 
1305 	/* TODO: Fill in cache information. This information is NOT readily
1306 	 * available in KGD
1307 	 */
1308 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1309 		sub_type_hdr->length);
1310 	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1311 				avail_size,
1312 				&cu_info,
1313 				(struct crat_subtype_cache *)sub_type_hdr,
1314 				&cache_mem_filled,
1315 				&num_of_cache_entries);
1316 
1317 	if (ret < 0)
1318 		return ret;
1319 
1320 	crat_table->length += cache_mem_filled;
1321 	crat_table->total_entries += num_of_cache_entries;
1322 	avail_size -= cache_mem_filled;
1323 
1324 	/* Fill in Subtype: IO_LINKS
1325 	 *  Only direct links are added here which is Link from GPU to
1326 	 *  to its NUMA node. Indirect links are added by userspace.
1327 	 */
1328 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1329 		cache_mem_filled);
1330 	ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
1331 		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1332 
1333 	if (ret < 0)
1334 		return ret;
1335 
1336 	crat_table->length += sub_type_hdr->length;
1337 	crat_table->total_entries++;
1338 
1339 
1340 	/* Fill in Subtype: IO_LINKS
1341 	 * Direct links from GPU to other GPUs through xGMI.
1342 	 * We will loop GPUs that already be processed (with lower value
1343 	 * of proximity_domain), add the link for the GPUs with same
1344 	 * hive id (from this GPU to other GPU) . The reversed iolink
1345 	 * (from other GPU to this GPU) will be added
1346 	 * in kfd_parse_subtype_iolink.
1347 	 */
1348 	if (kdev->hive_id) {
1349 		for (nid = 0; nid < proximity_domain; ++nid) {
1350 			peer_dev = kfd_topology_device_by_proximity_domain(nid);
1351 			if (!peer_dev->gpu)
1352 				continue;
1353 			if (peer_dev->gpu->hive_id != kdev->hive_id)
1354 				continue;
1355 			sub_type_hdr = (typeof(sub_type_hdr))(
1356 				(char *)sub_type_hdr +
1357 				sizeof(struct crat_subtype_iolink));
1358 			ret = kfd_fill_gpu_xgmi_link_to_gpu(
1359 				&avail_size, kdev, peer_dev->gpu,
1360 				(struct crat_subtype_iolink *)sub_type_hdr,
1361 				proximity_domain, nid);
1362 			if (ret < 0)
1363 				return ret;
1364 			crat_table->length += sub_type_hdr->length;
1365 			crat_table->total_entries++;
1366 		}
1367 	}
1368 	*size = crat_table->length;
1369 	pr_info("Virtual CRAT table created for GPU\n");
1370 
1371 	return ret;
1372 }
1373 
1374 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1375  *		creates a Virtual CRAT (VCRAT) image
1376  *
1377  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1378  *
1379  *	@crat_image: VCRAT image created because ACPI does not have a
1380  *		     CRAT for this device
1381  *	@size: [OUT] size of virtual crat_image
1382  *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1383  *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
1384  *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1385  *			-- this option is not currently implemented.
1386  *			The assumption is that all AMD APUs will have CRAT
1387  *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1388  *
1389  *	Return 0 if successful else return -ve value
1390  */
kfd_create_crat_image_virtual(void ** crat_image,size_t * size,int flags,struct kfd_dev * kdev,uint32_t proximity_domain)1391 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1392 				  int flags, struct kfd_dev *kdev,
1393 				  uint32_t proximity_domain)
1394 {
1395 	void *pcrat_image = NULL;
1396 	int ret = 0, num_nodes;
1397 	size_t dyn_size;
1398 
1399 	if (!crat_image)
1400 		return -EINVAL;
1401 
1402 	*crat_image = NULL;
1403 
1404 	/* Allocate the CPU Virtual CRAT size based on the number of online
1405 	 * nodes. Allocate VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image.
1406 	 * This should cover all the current conditions. A check is put not
1407 	 * to overwrite beyond allocated size for GPUs
1408 	 */
1409 	switch (flags) {
1410 	case COMPUTE_UNIT_CPU:
1411 		num_nodes = num_online_nodes();
1412 		dyn_size = sizeof(struct crat_header) +
1413 			num_nodes * (sizeof(struct crat_subtype_computeunit) +
1414 			sizeof(struct crat_subtype_memory) +
1415 			(num_nodes - 1) * sizeof(struct crat_subtype_iolink));
1416 		pcrat_image = kvmalloc(dyn_size, GFP_KERNEL);
1417 		if (!pcrat_image)
1418 			return -ENOMEM;
1419 		*size = dyn_size;
1420 		pr_debug("CRAT size is %ld", dyn_size);
1421 		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1422 		break;
1423 	case COMPUTE_UNIT_GPU:
1424 		if (!kdev)
1425 			return -EINVAL;
1426 		pcrat_image = kvmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1427 		if (!pcrat_image)
1428 			return -ENOMEM;
1429 		*size = VCRAT_SIZE_FOR_GPU;
1430 		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1431 						 proximity_domain);
1432 		break;
1433 	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1434 		/* TODO: */
1435 		ret = -EINVAL;
1436 		pr_err("VCRAT not implemented for APU\n");
1437 		break;
1438 	default:
1439 		ret = -EINVAL;
1440 	}
1441 
1442 	if (!ret)
1443 		*crat_image = pcrat_image;
1444 	else
1445 		kvfree(pcrat_image);
1446 
1447 	return ret;
1448 }
1449 
1450 
1451 /* kfd_destroy_crat_image
1452  *
1453  *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1454  *
1455  */
kfd_destroy_crat_image(void * crat_image)1456 void kfd_destroy_crat_image(void *crat_image)
1457 {
1458 	kvfree(crat_image);
1459 }
1460