1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ST Microelectronics
4 * Flexible Static Memory Controller (FSMC)
5 * Driver for NAND portions
6 *
7 * Copyright © 2010 ST Microelectronics
8 * Vipin Kumar <vipin.kumar@st.com>
9 * Ashish Priyadarshi
10 *
11 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
12 * Copyright © 2007 STMicroelectronics Pvt. Ltd.
13 * Copyright © 2009 Alessandro Rubini
14 */
15
16 #include <linux/clk.h>
17 #include <linux/completion.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-direction.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/resource.h>
25 #include <linux/sched.h>
26 #include <linux/types.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/platform_device.h>
30 #include <linux/of.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/io.h>
33 #include <linux/slab.h>
34 #include <linux/amba/bus.h>
35 #include <mtd/mtd-abi.h>
36
37 /* fsmc controller registers for NOR flash */
38 #define CTRL 0x0
39 /* ctrl register definitions */
40 #define BANK_ENABLE BIT(0)
41 #define MUXED BIT(1)
42 #define NOR_DEV (2 << 2)
43 #define WIDTH_16 BIT(4)
44 #define RSTPWRDWN BIT(6)
45 #define WPROT BIT(7)
46 #define WRT_ENABLE BIT(12)
47 #define WAIT_ENB BIT(13)
48
49 #define CTRL_TIM 0x4
50 /* ctrl_tim register definitions */
51
52 #define FSMC_NOR_BANK_SZ 0x8
53 #define FSMC_NOR_REG_SIZE 0x40
54
55 #define FSMC_NOR_REG(base, bank, reg) ((base) + \
56 (FSMC_NOR_BANK_SZ * (bank)) + \
57 (reg))
58
59 /* fsmc controller registers for NAND flash */
60 #define FSMC_PC 0x00
61 /* pc register definitions */
62 #define FSMC_RESET BIT(0)
63 #define FSMC_WAITON BIT(1)
64 #define FSMC_ENABLE BIT(2)
65 #define FSMC_DEVTYPE_NAND BIT(3)
66 #define FSMC_DEVWID_16 BIT(4)
67 #define FSMC_ECCEN BIT(6)
68 #define FSMC_ECCPLEN_256 BIT(7)
69 #define FSMC_TCLR_SHIFT (9)
70 #define FSMC_TCLR_MASK (0xF)
71 #define FSMC_TAR_SHIFT (13)
72 #define FSMC_TAR_MASK (0xF)
73 #define STS 0x04
74 /* sts register definitions */
75 #define FSMC_CODE_RDY BIT(15)
76 #define COMM 0x08
77 /* comm register definitions */
78 #define FSMC_TSET_SHIFT 0
79 #define FSMC_TSET_MASK 0xFF
80 #define FSMC_TWAIT_SHIFT 8
81 #define FSMC_TWAIT_MASK 0xFF
82 #define FSMC_THOLD_SHIFT 16
83 #define FSMC_THOLD_MASK 0xFF
84 #define FSMC_THIZ_SHIFT 24
85 #define FSMC_THIZ_MASK 0xFF
86 #define ATTRIB 0x0C
87 #define IOATA 0x10
88 #define ECC1 0x14
89 #define ECC2 0x18
90 #define ECC3 0x1C
91 #define FSMC_NAND_BANK_SZ 0x20
92
93 #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
94
95 struct fsmc_nand_timings {
96 u8 tclr;
97 u8 tar;
98 u8 thiz;
99 u8 thold;
100 u8 twait;
101 u8 tset;
102 };
103
104 enum access_mode {
105 USE_DMA_ACCESS = 1,
106 USE_WORD_ACCESS,
107 };
108
109 /**
110 * struct fsmc_nand_data - structure for FSMC NAND device state
111 *
112 * @base: Inherit from the nand_controller struct
113 * @pid: Part ID on the AMBA PrimeCell format
114 * @nand: Chip related info for a NAND flash.
115 *
116 * @bank: Bank number for probed device.
117 * @dev: Parent device
118 * @mode: Access mode
119 * @clk: Clock structure for FSMC.
120 *
121 * @read_dma_chan: DMA channel for read access
122 * @write_dma_chan: DMA channel for write access to NAND
123 * @dma_access_complete: Completion structure
124 *
125 * @dev_timings: NAND timings
126 *
127 * @data_pa: NAND Physical port for Data.
128 * @data_va: NAND port for Data.
129 * @cmd_va: NAND port for Command.
130 * @addr_va: NAND port for Address.
131 * @regs_va: Registers base address for a given bank.
132 */
133 struct fsmc_nand_data {
134 struct nand_controller base;
135 u32 pid;
136 struct nand_chip nand;
137
138 unsigned int bank;
139 struct device *dev;
140 enum access_mode mode;
141 struct clk *clk;
142
143 /* DMA related objects */
144 struct dma_chan *read_dma_chan;
145 struct dma_chan *write_dma_chan;
146 struct completion dma_access_complete;
147
148 struct fsmc_nand_timings *dev_timings;
149
150 dma_addr_t data_pa;
151 void __iomem *data_va;
152 void __iomem *cmd_va;
153 void __iomem *addr_va;
154 void __iomem *regs_va;
155 };
156
fsmc_ecc1_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)157 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
158 struct mtd_oob_region *oobregion)
159 {
160 struct nand_chip *chip = mtd_to_nand(mtd);
161
162 if (section >= chip->ecc.steps)
163 return -ERANGE;
164
165 oobregion->offset = (section * 16) + 2;
166 oobregion->length = 3;
167
168 return 0;
169 }
170
fsmc_ecc1_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)171 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
172 struct mtd_oob_region *oobregion)
173 {
174 struct nand_chip *chip = mtd_to_nand(mtd);
175
176 if (section >= chip->ecc.steps)
177 return -ERANGE;
178
179 oobregion->offset = (section * 16) + 8;
180
181 if (section < chip->ecc.steps - 1)
182 oobregion->length = 8;
183 else
184 oobregion->length = mtd->oobsize - oobregion->offset;
185
186 return 0;
187 }
188
189 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
190 .ecc = fsmc_ecc1_ooblayout_ecc,
191 .free = fsmc_ecc1_ooblayout_free,
192 };
193
194 /*
195 * ECC placement definitions in oobfree type format.
196 * There are 13 bytes of ecc for every 512 byte block and it has to be read
197 * consecutively and immediately after the 512 byte data block for hardware to
198 * generate the error bit offsets in 512 byte data.
199 */
fsmc_ecc4_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)200 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
201 struct mtd_oob_region *oobregion)
202 {
203 struct nand_chip *chip = mtd_to_nand(mtd);
204
205 if (section >= chip->ecc.steps)
206 return -ERANGE;
207
208 oobregion->length = chip->ecc.bytes;
209
210 if (!section && mtd->writesize <= 512)
211 oobregion->offset = 0;
212 else
213 oobregion->offset = (section * 16) + 2;
214
215 return 0;
216 }
217
fsmc_ecc4_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)218 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
219 struct mtd_oob_region *oobregion)
220 {
221 struct nand_chip *chip = mtd_to_nand(mtd);
222
223 if (section >= chip->ecc.steps)
224 return -ERANGE;
225
226 oobregion->offset = (section * 16) + 15;
227
228 if (section < chip->ecc.steps - 1)
229 oobregion->length = 3;
230 else
231 oobregion->length = mtd->oobsize - oobregion->offset;
232
233 return 0;
234 }
235
236 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
237 .ecc = fsmc_ecc4_ooblayout_ecc,
238 .free = fsmc_ecc4_ooblayout_free,
239 };
240
nand_to_fsmc(struct nand_chip * chip)241 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
242 {
243 return container_of(chip, struct fsmc_nand_data, nand);
244 }
245
246 /*
247 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
248 *
249 * This routine initializes timing parameters related to NAND memory access in
250 * FSMC registers
251 */
fsmc_nand_setup(struct fsmc_nand_data * host,struct fsmc_nand_timings * tims)252 static void fsmc_nand_setup(struct fsmc_nand_data *host,
253 struct fsmc_nand_timings *tims)
254 {
255 u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
256 u32 tclr, tar, thiz, thold, twait, tset;
257
258 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
259 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
260 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
261 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
262 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
263 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
264
265 if (host->nand.options & NAND_BUSWIDTH_16)
266 value |= FSMC_DEVWID_16;
267
268 writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
269 writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
270 writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
271 }
272
fsmc_calc_timings(struct fsmc_nand_data * host,const struct nand_sdr_timings * sdrt,struct fsmc_nand_timings * tims)273 static int fsmc_calc_timings(struct fsmc_nand_data *host,
274 const struct nand_sdr_timings *sdrt,
275 struct fsmc_nand_timings *tims)
276 {
277 unsigned long hclk = clk_get_rate(host->clk);
278 unsigned long hclkn = NSEC_PER_SEC / hclk;
279 u32 thiz, thold, twait, tset;
280
281 if (sdrt->tRC_min < 30000)
282 return -EOPNOTSUPP;
283
284 tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
285 if (tims->tar > FSMC_TAR_MASK)
286 tims->tar = FSMC_TAR_MASK;
287 tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
288 if (tims->tclr > FSMC_TCLR_MASK)
289 tims->tclr = FSMC_TCLR_MASK;
290
291 thiz = sdrt->tCS_min - sdrt->tWP_min;
292 tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
293
294 thold = sdrt->tDH_min;
295 if (thold < sdrt->tCH_min)
296 thold = sdrt->tCH_min;
297 if (thold < sdrt->tCLH_min)
298 thold = sdrt->tCLH_min;
299 if (thold < sdrt->tWH_min)
300 thold = sdrt->tWH_min;
301 if (thold < sdrt->tALH_min)
302 thold = sdrt->tALH_min;
303 if (thold < sdrt->tREH_min)
304 thold = sdrt->tREH_min;
305 tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
306 if (tims->thold == 0)
307 tims->thold = 1;
308 else if (tims->thold > FSMC_THOLD_MASK)
309 tims->thold = FSMC_THOLD_MASK;
310
311 twait = max(sdrt->tRP_min, sdrt->tWP_min);
312 tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
313 if (tims->twait == 0)
314 tims->twait = 1;
315 else if (tims->twait > FSMC_TWAIT_MASK)
316 tims->twait = FSMC_TWAIT_MASK;
317
318 tset = max(sdrt->tCS_min - sdrt->tWP_min,
319 sdrt->tCEA_max - sdrt->tREA_max);
320 tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
321 if (tims->tset == 0)
322 tims->tset = 1;
323 else if (tims->tset > FSMC_TSET_MASK)
324 tims->tset = FSMC_TSET_MASK;
325
326 return 0;
327 }
328
fsmc_setup_interface(struct nand_chip * nand,int csline,const struct nand_interface_config * conf)329 static int fsmc_setup_interface(struct nand_chip *nand, int csline,
330 const struct nand_interface_config *conf)
331 {
332 struct fsmc_nand_data *host = nand_to_fsmc(nand);
333 struct fsmc_nand_timings tims;
334 const struct nand_sdr_timings *sdrt;
335 int ret;
336
337 sdrt = nand_get_sdr_timings(conf);
338 if (IS_ERR(sdrt))
339 return PTR_ERR(sdrt);
340
341 ret = fsmc_calc_timings(host, sdrt, &tims);
342 if (ret)
343 return ret;
344
345 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
346 return 0;
347
348 fsmc_nand_setup(host, &tims);
349
350 return 0;
351 }
352
353 /*
354 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
355 */
fsmc_enable_hwecc(struct nand_chip * chip,int mode)356 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
357 {
358 struct fsmc_nand_data *host = nand_to_fsmc(chip);
359
360 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
361 host->regs_va + FSMC_PC);
362 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
363 host->regs_va + FSMC_PC);
364 writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
365 host->regs_va + FSMC_PC);
366 }
367
368 /*
369 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
370 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
371 * max of 8-bits)
372 */
fsmc_read_hwecc_ecc4(struct nand_chip * chip,const u8 * data,u8 * ecc)373 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
374 u8 *ecc)
375 {
376 struct fsmc_nand_data *host = nand_to_fsmc(chip);
377 u32 ecc_tmp;
378 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
379
380 do {
381 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
382 break;
383
384 cond_resched();
385 } while (!time_after_eq(jiffies, deadline));
386
387 if (time_after_eq(jiffies, deadline)) {
388 dev_err(host->dev, "calculate ecc timed out\n");
389 return -ETIMEDOUT;
390 }
391
392 ecc_tmp = readl_relaxed(host->regs_va + ECC1);
393 ecc[0] = ecc_tmp;
394 ecc[1] = ecc_tmp >> 8;
395 ecc[2] = ecc_tmp >> 16;
396 ecc[3] = ecc_tmp >> 24;
397
398 ecc_tmp = readl_relaxed(host->regs_va + ECC2);
399 ecc[4] = ecc_tmp;
400 ecc[5] = ecc_tmp >> 8;
401 ecc[6] = ecc_tmp >> 16;
402 ecc[7] = ecc_tmp >> 24;
403
404 ecc_tmp = readl_relaxed(host->regs_va + ECC3);
405 ecc[8] = ecc_tmp;
406 ecc[9] = ecc_tmp >> 8;
407 ecc[10] = ecc_tmp >> 16;
408 ecc[11] = ecc_tmp >> 24;
409
410 ecc_tmp = readl_relaxed(host->regs_va + STS);
411 ecc[12] = ecc_tmp >> 16;
412
413 return 0;
414 }
415
416 /*
417 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
418 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
419 * max of 1-bit)
420 */
fsmc_read_hwecc_ecc1(struct nand_chip * chip,const u8 * data,u8 * ecc)421 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
422 u8 *ecc)
423 {
424 struct fsmc_nand_data *host = nand_to_fsmc(chip);
425 u32 ecc_tmp;
426
427 ecc_tmp = readl_relaxed(host->regs_va + ECC1);
428 ecc[0] = ecc_tmp;
429 ecc[1] = ecc_tmp >> 8;
430 ecc[2] = ecc_tmp >> 16;
431
432 return 0;
433 }
434
435 /* Count the number of 0's in buff upto a max of max_bits */
count_written_bits(u8 * buff,int size,int max_bits)436 static int count_written_bits(u8 *buff, int size, int max_bits)
437 {
438 int k, written_bits = 0;
439
440 for (k = 0; k < size; k++) {
441 written_bits += hweight8(~buff[k]);
442 if (written_bits > max_bits)
443 break;
444 }
445
446 return written_bits;
447 }
448
dma_complete(void * param)449 static void dma_complete(void *param)
450 {
451 struct fsmc_nand_data *host = param;
452
453 complete(&host->dma_access_complete);
454 }
455
dma_xfer(struct fsmc_nand_data * host,void * buffer,int len,enum dma_data_direction direction)456 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
457 enum dma_data_direction direction)
458 {
459 struct dma_chan *chan;
460 struct dma_device *dma_dev;
461 struct dma_async_tx_descriptor *tx;
462 dma_addr_t dma_dst, dma_src, dma_addr;
463 dma_cookie_t cookie;
464 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
465 int ret;
466 unsigned long time_left;
467
468 if (direction == DMA_TO_DEVICE)
469 chan = host->write_dma_chan;
470 else if (direction == DMA_FROM_DEVICE)
471 chan = host->read_dma_chan;
472 else
473 return -EINVAL;
474
475 dma_dev = chan->device;
476 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
477
478 if (direction == DMA_TO_DEVICE) {
479 dma_src = dma_addr;
480 dma_dst = host->data_pa;
481 } else {
482 dma_src = host->data_pa;
483 dma_dst = dma_addr;
484 }
485
486 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
487 len, flags);
488 if (!tx) {
489 dev_err(host->dev, "device_prep_dma_memcpy error\n");
490 ret = -EIO;
491 goto unmap_dma;
492 }
493
494 tx->callback = dma_complete;
495 tx->callback_param = host;
496 cookie = tx->tx_submit(tx);
497
498 ret = dma_submit_error(cookie);
499 if (ret) {
500 dev_err(host->dev, "dma_submit_error %d\n", cookie);
501 goto unmap_dma;
502 }
503
504 dma_async_issue_pending(chan);
505
506 time_left =
507 wait_for_completion_timeout(&host->dma_access_complete,
508 msecs_to_jiffies(3000));
509 if (time_left == 0) {
510 dmaengine_terminate_all(chan);
511 dev_err(host->dev, "wait_for_completion_timeout\n");
512 ret = -ETIMEDOUT;
513 goto unmap_dma;
514 }
515
516 ret = 0;
517
518 unmap_dma:
519 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
520
521 return ret;
522 }
523
524 /*
525 * fsmc_write_buf - write buffer to chip
526 * @host: FSMC NAND controller
527 * @buf: data buffer
528 * @len: number of bytes to write
529 */
fsmc_write_buf(struct fsmc_nand_data * host,const u8 * buf,int len)530 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
531 int len)
532 {
533 int i;
534
535 if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
536 IS_ALIGNED(len, sizeof(u32))) {
537 u32 *p = (u32 *)buf;
538
539 len = len >> 2;
540 for (i = 0; i < len; i++)
541 writel_relaxed(p[i], host->data_va);
542 } else {
543 for (i = 0; i < len; i++)
544 writeb_relaxed(buf[i], host->data_va);
545 }
546 }
547
548 /*
549 * fsmc_read_buf - read chip data into buffer
550 * @host: FSMC NAND controller
551 * @buf: buffer to store date
552 * @len: number of bytes to read
553 */
fsmc_read_buf(struct fsmc_nand_data * host,u8 * buf,int len)554 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
555 {
556 int i;
557
558 if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
559 IS_ALIGNED(len, sizeof(u32))) {
560 u32 *p = (u32 *)buf;
561
562 len = len >> 2;
563 for (i = 0; i < len; i++)
564 p[i] = readl_relaxed(host->data_va);
565 } else {
566 for (i = 0; i < len; i++)
567 buf[i] = readb_relaxed(host->data_va);
568 }
569 }
570
571 /*
572 * fsmc_read_buf_dma - read chip data into buffer
573 * @host: FSMC NAND controller
574 * @buf: buffer to store date
575 * @len: number of bytes to read
576 */
fsmc_read_buf_dma(struct fsmc_nand_data * host,u8 * buf,int len)577 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
578 int len)
579 {
580 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
581 }
582
583 /*
584 * fsmc_write_buf_dma - write buffer to chip
585 * @host: FSMC NAND controller
586 * @buf: data buffer
587 * @len: number of bytes to write
588 */
fsmc_write_buf_dma(struct fsmc_nand_data * host,const u8 * buf,int len)589 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
590 int len)
591 {
592 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
593 }
594
595 /*
596 * fsmc_exec_op - hook called by the core to execute NAND operations
597 *
598 * This controller is simple enough and thus does not need to use the parser
599 * provided by the core, instead, handle every situation here.
600 */
fsmc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)601 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
602 bool check_only)
603 {
604 struct fsmc_nand_data *host = nand_to_fsmc(chip);
605 const struct nand_op_instr *instr = NULL;
606 int ret = 0;
607 unsigned int op_id;
608 int i;
609
610 if (check_only)
611 return 0;
612
613 pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
614
615 for (op_id = 0; op_id < op->ninstrs; op_id++) {
616 instr = &op->instrs[op_id];
617
618 nand_op_trace(" ", instr);
619
620 switch (instr->type) {
621 case NAND_OP_CMD_INSTR:
622 writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
623 break;
624
625 case NAND_OP_ADDR_INSTR:
626 for (i = 0; i < instr->ctx.addr.naddrs; i++)
627 writeb_relaxed(instr->ctx.addr.addrs[i],
628 host->addr_va);
629 break;
630
631 case NAND_OP_DATA_IN_INSTR:
632 if (host->mode == USE_DMA_ACCESS)
633 fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
634 instr->ctx.data.len);
635 else
636 fsmc_read_buf(host, instr->ctx.data.buf.in,
637 instr->ctx.data.len);
638 break;
639
640 case NAND_OP_DATA_OUT_INSTR:
641 if (host->mode == USE_DMA_ACCESS)
642 fsmc_write_buf_dma(host,
643 instr->ctx.data.buf.out,
644 instr->ctx.data.len);
645 else
646 fsmc_write_buf(host, instr->ctx.data.buf.out,
647 instr->ctx.data.len);
648 break;
649
650 case NAND_OP_WAITRDY_INSTR:
651 ret = nand_soft_waitrdy(chip,
652 instr->ctx.waitrdy.timeout_ms);
653 break;
654 }
655 }
656
657 return ret;
658 }
659
660 /*
661 * fsmc_read_page_hwecc
662 * @chip: nand chip info structure
663 * @buf: buffer to store read data
664 * @oob_required: caller expects OOB data read to chip->oob_poi
665 * @page: page number to read
666 *
667 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
668 * performed in a strict sequence as follows:
669 * data(512 byte) -> ecc(13 byte)
670 * After this read, fsmc hardware generates and reports error data bits(up to a
671 * max of 8 bits)
672 */
fsmc_read_page_hwecc(struct nand_chip * chip,u8 * buf,int oob_required,int page)673 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
674 int oob_required, int page)
675 {
676 struct mtd_info *mtd = nand_to_mtd(chip);
677 int i, j, s, stat, eccsize = chip->ecc.size;
678 int eccbytes = chip->ecc.bytes;
679 int eccsteps = chip->ecc.steps;
680 u8 *p = buf;
681 u8 *ecc_calc = chip->ecc.calc_buf;
682 u8 *ecc_code = chip->ecc.code_buf;
683 int off, len, ret, group = 0;
684 /*
685 * ecc_oob is intentionally taken as u16. In 16bit devices, we
686 * end up reading 14 bytes (7 words) from oob. The local array is
687 * to maintain word alignment
688 */
689 u16 ecc_oob[7];
690 u8 *oob = (u8 *)&ecc_oob[0];
691 unsigned int max_bitflips = 0;
692
693 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
694 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
695 chip->ecc.hwctl(chip, NAND_ECC_READ);
696 ret = nand_read_data_op(chip, p, eccsize, false, false);
697 if (ret)
698 return ret;
699
700 for (j = 0; j < eccbytes;) {
701 struct mtd_oob_region oobregion;
702
703 ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
704 if (ret)
705 return ret;
706
707 off = oobregion.offset;
708 len = oobregion.length;
709
710 /*
711 * length is intentionally kept a higher multiple of 2
712 * to read at least 13 bytes even in case of 16 bit NAND
713 * devices
714 */
715 if (chip->options & NAND_BUSWIDTH_16)
716 len = roundup(len, 2);
717
718 nand_read_oob_op(chip, page, off, oob + j, len);
719 j += len;
720 }
721
722 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
723 chip->ecc.calculate(chip, p, &ecc_calc[i]);
724
725 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
726 if (stat < 0) {
727 mtd->ecc_stats.failed++;
728 } else {
729 mtd->ecc_stats.corrected += stat;
730 max_bitflips = max_t(unsigned int, max_bitflips, stat);
731 }
732 }
733
734 return max_bitflips;
735 }
736
737 /*
738 * fsmc_bch8_correct_data
739 * @mtd: mtd info structure
740 * @dat: buffer of read data
741 * @read_ecc: ecc read from device spare area
742 * @calc_ecc: ecc calculated from read data
743 *
744 * calc_ecc is a 104 bit information containing maximum of 8 error
745 * offset information of 13 bits each in 512 bytes of read data.
746 */
fsmc_bch8_correct_data(struct nand_chip * chip,u8 * dat,u8 * read_ecc,u8 * calc_ecc)747 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
748 u8 *read_ecc, u8 *calc_ecc)
749 {
750 struct fsmc_nand_data *host = nand_to_fsmc(chip);
751 u32 err_idx[8];
752 u32 num_err, i;
753 u32 ecc1, ecc2, ecc3, ecc4;
754
755 num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
756
757 /* no bit flipping */
758 if (likely(num_err == 0))
759 return 0;
760
761 /* too many errors */
762 if (unlikely(num_err > 8)) {
763 /*
764 * This is a temporary erase check. A newly erased page read
765 * would result in an ecc error because the oob data is also
766 * erased to FF and the calculated ecc for an FF data is not
767 * FF..FF.
768 * This is a workaround to skip performing correction in case
769 * data is FF..FF
770 *
771 * Logic:
772 * For every page, each bit written as 0 is counted until these
773 * number of bits are greater than 8 (the maximum correction
774 * capability of FSMC for each 512 + 13 bytes)
775 */
776
777 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
778 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
779
780 if ((bits_ecc + bits_data) <= 8) {
781 if (bits_data)
782 memset(dat, 0xff, chip->ecc.size);
783 return bits_data;
784 }
785
786 return -EBADMSG;
787 }
788
789 /*
790 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
791 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
792 *
793 * calc_ecc is a 104 bit information containing maximum of 8 error
794 * offset information of 13 bits each. calc_ecc is copied into a
795 * u64 array and error offset indexes are populated in err_idx
796 * array
797 */
798 ecc1 = readl_relaxed(host->regs_va + ECC1);
799 ecc2 = readl_relaxed(host->regs_va + ECC2);
800 ecc3 = readl_relaxed(host->regs_va + ECC3);
801 ecc4 = readl_relaxed(host->regs_va + STS);
802
803 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
804 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
805 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
806 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
807 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
808 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
809 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
810 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
811
812 i = 0;
813 while (num_err--) {
814 err_idx[i] ^= 3;
815
816 if (err_idx[i] < chip->ecc.size * 8) {
817 int err = err_idx[i];
818
819 dat[err >> 3] ^= BIT(err & 7);
820 i++;
821 }
822 }
823 return i;
824 }
825
filter(struct dma_chan * chan,void * slave)826 static bool filter(struct dma_chan *chan, void *slave)
827 {
828 chan->private = slave;
829 return true;
830 }
831
fsmc_nand_probe_config_dt(struct platform_device * pdev,struct fsmc_nand_data * host,struct nand_chip * nand)832 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
833 struct fsmc_nand_data *host,
834 struct nand_chip *nand)
835 {
836 struct device_node *np = pdev->dev.of_node;
837 u32 val;
838 int ret;
839
840 nand->options = 0;
841
842 if (!of_property_read_u32(np, "bank-width", &val)) {
843 if (val == 2) {
844 nand->options |= NAND_BUSWIDTH_16;
845 } else if (val != 1) {
846 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
847 return -EINVAL;
848 }
849 }
850
851 if (of_get_property(np, "nand-skip-bbtscan", NULL))
852 nand->options |= NAND_SKIP_BBTSCAN;
853
854 host->dev_timings = devm_kzalloc(&pdev->dev,
855 sizeof(*host->dev_timings),
856 GFP_KERNEL);
857 if (!host->dev_timings)
858 return -ENOMEM;
859
860 ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
861 sizeof(*host->dev_timings));
862 if (ret)
863 host->dev_timings = NULL;
864
865 /* Set default NAND bank to 0 */
866 host->bank = 0;
867 if (!of_property_read_u32(np, "bank", &val)) {
868 if (val > 3) {
869 dev_err(&pdev->dev, "invalid bank %u\n", val);
870 return -EINVAL;
871 }
872 host->bank = val;
873 }
874 return 0;
875 }
876
fsmc_nand_attach_chip(struct nand_chip * nand)877 static int fsmc_nand_attach_chip(struct nand_chip *nand)
878 {
879 struct mtd_info *mtd = nand_to_mtd(nand);
880 struct fsmc_nand_data *host = nand_to_fsmc(nand);
881
882 if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
883 nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
884
885 if (!nand->ecc.size)
886 nand->ecc.size = 512;
887
888 if (AMBA_REV_BITS(host->pid) >= 8) {
889 nand->ecc.read_page = fsmc_read_page_hwecc;
890 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
891 nand->ecc.correct = fsmc_bch8_correct_data;
892 nand->ecc.bytes = 13;
893 nand->ecc.strength = 8;
894 }
895
896 if (AMBA_REV_BITS(host->pid) >= 8) {
897 switch (mtd->oobsize) {
898 case 16:
899 case 64:
900 case 128:
901 case 224:
902 case 256:
903 break;
904 default:
905 dev_warn(host->dev,
906 "No oob scheme defined for oobsize %d\n",
907 mtd->oobsize);
908 return -EINVAL;
909 }
910
911 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
912
913 return 0;
914 }
915
916 switch (nand->ecc.engine_type) {
917 case NAND_ECC_ENGINE_TYPE_ON_HOST:
918 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
919 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
920 nand->ecc.correct = rawnand_sw_hamming_correct;
921 nand->ecc.hwctl = fsmc_enable_hwecc;
922 nand->ecc.bytes = 3;
923 nand->ecc.strength = 1;
924 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
925 break;
926
927 case NAND_ECC_ENGINE_TYPE_SOFT:
928 if (nand->ecc.algo == NAND_ECC_ALGO_BCH) {
929 dev_info(host->dev,
930 "Using 4-bit SW BCH ECC scheme\n");
931 break;
932 }
933 break;
934
935 case NAND_ECC_ENGINE_TYPE_ON_DIE:
936 break;
937
938 default:
939 dev_err(host->dev, "Unsupported ECC mode!\n");
940 return -ENOTSUPP;
941 }
942
943 /*
944 * Don't set layout for BCH4 SW ECC. This will be
945 * generated later during BCH initialization.
946 */
947 if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
948 switch (mtd->oobsize) {
949 case 16:
950 case 64:
951 case 128:
952 mtd_set_ooblayout(mtd,
953 &fsmc_ecc1_ooblayout_ops);
954 break;
955 default:
956 dev_warn(host->dev,
957 "No oob scheme defined for oobsize %d\n",
958 mtd->oobsize);
959 return -EINVAL;
960 }
961 }
962
963 return 0;
964 }
965
966 static const struct nand_controller_ops fsmc_nand_controller_ops = {
967 .attach_chip = fsmc_nand_attach_chip,
968 .exec_op = fsmc_exec_op,
969 .setup_interface = fsmc_setup_interface,
970 };
971
972 /**
973 * fsmc_nand_disable() - Disables the NAND bank
974 * @host: The instance to disable
975 */
fsmc_nand_disable(struct fsmc_nand_data * host)976 static void fsmc_nand_disable(struct fsmc_nand_data *host)
977 {
978 u32 val;
979
980 val = readl(host->regs_va + FSMC_PC);
981 val &= ~FSMC_ENABLE;
982 writel(val, host->regs_va + FSMC_PC);
983 }
984
985 /*
986 * fsmc_nand_probe - Probe function
987 * @pdev: platform device structure
988 */
fsmc_nand_probe(struct platform_device * pdev)989 static int __init fsmc_nand_probe(struct platform_device *pdev)
990 {
991 struct fsmc_nand_data *host;
992 struct mtd_info *mtd;
993 struct nand_chip *nand;
994 struct resource *res;
995 void __iomem *base;
996 dma_cap_mask_t mask;
997 int ret = 0;
998 u32 pid;
999 int i;
1000
1001 /* Allocate memory for the device structure (and zero it) */
1002 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1003 if (!host)
1004 return -ENOMEM;
1005
1006 nand = &host->nand;
1007
1008 ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1009 if (ret)
1010 return ret;
1011
1012 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1013 host->data_va = devm_ioremap_resource(&pdev->dev, res);
1014 if (IS_ERR(host->data_va))
1015 return PTR_ERR(host->data_va);
1016
1017 host->data_pa = (dma_addr_t)res->start;
1018
1019 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1020 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1021 if (IS_ERR(host->addr_va))
1022 return PTR_ERR(host->addr_va);
1023
1024 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1025 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1026 if (IS_ERR(host->cmd_va))
1027 return PTR_ERR(host->cmd_va);
1028
1029 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1030 base = devm_ioremap_resource(&pdev->dev, res);
1031 if (IS_ERR(base))
1032 return PTR_ERR(base);
1033
1034 host->regs_va = base + FSMC_NOR_REG_SIZE +
1035 (host->bank * FSMC_NAND_BANK_SZ);
1036
1037 host->clk = devm_clk_get(&pdev->dev, NULL);
1038 if (IS_ERR(host->clk)) {
1039 dev_err(&pdev->dev, "failed to fetch block clock\n");
1040 return PTR_ERR(host->clk);
1041 }
1042
1043 ret = clk_prepare_enable(host->clk);
1044 if (ret)
1045 return ret;
1046
1047 /*
1048 * This device ID is actually a common AMBA ID as used on the
1049 * AMBA PrimeCell bus. However it is not a PrimeCell.
1050 */
1051 for (pid = 0, i = 0; i < 4; i++)
1052 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
1053 255) << (i * 8);
1054
1055 host->pid = pid;
1056
1057 dev_info(&pdev->dev,
1058 "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
1059 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1060 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1061
1062 host->dev = &pdev->dev;
1063
1064 if (host->mode == USE_DMA_ACCESS)
1065 init_completion(&host->dma_access_complete);
1066
1067 /* Link all private pointers */
1068 mtd = nand_to_mtd(&host->nand);
1069 nand_set_flash_node(nand, pdev->dev.of_node);
1070
1071 mtd->dev.parent = &pdev->dev;
1072
1073 nand->badblockbits = 7;
1074
1075 if (host->mode == USE_DMA_ACCESS) {
1076 dma_cap_zero(mask);
1077 dma_cap_set(DMA_MEMCPY, mask);
1078 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1079 if (!host->read_dma_chan) {
1080 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1081 ret = -ENODEV;
1082 goto disable_clk;
1083 }
1084 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1085 if (!host->write_dma_chan) {
1086 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1087 ret = -ENODEV;
1088 goto release_dma_read_chan;
1089 }
1090 }
1091
1092 if (host->dev_timings) {
1093 fsmc_nand_setup(host, host->dev_timings);
1094 nand->options |= NAND_KEEP_TIMINGS;
1095 }
1096
1097 nand_controller_init(&host->base);
1098 host->base.ops = &fsmc_nand_controller_ops;
1099 nand->controller = &host->base;
1100
1101 /*
1102 * Scan to find existence of the device
1103 */
1104 ret = nand_scan(nand, 1);
1105 if (ret)
1106 goto release_dma_write_chan;
1107
1108 mtd->name = "nand";
1109 ret = mtd_device_register(mtd, NULL, 0);
1110 if (ret)
1111 goto cleanup_nand;
1112
1113 platform_set_drvdata(pdev, host);
1114 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1115
1116 return 0;
1117
1118 cleanup_nand:
1119 nand_cleanup(nand);
1120 release_dma_write_chan:
1121 if (host->mode == USE_DMA_ACCESS)
1122 dma_release_channel(host->write_dma_chan);
1123 release_dma_read_chan:
1124 if (host->mode == USE_DMA_ACCESS)
1125 dma_release_channel(host->read_dma_chan);
1126 disable_clk:
1127 fsmc_nand_disable(host);
1128 clk_disable_unprepare(host->clk);
1129
1130 return ret;
1131 }
1132
1133 /*
1134 * Clean up routine
1135 */
fsmc_nand_remove(struct platform_device * pdev)1136 static int fsmc_nand_remove(struct platform_device *pdev)
1137 {
1138 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1139
1140 if (host) {
1141 struct nand_chip *chip = &host->nand;
1142 int ret;
1143
1144 ret = mtd_device_unregister(nand_to_mtd(chip));
1145 WARN_ON(ret);
1146 nand_cleanup(chip);
1147 fsmc_nand_disable(host);
1148
1149 if (host->mode == USE_DMA_ACCESS) {
1150 dma_release_channel(host->write_dma_chan);
1151 dma_release_channel(host->read_dma_chan);
1152 }
1153 clk_disable_unprepare(host->clk);
1154 }
1155
1156 return 0;
1157 }
1158
1159 #ifdef CONFIG_PM_SLEEP
fsmc_nand_suspend(struct device * dev)1160 static int fsmc_nand_suspend(struct device *dev)
1161 {
1162 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1163
1164 if (host)
1165 clk_disable_unprepare(host->clk);
1166
1167 return 0;
1168 }
1169
fsmc_nand_resume(struct device * dev)1170 static int fsmc_nand_resume(struct device *dev)
1171 {
1172 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1173
1174 if (host) {
1175 clk_prepare_enable(host->clk);
1176 if (host->dev_timings)
1177 fsmc_nand_setup(host, host->dev_timings);
1178 nand_reset(&host->nand, 0);
1179 }
1180
1181 return 0;
1182 }
1183 #endif
1184
1185 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1186
1187 static const struct of_device_id fsmc_nand_id_table[] = {
1188 { .compatible = "st,spear600-fsmc-nand" },
1189 { .compatible = "stericsson,fsmc-nand" },
1190 {}
1191 };
1192 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1193
1194 static struct platform_driver fsmc_nand_driver = {
1195 .remove = fsmc_nand_remove,
1196 .driver = {
1197 .name = "fsmc-nand",
1198 .of_match_table = fsmc_nand_id_table,
1199 .pm = &fsmc_nand_pm_ops,
1200 },
1201 };
1202
1203 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1204
1205 MODULE_LICENSE("GPL v2");
1206 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1207 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
1208