1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 
28 #include "dm_services.h"
29 
30 #include "dc.h"
31 
32 #include "core_status.h"
33 #include "core_types.h"
34 #include "hw_sequencer.h"
35 #include "dce/dce_hwseq.h"
36 
37 #include "resource.h"
38 
39 #include "clk_mgr.h"
40 #include "clock_source.h"
41 #include "dc_bios_types.h"
42 
43 #include "bios_parser_interface.h"
44 #include "bios/bios_parser_helper.h"
45 #include "include/irq_service_interface.h"
46 #include "transform.h"
47 #include "dmcu.h"
48 #include "dpp.h"
49 #include "timing_generator.h"
50 #include "abm.h"
51 #include "virtual/virtual_link_encoder.h"
52 #include "hubp.h"
53 
54 #include "link_hwss.h"
55 #include "link_encoder.h"
56 #include "link_enc_cfg.h"
57 
58 #include "dc_link.h"
59 #include "dc_link_ddc.h"
60 #include "dm_helpers.h"
61 #include "mem_input.h"
62 #include "hubp.h"
63 
64 #include "dc_link_dp.h"
65 #include "dc_dmub_srv.h"
66 
67 #include "dsc.h"
68 
69 #include "vm_helper.h"
70 
71 #include "dce/dce_i2c.h"
72 
73 #include "dmub/dmub_srv.h"
74 
75 #include "i2caux_interface.h"
76 #include "dce/dmub_hw_lock_mgr.h"
77 
78 #include "dc_trace.h"
79 
80 #define CTX \
81 	dc->ctx
82 
83 #define DC_LOGGER \
84 	dc->ctx->logger
85 
86 static const char DC_BUILD_ID[] = "production-build";
87 
88 /**
89  * DOC: Overview
90  *
91  * DC is the OS-agnostic component of the amdgpu DC driver.
92  *
93  * DC maintains and validates a set of structs representing the state of the
94  * driver and writes that state to AMD hardware
95  *
96  * Main DC HW structs:
97  *
98  * struct dc - The central struct.  One per driver.  Created on driver load,
99  * destroyed on driver unload.
100  *
101  * struct dc_context - One per driver.
102  * Used as a backpointer by most other structs in dc.
103  *
104  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
105  * plugpoints).  Created on driver load, destroyed on driver unload.
106  *
107  * struct dc_sink - One per display.  Created on boot or hotplug.
108  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
109  * (the display directly attached).  It may also have one or more remote
110  * sinks (in the Multi-Stream Transport case)
111  *
112  * struct resource_pool - One per driver.  Represents the hw blocks not in the
113  * main pipeline.  Not directly accessible by dm.
114  *
115  * Main dc state structs:
116  *
117  * These structs can be created and destroyed as needed.  There is a full set of
118  * these structs in dc->current_state representing the currently programmed state.
119  *
120  * struct dc_state - The global DC state to track global state information,
121  * such as bandwidth values.
122  *
123  * struct dc_stream_state - Represents the hw configuration for the pipeline from
124  * a framebuffer to a display.  Maps one-to-one with dc_sink.
125  *
126  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
127  * and may have more in the Multi-Plane Overlay case.
128  *
129  * struct resource_context - Represents the programmable state of everything in
130  * the resource_pool.  Not directly accessible by dm.
131  *
132  * struct pipe_ctx - A member of struct resource_context.  Represents the
133  * internal hardware pipeline components.  Each dc_plane_state has either
134  * one or two (in the pipe-split case).
135  */
136 
137 /*******************************************************************************
138  * Private functions
139  ******************************************************************************/
140 
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)141 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
142 {
143 	if (new > *original)
144 		*original = new;
145 }
146 
destroy_links(struct dc * dc)147 static void destroy_links(struct dc *dc)
148 {
149 	uint32_t i;
150 
151 	for (i = 0; i < dc->link_count; i++) {
152 		if (NULL != dc->links[i])
153 			link_destroy(&dc->links[i]);
154 	}
155 }
156 
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)157 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
158 {
159 	int i;
160 	uint32_t count = 0;
161 
162 	for (i = 0; i < num_links; i++) {
163 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
164 				links[i]->is_internal_display)
165 			count++;
166 	}
167 
168 	return count;
169 }
170 
get_seamless_boot_stream_count(struct dc_state * ctx)171 static int get_seamless_boot_stream_count(struct dc_state *ctx)
172 {
173 	uint8_t i;
174 	uint8_t seamless_boot_stream_count = 0;
175 
176 	for (i = 0; i < ctx->stream_count; i++)
177 		if (ctx->streams[i]->apply_seamless_boot_optimization)
178 			seamless_boot_stream_count++;
179 
180 	return seamless_boot_stream_count;
181 }
182 
create_links(struct dc * dc,uint32_t num_virtual_links)183 static bool create_links(
184 		struct dc *dc,
185 		uint32_t num_virtual_links)
186 {
187 	int i;
188 	int connectors_num;
189 	struct dc_bios *bios = dc->ctx->dc_bios;
190 
191 	dc->link_count = 0;
192 
193 	connectors_num = bios->funcs->get_connectors_number(bios);
194 
195 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
196 
197 	if (connectors_num > ENUM_ID_COUNT) {
198 		dm_error(
199 			"DC: Number of connectors %d exceeds maximum of %d!\n",
200 			connectors_num,
201 			ENUM_ID_COUNT);
202 		return false;
203 	}
204 
205 	dm_output_to_console(
206 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
207 		__func__,
208 		connectors_num,
209 		num_virtual_links);
210 
211 	for (i = 0; i < connectors_num; i++) {
212 		struct link_init_data link_init_params = {0};
213 		struct dc_link *link;
214 
215 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
216 
217 		link_init_params.ctx = dc->ctx;
218 		/* next BIOS object table connector */
219 		link_init_params.connector_index = i;
220 		link_init_params.link_index = dc->link_count;
221 		link_init_params.dc = dc;
222 		link = link_create(&link_init_params);
223 
224 		if (link) {
225 				dc->links[dc->link_count] = link;
226 				link->dc = dc;
227 				++dc->link_count;
228 		}
229 	}
230 
231 	DC_LOG_DC("BIOS object table - end");
232 
233 	for (i = 0; i < num_virtual_links; i++) {
234 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
235 		struct encoder_init_data enc_init = {0};
236 
237 		if (link == NULL) {
238 			BREAK_TO_DEBUGGER();
239 			goto failed_alloc;
240 		}
241 
242 		link->link_index = dc->link_count;
243 		dc->links[dc->link_count] = link;
244 		dc->link_count++;
245 
246 		link->ctx = dc->ctx;
247 		link->dc = dc;
248 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
249 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
250 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
251 		link->link_id.enum_id = ENUM_ID_1;
252 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
253 
254 		if (!link->link_enc) {
255 			BREAK_TO_DEBUGGER();
256 			goto failed_alloc;
257 		}
258 
259 		link->link_status.dpcd_caps = &link->dpcd_caps;
260 
261 		enc_init.ctx = dc->ctx;
262 		enc_init.channel = CHANNEL_ID_UNKNOWN;
263 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
264 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
265 		enc_init.connector = link->link_id;
266 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
267 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
268 		enc_init.encoder.enum_id = ENUM_ID_1;
269 		virtual_link_encoder_construct(link->link_enc, &enc_init);
270 	}
271 
272 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
273 
274 	return true;
275 
276 failed_alloc:
277 	return false;
278 }
279 
dc_perf_trace_create(void)280 static struct dc_perf_trace *dc_perf_trace_create(void)
281 {
282 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
283 }
284 
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)285 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
286 {
287 	kfree(*perf_trace);
288 	*perf_trace = NULL;
289 }
290 
291 /**
292  *  dc_stream_adjust_vmin_vmax:
293  *
294  *  Looks up the pipe context of dc_stream_state and updates the
295  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
296  *  Rate, which is a power-saving feature that targets reducing panel
297  *  refresh rate while the screen is static
298  *
299  *  @dc:     dc reference
300  *  @stream: Initial dc stream state
301  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
302  */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)303 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
304 		struct dc_stream_state *stream,
305 		struct dc_crtc_timing_adjust *adjust)
306 {
307 	int i = 0;
308 	bool ret = false;
309 
310 	stream->adjust.v_total_max = adjust->v_total_max;
311 	stream->adjust.v_total_mid = adjust->v_total_mid;
312 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
313 	stream->adjust.v_total_min = adjust->v_total_min;
314 
315 	for (i = 0; i < MAX_PIPES; i++) {
316 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
317 
318 		if (pipe->stream == stream && pipe->stream_res.tg) {
319 			dc->hwss.set_drr(&pipe,
320 					1,
321 					*adjust);
322 
323 			ret = true;
324 		}
325 	}
326 	return ret;
327 }
328 
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)329 bool dc_stream_get_crtc_position(struct dc *dc,
330 		struct dc_stream_state **streams, int num_streams,
331 		unsigned int *v_pos, unsigned int *nom_v_pos)
332 {
333 	/* TODO: Support multiple streams */
334 	const struct dc_stream_state *stream = streams[0];
335 	int i = 0;
336 	bool ret = false;
337 	struct crtc_position position;
338 
339 	for (i = 0; i < MAX_PIPES; i++) {
340 		struct pipe_ctx *pipe =
341 				&dc->current_state->res_ctx.pipe_ctx[i];
342 
343 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
344 			dc->hwss.get_position(&pipe, 1, &position);
345 
346 			*v_pos = position.vertical_count;
347 			*nom_v_pos = position.nominal_vcount;
348 			ret = true;
349 		}
350 	}
351 	return ret;
352 }
353 
354 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
dc_stream_forward_dmcu_crc_window(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window)355 bool dc_stream_forward_dmcu_crc_window(struct dc *dc, struct dc_stream_state *stream,
356 			     struct crc_params *crc_window)
357 {
358 	int i;
359 	struct dmcu *dmcu = dc->res_pool->dmcu;
360 	struct pipe_ctx *pipe;
361 	struct crc_region tmp_win, *crc_win;
362 	struct otg_phy_mux mapping_tmp, *mux_mapping;
363 
364 	/*crc window can't be null*/
365 	if (!crc_window)
366 		return false;
367 
368 	if ((dmcu != NULL && dmcu->funcs->is_dmcu_initialized(dmcu))) {
369 		crc_win = &tmp_win;
370 		mux_mapping = &mapping_tmp;
371 		/*set crc window*/
372 		tmp_win.x_start = crc_window->windowa_x_start;
373 		tmp_win.y_start = crc_window->windowa_y_start;
374 		tmp_win.x_end = crc_window->windowa_x_end;
375 		tmp_win.y_end = crc_window->windowa_y_end;
376 
377 		for (i = 0; i < MAX_PIPES; i++) {
378 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
379 			if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
380 				break;
381 		}
382 
383 		/* Stream not found */
384 		if (i == MAX_PIPES)
385 			return false;
386 
387 
388 		/*set mux routing info*/
389 		mapping_tmp.phy_output_num = stream->link->link_enc_hw_inst;
390 		mapping_tmp.otg_output_num = pipe->stream_res.tg->inst;
391 
392 		dmcu->funcs->forward_crc_window(dmcu, crc_win, mux_mapping);
393 	} else {
394 		DC_LOG_DC("dmcu is not initialized");
395 		return false;
396 	}
397 
398 	return true;
399 }
400 
dc_stream_stop_dmcu_crc_win_update(struct dc * dc,struct dc_stream_state * stream)401 bool dc_stream_stop_dmcu_crc_win_update(struct dc *dc, struct dc_stream_state *stream)
402 {
403 	int i;
404 	struct dmcu *dmcu = dc->res_pool->dmcu;
405 	struct pipe_ctx *pipe;
406 	struct otg_phy_mux mapping_tmp, *mux_mapping;
407 
408 	if ((dmcu != NULL && dmcu->funcs->is_dmcu_initialized(dmcu))) {
409 		mux_mapping = &mapping_tmp;
410 
411 		for (i = 0; i < MAX_PIPES; i++) {
412 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
413 			if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
414 				break;
415 		}
416 
417 		/* Stream not found */
418 		if (i == MAX_PIPES)
419 			return false;
420 
421 
422 		/*set mux routing info*/
423 		mapping_tmp.phy_output_num = stream->link->link_enc_hw_inst;
424 		mapping_tmp.otg_output_num = pipe->stream_res.tg->inst;
425 
426 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
427 	} else {
428 		DC_LOG_DC("dmcu is not initialized");
429 		return false;
430 	}
431 
432 	return true;
433 }
434 #endif
435 
436 /**
437  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
438  * @dc: DC Object
439  * @stream: The stream to configure CRC on.
440  * @enable: Enable CRC if true, disable otherwise.
441  * @crc_window: CRC window (x/y start/end) information
442  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
443  *              once.
444  *
445  * By default, only CRC0 is configured, and the entire frame is used to
446  * calculate the crc.
447  */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)448 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
449 			     struct crc_params *crc_window, bool enable, bool continuous)
450 {
451 	int i;
452 	struct pipe_ctx *pipe;
453 	struct crc_params param;
454 	struct timing_generator *tg;
455 
456 	for (i = 0; i < MAX_PIPES; i++) {
457 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
458 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
459 			break;
460 	}
461 	/* Stream not found */
462 	if (i == MAX_PIPES)
463 		return false;
464 
465 	/* By default, capture the full frame */
466 	param.windowa_x_start = 0;
467 	param.windowa_y_start = 0;
468 	param.windowa_x_end = pipe->stream->timing.h_addressable;
469 	param.windowa_y_end = pipe->stream->timing.v_addressable;
470 	param.windowb_x_start = 0;
471 	param.windowb_y_start = 0;
472 	param.windowb_x_end = pipe->stream->timing.h_addressable;
473 	param.windowb_y_end = pipe->stream->timing.v_addressable;
474 
475 	if (crc_window) {
476 		param.windowa_x_start = crc_window->windowa_x_start;
477 		param.windowa_y_start = crc_window->windowa_y_start;
478 		param.windowa_x_end = crc_window->windowa_x_end;
479 		param.windowa_y_end = crc_window->windowa_y_end;
480 		param.windowb_x_start = crc_window->windowb_x_start;
481 		param.windowb_y_start = crc_window->windowb_y_start;
482 		param.windowb_x_end = crc_window->windowb_x_end;
483 		param.windowb_y_end = crc_window->windowb_y_end;
484 	}
485 
486 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
487 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
488 
489 	/* Default to the union of both windows */
490 	param.selection = UNION_WINDOW_A_B;
491 	param.continuous_mode = continuous;
492 	param.enable = enable;
493 
494 	tg = pipe->stream_res.tg;
495 
496 	/* Only call if supported */
497 	if (tg->funcs->configure_crc)
498 		return tg->funcs->configure_crc(tg, &param);
499 	DC_LOG_WARNING("CRC capture not supported.");
500 	return false;
501 }
502 
503 /**
504  * dc_stream_get_crc() - Get CRC values for the given stream.
505  * @dc: DC object
506  * @stream: The DC stream state of the stream to get CRCs from.
507  * @r_cr: CRC value for the first of the 3 channels stored here.
508  * @g_y:  CRC value for the second of the 3 channels stored here.
509  * @b_cb: CRC value for the third of the 3 channels stored here.
510  *
511  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
512  * Return false if stream is not found, or if CRCs are not enabled.
513  */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)514 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
515 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
516 {
517 	int i;
518 	struct pipe_ctx *pipe;
519 	struct timing_generator *tg;
520 
521 	for (i = 0; i < MAX_PIPES; i++) {
522 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
523 		if (pipe->stream == stream)
524 			break;
525 	}
526 	/* Stream not found */
527 	if (i == MAX_PIPES)
528 		return false;
529 
530 	tg = pipe->stream_res.tg;
531 
532 	if (tg->funcs->get_crc)
533 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
534 	DC_LOG_WARNING("CRC capture not supported.");
535 	return false;
536 }
537 
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)538 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
539 		enum dc_dynamic_expansion option)
540 {
541 	/* OPP FMT dyn expansion updates*/
542 	int i = 0;
543 	struct pipe_ctx *pipe_ctx;
544 
545 	for (i = 0; i < MAX_PIPES; i++) {
546 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
547 				== stream) {
548 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
549 			pipe_ctx->stream_res.opp->dyn_expansion = option;
550 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
551 					pipe_ctx->stream_res.opp,
552 					COLOR_SPACE_YCBCR601,
553 					stream->timing.display_color_depth,
554 					stream->signal);
555 		}
556 	}
557 }
558 
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)559 void dc_stream_set_dither_option(struct dc_stream_state *stream,
560 		enum dc_dither_option option)
561 {
562 	struct bit_depth_reduction_params params;
563 	struct dc_link *link = stream->link;
564 	struct pipe_ctx *pipes = NULL;
565 	int i;
566 
567 	for (i = 0; i < MAX_PIPES; i++) {
568 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
569 				stream) {
570 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
571 			break;
572 		}
573 	}
574 
575 	if (!pipes)
576 		return;
577 	if (option > DITHER_OPTION_MAX)
578 		return;
579 
580 	stream->dither_option = option;
581 
582 	memset(&params, 0, sizeof(params));
583 	resource_build_bit_depth_reduction_params(stream, &params);
584 	stream->bit_depth_params = params;
585 
586 	if (pipes->plane_res.xfm &&
587 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
588 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
589 			pipes->plane_res.xfm,
590 			pipes->plane_res.scl_data.lb_params.depth,
591 			&stream->bit_depth_params);
592 	}
593 
594 	pipes->stream_res.opp->funcs->
595 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
596 }
597 
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)598 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
599 {
600 	int i = 0;
601 	bool ret = false;
602 	struct pipe_ctx *pipes;
603 
604 	for (i = 0; i < MAX_PIPES; i++) {
605 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
606 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
607 			dc->hwss.program_gamut_remap(pipes);
608 			ret = true;
609 		}
610 	}
611 
612 	return ret;
613 }
614 
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)615 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
616 {
617 	int i = 0;
618 	bool ret = false;
619 	struct pipe_ctx *pipes;
620 
621 	for (i = 0; i < MAX_PIPES; i++) {
622 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
623 				== stream) {
624 
625 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
626 			dc->hwss.program_output_csc(dc,
627 					pipes,
628 					stream->output_color_space,
629 					stream->csc_color_matrix.matrix,
630 					pipes->stream_res.opp->inst);
631 			ret = true;
632 		}
633 	}
634 
635 	return ret;
636 }
637 
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)638 void dc_stream_set_static_screen_params(struct dc *dc,
639 		struct dc_stream_state **streams,
640 		int num_streams,
641 		const struct dc_static_screen_params *params)
642 {
643 	int i = 0;
644 	int j = 0;
645 	struct pipe_ctx *pipes_affected[MAX_PIPES];
646 	int num_pipes_affected = 0;
647 
648 	for (i = 0; i < num_streams; i++) {
649 		struct dc_stream_state *stream = streams[i];
650 
651 		for (j = 0; j < MAX_PIPES; j++) {
652 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
653 					== stream) {
654 				pipes_affected[num_pipes_affected++] =
655 						&dc->current_state->res_ctx.pipe_ctx[j];
656 			}
657 		}
658 	}
659 
660 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
661 }
662 
dc_destruct(struct dc * dc)663 static void dc_destruct(struct dc *dc)
664 {
665 	if (dc->current_state) {
666 		dc_release_state(dc->current_state);
667 		dc->current_state = NULL;
668 	}
669 
670 	destroy_links(dc);
671 
672 	if (dc->clk_mgr) {
673 		dc_destroy_clk_mgr(dc->clk_mgr);
674 		dc->clk_mgr = NULL;
675 	}
676 
677 	dc_destroy_resource_pool(dc);
678 
679 	if (dc->ctx->gpio_service)
680 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
681 
682 	if (dc->ctx->created_bios)
683 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
684 
685 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
686 
687 	kfree(dc->ctx);
688 	dc->ctx = NULL;
689 
690 	kfree(dc->bw_vbios);
691 	dc->bw_vbios = NULL;
692 
693 	kfree(dc->bw_dceip);
694 	dc->bw_dceip = NULL;
695 
696 #ifdef CONFIG_DRM_AMD_DC_DCN
697 	kfree(dc->dcn_soc);
698 	dc->dcn_soc = NULL;
699 
700 	kfree(dc->dcn_ip);
701 	dc->dcn_ip = NULL;
702 
703 #endif
704 	kfree(dc->vm_helper);
705 	dc->vm_helper = NULL;
706 
707 }
708 
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)709 static bool dc_construct_ctx(struct dc *dc,
710 		const struct dc_init_data *init_params)
711 {
712 	struct dc_context *dc_ctx;
713 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
714 
715 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
716 	if (!dc_ctx)
717 		return false;
718 
719 	dc_ctx->cgs_device = init_params->cgs_device;
720 	dc_ctx->driver_context = init_params->driver;
721 	dc_ctx->dc = dc;
722 	dc_ctx->asic_id = init_params->asic_id;
723 	dc_ctx->dc_sink_id_count = 0;
724 	dc_ctx->dc_stream_id_count = 0;
725 	dc_ctx->dce_environment = init_params->dce_environment;
726 
727 	/* Create logger */
728 
729 	dc_version = resource_parse_asic_id(init_params->asic_id);
730 	dc_ctx->dce_version = dc_version;
731 
732 	dc_ctx->perf_trace = dc_perf_trace_create();
733 	if (!dc_ctx->perf_trace) {
734 		ASSERT_CRITICAL(false);
735 		return false;
736 	}
737 
738 	dc->ctx = dc_ctx;
739 
740 	return true;
741 }
742 
dc_construct(struct dc * dc,const struct dc_init_data * init_params)743 static bool dc_construct(struct dc *dc,
744 		const struct dc_init_data *init_params)
745 {
746 	struct dc_context *dc_ctx;
747 	struct bw_calcs_dceip *dc_dceip;
748 	struct bw_calcs_vbios *dc_vbios;
749 #ifdef CONFIG_DRM_AMD_DC_DCN
750 	struct dcn_soc_bounding_box *dcn_soc;
751 	struct dcn_ip_params *dcn_ip;
752 #endif
753 
754 	dc->config = init_params->flags;
755 
756 	// Allocate memory for the vm_helper
757 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
758 	if (!dc->vm_helper) {
759 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
760 		goto fail;
761 	}
762 
763 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
764 
765 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
766 	if (!dc_dceip) {
767 		dm_error("%s: failed to create dceip\n", __func__);
768 		goto fail;
769 	}
770 
771 	dc->bw_dceip = dc_dceip;
772 
773 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
774 	if (!dc_vbios) {
775 		dm_error("%s: failed to create vbios\n", __func__);
776 		goto fail;
777 	}
778 
779 	dc->bw_vbios = dc_vbios;
780 #ifdef CONFIG_DRM_AMD_DC_DCN
781 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
782 	if (!dcn_soc) {
783 		dm_error("%s: failed to create dcn_soc\n", __func__);
784 		goto fail;
785 	}
786 
787 	dc->dcn_soc = dcn_soc;
788 
789 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
790 	if (!dcn_ip) {
791 		dm_error("%s: failed to create dcn_ip\n", __func__);
792 		goto fail;
793 	}
794 
795 	dc->dcn_ip = dcn_ip;
796 #endif
797 
798 	if (!dc_construct_ctx(dc, init_params)) {
799 		dm_error("%s: failed to create ctx\n", __func__);
800 		goto fail;
801 	}
802 
803         dc_ctx = dc->ctx;
804 
805 	/* Resource should construct all asic specific resources.
806 	 * This should be the only place where we need to parse the asic id
807 	 */
808 	if (init_params->vbios_override)
809 		dc_ctx->dc_bios = init_params->vbios_override;
810 	else {
811 		/* Create BIOS parser */
812 		struct bp_init_data bp_init_data;
813 
814 		bp_init_data.ctx = dc_ctx;
815 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
816 
817 		dc_ctx->dc_bios = dal_bios_parser_create(
818 				&bp_init_data, dc_ctx->dce_version);
819 
820 		if (!dc_ctx->dc_bios) {
821 			ASSERT_CRITICAL(false);
822 			goto fail;
823 		}
824 
825 		dc_ctx->created_bios = true;
826 	}
827 
828 	dc->vendor_signature = init_params->vendor_signature;
829 
830 	/* Create GPIO service */
831 	dc_ctx->gpio_service = dal_gpio_service_create(
832 			dc_ctx->dce_version,
833 			dc_ctx->dce_environment,
834 			dc_ctx);
835 
836 	if (!dc_ctx->gpio_service) {
837 		ASSERT_CRITICAL(false);
838 		goto fail;
839 	}
840 
841 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
842 	if (!dc->res_pool)
843 		goto fail;
844 
845 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
846 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
847 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
848 
849 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
850 	if (!dc->clk_mgr)
851 		goto fail;
852 #ifdef CONFIG_DRM_AMD_DC_DCN
853 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
854 #endif
855 
856 	if (dc->res_pool->funcs->update_bw_bounding_box)
857 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
858 
859 	/* Creation of current_state must occur after dc->dml
860 	 * is initialized in dc_create_resource_pool because
861 	 * on creation it copies the contents of dc->dml
862 	 */
863 
864 	dc->current_state = dc_create_state(dc);
865 
866 	if (!dc->current_state) {
867 		dm_error("%s: failed to create validate ctx\n", __func__);
868 		goto fail;
869 	}
870 
871 	dc_resource_state_construct(dc, dc->current_state);
872 
873 	if (!create_links(dc, init_params->num_virtual_links))
874 		goto fail;
875 
876 	/* Initialise DIG link encoder resource tracking variables. */
877 	link_enc_cfg_init(dc, dc->current_state);
878 
879 	return true;
880 
881 fail:
882 	return false;
883 }
884 
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)885 static void disable_all_writeback_pipes_for_stream(
886 		const struct dc *dc,
887 		struct dc_stream_state *stream,
888 		struct dc_state *context)
889 {
890 	int i;
891 
892 	for (i = 0; i < stream->num_wb_info; i++)
893 		stream->writeback_info[i].wb_enabled = false;
894 }
895 
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)896 static void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context,
897 					  struct dc_stream_state *stream, bool lock)
898 {
899 	int i = 0;
900 
901 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
902 	if (dc->hwss.interdependent_update_lock)
903 		dc->hwss.interdependent_update_lock(dc, context, lock);
904 	else {
905 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
906 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
907 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
908 
909 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
910 			if (stream == pipe_ctx->stream) {
911 				if (!pipe_ctx->top_pipe &&
912 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
913 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
914 			}
915 		}
916 	}
917 }
918 
disable_dangling_plane(struct dc * dc,struct dc_state * context)919 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
920 {
921 	int i, j;
922 	struct dc_state *dangling_context = dc_create_state(dc);
923 	struct dc_state *current_ctx;
924 
925 	if (dangling_context == NULL)
926 		return;
927 
928 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
929 
930 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
931 		struct dc_stream_state *old_stream =
932 				dc->current_state->res_ctx.pipe_ctx[i].stream;
933 		bool should_disable = true;
934 
935 		for (j = 0; j < context->stream_count; j++) {
936 			if (old_stream == context->streams[j]) {
937 				should_disable = false;
938 				break;
939 			}
940 		}
941 		if (should_disable && old_stream) {
942 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
943 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
944 
945 			if (dc->hwss.apply_ctx_for_surface) {
946 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
947 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
948 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
949 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
950 			}
951 			if (dc->hwss.program_front_end_for_ctx) {
952 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
953 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
954 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
955 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
956 			}
957 		}
958 	}
959 
960 	current_ctx = dc->current_state;
961 	dc->current_state = dangling_context;
962 	dc_release_state(current_ctx);
963 }
964 
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)965 static void disable_vbios_mode_if_required(
966 		struct dc *dc,
967 		struct dc_state *context)
968 {
969 	unsigned int i, j;
970 
971 	/* check if timing_changed, disable stream*/
972 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
973 		struct dc_stream_state *stream = NULL;
974 		struct dc_link *link = NULL;
975 		struct pipe_ctx *pipe = NULL;
976 
977 		pipe = &context->res_ctx.pipe_ctx[i];
978 		stream = pipe->stream;
979 		if (stream == NULL)
980 			continue;
981 
982 		// only looking for first odm pipe
983 		if (pipe->prev_odm_pipe)
984 			continue;
985 
986 		if (stream->link->local_sink &&
987 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
988 			link = stream->link;
989 		}
990 
991 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
992 			unsigned int enc_inst, tg_inst = 0;
993 			unsigned int pix_clk_100hz;
994 
995 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
996 			if (enc_inst != ENGINE_ID_UNKNOWN) {
997 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
998 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
999 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1000 							dc->res_pool->stream_enc[j]);
1001 						break;
1002 					}
1003 				}
1004 
1005 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1006 					dc->res_pool->dp_clock_source,
1007 					tg_inst, &pix_clk_100hz);
1008 
1009 				if (link->link_status.link_active) {
1010 					uint32_t requested_pix_clk_100hz =
1011 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1012 
1013 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1014 						core_link_disable_stream(pipe);
1015 						pipe->stream->dpms_off = false;
1016 					}
1017 				}
1018 			}
1019 		}
1020 	}
1021 }
1022 
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)1023 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1024 {
1025 	int i;
1026 	PERF_TRACE();
1027 	for (i = 0; i < MAX_PIPES; i++) {
1028 		int count = 0;
1029 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1030 
1031 		if (!pipe->plane_state)
1032 			continue;
1033 
1034 		/* Timeout 100 ms */
1035 		while (count < 100000) {
1036 			/* Must set to false to start with, due to OR in update function */
1037 			pipe->plane_state->status.is_flip_pending = false;
1038 			dc->hwss.update_pending_status(pipe);
1039 			if (!pipe->plane_state->status.is_flip_pending)
1040 				break;
1041 			udelay(1);
1042 			count++;
1043 		}
1044 		ASSERT(!pipe->plane_state->status.is_flip_pending);
1045 	}
1046 	PERF_TRACE();
1047 }
1048 
1049 /*******************************************************************************
1050  * Public functions
1051  ******************************************************************************/
1052 
dc_create(const struct dc_init_data * init_params)1053 struct dc *dc_create(const struct dc_init_data *init_params)
1054 {
1055 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1056 	unsigned int full_pipe_count;
1057 
1058 	if (!dc)
1059 		return NULL;
1060 
1061 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1062 		if (!dc_construct_ctx(dc, init_params))
1063 			goto destruct_dc;
1064 	} else {
1065 		if (!dc_construct(dc, init_params))
1066 			goto destruct_dc;
1067 
1068 		full_pipe_count = dc->res_pool->pipe_count;
1069 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1070 			full_pipe_count--;
1071 		dc->caps.max_streams = min(
1072 				full_pipe_count,
1073 				dc->res_pool->stream_enc_count);
1074 
1075 		dc->caps.max_links = dc->link_count;
1076 		dc->caps.max_audios = dc->res_pool->audio_count;
1077 		dc->caps.linear_pitch_alignment = 64;
1078 
1079 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1080 
1081 		if (dc->res_pool->dmcu != NULL)
1082 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1083 	}
1084 
1085 	/* Populate versioning information */
1086 	dc->versions.dc_ver = DC_VER;
1087 
1088 	dc->build_id = DC_BUILD_ID;
1089 
1090 	DC_LOG_DC("Display Core initialized\n");
1091 
1092 
1093 
1094 	return dc;
1095 
1096 destruct_dc:
1097 	dc_destruct(dc);
1098 	kfree(dc);
1099 	return NULL;
1100 }
1101 
detect_edp_presence(struct dc * dc)1102 static void detect_edp_presence(struct dc *dc)
1103 {
1104 	struct dc_link *edp_links[MAX_NUM_EDP];
1105 	struct dc_link *edp_link = NULL;
1106 	enum dc_connection_type type;
1107 	int i;
1108 	int edp_num;
1109 
1110 	get_edp_links(dc, edp_links, &edp_num);
1111 	if (!edp_num)
1112 		return;
1113 
1114 	for (i = 0; i < edp_num; i++) {
1115 		edp_link = edp_links[i];
1116 		if (dc->config.edp_not_connected) {
1117 			edp_link->edp_sink_present = false;
1118 		} else {
1119 			dc_link_detect_sink(edp_link, &type);
1120 			edp_link->edp_sink_present = (type != dc_connection_none);
1121 		}
1122 	}
1123 }
1124 
dc_hardware_init(struct dc * dc)1125 void dc_hardware_init(struct dc *dc)
1126 {
1127 
1128 	detect_edp_presence(dc);
1129 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1130 		dc->hwss.init_hw(dc);
1131 }
1132 
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1133 void dc_init_callbacks(struct dc *dc,
1134 		const struct dc_callback_init *init_params)
1135 {
1136 #ifdef CONFIG_DRM_AMD_DC_HDCP
1137 	dc->ctx->cp_psp = init_params->cp_psp;
1138 #endif
1139 }
1140 
dc_deinit_callbacks(struct dc * dc)1141 void dc_deinit_callbacks(struct dc *dc)
1142 {
1143 #ifdef CONFIG_DRM_AMD_DC_HDCP
1144 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1145 #endif
1146 }
1147 
dc_destroy(struct dc ** dc)1148 void dc_destroy(struct dc **dc)
1149 {
1150 	dc_destruct(*dc);
1151 	kfree(*dc);
1152 	*dc = NULL;
1153 }
1154 
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1155 static void enable_timing_multisync(
1156 		struct dc *dc,
1157 		struct dc_state *ctx)
1158 {
1159 	int i = 0, multisync_count = 0;
1160 	int pipe_count = dc->res_pool->pipe_count;
1161 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1162 
1163 	for (i = 0; i < pipe_count; i++) {
1164 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1165 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1166 			continue;
1167 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1168 			continue;
1169 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1170 		multisync_count++;
1171 	}
1172 
1173 	if (multisync_count > 0) {
1174 		dc->hwss.enable_per_frame_crtc_position_reset(
1175 			dc, multisync_count, multisync_pipes);
1176 	}
1177 }
1178 
program_timing_sync(struct dc * dc,struct dc_state * ctx)1179 static void program_timing_sync(
1180 		struct dc *dc,
1181 		struct dc_state *ctx)
1182 {
1183 	int i, j, k;
1184 	int group_index = 0;
1185 	int num_group = 0;
1186 	int pipe_count = dc->res_pool->pipe_count;
1187 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1188 
1189 	for (i = 0; i < pipe_count; i++) {
1190 		if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
1191 			continue;
1192 
1193 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1194 	}
1195 
1196 	for (i = 0; i < pipe_count; i++) {
1197 		int group_size = 1;
1198 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1199 		struct pipe_ctx *pipe_set[MAX_PIPES];
1200 
1201 		if (!unsynced_pipes[i])
1202 			continue;
1203 
1204 		pipe_set[0] = unsynced_pipes[i];
1205 		unsynced_pipes[i] = NULL;
1206 
1207 		/* Add tg to the set, search rest of the tg's for ones with
1208 		 * same timing, add all tgs with same timing to the group
1209 		 */
1210 		for (j = i + 1; j < pipe_count; j++) {
1211 			if (!unsynced_pipes[j])
1212 				continue;
1213 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1214 				dc->hwss.enable_vblanks_synchronization &&
1215 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1216 				resource_are_vblanks_synchronizable(
1217 					unsynced_pipes[j]->stream,
1218 					pipe_set[0]->stream)) {
1219 				sync_type = VBLANK_SYNCHRONIZABLE;
1220 				pipe_set[group_size] = unsynced_pipes[j];
1221 				unsynced_pipes[j] = NULL;
1222 				group_size++;
1223 			} else
1224 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1225 				resource_are_streams_timing_synchronizable(
1226 					unsynced_pipes[j]->stream,
1227 					pipe_set[0]->stream)) {
1228 				sync_type = TIMING_SYNCHRONIZABLE;
1229 				pipe_set[group_size] = unsynced_pipes[j];
1230 				unsynced_pipes[j] = NULL;
1231 				group_size++;
1232 			}
1233 		}
1234 
1235 		/* set first unblanked pipe as master */
1236 		for (j = 0; j < group_size; j++) {
1237 			bool is_blanked;
1238 
1239 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1240 				is_blanked =
1241 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1242 			else
1243 				is_blanked =
1244 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1245 			if (!is_blanked) {
1246 				if (j == 0)
1247 					break;
1248 
1249 				swap(pipe_set[0], pipe_set[j]);
1250 				break;
1251 			}
1252 		}
1253 
1254 		for (k = 0; k < group_size; k++) {
1255 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1256 
1257 			status->timing_sync_info.group_id = num_group;
1258 			status->timing_sync_info.group_size = group_size;
1259 			if (k == 0)
1260 				status->timing_sync_info.master = true;
1261 			else
1262 				status->timing_sync_info.master = false;
1263 
1264 		}
1265 		/* remove any other unblanked pipes as they have already been synced */
1266 		for (j = j + 1; j < group_size; j++) {
1267 			bool is_blanked;
1268 
1269 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1270 				is_blanked =
1271 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1272 			else
1273 				is_blanked =
1274 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1275 			if (!is_blanked) {
1276 				group_size--;
1277 				pipe_set[j] = pipe_set[group_size];
1278 				j--;
1279 			}
1280 		}
1281 
1282 		if (group_size > 1) {
1283 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1284 				dc->hwss.enable_timing_synchronization(
1285 					dc, group_index, group_size, pipe_set);
1286 			} else
1287 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1288 				dc->hwss.enable_vblanks_synchronization(
1289 					dc, group_index, group_size, pipe_set);
1290 				}
1291 			group_index++;
1292 		}
1293 		num_group++;
1294 	}
1295 }
1296 
context_changed(struct dc * dc,struct dc_state * context)1297 static bool context_changed(
1298 		struct dc *dc,
1299 		struct dc_state *context)
1300 {
1301 	uint8_t i;
1302 
1303 	if (context->stream_count != dc->current_state->stream_count)
1304 		return true;
1305 
1306 	for (i = 0; i < dc->current_state->stream_count; i++) {
1307 		if (dc->current_state->streams[i] != context->streams[i])
1308 			return true;
1309 	}
1310 
1311 	return false;
1312 }
1313 
dc_validate_seamless_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1314 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1315 				const struct dc_sink *sink,
1316 				struct dc_crtc_timing *crtc_timing)
1317 {
1318 	struct timing_generator *tg;
1319 	struct stream_encoder *se = NULL;
1320 
1321 	struct dc_crtc_timing hw_crtc_timing = {0};
1322 
1323 	struct dc_link *link = sink->link;
1324 	unsigned int i, enc_inst, tg_inst = 0;
1325 
1326 	/* Support seamless boot on EDP displays only */
1327 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1328 		return false;
1329 	}
1330 
1331 	/* Check for enabled DIG to identify enabled display */
1332 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1333 		return false;
1334 
1335 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1336 
1337 	if (enc_inst == ENGINE_ID_UNKNOWN)
1338 		return false;
1339 
1340 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1341 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1342 
1343 			se = dc->res_pool->stream_enc[i];
1344 
1345 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1346 				dc->res_pool->stream_enc[i]);
1347 			break;
1348 		}
1349 	}
1350 
1351 	// tg_inst not found
1352 	if (i == dc->res_pool->stream_enc_count)
1353 		return false;
1354 
1355 	if (tg_inst >= dc->res_pool->timing_generator_count)
1356 		return false;
1357 
1358 	tg = dc->res_pool->timing_generators[tg_inst];
1359 
1360 	if (!tg->funcs->get_hw_timing)
1361 		return false;
1362 
1363 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1364 		return false;
1365 
1366 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1367 		return false;
1368 
1369 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1370 		return false;
1371 
1372 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1373 		return false;
1374 
1375 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1376 		return false;
1377 
1378 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1379 		return false;
1380 
1381 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1382 		return false;
1383 
1384 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1385 		return false;
1386 
1387 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1388 		return false;
1389 
1390 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1391 		return false;
1392 
1393 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1394 		return false;
1395 
1396 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1397 		return false;
1398 
1399 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1400 		return false;
1401 
1402 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1403 	if (crtc_timing->flags.DSC)
1404 		return false;
1405 
1406 	if (dc_is_dp_signal(link->connector_signal)) {
1407 		unsigned int pix_clk_100hz;
1408 
1409 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1410 			dc->res_pool->dp_clock_source,
1411 			tg_inst, &pix_clk_100hz);
1412 
1413 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1414 			return false;
1415 
1416 		if (!se->funcs->dp_get_pixel_format)
1417 			return false;
1418 
1419 		if (!se->funcs->dp_get_pixel_format(
1420 			se,
1421 			&hw_crtc_timing.pixel_encoding,
1422 			&hw_crtc_timing.display_color_depth))
1423 			return false;
1424 
1425 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1426 			return false;
1427 
1428 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1429 			return false;
1430 	}
1431 
1432 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1433 		return false;
1434 	}
1435 
1436 	if (is_edp_ilr_optimization_required(link, crtc_timing)) {
1437 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1438 		return false;
1439 	}
1440 
1441 	return true;
1442 }
1443 
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1444 void dc_enable_stereo(
1445 	struct dc *dc,
1446 	struct dc_state *context,
1447 	struct dc_stream_state *streams[],
1448 	uint8_t stream_count)
1449 {
1450 	int i, j;
1451 	struct pipe_ctx *pipe;
1452 
1453 	for (i = 0; i < MAX_PIPES; i++) {
1454 		if (context != NULL)
1455 			pipe = &context->res_ctx.pipe_ctx[i];
1456 		else
1457 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1458 		for (j = 0 ; pipe && j < stream_count; j++)  {
1459 			if (streams[j] && streams[j] == pipe->stream &&
1460 				dc->hwss.setup_stereo)
1461 				dc->hwss.setup_stereo(pipe, dc);
1462 		}
1463 	}
1464 }
1465 
dc_trigger_sync(struct dc * dc,struct dc_state * context)1466 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1467 {
1468 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1469 		enable_timing_multisync(dc, context);
1470 		program_timing_sync(dc, context);
1471 	}
1472 }
1473 
get_stream_mask(struct dc * dc,struct dc_state * context)1474 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1475 {
1476 	int i;
1477 	unsigned int stream_mask = 0;
1478 
1479 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1480 		if (context->res_ctx.pipe_ctx[i].stream)
1481 			stream_mask |= 1 << i;
1482 	}
1483 
1484 	return stream_mask;
1485 }
1486 
1487 /*
1488  * Applies given context to HW and copy it into current context.
1489  * It's up to the user to release the src context afterwards.
1490  */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1491 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1492 {
1493 	struct dc_bios *dcb = dc->ctx->dc_bios;
1494 	enum dc_status result = DC_ERROR_UNEXPECTED;
1495 	struct pipe_ctx *pipe;
1496 	int i, k, l;
1497 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1498 
1499 #if defined(CONFIG_DRM_AMD_DC_DCN)
1500 	dc_allow_idle_optimizations(dc, false);
1501 #endif
1502 
1503 	for (i = 0; i < context->stream_count; i++)
1504 		dc_streams[i] =  context->streams[i];
1505 
1506 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1507 		disable_vbios_mode_if_required(dc, context);
1508 		dc->hwss.enable_accelerated_mode(dc, context);
1509 	}
1510 
1511 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1512 		context->stream_count == 0)
1513 		dc->hwss.prepare_bandwidth(dc, context);
1514 
1515 	disable_dangling_plane(dc, context);
1516 	/* re-program planes for existing stream, in case we need to
1517 	 * free up plane resource for later use
1518 	 */
1519 	if (dc->hwss.apply_ctx_for_surface) {
1520 		for (i = 0; i < context->stream_count; i++) {
1521 			if (context->streams[i]->mode_changed)
1522 				continue;
1523 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1524 			dc->hwss.apply_ctx_for_surface(
1525 				dc, context->streams[i],
1526 				context->stream_status[i].plane_count,
1527 				context); /* use new pipe config in new context */
1528 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1529 			dc->hwss.post_unlock_program_front_end(dc, context);
1530 		}
1531 	}
1532 
1533 	/* Program hardware */
1534 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1535 		pipe = &context->res_ctx.pipe_ctx[i];
1536 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1537 	}
1538 
1539 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1540 
1541 	if (result != DC_OK)
1542 		return result;
1543 
1544 	dc_trigger_sync(dc, context);
1545 
1546 	/* Program all planes within new context*/
1547 	if (dc->hwss.program_front_end_for_ctx) {
1548 		dc->hwss.interdependent_update_lock(dc, context, true);
1549 		dc->hwss.program_front_end_for_ctx(dc, context);
1550 		dc->hwss.interdependent_update_lock(dc, context, false);
1551 		dc->hwss.post_unlock_program_front_end(dc, context);
1552 	}
1553 	for (i = 0; i < context->stream_count; i++) {
1554 		const struct dc_link *link = context->streams[i]->link;
1555 
1556 		if (!context->streams[i]->mode_changed)
1557 			continue;
1558 
1559 		if (dc->hwss.apply_ctx_for_surface) {
1560 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1561 			dc->hwss.apply_ctx_for_surface(
1562 					dc, context->streams[i],
1563 					context->stream_status[i].plane_count,
1564 					context);
1565 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1566 			dc->hwss.post_unlock_program_front_end(dc, context);
1567 		}
1568 
1569 		/*
1570 		 * enable stereo
1571 		 * TODO rework dc_enable_stereo call to work with validation sets?
1572 		 */
1573 		for (k = 0; k < MAX_PIPES; k++) {
1574 			pipe = &context->res_ctx.pipe_ctx[k];
1575 
1576 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1577 				if (context->streams[l] &&
1578 					context->streams[l] == pipe->stream &&
1579 					dc->hwss.setup_stereo)
1580 					dc->hwss.setup_stereo(pipe, dc);
1581 			}
1582 		}
1583 
1584 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1585 				context->streams[i]->timing.h_addressable,
1586 				context->streams[i]->timing.v_addressable,
1587 				context->streams[i]->timing.h_total,
1588 				context->streams[i]->timing.v_total,
1589 				context->streams[i]->timing.pix_clk_100hz / 10);
1590 	}
1591 
1592 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1593 
1594 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1595 		context->stream_count == 0) {
1596 		/* Must wait for no flips to be pending before doing optimize bw */
1597 		wait_for_no_pipes_pending(dc, context);
1598 		/* pplib is notified if disp_num changed */
1599 		dc->hwss.optimize_bandwidth(dc, context);
1600 	}
1601 
1602 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1603 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1604 	else
1605 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1606 
1607 	context->stream_mask = get_stream_mask(dc, context);
1608 
1609 	if (context->stream_mask != dc->current_state->stream_mask)
1610 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1611 
1612 	for (i = 0; i < context->stream_count; i++)
1613 		context->streams[i]->mode_changed = false;
1614 
1615 	dc_release_state(dc->current_state);
1616 
1617 	dc->current_state = context;
1618 
1619 	dc_retain_state(dc->current_state);
1620 
1621 	return result;
1622 }
1623 
dc_commit_state(struct dc * dc,struct dc_state * context)1624 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1625 {
1626 	enum dc_status result = DC_ERROR_UNEXPECTED;
1627 	int i;
1628 
1629 	if (!context_changed(dc, context))
1630 		return DC_OK;
1631 
1632 	DC_LOG_DC("%s: %d streams\n",
1633 				__func__, context->stream_count);
1634 
1635 	for (i = 0; i < context->stream_count; i++) {
1636 		struct dc_stream_state *stream = context->streams[i];
1637 
1638 		dc_stream_log(dc, stream);
1639 	}
1640 
1641 	result = dc_commit_state_no_check(dc, context);
1642 
1643 	return (result == DC_OK);
1644 }
1645 
1646 #if defined(CONFIG_DRM_AMD_DC_DCN)
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1647 bool dc_acquire_release_mpc_3dlut(
1648 		struct dc *dc, bool acquire,
1649 		struct dc_stream_state *stream,
1650 		struct dc_3dlut **lut,
1651 		struct dc_transfer_func **shaper)
1652 {
1653 	int pipe_idx;
1654 	bool ret = false;
1655 	bool found_pipe_idx = false;
1656 	const struct resource_pool *pool = dc->res_pool;
1657 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
1658 	int mpcc_id = 0;
1659 
1660 	if (pool && res_ctx) {
1661 		if (acquire) {
1662 			/*find pipe idx for the given stream*/
1663 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1664 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1665 					found_pipe_idx = true;
1666 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1667 					break;
1668 				}
1669 			}
1670 		} else
1671 			found_pipe_idx = true;/*for release pipe_idx is not required*/
1672 
1673 		if (found_pipe_idx) {
1674 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1675 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1676 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
1677 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1678 		}
1679 	}
1680 	return ret;
1681 }
1682 #endif
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)1683 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1684 {
1685 	int i;
1686 	struct pipe_ctx *pipe;
1687 
1688 	for (i = 0; i < MAX_PIPES; i++) {
1689 		pipe = &context->res_ctx.pipe_ctx[i];
1690 
1691 		if (!pipe->plane_state)
1692 			continue;
1693 
1694 		/* Must set to false to start with, due to OR in update function */
1695 		pipe->plane_state->status.is_flip_pending = false;
1696 		dc->hwss.update_pending_status(pipe);
1697 		if (pipe->plane_state->status.is_flip_pending)
1698 			return true;
1699 	}
1700 	return false;
1701 }
1702 
dc_post_update_surfaces_to_stream(struct dc * dc)1703 void dc_post_update_surfaces_to_stream(struct dc *dc)
1704 {
1705 	int i;
1706 	struct dc_state *context = dc->current_state;
1707 
1708 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
1709 		return;
1710 
1711 	post_surface_trace(dc);
1712 
1713 	if (is_flip_pending_in_pipes(dc, context))
1714 		return;
1715 
1716 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1717 		if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1718 		    context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1719 			context->res_ctx.pipe_ctx[i].pipe_idx = i;
1720 			dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1721 		}
1722 
1723 	dc->hwss.optimize_bandwidth(dc, context);
1724 
1725 	dc->optimized_required = false;
1726 	dc->wm_optimized_required = false;
1727 }
1728 
init_state(struct dc * dc,struct dc_state * context)1729 static void init_state(struct dc *dc, struct dc_state *context)
1730 {
1731 	/* Each context must have their own instance of VBA and in order to
1732 	 * initialize and obtain IP and SOC the base DML instance from DC is
1733 	 * initially copied into every context
1734 	 */
1735 #ifdef CONFIG_DRM_AMD_DC_DCN
1736 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1737 #endif
1738 }
1739 
dc_create_state(struct dc * dc)1740 struct dc_state *dc_create_state(struct dc *dc)
1741 {
1742 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1743 					    GFP_KERNEL);
1744 
1745 	if (!context)
1746 		return NULL;
1747 
1748 	init_state(dc, context);
1749 
1750 	kref_init(&context->refcount);
1751 
1752 	return context;
1753 }
1754 
dc_copy_state(struct dc_state * src_ctx)1755 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1756 {
1757 	int i, j;
1758 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1759 
1760 	if (!new_ctx)
1761 		return NULL;
1762 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1763 
1764 	for (i = 0; i < MAX_PIPES; i++) {
1765 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1766 
1767 			if (cur_pipe->top_pipe)
1768 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1769 
1770 			if (cur_pipe->bottom_pipe)
1771 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1772 
1773 			if (cur_pipe->prev_odm_pipe)
1774 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1775 
1776 			if (cur_pipe->next_odm_pipe)
1777 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1778 
1779 	}
1780 
1781 	for (i = 0; i < new_ctx->stream_count; i++) {
1782 			dc_stream_retain(new_ctx->streams[i]);
1783 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1784 				dc_plane_state_retain(
1785 					new_ctx->stream_status[i].plane_states[j]);
1786 	}
1787 
1788 	kref_init(&new_ctx->refcount);
1789 
1790 	return new_ctx;
1791 }
1792 
dc_retain_state(struct dc_state * context)1793 void dc_retain_state(struct dc_state *context)
1794 {
1795 	kref_get(&context->refcount);
1796 }
1797 
dc_state_free(struct kref * kref)1798 static void dc_state_free(struct kref *kref)
1799 {
1800 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
1801 	dc_resource_state_destruct(context);
1802 	kvfree(context);
1803 }
1804 
dc_release_state(struct dc_state * context)1805 void dc_release_state(struct dc_state *context)
1806 {
1807 	kref_put(&context->refcount, dc_state_free);
1808 }
1809 
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)1810 bool dc_set_generic_gpio_for_stereo(bool enable,
1811 		struct gpio_service *gpio_service)
1812 {
1813 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1814 	struct gpio_pin_info pin_info;
1815 	struct gpio *generic;
1816 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1817 			   GFP_KERNEL);
1818 
1819 	if (!config)
1820 		return false;
1821 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1822 
1823 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1824 		kfree(config);
1825 		return false;
1826 	} else {
1827 		generic = dal_gpio_service_create_generic_mux(
1828 			gpio_service,
1829 			pin_info.offset,
1830 			pin_info.mask);
1831 	}
1832 
1833 	if (!generic) {
1834 		kfree(config);
1835 		return false;
1836 	}
1837 
1838 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1839 
1840 	config->enable_output_from_mux = enable;
1841 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1842 
1843 	if (gpio_result == GPIO_RESULT_OK)
1844 		gpio_result = dal_mux_setup_config(generic, config);
1845 
1846 	if (gpio_result == GPIO_RESULT_OK) {
1847 		dal_gpio_close(generic);
1848 		dal_gpio_destroy_generic_mux(&generic);
1849 		kfree(config);
1850 		return true;
1851 	} else {
1852 		dal_gpio_close(generic);
1853 		dal_gpio_destroy_generic_mux(&generic);
1854 		kfree(config);
1855 		return false;
1856 	}
1857 }
1858 
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)1859 static bool is_surface_in_context(
1860 		const struct dc_state *context,
1861 		const struct dc_plane_state *plane_state)
1862 {
1863 	int j;
1864 
1865 	for (j = 0; j < MAX_PIPES; j++) {
1866 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1867 
1868 		if (plane_state == pipe_ctx->plane_state) {
1869 			return true;
1870 		}
1871 	}
1872 
1873 	return false;
1874 }
1875 
get_plane_info_update_type(const struct dc_surface_update * u)1876 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1877 {
1878 	union surface_update_flags *update_flags = &u->surface->update_flags;
1879 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
1880 
1881 	if (!u->plane_info)
1882 		return UPDATE_TYPE_FAST;
1883 
1884 	if (u->plane_info->color_space != u->surface->color_space) {
1885 		update_flags->bits.color_space_change = 1;
1886 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1887 	}
1888 
1889 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1890 		update_flags->bits.horizontal_mirror_change = 1;
1891 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1892 	}
1893 
1894 	if (u->plane_info->rotation != u->surface->rotation) {
1895 		update_flags->bits.rotation_change = 1;
1896 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1897 	}
1898 
1899 	if (u->plane_info->format != u->surface->format) {
1900 		update_flags->bits.pixel_format_change = 1;
1901 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1902 	}
1903 
1904 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
1905 		update_flags->bits.stereo_format_change = 1;
1906 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1907 	}
1908 
1909 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1910 		update_flags->bits.per_pixel_alpha_change = 1;
1911 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1912 	}
1913 
1914 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1915 		update_flags->bits.global_alpha_change = 1;
1916 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1917 	}
1918 
1919 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
1920 			|| u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1921 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1922 		update_flags->bits.dcc_change = 1;
1923 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1924 	}
1925 
1926 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1927 			resource_pixel_format_to_bpp(u->surface->format)) {
1928 		/* different bytes per element will require full bandwidth
1929 		 * and DML calculation
1930 		 */
1931 		update_flags->bits.bpp_change = 1;
1932 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1933 	}
1934 
1935 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1936 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1937 		update_flags->bits.plane_size_change = 1;
1938 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1939 	}
1940 
1941 
1942 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1943 			sizeof(union dc_tiling_info)) != 0) {
1944 		update_flags->bits.swizzle_change = 1;
1945 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1946 
1947 		/* todo: below are HW dependent, we should add a hook to
1948 		 * DCE/N resource and validated there.
1949 		 */
1950 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1951 			/* swizzled mode requires RQ to be setup properly,
1952 			 * thus need to run DML to calculate RQ settings
1953 			 */
1954 			update_flags->bits.bandwidth_change = 1;
1955 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1956 		}
1957 	}
1958 
1959 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
1960 	return update_type;
1961 }
1962 
get_scaling_info_update_type(const struct dc_surface_update * u)1963 static enum surface_update_type get_scaling_info_update_type(
1964 		const struct dc_surface_update *u)
1965 {
1966 	union surface_update_flags *update_flags = &u->surface->update_flags;
1967 
1968 	if (!u->scaling_info)
1969 		return UPDATE_TYPE_FAST;
1970 
1971 	if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1972 			|| u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1973 			|| u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1974 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1975 			|| u->scaling_info->scaling_quality.integer_scaling !=
1976 				u->surface->scaling_quality.integer_scaling
1977 			) {
1978 		update_flags->bits.scaling_change = 1;
1979 
1980 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1981 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1982 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1983 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1984 			/* Making dst rect smaller requires a bandwidth change */
1985 			update_flags->bits.bandwidth_change = 1;
1986 	}
1987 
1988 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1989 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1990 
1991 		update_flags->bits.scaling_change = 1;
1992 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1993 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
1994 			/* Making src rect bigger requires a bandwidth change */
1995 			update_flags->bits.clock_change = 1;
1996 	}
1997 
1998 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1999 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2000 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2001 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2002 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2003 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2004 		update_flags->bits.position_change = 1;
2005 
2006 	if (update_flags->bits.clock_change
2007 			|| update_flags->bits.bandwidth_change
2008 			|| update_flags->bits.scaling_change)
2009 		return UPDATE_TYPE_FULL;
2010 
2011 	if (update_flags->bits.position_change)
2012 		return UPDATE_TYPE_MED;
2013 
2014 	return UPDATE_TYPE_FAST;
2015 }
2016 
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2017 static enum surface_update_type det_surface_update(const struct dc *dc,
2018 		const struct dc_surface_update *u)
2019 {
2020 	const struct dc_state *context = dc->current_state;
2021 	enum surface_update_type type;
2022 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2023 	union surface_update_flags *update_flags = &u->surface->update_flags;
2024 
2025 	if (u->flip_addr)
2026 		update_flags->bits.addr_update = 1;
2027 
2028 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2029 		update_flags->raw = 0xFFFFFFFF;
2030 		return UPDATE_TYPE_FULL;
2031 	}
2032 
2033 	update_flags->raw = 0; // Reset all flags
2034 
2035 	type = get_plane_info_update_type(u);
2036 	elevate_update_type(&overall_type, type);
2037 
2038 	type = get_scaling_info_update_type(u);
2039 	elevate_update_type(&overall_type, type);
2040 
2041 	if (u->flip_addr)
2042 		update_flags->bits.addr_update = 1;
2043 
2044 	if (u->in_transfer_func)
2045 		update_flags->bits.in_transfer_func_change = 1;
2046 
2047 	if (u->input_csc_color_matrix)
2048 		update_flags->bits.input_csc_change = 1;
2049 
2050 	if (u->coeff_reduction_factor)
2051 		update_flags->bits.coeff_reduction_change = 1;
2052 
2053 	if (u->gamut_remap_matrix)
2054 		update_flags->bits.gamut_remap_change = 1;
2055 
2056 	if (u->gamma) {
2057 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2058 
2059 		if (u->plane_info)
2060 			format = u->plane_info->format;
2061 		else if (u->surface)
2062 			format = u->surface->format;
2063 
2064 		if (dce_use_lut(format))
2065 			update_flags->bits.gamma_change = 1;
2066 	}
2067 
2068 	if (u->hdr_mult.value)
2069 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2070 			update_flags->bits.hdr_mult = 1;
2071 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2072 		}
2073 
2074 	if (update_flags->bits.in_transfer_func_change) {
2075 		type = UPDATE_TYPE_MED;
2076 		elevate_update_type(&overall_type, type);
2077 	}
2078 
2079 	if (update_flags->bits.input_csc_change
2080 			|| update_flags->bits.coeff_reduction_change
2081 			|| update_flags->bits.gamma_change
2082 			|| update_flags->bits.gamut_remap_change) {
2083 		type = UPDATE_TYPE_FULL;
2084 		elevate_update_type(&overall_type, type);
2085 	}
2086 
2087 	return overall_type;
2088 }
2089 
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2090 static enum surface_update_type check_update_surfaces_for_stream(
2091 		struct dc *dc,
2092 		struct dc_surface_update *updates,
2093 		int surface_count,
2094 		struct dc_stream_update *stream_update,
2095 		const struct dc_stream_status *stream_status)
2096 {
2097 	int i;
2098 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2099 
2100 #if defined(CONFIG_DRM_AMD_DC_DCN)
2101 	if (dc->idle_optimizations_allowed)
2102 		overall_type = UPDATE_TYPE_FULL;
2103 
2104 #endif
2105 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2106 		overall_type = UPDATE_TYPE_FULL;
2107 
2108 	if (stream_update && stream_update->pending_test_pattern) {
2109 		overall_type = UPDATE_TYPE_FULL;
2110 	}
2111 
2112 	/* some stream updates require passive update */
2113 	if (stream_update) {
2114 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2115 
2116 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2117 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2118 			stream_update->integer_scaling_update)
2119 			su_flags->bits.scaling = 1;
2120 
2121 		if (stream_update->out_transfer_func)
2122 			su_flags->bits.out_tf = 1;
2123 
2124 		if (stream_update->abm_level)
2125 			su_flags->bits.abm_level = 1;
2126 
2127 		if (stream_update->dpms_off)
2128 			su_flags->bits.dpms_off = 1;
2129 
2130 		if (stream_update->gamut_remap)
2131 			su_flags->bits.gamut_remap = 1;
2132 
2133 		if (stream_update->wb_update)
2134 			su_flags->bits.wb_update = 1;
2135 
2136 		if (stream_update->dsc_config)
2137 			su_flags->bits.dsc_changed = 1;
2138 
2139 		if (su_flags->raw != 0)
2140 			overall_type = UPDATE_TYPE_FULL;
2141 
2142 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2143 			su_flags->bits.out_csc = 1;
2144 	}
2145 
2146 	for (i = 0 ; i < surface_count; i++) {
2147 		enum surface_update_type type =
2148 				det_surface_update(dc, &updates[i]);
2149 
2150 		elevate_update_type(&overall_type, type);
2151 	}
2152 
2153 	return overall_type;
2154 }
2155 
2156 /*
2157  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2158  *
2159  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2160  */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2161 enum surface_update_type dc_check_update_surfaces_for_stream(
2162 		struct dc *dc,
2163 		struct dc_surface_update *updates,
2164 		int surface_count,
2165 		struct dc_stream_update *stream_update,
2166 		const struct dc_stream_status *stream_status)
2167 {
2168 	int i;
2169 	enum surface_update_type type;
2170 
2171 	if (stream_update)
2172 		stream_update->stream->update_flags.raw = 0;
2173 	for (i = 0; i < surface_count; i++)
2174 		updates[i].surface->update_flags.raw = 0;
2175 
2176 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2177 	if (type == UPDATE_TYPE_FULL) {
2178 		if (stream_update) {
2179 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2180 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2181 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2182 		}
2183 		for (i = 0; i < surface_count; i++)
2184 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2185 	}
2186 
2187 	if (type == UPDATE_TYPE_FAST) {
2188 		// If there's an available clock comparator, we use that.
2189 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2190 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2191 				dc->optimized_required = true;
2192 		// Else we fallback to mem compare.
2193 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2194 			dc->optimized_required = true;
2195 		}
2196 
2197 		dc->optimized_required |= dc->wm_optimized_required;
2198 	}
2199 
2200 	return type;
2201 }
2202 
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2203 static struct dc_stream_status *stream_get_status(
2204 	struct dc_state *ctx,
2205 	struct dc_stream_state *stream)
2206 {
2207 	uint8_t i;
2208 
2209 	for (i = 0; i < ctx->stream_count; i++) {
2210 		if (stream == ctx->streams[i]) {
2211 			return &ctx->stream_status[i];
2212 		}
2213 	}
2214 
2215 	return NULL;
2216 }
2217 
2218 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2219 
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2220 static void copy_surface_update_to_plane(
2221 		struct dc_plane_state *surface,
2222 		struct dc_surface_update *srf_update)
2223 {
2224 	if (srf_update->flip_addr) {
2225 		surface->address = srf_update->flip_addr->address;
2226 		surface->flip_immediate =
2227 			srf_update->flip_addr->flip_immediate;
2228 		surface->time.time_elapsed_in_us[surface->time.index] =
2229 			srf_update->flip_addr->flip_timestamp_in_us -
2230 				surface->time.prev_update_time_in_us;
2231 		surface->time.prev_update_time_in_us =
2232 			srf_update->flip_addr->flip_timestamp_in_us;
2233 		surface->time.index++;
2234 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2235 			surface->time.index = 0;
2236 
2237 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2238 	}
2239 
2240 	if (srf_update->scaling_info) {
2241 		surface->scaling_quality =
2242 				srf_update->scaling_info->scaling_quality;
2243 		surface->dst_rect =
2244 				srf_update->scaling_info->dst_rect;
2245 		surface->src_rect =
2246 				srf_update->scaling_info->src_rect;
2247 		surface->clip_rect =
2248 				srf_update->scaling_info->clip_rect;
2249 	}
2250 
2251 	if (srf_update->plane_info) {
2252 		surface->color_space =
2253 				srf_update->plane_info->color_space;
2254 		surface->format =
2255 				srf_update->plane_info->format;
2256 		surface->plane_size =
2257 				srf_update->plane_info->plane_size;
2258 		surface->rotation =
2259 				srf_update->plane_info->rotation;
2260 		surface->horizontal_mirror =
2261 				srf_update->plane_info->horizontal_mirror;
2262 		surface->stereo_format =
2263 				srf_update->plane_info->stereo_format;
2264 		surface->tiling_info =
2265 				srf_update->plane_info->tiling_info;
2266 		surface->visible =
2267 				srf_update->plane_info->visible;
2268 		surface->per_pixel_alpha =
2269 				srf_update->plane_info->per_pixel_alpha;
2270 		surface->global_alpha =
2271 				srf_update->plane_info->global_alpha;
2272 		surface->global_alpha_value =
2273 				srf_update->plane_info->global_alpha_value;
2274 		surface->dcc =
2275 				srf_update->plane_info->dcc;
2276 		surface->layer_index =
2277 				srf_update->plane_info->layer_index;
2278 	}
2279 
2280 	if (srf_update->gamma &&
2281 			(surface->gamma_correction !=
2282 					srf_update->gamma)) {
2283 		memcpy(&surface->gamma_correction->entries,
2284 			&srf_update->gamma->entries,
2285 			sizeof(struct dc_gamma_entries));
2286 		surface->gamma_correction->is_identity =
2287 			srf_update->gamma->is_identity;
2288 		surface->gamma_correction->num_entries =
2289 			srf_update->gamma->num_entries;
2290 		surface->gamma_correction->type =
2291 			srf_update->gamma->type;
2292 	}
2293 
2294 	if (srf_update->in_transfer_func &&
2295 			(surface->in_transfer_func !=
2296 				srf_update->in_transfer_func)) {
2297 		surface->in_transfer_func->sdr_ref_white_level =
2298 			srf_update->in_transfer_func->sdr_ref_white_level;
2299 		surface->in_transfer_func->tf =
2300 			srf_update->in_transfer_func->tf;
2301 		surface->in_transfer_func->type =
2302 			srf_update->in_transfer_func->type;
2303 		memcpy(&surface->in_transfer_func->tf_pts,
2304 			&srf_update->in_transfer_func->tf_pts,
2305 			sizeof(struct dc_transfer_func_distributed_points));
2306 	}
2307 
2308 	if (srf_update->func_shaper &&
2309 			(surface->in_shaper_func !=
2310 			srf_update->func_shaper))
2311 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2312 		sizeof(*surface->in_shaper_func));
2313 
2314 	if (srf_update->lut3d_func &&
2315 			(surface->lut3d_func !=
2316 			srf_update->lut3d_func))
2317 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2318 		sizeof(*surface->lut3d_func));
2319 
2320 	if (srf_update->hdr_mult.value)
2321 		surface->hdr_mult =
2322 				srf_update->hdr_mult;
2323 
2324 	if (srf_update->blend_tf &&
2325 			(surface->blend_tf !=
2326 			srf_update->blend_tf))
2327 		memcpy(surface->blend_tf, srf_update->blend_tf,
2328 		sizeof(*surface->blend_tf));
2329 
2330 	if (srf_update->input_csc_color_matrix)
2331 		surface->input_csc_color_matrix =
2332 			*srf_update->input_csc_color_matrix;
2333 
2334 	if (srf_update->coeff_reduction_factor)
2335 		surface->coeff_reduction_factor =
2336 			*srf_update->coeff_reduction_factor;
2337 
2338 	if (srf_update->gamut_remap_matrix)
2339 		surface->gamut_remap_matrix =
2340 			*srf_update->gamut_remap_matrix;
2341 }
2342 
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2343 static void copy_stream_update_to_stream(struct dc *dc,
2344 					 struct dc_state *context,
2345 					 struct dc_stream_state *stream,
2346 					 struct dc_stream_update *update)
2347 {
2348 	struct dc_context *dc_ctx = dc->ctx;
2349 
2350 	if (update == NULL || stream == NULL)
2351 		return;
2352 
2353 	if (update->src.height && update->src.width)
2354 		stream->src = update->src;
2355 
2356 	if (update->dst.height && update->dst.width)
2357 		stream->dst = update->dst;
2358 
2359 	if (update->out_transfer_func &&
2360 	    stream->out_transfer_func != update->out_transfer_func) {
2361 		stream->out_transfer_func->sdr_ref_white_level =
2362 			update->out_transfer_func->sdr_ref_white_level;
2363 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2364 		stream->out_transfer_func->type =
2365 			update->out_transfer_func->type;
2366 		memcpy(&stream->out_transfer_func->tf_pts,
2367 		       &update->out_transfer_func->tf_pts,
2368 		       sizeof(struct dc_transfer_func_distributed_points));
2369 	}
2370 
2371 	if (update->hdr_static_metadata)
2372 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2373 
2374 	if (update->abm_level)
2375 		stream->abm_level = *update->abm_level;
2376 
2377 	if (update->periodic_interrupt0)
2378 		stream->periodic_interrupt0 = *update->periodic_interrupt0;
2379 
2380 	if (update->periodic_interrupt1)
2381 		stream->periodic_interrupt1 = *update->periodic_interrupt1;
2382 
2383 	if (update->gamut_remap)
2384 		stream->gamut_remap_matrix = *update->gamut_remap;
2385 
2386 	/* Note: this being updated after mode set is currently not a use case
2387 	 * however if it arises OCSC would need to be reprogrammed at the
2388 	 * minimum
2389 	 */
2390 	if (update->output_color_space)
2391 		stream->output_color_space = *update->output_color_space;
2392 
2393 	if (update->output_csc_transform)
2394 		stream->csc_color_matrix = *update->output_csc_transform;
2395 
2396 	if (update->vrr_infopacket)
2397 		stream->vrr_infopacket = *update->vrr_infopacket;
2398 
2399 	if (update->dpms_off)
2400 		stream->dpms_off = *update->dpms_off;
2401 
2402 	if (update->vsc_infopacket)
2403 		stream->vsc_infopacket = *update->vsc_infopacket;
2404 
2405 	if (update->vsp_infopacket)
2406 		stream->vsp_infopacket = *update->vsp_infopacket;
2407 
2408 	if (update->dither_option)
2409 		stream->dither_option = *update->dither_option;
2410 
2411 	if (update->pending_test_pattern)
2412 		stream->test_pattern = *update->pending_test_pattern;
2413 	/* update current stream with writeback info */
2414 	if (update->wb_update) {
2415 		int i;
2416 
2417 		stream->num_wb_info = update->wb_update->num_wb_info;
2418 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2419 		for (i = 0; i < stream->num_wb_info; i++)
2420 			stream->writeback_info[i] =
2421 				update->wb_update->writeback_info[i];
2422 	}
2423 	if (update->dsc_config) {
2424 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2425 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2426 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2427 				       update->dsc_config->num_slices_v != 0);
2428 
2429 		/* Use temporarry context for validating new DSC config */
2430 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2431 
2432 		if (dsc_validate_context) {
2433 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2434 
2435 			stream->timing.dsc_cfg = *update->dsc_config;
2436 			stream->timing.flags.DSC = enable_dsc;
2437 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2438 				stream->timing.dsc_cfg = old_dsc_cfg;
2439 				stream->timing.flags.DSC = old_dsc_enabled;
2440 				update->dsc_config = NULL;
2441 			}
2442 
2443 			dc_release_state(dsc_validate_context);
2444 		} else {
2445 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
2446 			update->dsc_config = NULL;
2447 		}
2448 	}
2449 }
2450 
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2451 static void commit_planes_do_stream_update(struct dc *dc,
2452 		struct dc_stream_state *stream,
2453 		struct dc_stream_update *stream_update,
2454 		enum surface_update_type update_type,
2455 		struct dc_state *context)
2456 {
2457 	int j;
2458 
2459 	// Stream updates
2460 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2461 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2462 
2463 		if (!pipe_ctx->top_pipe &&  !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2464 
2465 			if (stream_update->periodic_interrupt0 &&
2466 					dc->hwss.setup_periodic_interrupt)
2467 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE0);
2468 
2469 			if (stream_update->periodic_interrupt1 &&
2470 					dc->hwss.setup_periodic_interrupt)
2471 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE1);
2472 
2473 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2474 					stream_update->vrr_infopacket ||
2475 					stream_update->vsc_infopacket ||
2476 					stream_update->vsp_infopacket) {
2477 				resource_build_info_frame(pipe_ctx);
2478 				dc->hwss.update_info_frame(pipe_ctx);
2479 			}
2480 
2481 			if (stream_update->hdr_static_metadata &&
2482 					stream->use_dynamic_meta &&
2483 					dc->hwss.set_dmdata_attributes &&
2484 					pipe_ctx->stream->dmdata_address.quad_part != 0)
2485 				dc->hwss.set_dmdata_attributes(pipe_ctx);
2486 
2487 			if (stream_update->gamut_remap)
2488 				dc_stream_set_gamut_remap(dc, stream);
2489 
2490 			if (stream_update->output_csc_transform)
2491 				dc_stream_program_csc_matrix(dc, stream);
2492 
2493 			if (stream_update->dither_option) {
2494 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2495 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2496 									&pipe_ctx->stream->bit_depth_params);
2497 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2498 						&stream->bit_depth_params,
2499 						&stream->clamping);
2500 				while (odm_pipe) {
2501 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2502 							&stream->bit_depth_params,
2503 							&stream->clamping);
2504 					odm_pipe = odm_pipe->next_odm_pipe;
2505 				}
2506 			}
2507 
2508 
2509 			/* Full fe update*/
2510 			if (update_type == UPDATE_TYPE_FAST)
2511 				continue;
2512 
2513 			if (stream_update->dsc_config)
2514 				dp_update_dsc_config(pipe_ctx);
2515 
2516 			if (stream_update->pending_test_pattern) {
2517 				dc_link_dp_set_test_pattern(stream->link,
2518 					stream->test_pattern.type,
2519 					stream->test_pattern.color_space,
2520 					stream->test_pattern.p_link_settings,
2521 					stream->test_pattern.p_custom_pattern,
2522 					stream->test_pattern.cust_pattern_size);
2523 			}
2524 
2525 			if (stream_update->dpms_off) {
2526 				if (*stream_update->dpms_off) {
2527 					core_link_disable_stream(pipe_ctx);
2528 					/* for dpms, keep acquired resources*/
2529 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2530 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2531 
2532 					dc->optimized_required = true;
2533 
2534 				} else {
2535 					if (get_seamless_boot_stream_count(context) == 0)
2536 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
2537 
2538 					core_link_enable_stream(dc->current_state, pipe_ctx);
2539 				}
2540 			}
2541 
2542 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2543 				bool should_program_abm = true;
2544 
2545 				// if otg funcs defined check if blanked before programming
2546 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2547 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2548 						should_program_abm = false;
2549 
2550 				if (should_program_abm) {
2551 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2552 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
2553 					} else {
2554 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
2555 							pipe_ctx->stream_res.abm, stream->abm_level);
2556 					}
2557 				}
2558 			}
2559 		}
2560 	}
2561 }
2562 
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2563 static void commit_planes_for_stream(struct dc *dc,
2564 		struct dc_surface_update *srf_updates,
2565 		int surface_count,
2566 		struct dc_stream_state *stream,
2567 		struct dc_stream_update *stream_update,
2568 		enum surface_update_type update_type,
2569 		struct dc_state *context)
2570 {
2571 	int i, j;
2572 	struct pipe_ctx *top_pipe_to_program = NULL;
2573 
2574 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
2575 		/* Optimize seamless boot flag keeps clocks and watermarks high until
2576 		 * first flip. After first flip, optimization is required to lower
2577 		 * bandwidth. Important to note that it is expected UEFI will
2578 		 * only light up a single display on POST, therefore we only expect
2579 		 * one stream with seamless boot flag set.
2580 		 */
2581 		if (stream->apply_seamless_boot_optimization) {
2582 			stream->apply_seamless_boot_optimization = false;
2583 
2584 			if (get_seamless_boot_stream_count(context) == 0)
2585 				dc->optimized_required = true;
2586 		}
2587 	}
2588 
2589 	if (update_type == UPDATE_TYPE_FULL) {
2590 #if defined(CONFIG_DRM_AMD_DC_DCN)
2591 		dc_allow_idle_optimizations(dc, false);
2592 
2593 #endif
2594 		if (get_seamless_boot_stream_count(context) == 0)
2595 			dc->hwss.prepare_bandwidth(dc, context);
2596 
2597 		context_clock_trace(dc, context);
2598 	}
2599 
2600 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2601 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2602 
2603 		if (!pipe_ctx->top_pipe &&
2604 			!pipe_ctx->prev_odm_pipe &&
2605 			pipe_ctx->stream &&
2606 			pipe_ctx->stream == stream) {
2607 			top_pipe_to_program = pipe_ctx;
2608 		}
2609 	}
2610 
2611 #ifdef CONFIG_DRM_AMD_DC_DCN
2612 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
2613 		struct pipe_ctx *mpcc_pipe;
2614 		struct pipe_ctx *odm_pipe;
2615 
2616 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
2617 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
2618 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
2619 	}
2620 #endif
2621 
2622 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2623 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2624 			if (should_use_dmub_lock(stream->link)) {
2625 				union dmub_hw_lock_flags hw_locks = { 0 };
2626 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2627 
2628 				hw_locks.bits.lock_dig = 1;
2629 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2630 
2631 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2632 							true,
2633 							&hw_locks,
2634 							&inst_flags);
2635 			} else
2636 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2637 						top_pipe_to_program->stream_res.tg);
2638 		}
2639 
2640 	if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2641 		dc->hwss.interdependent_update_lock(dc, context, true);
2642 	else
2643 		/* Lock the top pipe while updating plane addrs, since freesync requires
2644 		 *  plane addr update event triggers to be synchronized.
2645 		 *  top_pipe_to_program is expected to never be NULL
2646 		 */
2647 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2648 
2649 	// Stream updates
2650 	if (stream_update)
2651 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2652 
2653 	if (surface_count == 0) {
2654 		/*
2655 		 * In case of turning off screen, no need to program front end a second time.
2656 		 * just return after program blank.
2657 		 */
2658 		if (dc->hwss.apply_ctx_for_surface)
2659 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2660 		if (dc->hwss.program_front_end_for_ctx)
2661 			dc->hwss.program_front_end_for_ctx(dc, context);
2662 
2663 		if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2664 			dc->hwss.interdependent_update_lock(dc, context, false);
2665 		else
2666 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2667 
2668 		dc->hwss.post_unlock_program_front_end(dc, context);
2669 		return;
2670 	}
2671 
2672 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2673 		for (i = 0; i < surface_count; i++) {
2674 			struct dc_plane_state *plane_state = srf_updates[i].surface;
2675 			/*set logical flag for lock/unlock use*/
2676 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2677 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2678 				if (!pipe_ctx->plane_state)
2679 					continue;
2680 				if (pipe_ctx->plane_state != plane_state)
2681 					continue;
2682 				plane_state->triplebuffer_flips = false;
2683 				if (update_type == UPDATE_TYPE_FAST &&
2684 					dc->hwss.program_triplebuffer != NULL &&
2685 					!plane_state->flip_immediate && dc->debug.enable_tri_buf) {
2686 						/*triple buffer for VUpdate  only*/
2687 						plane_state->triplebuffer_flips = true;
2688 				}
2689 			}
2690 			if (update_type == UPDATE_TYPE_FULL) {
2691 				/* force vsync flip when reconfiguring pipes to prevent underflow */
2692 				plane_state->flip_immediate = false;
2693 			}
2694 		}
2695 	}
2696 
2697 	// Update Type FULL, Surface updates
2698 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2699 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2700 
2701 		if (!pipe_ctx->top_pipe &&
2702 			!pipe_ctx->prev_odm_pipe &&
2703 			pipe_ctx->stream &&
2704 			pipe_ctx->stream == stream) {
2705 			struct dc_stream_status *stream_status = NULL;
2706 
2707 			if (!pipe_ctx->plane_state)
2708 				continue;
2709 
2710 			/* Full fe update*/
2711 			if (update_type == UPDATE_TYPE_FAST)
2712 				continue;
2713 
2714 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2715 
2716 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2717 				/*turn off triple buffer for full update*/
2718 				dc->hwss.program_triplebuffer(
2719 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2720 			}
2721 			stream_status =
2722 				stream_get_status(context, pipe_ctx->stream);
2723 
2724 			if (dc->hwss.apply_ctx_for_surface)
2725 				dc->hwss.apply_ctx_for_surface(
2726 					dc, pipe_ctx->stream, stream_status->plane_count, context);
2727 		}
2728 	}
2729 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2730 		dc->hwss.program_front_end_for_ctx(dc, context);
2731 #ifdef CONFIG_DRM_AMD_DC_DCN
2732 		if (dc->debug.validate_dml_output) {
2733 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
2734 				struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2735 				if (cur_pipe.stream == NULL)
2736 					continue;
2737 
2738 				cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2739 						cur_pipe.plane_res.hubp, dc->ctx,
2740 						&context->res_ctx.pipe_ctx[i].rq_regs,
2741 						&context->res_ctx.pipe_ctx[i].dlg_regs,
2742 						&context->res_ctx.pipe_ctx[i].ttu_regs);
2743 			}
2744 		}
2745 #endif
2746 	}
2747 
2748 	// Update Type FAST, Surface updates
2749 	if (update_type == UPDATE_TYPE_FAST) {
2750 		if (dc->hwss.set_flip_control_gsl)
2751 			for (i = 0; i < surface_count; i++) {
2752 				struct dc_plane_state *plane_state = srf_updates[i].surface;
2753 
2754 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
2755 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2756 
2757 					if (pipe_ctx->stream != stream)
2758 						continue;
2759 
2760 					if (pipe_ctx->plane_state != plane_state)
2761 						continue;
2762 
2763 					// GSL has to be used for flip immediate
2764 					dc->hwss.set_flip_control_gsl(pipe_ctx,
2765 							plane_state->flip_immediate);
2766 				}
2767 			}
2768 		/* Perform requested Updates */
2769 		for (i = 0; i < surface_count; i++) {
2770 			struct dc_plane_state *plane_state = srf_updates[i].surface;
2771 
2772 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2773 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2774 
2775 				if (pipe_ctx->stream != stream)
2776 					continue;
2777 
2778 				if (pipe_ctx->plane_state != plane_state)
2779 					continue;
2780 				/*program triple buffer after lock based on flip type*/
2781 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2782 					/*only enable triplebuffer for  fast_update*/
2783 					dc->hwss.program_triplebuffer(
2784 						dc, pipe_ctx, plane_state->triplebuffer_flips);
2785 				}
2786 				if (srf_updates[i].flip_addr)
2787 					dc->hwss.update_plane_addr(dc, pipe_ctx);
2788 			}
2789 		}
2790 	}
2791 
2792 	if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2793 		dc->hwss.interdependent_update_lock(dc, context, false);
2794 	else
2795 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2796 
2797 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2798 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2799 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2800 					top_pipe_to_program->stream_res.tg,
2801 					CRTC_STATE_VACTIVE);
2802 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2803 					top_pipe_to_program->stream_res.tg,
2804 					CRTC_STATE_VBLANK);
2805 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2806 					top_pipe_to_program->stream_res.tg,
2807 					CRTC_STATE_VACTIVE);
2808 
2809 			if (stream && should_use_dmub_lock(stream->link)) {
2810 				union dmub_hw_lock_flags hw_locks = { 0 };
2811 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2812 
2813 				hw_locks.bits.lock_dig = 1;
2814 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2815 
2816 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2817 							false,
2818 							&hw_locks,
2819 							&inst_flags);
2820 			} else
2821 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2822 					top_pipe_to_program->stream_res.tg);
2823 		}
2824 
2825 	if (update_type != UPDATE_TYPE_FAST)
2826 		dc->hwss.post_unlock_program_front_end(dc, context);
2827 
2828 	// Fire manual trigger only when bottom plane is flipped
2829 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2830 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2831 
2832 		if (!pipe_ctx->plane_state)
2833 			continue;
2834 
2835 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
2836 				!pipe_ctx->stream || pipe_ctx->stream != stream ||
2837 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
2838 				pipe_ctx->plane_state->skip_manual_trigger)
2839 			continue;
2840 
2841 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2842 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2843 	}
2844 }
2845 
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)2846 void dc_commit_updates_for_stream(struct dc *dc,
2847 		struct dc_surface_update *srf_updates,
2848 		int surface_count,
2849 		struct dc_stream_state *stream,
2850 		struct dc_stream_update *stream_update,
2851 		struct dc_state *state)
2852 {
2853 	const struct dc_stream_status *stream_status;
2854 	enum surface_update_type update_type;
2855 	struct dc_state *context;
2856 	struct dc_context *dc_ctx = dc->ctx;
2857 	int i, j;
2858 
2859 	stream_status = dc_stream_get_status(stream);
2860 	context = dc->current_state;
2861 
2862 	update_type = dc_check_update_surfaces_for_stream(
2863 				dc, srf_updates, surface_count, stream_update, stream_status);
2864 
2865 	if (update_type >= update_surface_trace_level)
2866 		update_surface_trace(dc, srf_updates, surface_count);
2867 
2868 
2869 	if (update_type >= UPDATE_TYPE_FULL) {
2870 
2871 		/* initialize scratch memory for building context */
2872 		context = dc_create_state(dc);
2873 		if (context == NULL) {
2874 			DC_ERROR("Failed to allocate new validate context!\n");
2875 			return;
2876 		}
2877 
2878 		dc_resource_state_copy_construct(state, context);
2879 
2880 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2881 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2882 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2883 
2884 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2885 				new_pipe->plane_state->force_full_update = true;
2886 		}
2887 	}
2888 
2889 
2890 	for (i = 0; i < surface_count; i++) {
2891 		struct dc_plane_state *surface = srf_updates[i].surface;
2892 
2893 		copy_surface_update_to_plane(surface, &srf_updates[i]);
2894 
2895 		if (update_type >= UPDATE_TYPE_MED) {
2896 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2897 				struct pipe_ctx *pipe_ctx =
2898 					&context->res_ctx.pipe_ctx[j];
2899 
2900 				if (pipe_ctx->plane_state != surface)
2901 					continue;
2902 
2903 				resource_build_scaling_params(pipe_ctx);
2904 			}
2905 		}
2906 	}
2907 
2908 	copy_stream_update_to_stream(dc, context, stream, stream_update);
2909 
2910 	if (update_type >= UPDATE_TYPE_FULL) {
2911 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2912 			DC_ERROR("Mode validation failed for stream update!\n");
2913 			dc_release_state(context);
2914 			return;
2915 		}
2916 	}
2917 
2918 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
2919 
2920 	commit_planes_for_stream(
2921 				dc,
2922 				srf_updates,
2923 				surface_count,
2924 				stream,
2925 				stream_update,
2926 				update_type,
2927 				context);
2928 	/*update current_State*/
2929 	if (dc->current_state != context) {
2930 
2931 		struct dc_state *old = dc->current_state;
2932 
2933 		dc->current_state = context;
2934 		dc_release_state(old);
2935 
2936 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2937 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2938 
2939 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2940 				pipe_ctx->plane_state->force_full_update = false;
2941 		}
2942 	}
2943 	/*let's use current_state to update watermark etc*/
2944 	if (update_type >= UPDATE_TYPE_FULL) {
2945 		dc_post_update_surfaces_to_stream(dc);
2946 
2947 		if (dc_ctx->dce_version >= DCE_VERSION_MAX)
2948 			TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2949 		else
2950 			TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2951 	}
2952 
2953 	return;
2954 
2955 }
2956 
dc_get_current_stream_count(struct dc * dc)2957 uint8_t dc_get_current_stream_count(struct dc *dc)
2958 {
2959 	return dc->current_state->stream_count;
2960 }
2961 
dc_get_stream_at_index(struct dc * dc,uint8_t i)2962 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2963 {
2964 	if (i < dc->current_state->stream_count)
2965 		return dc->current_state->streams[i];
2966 	return NULL;
2967 }
2968 
dc_stream_find_from_link(const struct dc_link * link)2969 struct dc_stream_state *dc_stream_find_from_link(const struct dc_link *link)
2970 {
2971 	uint8_t i;
2972 	struct dc_context *ctx = link->ctx;
2973 
2974 	for (i = 0; i < ctx->dc->current_state->stream_count; i++) {
2975 		if (ctx->dc->current_state->streams[i]->link == link)
2976 			return ctx->dc->current_state->streams[i];
2977 	}
2978 
2979 	return NULL;
2980 }
2981 
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)2982 enum dc_irq_source dc_interrupt_to_irq_source(
2983 		struct dc *dc,
2984 		uint32_t src_id,
2985 		uint32_t ext_id)
2986 {
2987 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2988 }
2989 
2990 /*
2991  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2992  */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)2993 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2994 {
2995 
2996 	if (dc == NULL)
2997 		return false;
2998 
2999 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
3000 }
3001 
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)3002 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
3003 {
3004 	dal_irq_service_ack(dc->res_pool->irqs, src);
3005 }
3006 
dc_power_down_on_boot(struct dc * dc)3007 void dc_power_down_on_boot(struct dc *dc)
3008 {
3009 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
3010 			dc->hwss.power_down_on_boot)
3011 		dc->hwss.power_down_on_boot(dc);
3012 }
3013 
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)3014 void dc_set_power_state(
3015 	struct dc *dc,
3016 	enum dc_acpi_cm_power_state power_state)
3017 {
3018 	struct kref refcount;
3019 	struct display_mode_lib *dml;
3020 
3021 	if (!dc->current_state)
3022 		return;
3023 
3024 	switch (power_state) {
3025 	case DC_ACPI_CM_POWER_STATE_D0:
3026 		dc_resource_state_construct(dc, dc->current_state);
3027 
3028 		if (dc->ctx->dmub_srv)
3029 			dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
3030 
3031 		dc->hwss.init_hw(dc);
3032 
3033 		if (dc->hwss.init_sys_ctx != NULL &&
3034 			dc->vm_pa_config.valid) {
3035 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
3036 		}
3037 
3038 		break;
3039 	default:
3040 		ASSERT(dc->current_state->stream_count == 0);
3041 		/* Zero out the current context so that on resume we start with
3042 		 * clean state, and dc hw programming optimizations will not
3043 		 * cause any trouble.
3044 		 */
3045 		dml = kzalloc(sizeof(struct display_mode_lib),
3046 				GFP_KERNEL);
3047 
3048 		ASSERT(dml);
3049 		if (!dml)
3050 			return;
3051 
3052 		/* Preserve refcount */
3053 		refcount = dc->current_state->refcount;
3054 		/* Preserve display mode lib */
3055 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
3056 
3057 		dc_resource_state_destruct(dc->current_state);
3058 		memset(dc->current_state, 0,
3059 				sizeof(*dc->current_state));
3060 
3061 		dc->current_state->refcount = refcount;
3062 		dc->current_state->bw_ctx.dml = *dml;
3063 
3064 		kfree(dml);
3065 
3066 		break;
3067 	}
3068 }
3069 
dc_resume(struct dc * dc)3070 void dc_resume(struct dc *dc)
3071 {
3072 	uint32_t i;
3073 
3074 	for (i = 0; i < dc->link_count; i++)
3075 		core_link_resume(dc->links[i]);
3076 }
3077 
dc_is_dmcu_initialized(struct dc * dc)3078 bool dc_is_dmcu_initialized(struct dc *dc)
3079 {
3080 	struct dmcu *dmcu = dc->res_pool->dmcu;
3081 
3082 	if (dmcu)
3083 		return dmcu->funcs->is_dmcu_initialized(dmcu);
3084 	return false;
3085 }
3086 
dc_submit_i2c(struct dc * dc,uint32_t link_index,struct i2c_command * cmd)3087 bool dc_submit_i2c(
3088 		struct dc *dc,
3089 		uint32_t link_index,
3090 		struct i2c_command *cmd)
3091 {
3092 
3093 	struct dc_link *link = dc->links[link_index];
3094 	struct ddc_service *ddc = link->ddc;
3095 	return dce_i2c_submit_command(
3096 		dc->res_pool,
3097 		ddc->ddc_pin,
3098 		cmd);
3099 }
3100 
dc_submit_i2c_oem(struct dc * dc,struct i2c_command * cmd)3101 bool dc_submit_i2c_oem(
3102 		struct dc *dc,
3103 		struct i2c_command *cmd)
3104 {
3105 	struct ddc_service *ddc = dc->res_pool->oem_device;
3106 	return dce_i2c_submit_command(
3107 		dc->res_pool,
3108 		ddc->ddc_pin,
3109 		cmd);
3110 }
3111 
link_add_remote_sink_helper(struct dc_link * dc_link,struct dc_sink * sink)3112 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
3113 {
3114 	if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
3115 		BREAK_TO_DEBUGGER();
3116 		return false;
3117 	}
3118 
3119 	dc_sink_retain(sink);
3120 
3121 	dc_link->remote_sinks[dc_link->sink_count] = sink;
3122 	dc_link->sink_count++;
3123 
3124 	return true;
3125 }
3126 
3127 /*
3128  * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
3129  *
3130  * EDID length is in bytes
3131  */
dc_link_add_remote_sink(struct dc_link * link,const uint8_t * edid,int len,struct dc_sink_init_data * init_data)3132 struct dc_sink *dc_link_add_remote_sink(
3133 		struct dc_link *link,
3134 		const uint8_t *edid,
3135 		int len,
3136 		struct dc_sink_init_data *init_data)
3137 {
3138 	struct dc_sink *dc_sink;
3139 	enum dc_edid_status edid_status;
3140 
3141 	if (len > DC_MAX_EDID_BUFFER_SIZE) {
3142 		dm_error("Max EDID buffer size breached!\n");
3143 		return NULL;
3144 	}
3145 
3146 	if (!init_data) {
3147 		BREAK_TO_DEBUGGER();
3148 		return NULL;
3149 	}
3150 
3151 	if (!init_data->link) {
3152 		BREAK_TO_DEBUGGER();
3153 		return NULL;
3154 	}
3155 
3156 	dc_sink = dc_sink_create(init_data);
3157 
3158 	if (!dc_sink)
3159 		return NULL;
3160 
3161 	memmove(dc_sink->dc_edid.raw_edid, edid, len);
3162 	dc_sink->dc_edid.length = len;
3163 
3164 	if (!link_add_remote_sink_helper(
3165 			link,
3166 			dc_sink))
3167 		goto fail_add_sink;
3168 
3169 	edid_status = dm_helpers_parse_edid_caps(
3170 			link->ctx,
3171 			&dc_sink->dc_edid,
3172 			&dc_sink->edid_caps);
3173 
3174 	/*
3175 	 * Treat device as no EDID device if EDID
3176 	 * parsing fails
3177 	 */
3178 	if (edid_status != EDID_OK) {
3179 		dc_sink->dc_edid.length = 0;
3180 		dm_error("Bad EDID, status%d!\n", edid_status);
3181 	}
3182 
3183 	return dc_sink;
3184 
3185 fail_add_sink:
3186 	dc_sink_release(dc_sink);
3187 	return NULL;
3188 }
3189 
3190 /*
3191  * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
3192  *
3193  * Note that this just removes the struct dc_sink - it doesn't
3194  * program hardware or alter other members of dc_link
3195  */
dc_link_remove_remote_sink(struct dc_link * link,struct dc_sink * sink)3196 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
3197 {
3198 	int i;
3199 
3200 	if (!link->sink_count) {
3201 		BREAK_TO_DEBUGGER();
3202 		return;
3203 	}
3204 
3205 	for (i = 0; i < link->sink_count; i++) {
3206 		if (link->remote_sinks[i] == sink) {
3207 			dc_sink_release(sink);
3208 			link->remote_sinks[i] = NULL;
3209 
3210 			/* shrink array to remove empty place */
3211 			while (i < link->sink_count - 1) {
3212 				link->remote_sinks[i] = link->remote_sinks[i+1];
3213 				i++;
3214 			}
3215 			link->remote_sinks[i] = NULL;
3216 			link->sink_count--;
3217 			return;
3218 		}
3219 	}
3220 }
3221 
dc_wait_for_vblank(struct dc * dc,struct dc_stream_state * stream)3222 void dc_wait_for_vblank(struct dc *dc, struct dc_stream_state *stream)
3223 {
3224 	int i;
3225 
3226 	for (i = 0; i < dc->res_pool->pipe_count; i++)
3227 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
3228 			struct timing_generator *tg =
3229 				dc->current_state->res_ctx.pipe_ctx[i].stream_res.tg;
3230 			tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
3231 			break;
3232 		}
3233 }
3234 
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)3235 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
3236 {
3237 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
3238 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
3239 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
3240 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
3241 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
3242 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
3243 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
3244 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
3245 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
3246 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3247 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
3248 {
3249 	if (dc->hwss.set_clock)
3250 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
3251 	return DC_ERROR_UNEXPECTED;
3252 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3253 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
3254 {
3255 	if (dc->hwss.get_clock)
3256 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
3257 }
3258 
3259 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)3260 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
3261 {
3262 	int i;
3263 
3264 	for (i = 0; i < dc->current_state->stream_count ; i++) {
3265 		struct dc_link *link;
3266 		struct dc_stream_state *stream = dc->current_state->streams[i];
3267 
3268 		link = stream->link;
3269 		if (!link)
3270 			continue;
3271 
3272 		if (link->psr_settings.psr_feature_enabled) {
3273 			if (enable && !link->psr_settings.psr_allow_active)
3274 				return dc_link_set_psr_allow_active(link, true, false, false);
3275 			else if (!enable && link->psr_settings.psr_allow_active)
3276 				return dc_link_set_psr_allow_active(link, false, true, false);
3277 		}
3278 	}
3279 
3280 	return true;
3281 }
3282 
3283 #if defined(CONFIG_DRM_AMD_DC_DCN)
3284 
dc_allow_idle_optimizations(struct dc * dc,bool allow)3285 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
3286 {
3287 	if (dc->debug.disable_idle_power_optimizations)
3288 		return;
3289 
3290 	if (dc->clk_mgr->funcs->is_smu_present)
3291 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
3292 			return;
3293 
3294 	if (allow == dc->idle_optimizations_allowed)
3295 		return;
3296 
3297 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
3298 		dc->idle_optimizations_allowed = allow;
3299 }
3300 
3301 /*
3302  * blank all streams, and set min and max memory clock to
3303  * lowest and highest DPM level, respectively
3304  */
dc_unlock_memory_clock_frequency(struct dc * dc)3305 void dc_unlock_memory_clock_frequency(struct dc *dc)
3306 {
3307 	unsigned int i;
3308 
3309 	for (i = 0; i < MAX_PIPES; i++)
3310 		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3311 			core_link_disable_stream(&dc->current_state->res_ctx.pipe_ctx[i]);
3312 
3313 	dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
3314 	dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3315 }
3316 
3317 /*
3318  * set min memory clock to the min required for current mode,
3319  * max to maxDPM, and unblank streams
3320  */
dc_lock_memory_clock_frequency(struct dc * dc)3321 void dc_lock_memory_clock_frequency(struct dc *dc)
3322 {
3323 	unsigned int i;
3324 
3325 	dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
3326 	dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
3327 	dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3328 
3329 	for (i = 0; i < MAX_PIPES; i++)
3330 		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3331 			core_link_enable_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3332 }
3333 
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,struct dc_plane_state * plane,struct dc_cursor_attributes * cursor_attr)3334 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
3335 		struct dc_cursor_attributes *cursor_attr)
3336 {
3337 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
3338 		return true;
3339 	return false;
3340 }
3341 
3342 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)3343 void dc_hardware_release(struct dc *dc)
3344 {
3345 	if (dc->hwss.hardware_release)
3346 		dc->hwss.hardware_release(dc);
3347 }
3348 #endif
3349 
3350 /**
3351  *****************************************************************************
3352  *  Function: dc_enable_dmub_notifications
3353  *
3354  *  @brief
3355  *		Returns whether dmub notification can be enabled
3356  *
3357  *  @param
3358  *		[in] dc: dc structure
3359  *
3360  *	@return
3361  *		True to enable dmub notifications, False otherwise
3362  *****************************************************************************
3363  */
dc_enable_dmub_notifications(struct dc * dc)3364 bool dc_enable_dmub_notifications(struct dc *dc)
3365 {
3366 	/* dmub aux needs dmub notifications to be enabled */
3367 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
3368 }
3369 
3370 /**
3371  *****************************************************************************
3372  *  Function: dc_process_dmub_aux_transfer_async
3373  *
3374  *  @brief
3375  *		Submits aux command to dmub via inbox message
3376  *		Sets port index appropriately for legacy DDC
3377  *
3378  *  @param
3379  *		[in] dc: dc structure
3380  *		[in] link_index: link index
3381  *		[in] payload: aux payload
3382  *
3383  *	@return
3384  *		True if successful, False if failure
3385  *****************************************************************************
3386  */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)3387 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
3388 				uint32_t link_index,
3389 				struct aux_payload *payload)
3390 {
3391 	uint8_t action;
3392 	union dmub_rb_cmd cmd = {0};
3393 	struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
3394 
3395 	ASSERT(payload->length <= 16);
3396 
3397 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
3398 	cmd.dp_aux_access.header.payload_bytes = 0;
3399 	cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
3400 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
3401 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
3402 	cmd.dp_aux_access.aux_control.timeout = 0;
3403 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
3404 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
3405 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
3406 
3407 	/* set aux action */
3408 	if (payload->i2c_over_aux) {
3409 		if (payload->write) {
3410 			if (payload->mot)
3411 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
3412 			else
3413 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
3414 		} else {
3415 			if (payload->mot)
3416 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
3417 			else
3418 				action = DP_AUX_REQ_ACTION_I2C_READ;
3419 			}
3420 	} else {
3421 		if (payload->write)
3422 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
3423 		else
3424 			action = DP_AUX_REQ_ACTION_DPCD_READ;
3425 	}
3426 
3427 	cmd.dp_aux_access.aux_control.dpaux.action = action;
3428 
3429 	if (payload->length && payload->write) {
3430 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
3431 			payload->data,
3432 			payload->length
3433 			);
3434 	}
3435 
3436 	dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
3437 	dc_dmub_srv_cmd_execute(dmub_srv);
3438 	dc_dmub_srv_wait_idle(dmub_srv);
3439 
3440 	return true;
3441 }
3442 
3443 /**
3444  *****************************************************************************
3445  *  Function: dc_disable_accelerated_mode
3446  *
3447  *  @brief
3448  *		disable accelerated mode
3449  *
3450  *  @param
3451  *		[in] dc: dc structure
3452  *
3453  *****************************************************************************
3454  */
dc_disable_accelerated_mode(struct dc * dc)3455 void dc_disable_accelerated_mode(struct dc *dc)
3456 {
3457 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
3458 }
3459