1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2016 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more details.
17 ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/vmalloc.h>
20 #include <linux/etherdevice.h>
21 #include "liquidio_common.h"
22 #include "octeon_droq.h"
23 #include "octeon_iq.h"
24 #include "response_manager.h"
25 #include "octeon_device.h"
26 #include "cn23xx_pf_device.h"
27 #include "octeon_main.h"
28 #include "octeon_mailbox.h"
29
30 #define RESET_NOTDONE 0
31 #define RESET_DONE 1
32
33 /* Change the value of SLI Packet Input Jabber Register to allow
34 * VXLAN TSO packets which can be 64424 bytes, exceeding the
35 * MAX_GSO_SIZE we supplied to the kernel
36 */
37 #define CN23XX_INPUT_JABBER 64600
38
cn23xx_dump_pf_initialized_regs(struct octeon_device * oct)39 void cn23xx_dump_pf_initialized_regs(struct octeon_device *oct)
40 {
41 int i = 0;
42 u32 regval = 0;
43 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
44
45 /*In cn23xx_soft_reset*/
46 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%llx\n",
47 "CN23XX_WIN_WR_MASK_REG", CVM_CAST64(CN23XX_WIN_WR_MASK_REG),
48 CVM_CAST64(octeon_read_csr64(oct, CN23XX_WIN_WR_MASK_REG)));
49 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
50 "CN23XX_SLI_SCRATCH1", CVM_CAST64(CN23XX_SLI_SCRATCH1),
51 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)));
52 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
53 "CN23XX_RST_SOFT_RST", CN23XX_RST_SOFT_RST,
54 lio_pci_readq(oct, CN23XX_RST_SOFT_RST));
55
56 /*In cn23xx_set_dpi_regs*/
57 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
58 "CN23XX_DPI_DMA_CONTROL", CN23XX_DPI_DMA_CONTROL,
59 lio_pci_readq(oct, CN23XX_DPI_DMA_CONTROL));
60
61 for (i = 0; i < 6; i++) {
62 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
63 "CN23XX_DPI_DMA_ENG_ENB", i,
64 CN23XX_DPI_DMA_ENG_ENB(i),
65 lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_ENB(i)));
66 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
67 "CN23XX_DPI_DMA_ENG_BUF", i,
68 CN23XX_DPI_DMA_ENG_BUF(i),
69 lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_BUF(i)));
70 }
71
72 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_DPI_CTL",
73 CN23XX_DPI_CTL, lio_pci_readq(oct, CN23XX_DPI_CTL));
74
75 /*In cn23xx_setup_pcie_mps and cn23xx_setup_pcie_mrrs */
76 pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val);
77 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
78 "CN23XX_CONFIG_PCIE_DEVCTL",
79 CVM_CAST64(CN23XX_CONFIG_PCIE_DEVCTL), CVM_CAST64(regval));
80
81 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
82 "CN23XX_DPI_SLI_PRTX_CFG", oct->pcie_port,
83 CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port),
84 lio_pci_readq(oct, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port)));
85
86 /*In cn23xx_specific_regs_setup */
87 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
88 "CN23XX_SLI_S2M_PORTX_CTL", oct->pcie_port,
89 CVM_CAST64(CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)),
90 CVM_CAST64(octeon_read_csr64(
91 oct, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port))));
92
93 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
94 "CN23XX_SLI_RING_RST", CVM_CAST64(CN23XX_SLI_PKT_IOQ_RING_RST),
95 (u64)octeon_read_csr64(oct, CN23XX_SLI_PKT_IOQ_RING_RST));
96
97 /*In cn23xx_setup_global_mac_regs*/
98 for (i = 0; i < CN23XX_MAX_MACS; i++) {
99 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
100 "CN23XX_SLI_PKT_MAC_RINFO64", i,
101 CVM_CAST64(CN23XX_SLI_PKT_MAC_RINFO64(i, oct->pf_num)),
102 CVM_CAST64(octeon_read_csr64
103 (oct, CN23XX_SLI_PKT_MAC_RINFO64
104 (i, oct->pf_num))));
105 }
106
107 /*In cn23xx_setup_global_input_regs*/
108 for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) {
109 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
110 "CN23XX_SLI_IQ_PKT_CONTROL64", i,
111 CVM_CAST64(CN23XX_SLI_IQ_PKT_CONTROL64(i)),
112 CVM_CAST64(octeon_read_csr64
113 (oct, CN23XX_SLI_IQ_PKT_CONTROL64(i))));
114 }
115
116 /*In cn23xx_setup_global_output_regs*/
117 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
118 "CN23XX_SLI_OQ_WMARK", CVM_CAST64(CN23XX_SLI_OQ_WMARK),
119 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_OQ_WMARK)));
120
121 for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) {
122 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
123 "CN23XX_SLI_OQ_PKT_CONTROL", i,
124 CVM_CAST64(CN23XX_SLI_OQ_PKT_CONTROL(i)),
125 CVM_CAST64(octeon_read_csr(
126 oct, CN23XX_SLI_OQ_PKT_CONTROL(i))));
127 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
128 "CN23XX_SLI_OQ_PKT_INT_LEVELS", i,
129 CVM_CAST64(CN23XX_SLI_OQ_PKT_INT_LEVELS(i)),
130 CVM_CAST64(octeon_read_csr64(
131 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(i))));
132 }
133
134 /*In cn23xx_enable_interrupt and cn23xx_disable_interrupt*/
135 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
136 "cn23xx->intr_enb_reg64",
137 CVM_CAST64((long)(cn23xx->intr_enb_reg64)),
138 CVM_CAST64(readq(cn23xx->intr_enb_reg64)));
139
140 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
141 "cn23xx->intr_sum_reg64",
142 CVM_CAST64((long)(cn23xx->intr_sum_reg64)),
143 CVM_CAST64(readq(cn23xx->intr_sum_reg64)));
144
145 /*In cn23xx_setup_iq_regs*/
146 for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) {
147 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
148 "CN23XX_SLI_IQ_BASE_ADDR64", i,
149 CVM_CAST64(CN23XX_SLI_IQ_BASE_ADDR64(i)),
150 CVM_CAST64(octeon_read_csr64(
151 oct, CN23XX_SLI_IQ_BASE_ADDR64(i))));
152 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
153 "CN23XX_SLI_IQ_SIZE", i,
154 CVM_CAST64(CN23XX_SLI_IQ_SIZE(i)),
155 CVM_CAST64(octeon_read_csr
156 (oct, CN23XX_SLI_IQ_SIZE(i))));
157 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
158 "CN23XX_SLI_IQ_DOORBELL", i,
159 CVM_CAST64(CN23XX_SLI_IQ_DOORBELL(i)),
160 CVM_CAST64(octeon_read_csr64(
161 oct, CN23XX_SLI_IQ_DOORBELL(i))));
162 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
163 "CN23XX_SLI_IQ_INSTR_COUNT64", i,
164 CVM_CAST64(CN23XX_SLI_IQ_INSTR_COUNT64(i)),
165 CVM_CAST64(octeon_read_csr64(
166 oct, CN23XX_SLI_IQ_INSTR_COUNT64(i))));
167 }
168
169 /*In cn23xx_setup_oq_regs*/
170 for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) {
171 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
172 "CN23XX_SLI_OQ_BASE_ADDR64", i,
173 CVM_CAST64(CN23XX_SLI_OQ_BASE_ADDR64(i)),
174 CVM_CAST64(octeon_read_csr64(
175 oct, CN23XX_SLI_OQ_BASE_ADDR64(i))));
176 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
177 "CN23XX_SLI_OQ_SIZE", i,
178 CVM_CAST64(CN23XX_SLI_OQ_SIZE(i)),
179 CVM_CAST64(octeon_read_csr
180 (oct, CN23XX_SLI_OQ_SIZE(i))));
181 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
182 "CN23XX_SLI_OQ_BUFF_INFO_SIZE", i,
183 CVM_CAST64(CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)),
184 CVM_CAST64(octeon_read_csr(
185 oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(i))));
186 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
187 "CN23XX_SLI_OQ_PKTS_SENT", i,
188 CVM_CAST64(CN23XX_SLI_OQ_PKTS_SENT(i)),
189 CVM_CAST64(octeon_read_csr64(
190 oct, CN23XX_SLI_OQ_PKTS_SENT(i))));
191 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
192 "CN23XX_SLI_OQ_PKTS_CREDIT", i,
193 CVM_CAST64(CN23XX_SLI_OQ_PKTS_CREDIT(i)),
194 CVM_CAST64(octeon_read_csr64(
195 oct, CN23XX_SLI_OQ_PKTS_CREDIT(i))));
196 }
197
198 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
199 "CN23XX_SLI_PKT_TIME_INT",
200 CVM_CAST64(CN23XX_SLI_PKT_TIME_INT),
201 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_TIME_INT)));
202 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
203 "CN23XX_SLI_PKT_CNT_INT",
204 CVM_CAST64(CN23XX_SLI_PKT_CNT_INT),
205 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_CNT_INT)));
206 }
207
cn23xx_pf_soft_reset(struct octeon_device * oct)208 static int cn23xx_pf_soft_reset(struct octeon_device *oct)
209 {
210 octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF);
211
212 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: BIST enabled for CN23XX soft reset\n",
213 oct->octeon_id);
214
215 octeon_write_csr64(oct, CN23XX_SLI_SCRATCH1, 0x1234ULL);
216
217 /* Initiate chip-wide soft reset */
218 lio_pci_readq(oct, CN23XX_RST_SOFT_RST);
219 lio_pci_writeq(oct, 1, CN23XX_RST_SOFT_RST);
220
221 /* Wait for 100ms as Octeon resets. */
222 mdelay(100);
223
224 if (octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)) {
225 dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Soft reset failed\n",
226 oct->octeon_id);
227 return 1;
228 }
229
230 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Reset completed\n",
231 oct->octeon_id);
232
233 /* restore the reset value*/
234 octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF);
235
236 return 0;
237 }
238
cn23xx_enable_error_reporting(struct octeon_device * oct)239 static void cn23xx_enable_error_reporting(struct octeon_device *oct)
240 {
241 u32 regval;
242 u32 uncorrectable_err_mask, corrtable_err_status;
243
244 pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val);
245 if (regval & CN23XX_CONFIG_PCIE_DEVCTL_MASK) {
246 uncorrectable_err_mask = 0;
247 corrtable_err_status = 0;
248 pci_read_config_dword(oct->pci_dev,
249 CN23XX_CONFIG_PCIE_UNCORRECT_ERR_MASK,
250 &uncorrectable_err_mask);
251 pci_read_config_dword(oct->pci_dev,
252 CN23XX_CONFIG_PCIE_CORRECT_ERR_STATUS,
253 &corrtable_err_status);
254 dev_err(&oct->pci_dev->dev, "PCI-E Fatal error detected;\n"
255 "\tdev_ctl_status_reg = 0x%08x\n"
256 "\tuncorrectable_error_mask_reg = 0x%08x\n"
257 "\tcorrectable_error_status_reg = 0x%08x\n",
258 regval, uncorrectable_err_mask,
259 corrtable_err_status);
260 }
261
262 regval |= 0xf; /* Enable Link error reporting */
263
264 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Enabling PCI-E error reporting..\n",
265 oct->octeon_id);
266 pci_write_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, regval);
267 }
268
cn23xx_coprocessor_clock(struct octeon_device * oct)269 static u32 cn23xx_coprocessor_clock(struct octeon_device *oct)
270 {
271 /* Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER
272 * for SLI.
273 */
274
275 /* TBD: get the info in Hand-shake */
276 return (((lio_pci_readq(oct, CN23XX_RST_BOOT) >> 24) & 0x3f) * 50);
277 }
278
cn23xx_pf_get_oq_ticks(struct octeon_device * oct,u32 time_intr_in_us)279 u32 cn23xx_pf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us)
280 {
281 /* This gives the SLI clock per microsec */
282 u32 oqticks_per_us = cn23xx_coprocessor_clock(oct);
283
284 oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us;
285
286 /* This gives the clock cycles per millisecond */
287 oqticks_per_us *= 1000;
288
289 /* This gives the oq ticks (1024 core clock cycles) per millisecond */
290 oqticks_per_us /= 1024;
291
292 /* time_intr is in microseconds. The next 2 steps gives the oq ticks
293 * corressponding to time_intr.
294 */
295 oqticks_per_us *= time_intr_in_us;
296 oqticks_per_us /= 1000;
297
298 return oqticks_per_us;
299 }
300
cn23xx_setup_global_mac_regs(struct octeon_device * oct)301 static void cn23xx_setup_global_mac_regs(struct octeon_device *oct)
302 {
303 u16 mac_no = oct->pcie_port;
304 u16 pf_num = oct->pf_num;
305 u64 reg_val;
306 u64 temp;
307
308 /* programming SRN and TRS for each MAC(0..3) */
309
310 dev_dbg(&oct->pci_dev->dev, "%s:Using pcie port %d\n",
311 __func__, mac_no);
312 /* By default, mapping all 64 IOQs to a single MACs */
313
314 reg_val =
315 octeon_read_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num));
316
317 if (oct->rev_id == OCTEON_CN23XX_REV_1_1) {
318 /* setting SRN <6:0> */
319 reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF_PASS_1_1;
320 } else {
321 /* setting SRN <6:0> */
322 reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF;
323 }
324
325 /* setting TRS <23:16> */
326 reg_val = reg_val |
327 (oct->sriov_info.trs << CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS);
328 /* setting RPVF <39:32> */
329 temp = oct->sriov_info.rings_per_vf & 0xff;
330 reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_RPVF_BIT_POS);
331
332 /* setting NVFS <55:48> */
333 temp = oct->sriov_info.max_vfs & 0xff;
334 reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_NVFS_BIT_POS);
335
336 /* write these settings to MAC register */
337 octeon_write_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num),
338 reg_val);
339
340 dev_dbg(&oct->pci_dev->dev, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n",
341 mac_no, pf_num, (u64)octeon_read_csr64
342 (oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)));
343 }
344
cn23xx_reset_io_queues(struct octeon_device * oct)345 static int cn23xx_reset_io_queues(struct octeon_device *oct)
346 {
347 int ret_val = 0;
348 u64 d64;
349 u32 q_no, srn, ern;
350 u32 loop = 1000;
351
352 srn = oct->sriov_info.pf_srn;
353 ern = srn + oct->sriov_info.num_pf_rings;
354
355 /*As per HRM reg description, s/w cant write 0 to ENB. */
356 /*to make the queue off, need to set the RST bit. */
357
358 /* Reset the Enable bit for all the 64 IQs. */
359 for (q_no = srn; q_no < ern; q_no++) {
360 /* set RST bit to 1. This bit applies to both IQ and OQ */
361 d64 = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
362 d64 = d64 | CN23XX_PKT_INPUT_CTL_RST;
363 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64);
364 }
365
366 /*wait until the RST bit is clear or the RST and quite bits are set*/
367 for (q_no = srn; q_no < ern; q_no++) {
368 u64 reg_val = octeon_read_csr64(oct,
369 CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
370 while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) &&
371 !(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) &&
372 loop--) {
373 WRITE_ONCE(reg_val, octeon_read_csr64(
374 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
375 }
376 if (!loop) {
377 dev_err(&oct->pci_dev->dev,
378 "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
379 q_no);
380 return -1;
381 }
382 WRITE_ONCE(reg_val, READ_ONCE(reg_val) &
383 ~CN23XX_PKT_INPUT_CTL_RST);
384 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
385 READ_ONCE(reg_val));
386
387 WRITE_ONCE(reg_val, octeon_read_csr64(
388 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
389 if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) {
390 dev_err(&oct->pci_dev->dev,
391 "clearing the reset failed for qno: %u\n",
392 q_no);
393 ret_val = -1;
394 }
395 }
396
397 return ret_val;
398 }
399
cn23xx_pf_setup_global_input_regs(struct octeon_device * oct)400 static int cn23xx_pf_setup_global_input_regs(struct octeon_device *oct)
401 {
402 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
403 struct octeon_instr_queue *iq;
404 u64 intr_threshold, reg_val;
405 u32 q_no, ern, srn;
406 u64 pf_num;
407 u64 vf_num;
408
409 pf_num = oct->pf_num;
410
411 srn = oct->sriov_info.pf_srn;
412 ern = srn + oct->sriov_info.num_pf_rings;
413
414 if (cn23xx_reset_io_queues(oct))
415 return -1;
416
417 /** Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg
418 * for all queues.Only PF can set these bits.
419 * bits 29:30 indicate the MAC num.
420 * bits 32:47 indicate the PVF num.
421 */
422 for (q_no = 0; q_no < ern; q_no++) {
423 reg_val = oct->pcie_port << CN23XX_PKT_INPUT_CTL_MAC_NUM_POS;
424
425 /* for VF assigned queues. */
426 if (q_no < oct->sriov_info.pf_srn) {
427 vf_num = q_no / oct->sriov_info.rings_per_vf;
428 vf_num += 1; /* VF1, VF2,........ */
429 } else {
430 vf_num = 0;
431 }
432
433 reg_val |= vf_num << CN23XX_PKT_INPUT_CTL_VF_NUM_POS;
434 reg_val |= pf_num << CN23XX_PKT_INPUT_CTL_PF_NUM_POS;
435
436 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
437 reg_val);
438 }
439
440 /* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for
441 * pf queues
442 */
443 for (q_no = srn; q_no < ern; q_no++) {
444 void __iomem *inst_cnt_reg;
445
446 iq = oct->instr_queue[q_no];
447 if (iq)
448 inst_cnt_reg = iq->inst_cnt_reg;
449 else
450 inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr +
451 CN23XX_SLI_IQ_INSTR_COUNT64(q_no);
452
453 reg_val =
454 octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
455
456 reg_val |= CN23XX_PKT_INPUT_CTL_MASK;
457
458 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
459 reg_val);
460
461 /* Set WMARK level for triggering PI_INT */
462 /* intr_threshold = CN23XX_DEF_IQ_INTR_THRESHOLD & */
463 intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) &
464 CN23XX_PKT_IN_DONE_WMARK_MASK;
465
466 writeq((readq(inst_cnt_reg) &
467 ~(CN23XX_PKT_IN_DONE_WMARK_MASK <<
468 CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) |
469 (intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS),
470 inst_cnt_reg);
471 }
472 return 0;
473 }
474
cn23xx_pf_setup_global_output_regs(struct octeon_device * oct)475 static void cn23xx_pf_setup_global_output_regs(struct octeon_device *oct)
476 {
477 u32 reg_val;
478 u32 q_no, ern, srn;
479 u64 time_threshold;
480
481 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
482
483 srn = oct->sriov_info.pf_srn;
484 ern = srn + oct->sriov_info.num_pf_rings;
485
486 if (CFG_GET_IS_SLI_BP_ON(cn23xx->conf)) {
487 octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 32);
488 } else {
489 /** Set Output queue watermark to 0 to disable backpressure */
490 octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 0);
491 }
492
493 for (q_no = srn; q_no < ern; q_no++) {
494 reg_val = octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no));
495
496 /* clear IPTR */
497 reg_val &= ~CN23XX_PKT_OUTPUT_CTL_IPTR;
498
499 /* set DPTR */
500 reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR;
501
502 /* reset BMODE */
503 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE);
504
505 /* No Relaxed Ordering, No Snoop, 64-bit Byte swap
506 * for Output Queue ScatterList
507 * reset ROR_P, NSR_P
508 */
509 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P);
510 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P);
511
512 #ifdef __LITTLE_ENDIAN_BITFIELD
513 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P);
514 #else
515 reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P);
516 #endif
517 /* No Relaxed Ordering, No Snoop, 64-bit Byte swap
518 * for Output Queue Data
519 * reset ROR, NSR
520 */
521 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR);
522 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR);
523 /* set the ES bit */
524 reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES);
525
526 /* write all the selected settings */
527 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val);
528
529 /* Enabling these interrupt in oct->fn_list.enable_interrupt()
530 * routine which called after IOQ init.
531 * Set up interrupt packet and time thresholds
532 * for all the OQs
533 */
534 time_threshold = cn23xx_pf_get_oq_ticks(
535 oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf));
536
537 octeon_write_csr64(oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no),
538 (CFG_GET_OQ_INTR_PKT(cn23xx->conf) |
539 (time_threshold << 32)));
540 }
541
542 /** Setting the water mark level for pko back pressure **/
543 writeq(0x40, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_WMARK);
544
545 /** Disabling setting OQs in reset when ring has no dorebells
546 * enabling this will cause of head of line blocking
547 */
548 /* Do it only for pass1.1. and pass1.2 */
549 if ((oct->rev_id == OCTEON_CN23XX_REV_1_0) ||
550 (oct->rev_id == OCTEON_CN23XX_REV_1_1))
551 writeq(readq((u8 *)oct->mmio[0].hw_addr +
552 CN23XX_SLI_GBL_CONTROL) | 0x2,
553 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_GBL_CONTROL);
554
555 /** Enable channel-level backpressure */
556 if (oct->pf_num)
557 writeq(0xffffffffffffffffULL,
558 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN2_W1S);
559 else
560 writeq(0xffffffffffffffffULL,
561 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN_W1S);
562 }
563
cn23xx_setup_pf_device_regs(struct octeon_device * oct)564 static int cn23xx_setup_pf_device_regs(struct octeon_device *oct)
565 {
566 cn23xx_enable_error_reporting(oct);
567
568 /* program the MAC(0..3)_RINFO before setting up input/output regs */
569 cn23xx_setup_global_mac_regs(oct);
570
571 if (cn23xx_pf_setup_global_input_regs(oct))
572 return -1;
573
574 cn23xx_pf_setup_global_output_regs(oct);
575
576 /* Default error timeout value should be 0x200000 to avoid host hang
577 * when reads invalid register
578 */
579 octeon_write_csr64(oct, CN23XX_SLI_WINDOW_CTL,
580 CN23XX_SLI_WINDOW_CTL_DEFAULT);
581
582 /* set SLI_PKT_IN_JABBER to handle large VXLAN packets */
583 octeon_write_csr64(oct, CN23XX_SLI_PKT_IN_JABBER, CN23XX_INPUT_JABBER);
584 return 0;
585 }
586
cn23xx_setup_iq_regs(struct octeon_device * oct,u32 iq_no)587 static void cn23xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
588 {
589 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
590 u64 pkt_in_done;
591
592 iq_no += oct->sriov_info.pf_srn;
593
594 /* Write the start of the input queue's ring and its size */
595 octeon_write_csr64(oct, CN23XX_SLI_IQ_BASE_ADDR64(iq_no),
596 iq->base_addr_dma);
597 octeon_write_csr(oct, CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count);
598
599 /* Remember the doorbell & instruction count register addr
600 * for this queue
601 */
602 iq->doorbell_reg =
603 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_DOORBELL(iq_no);
604 iq->inst_cnt_reg =
605 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_INSTR_COUNT64(iq_no);
606 dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
607 iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
608
609 /* Store the current instruction counter (used in flush_iq
610 * calculation)
611 */
612 pkt_in_done = readq(iq->inst_cnt_reg);
613
614 if (oct->msix_on) {
615 /* Set CINT_ENB to enable IQ interrupt */
616 writeq((pkt_in_done | CN23XX_INTR_CINT_ENB),
617 iq->inst_cnt_reg);
618 } else {
619 /* Clear the count by writing back what we read, but don't
620 * enable interrupts
621 */
622 writeq(pkt_in_done, iq->inst_cnt_reg);
623 }
624
625 iq->reset_instr_cnt = 0;
626 }
627
cn23xx_setup_oq_regs(struct octeon_device * oct,u32 oq_no)628 static void cn23xx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
629 {
630 u32 reg_val;
631 struct octeon_droq *droq = oct->droq[oq_no];
632 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
633 u64 time_threshold;
634 u64 cnt_threshold;
635
636 oq_no += oct->sriov_info.pf_srn;
637
638 octeon_write_csr64(oct, CN23XX_SLI_OQ_BASE_ADDR64(oq_no),
639 droq->desc_ring_dma);
640 octeon_write_csr(oct, CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count);
641
642 octeon_write_csr(oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
643 droq->buffer_size);
644
645 /* Get the mapped address of the pkt_sent and pkts_credit regs */
646 droq->pkts_sent_reg =
647 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_SENT(oq_no);
648 droq->pkts_credit_reg =
649 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_CREDIT(oq_no);
650
651 if (!oct->msix_on) {
652 /* Enable this output queue to generate Packet Timer Interrupt
653 */
654 reg_val =
655 octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
656 reg_val |= CN23XX_PKT_OUTPUT_CTL_TENB;
657 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
658 reg_val);
659
660 /* Enable this output queue to generate Packet Count Interrupt
661 */
662 reg_val =
663 octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
664 reg_val |= CN23XX_PKT_OUTPUT_CTL_CENB;
665 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
666 reg_val);
667 } else {
668 time_threshold = cn23xx_pf_get_oq_ticks(
669 oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf));
670 cnt_threshold = (u32)CFG_GET_OQ_INTR_PKT(cn23xx->conf);
671
672 octeon_write_csr64(
673 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no),
674 ((time_threshold << 32 | cnt_threshold)));
675 }
676 }
677
cn23xx_pf_mbox_thread(struct work_struct * work)678 static void cn23xx_pf_mbox_thread(struct work_struct *work)
679 {
680 struct cavium_wk *wk = (struct cavium_wk *)work;
681 struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr;
682 struct octeon_device *oct = mbox->oct_dev;
683 u64 mbox_int_val, val64;
684 u32 q_no, i;
685
686 if (oct->rev_id < OCTEON_CN23XX_REV_1_1) {
687 /*read and clear by writing 1*/
688 mbox_int_val = readq(mbox->mbox_int_reg);
689 writeq(mbox_int_val, mbox->mbox_int_reg);
690
691 for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) {
692 q_no = i * oct->sriov_info.rings_per_vf;
693
694 val64 = readq(oct->mbox[q_no]->mbox_write_reg);
695
696 if (val64 && (val64 != OCTEON_PFVFACK)) {
697 if (octeon_mbox_read(oct->mbox[q_no]))
698 octeon_mbox_process_message(
699 oct->mbox[q_no]);
700 }
701 }
702
703 schedule_delayed_work(&wk->work, msecs_to_jiffies(10));
704 } else {
705 octeon_mbox_process_message(mbox);
706 }
707 }
708
cn23xx_setup_pf_mbox(struct octeon_device * oct)709 static int cn23xx_setup_pf_mbox(struct octeon_device *oct)
710 {
711 struct octeon_mbox *mbox = NULL;
712 u16 mac_no = oct->pcie_port;
713 u16 pf_num = oct->pf_num;
714 u32 q_no, i;
715
716 if (!oct->sriov_info.max_vfs)
717 return 0;
718
719 for (i = 0; i < oct->sriov_info.max_vfs; i++) {
720 q_no = i * oct->sriov_info.rings_per_vf;
721
722 mbox = vmalloc(sizeof(*mbox));
723 if (!mbox)
724 goto free_mbox;
725
726 memset(mbox, 0, sizeof(struct octeon_mbox));
727
728 spin_lock_init(&mbox->lock);
729
730 mbox->oct_dev = oct;
731
732 mbox->q_no = q_no;
733
734 mbox->state = OCTEON_MBOX_STATE_IDLE;
735
736 /* PF mbox interrupt reg */
737 mbox->mbox_int_reg = (u8 *)oct->mmio[0].hw_addr +
738 CN23XX_SLI_MAC_PF_MBOX_INT(mac_no, pf_num);
739
740 /* PF writes into SIG0 reg */
741 mbox->mbox_write_reg = (u8 *)oct->mmio[0].hw_addr +
742 CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 0);
743
744 /* PF reads from SIG1 reg */
745 mbox->mbox_read_reg = (u8 *)oct->mmio[0].hw_addr +
746 CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 1);
747
748 /*Mail Box Thread creation*/
749 INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work,
750 cn23xx_pf_mbox_thread);
751 mbox->mbox_poll_wk.ctxptr = (void *)mbox;
752
753 oct->mbox[q_no] = mbox;
754
755 writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg);
756 }
757
758 if (oct->rev_id < OCTEON_CN23XX_REV_1_1)
759 schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work,
760 msecs_to_jiffies(0));
761
762 return 0;
763
764 free_mbox:
765 while (i) {
766 i--;
767 vfree(oct->mbox[i]);
768 }
769
770 return 1;
771 }
772
cn23xx_free_pf_mbox(struct octeon_device * oct)773 static int cn23xx_free_pf_mbox(struct octeon_device *oct)
774 {
775 u32 q_no, i;
776
777 if (!oct->sriov_info.max_vfs)
778 return 0;
779
780 for (i = 0; i < oct->sriov_info.max_vfs; i++) {
781 q_no = i * oct->sriov_info.rings_per_vf;
782 cancel_delayed_work_sync(
783 &oct->mbox[q_no]->mbox_poll_wk.work);
784 vfree(oct->mbox[q_no]);
785 }
786
787 return 0;
788 }
789
cn23xx_enable_io_queues(struct octeon_device * oct)790 static int cn23xx_enable_io_queues(struct octeon_device *oct)
791 {
792 u64 reg_val;
793 u32 srn, ern, q_no;
794 u32 loop = 1000;
795
796 srn = oct->sriov_info.pf_srn;
797 ern = srn + oct->num_iqs;
798
799 for (q_no = srn; q_no < ern; q_no++) {
800 /* set the corresponding IQ IS_64B bit */
801 if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) {
802 reg_val = octeon_read_csr64(
803 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
804 reg_val = reg_val | CN23XX_PKT_INPUT_CTL_IS_64B;
805 octeon_write_csr64(
806 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
807 }
808
809 /* set the corresponding IQ ENB bit */
810 if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) {
811 /* IOQs are in reset by default in PEM2 mode,
812 * clearing reset bit
813 */
814 reg_val = octeon_read_csr64(
815 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
816
817 if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
818 while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) &&
819 !(reg_val &
820 CN23XX_PKT_INPUT_CTL_QUIET) &&
821 --loop) {
822 reg_val = octeon_read_csr64(
823 oct,
824 CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
825 }
826 if (!loop) {
827 dev_err(&oct->pci_dev->dev,
828 "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
829 q_no);
830 return -1;
831 }
832 reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST;
833 octeon_write_csr64(
834 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
835 reg_val);
836
837 reg_val = octeon_read_csr64(
838 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
839 if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
840 dev_err(&oct->pci_dev->dev,
841 "clearing the reset failed for qno: %u\n",
842 q_no);
843 return -1;
844 }
845 }
846 reg_val = octeon_read_csr64(
847 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
848 reg_val = reg_val | CN23XX_PKT_INPUT_CTL_RING_ENB;
849 octeon_write_csr64(
850 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
851 }
852 }
853 for (q_no = srn; q_no < ern; q_no++) {
854 u32 reg_val;
855 /* set the corresponding OQ ENB bit */
856 if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) {
857 reg_val = octeon_read_csr(
858 oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no));
859 reg_val = reg_val | CN23XX_PKT_OUTPUT_CTL_RING_ENB;
860 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no),
861 reg_val);
862 }
863 }
864 return 0;
865 }
866
cn23xx_disable_io_queues(struct octeon_device * oct)867 static void cn23xx_disable_io_queues(struct octeon_device *oct)
868 {
869 int q_no, loop;
870 u64 d64;
871 u32 d32;
872 u32 srn, ern;
873
874 srn = oct->sriov_info.pf_srn;
875 ern = srn + oct->num_iqs;
876
877 /*** Disable Input Queues. ***/
878 for (q_no = srn; q_no < ern; q_no++) {
879 loop = HZ;
880
881 /* start the Reset for a particular ring */
882 WRITE_ONCE(d64, octeon_read_csr64(
883 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
884 WRITE_ONCE(d64, READ_ONCE(d64) &
885 (~(CN23XX_PKT_INPUT_CTL_RING_ENB)));
886 WRITE_ONCE(d64, READ_ONCE(d64) | CN23XX_PKT_INPUT_CTL_RST);
887 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
888 READ_ONCE(d64));
889
890 /* Wait until hardware indicates that the particular IQ
891 * is out of reset.
892 */
893 WRITE_ONCE(d64, octeon_read_csr64(
894 oct, CN23XX_SLI_PKT_IOQ_RING_RST));
895 while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) {
896 WRITE_ONCE(d64, octeon_read_csr64(
897 oct, CN23XX_SLI_PKT_IOQ_RING_RST));
898 schedule_timeout_uninterruptible(1);
899 }
900
901 /* Reset the doorbell register for this Input Queue. */
902 octeon_write_csr(oct, CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF);
903 while (octeon_read_csr64(oct, CN23XX_SLI_IQ_DOORBELL(q_no)) &&
904 loop--) {
905 schedule_timeout_uninterruptible(1);
906 }
907 }
908
909 /*** Disable Output Queues. ***/
910 for (q_no = srn; q_no < ern; q_no++) {
911 loop = HZ;
912
913 /* Wait until hardware indicates that the particular IQ
914 * is out of reset.It given that SLI_PKT_RING_RST is
915 * common for both IQs and OQs
916 */
917 WRITE_ONCE(d64, octeon_read_csr64(
918 oct, CN23XX_SLI_PKT_IOQ_RING_RST));
919 while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) {
920 WRITE_ONCE(d64, octeon_read_csr64(
921 oct, CN23XX_SLI_PKT_IOQ_RING_RST));
922 schedule_timeout_uninterruptible(1);
923 }
924
925 /* Reset the doorbell register for this Output Queue. */
926 octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_CREDIT(q_no),
927 0xFFFFFFFF);
928 while (octeon_read_csr64(oct,
929 CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) &&
930 loop--) {
931 schedule_timeout_uninterruptible(1);
932 }
933
934 /* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */
935 WRITE_ONCE(d32, octeon_read_csr(
936 oct, CN23XX_SLI_OQ_PKTS_SENT(q_no)));
937 octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_SENT(q_no),
938 READ_ONCE(d32));
939 }
940 }
941
cn23xx_pf_msix_interrupt_handler(void * dev)942 static u64 cn23xx_pf_msix_interrupt_handler(void *dev)
943 {
944 struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
945 struct octeon_device *oct = ioq_vector->oct_dev;
946 u64 pkts_sent;
947 u64 ret = 0;
948 struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
949
950 dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct);
951
952 if (!droq) {
953 dev_err(&oct->pci_dev->dev, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n",
954 oct->pf_num, ioq_vector->ioq_num);
955 return 0;
956 }
957
958 pkts_sent = readq(droq->pkts_sent_reg);
959
960 /* If our device has interrupted, then proceed. Also check
961 * for all f's if interrupt was triggered on an error
962 * and the PCI read fails.
963 */
964 if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL))
965 return ret;
966
967 /* Write count reg in sli_pkt_cnts to clear these int.*/
968 if ((pkts_sent & CN23XX_INTR_PO_INT) ||
969 (pkts_sent & CN23XX_INTR_PI_INT)) {
970 if (pkts_sent & CN23XX_INTR_PO_INT)
971 ret |= MSIX_PO_INT;
972 }
973
974 if (pkts_sent & CN23XX_INTR_PI_INT)
975 /* We will clear the count when we update the read_index. */
976 ret |= MSIX_PI_INT;
977
978 /* Never need to handle msix mbox intr for pf. They arrive on the last
979 * msix
980 */
981 return ret;
982 }
983
cn23xx_handle_pf_mbox_intr(struct octeon_device * oct)984 static void cn23xx_handle_pf_mbox_intr(struct octeon_device *oct)
985 {
986 struct delayed_work *work;
987 u64 mbox_int_val;
988 u32 i, q_no;
989
990 mbox_int_val = readq(oct->mbox[0]->mbox_int_reg);
991
992 for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) {
993 q_no = i * oct->sriov_info.rings_per_vf;
994
995 if (mbox_int_val & BIT_ULL(q_no)) {
996 writeq(BIT_ULL(q_no),
997 oct->mbox[0]->mbox_int_reg);
998 if (octeon_mbox_read(oct->mbox[q_no])) {
999 work = &oct->mbox[q_no]->mbox_poll_wk.work;
1000 schedule_delayed_work(work,
1001 msecs_to_jiffies(0));
1002 }
1003 }
1004 }
1005 }
1006
cn23xx_interrupt_handler(void * dev)1007 static irqreturn_t cn23xx_interrupt_handler(void *dev)
1008 {
1009 struct octeon_device *oct = (struct octeon_device *)dev;
1010 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1011 u64 intr64;
1012
1013 dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct);
1014 intr64 = readq(cn23xx->intr_sum_reg64);
1015
1016 oct->int_status = 0;
1017
1018 if (intr64 & CN23XX_INTR_ERR)
1019 dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Error Intr: 0x%016llx\n",
1020 oct->octeon_id, CVM_CAST64(intr64));
1021
1022 /* When VFs write into MBOX_SIG2 reg,these intr is set in PF */
1023 if (intr64 & CN23XX_INTR_VF_MBOX)
1024 cn23xx_handle_pf_mbox_intr(oct);
1025
1026 if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) {
1027 if (intr64 & CN23XX_INTR_PKT_DATA)
1028 oct->int_status |= OCT_DEV_INTR_PKT_DATA;
1029 }
1030
1031 if (intr64 & (CN23XX_INTR_DMA0_FORCE))
1032 oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
1033 if (intr64 & (CN23XX_INTR_DMA1_FORCE))
1034 oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
1035
1036 /* Clear the current interrupts */
1037 writeq(intr64, cn23xx->intr_sum_reg64);
1038
1039 return IRQ_HANDLED;
1040 }
1041
cn23xx_bar1_idx_setup(struct octeon_device * oct,u64 core_addr,u32 idx,int valid)1042 static void cn23xx_bar1_idx_setup(struct octeon_device *oct, u64 core_addr,
1043 u32 idx, int valid)
1044 {
1045 u64 bar1;
1046 u64 reg_adr;
1047
1048 if (!valid) {
1049 reg_adr = lio_pci_readq(
1050 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1051 WRITE_ONCE(bar1, reg_adr);
1052 lio_pci_writeq(oct, (READ_ONCE(bar1) & 0xFFFFFFFEULL),
1053 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1054 reg_adr = lio_pci_readq(
1055 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1056 WRITE_ONCE(bar1, reg_adr);
1057 return;
1058 }
1059
1060 /* The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores
1061 * bits <41:22> of the Core Addr
1062 */
1063 lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
1064 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1065
1066 WRITE_ONCE(bar1, lio_pci_readq(
1067 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)));
1068 }
1069
cn23xx_bar1_idx_write(struct octeon_device * oct,u32 idx,u32 mask)1070 static void cn23xx_bar1_idx_write(struct octeon_device *oct, u32 idx, u32 mask)
1071 {
1072 lio_pci_writeq(oct, mask,
1073 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1074 }
1075
cn23xx_bar1_idx_read(struct octeon_device * oct,u32 idx)1076 static u32 cn23xx_bar1_idx_read(struct octeon_device *oct, u32 idx)
1077 {
1078 return (u32)lio_pci_readq(
1079 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1080 }
1081
1082 /* always call with lock held */
cn23xx_update_read_index(struct octeon_instr_queue * iq)1083 static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq)
1084 {
1085 u32 new_idx;
1086 u32 last_done;
1087 u32 pkt_in_done = readl(iq->inst_cnt_reg);
1088
1089 last_done = pkt_in_done - iq->pkt_in_done;
1090 iq->pkt_in_done = pkt_in_done;
1091
1092 /* Modulo of the new index with the IQ size will give us
1093 * the new index. The iq->reset_instr_cnt is always zero for
1094 * cn23xx, so no extra adjustments are needed.
1095 */
1096 new_idx = (iq->octeon_read_index +
1097 (u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) %
1098 iq->max_count;
1099
1100 return new_idx;
1101 }
1102
cn23xx_enable_pf_interrupt(struct octeon_device * oct,u8 intr_flag)1103 static void cn23xx_enable_pf_interrupt(struct octeon_device *oct, u8 intr_flag)
1104 {
1105 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1106 u64 intr_val = 0;
1107
1108 /* Divide the single write to multiple writes based on the flag. */
1109 /* Enable Interrupt */
1110 if (intr_flag == OCTEON_ALL_INTR) {
1111 writeq(cn23xx->intr_mask64, cn23xx->intr_enb_reg64);
1112 } else if (intr_flag & OCTEON_OUTPUT_INTR) {
1113 intr_val = readq(cn23xx->intr_enb_reg64);
1114 intr_val |= CN23XX_INTR_PKT_DATA;
1115 writeq(intr_val, cn23xx->intr_enb_reg64);
1116 } else if ((intr_flag & OCTEON_MBOX_INTR) &&
1117 (oct->sriov_info.max_vfs > 0)) {
1118 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) {
1119 intr_val = readq(cn23xx->intr_enb_reg64);
1120 intr_val |= CN23XX_INTR_VF_MBOX;
1121 writeq(intr_val, cn23xx->intr_enb_reg64);
1122 }
1123 }
1124 }
1125
cn23xx_disable_pf_interrupt(struct octeon_device * oct,u8 intr_flag)1126 static void cn23xx_disable_pf_interrupt(struct octeon_device *oct, u8 intr_flag)
1127 {
1128 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1129 u64 intr_val = 0;
1130
1131 /* Disable Interrupts */
1132 if (intr_flag == OCTEON_ALL_INTR) {
1133 writeq(0, cn23xx->intr_enb_reg64);
1134 } else if (intr_flag & OCTEON_OUTPUT_INTR) {
1135 intr_val = readq(cn23xx->intr_enb_reg64);
1136 intr_val &= ~CN23XX_INTR_PKT_DATA;
1137 writeq(intr_val, cn23xx->intr_enb_reg64);
1138 } else if ((intr_flag & OCTEON_MBOX_INTR) &&
1139 (oct->sriov_info.max_vfs > 0)) {
1140 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) {
1141 intr_val = readq(cn23xx->intr_enb_reg64);
1142 intr_val &= ~CN23XX_INTR_VF_MBOX;
1143 writeq(intr_val, cn23xx->intr_enb_reg64);
1144 }
1145 }
1146 }
1147
cn23xx_get_pcie_qlmport(struct octeon_device * oct)1148 static void cn23xx_get_pcie_qlmport(struct octeon_device *oct)
1149 {
1150 oct->pcie_port = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff;
1151
1152 dev_dbg(&oct->pci_dev->dev, "OCTEON: CN23xx uses PCIE Port %d\n",
1153 oct->pcie_port);
1154 }
1155
cn23xx_get_pf_num(struct octeon_device * oct)1156 static int cn23xx_get_pf_num(struct octeon_device *oct)
1157 {
1158 u32 fdl_bit = 0;
1159 u64 pkt0_in_ctl, d64;
1160 int pfnum, mac, trs, ret;
1161
1162 ret = 0;
1163
1164 /** Read Function Dependency Link reg to get the function number */
1165 if (pci_read_config_dword(oct->pci_dev, CN23XX_PCIE_SRIOV_FDL,
1166 &fdl_bit) == 0) {
1167 oct->pf_num = ((fdl_bit >> CN23XX_PCIE_SRIOV_FDL_BIT_POS) &
1168 CN23XX_PCIE_SRIOV_FDL_MASK);
1169 } else {
1170 ret = -EINVAL;
1171
1172 /* Under some virtual environments, extended PCI regs are
1173 * inaccessible, in which case the above read will have failed.
1174 * In this case, read the PF number from the
1175 * SLI_PKT0_INPUT_CONTROL reg (written by f/w)
1176 */
1177 pkt0_in_ctl = octeon_read_csr64(oct,
1178 CN23XX_SLI_IQ_PKT_CONTROL64(0));
1179 pfnum = (pkt0_in_ctl >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) &
1180 CN23XX_PKT_INPUT_CTL_PF_NUM_MASK;
1181 mac = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff;
1182
1183 /* validate PF num by reading RINFO; f/w writes RINFO.trs == 1*/
1184 d64 = octeon_read_csr64(oct,
1185 CN23XX_SLI_PKT_MAC_RINFO64(mac, pfnum));
1186 trs = (int)(d64 >> CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS) & 0xff;
1187 if (trs == 1) {
1188 dev_err(&oct->pci_dev->dev,
1189 "OCTEON: error reading PCI cfg space pfnum, re-read %u\n",
1190 pfnum);
1191 oct->pf_num = pfnum;
1192 ret = 0;
1193 } else {
1194 dev_err(&oct->pci_dev->dev,
1195 "OCTEON: error reading PCI cfg space pfnum; could not ascertain PF number\n");
1196 }
1197 }
1198
1199 return ret;
1200 }
1201
cn23xx_setup_reg_address(struct octeon_device * oct)1202 static void cn23xx_setup_reg_address(struct octeon_device *oct)
1203 {
1204 u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
1205 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1206
1207 oct->reg_list.pci_win_wr_addr_hi =
1208 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_HI);
1209 oct->reg_list.pci_win_wr_addr_lo =
1210 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_LO);
1211 oct->reg_list.pci_win_wr_addr =
1212 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR64);
1213
1214 oct->reg_list.pci_win_rd_addr_hi =
1215 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_HI);
1216 oct->reg_list.pci_win_rd_addr_lo =
1217 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_LO);
1218 oct->reg_list.pci_win_rd_addr =
1219 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR64);
1220
1221 oct->reg_list.pci_win_wr_data_hi =
1222 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_HI);
1223 oct->reg_list.pci_win_wr_data_lo =
1224 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_LO);
1225 oct->reg_list.pci_win_wr_data =
1226 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA64);
1227
1228 oct->reg_list.pci_win_rd_data_hi =
1229 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_HI);
1230 oct->reg_list.pci_win_rd_data_lo =
1231 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_LO);
1232 oct->reg_list.pci_win_rd_data =
1233 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA64);
1234
1235 cn23xx_get_pcie_qlmport(oct);
1236
1237 cn23xx->intr_mask64 = CN23XX_INTR_MASK;
1238 if (!oct->msix_on)
1239 cn23xx->intr_mask64 |= CN23XX_INTR_PKT_TIME;
1240 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1)
1241 cn23xx->intr_mask64 |= CN23XX_INTR_VF_MBOX;
1242
1243 cn23xx->intr_sum_reg64 =
1244 bar0_pciaddr +
1245 CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num);
1246 cn23xx->intr_enb_reg64 =
1247 bar0_pciaddr +
1248 CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num);
1249 }
1250
cn23xx_sriov_config(struct octeon_device * oct)1251 int cn23xx_sriov_config(struct octeon_device *oct)
1252 {
1253 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1254 u32 max_rings, total_rings, max_vfs, rings_per_vf;
1255 u32 pf_srn, num_pf_rings;
1256 u32 max_possible_vfs;
1257
1258 cn23xx->conf =
1259 (struct octeon_config *)oct_get_config_info(oct, LIO_23XX);
1260 switch (oct->rev_id) {
1261 case OCTEON_CN23XX_REV_1_0:
1262 max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_0;
1263 max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_0;
1264 break;
1265 case OCTEON_CN23XX_REV_1_1:
1266 max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_1;
1267 max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_1;
1268 break;
1269 default:
1270 max_rings = CN23XX_MAX_RINGS_PER_PF;
1271 max_possible_vfs = CN23XX_MAX_VFS_PER_PF;
1272 break;
1273 }
1274
1275 if (oct->sriov_info.num_pf_rings)
1276 num_pf_rings = oct->sriov_info.num_pf_rings;
1277 else
1278 num_pf_rings = num_present_cpus();
1279
1280 #ifdef CONFIG_PCI_IOV
1281 max_vfs = min_t(u32,
1282 (max_rings - num_pf_rings), max_possible_vfs);
1283 rings_per_vf = 1;
1284 #else
1285 max_vfs = 0;
1286 rings_per_vf = 0;
1287 #endif
1288
1289 total_rings = num_pf_rings + max_vfs;
1290
1291 /* the first ring of the pf */
1292 pf_srn = total_rings - num_pf_rings;
1293
1294 oct->sriov_info.trs = total_rings;
1295 oct->sriov_info.max_vfs = max_vfs;
1296 oct->sriov_info.rings_per_vf = rings_per_vf;
1297 oct->sriov_info.pf_srn = pf_srn;
1298 oct->sriov_info.num_pf_rings = num_pf_rings;
1299 dev_notice(&oct->pci_dev->dev, "trs:%d max_vfs:%d rings_per_vf:%d pf_srn:%d num_pf_rings:%d\n",
1300 oct->sriov_info.trs, oct->sriov_info.max_vfs,
1301 oct->sriov_info.rings_per_vf, oct->sriov_info.pf_srn,
1302 oct->sriov_info.num_pf_rings);
1303
1304 oct->sriov_info.sriov_enabled = 0;
1305
1306 return 0;
1307 }
1308
setup_cn23xx_octeon_pf_device(struct octeon_device * oct)1309 int setup_cn23xx_octeon_pf_device(struct octeon_device *oct)
1310 {
1311 u32 data32;
1312 u64 BAR0, BAR1;
1313
1314 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_0, &data32);
1315 BAR0 = (u64)(data32 & ~0xf);
1316 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_1, &data32);
1317 BAR0 |= ((u64)data32 << 32);
1318 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_2, &data32);
1319 BAR1 = (u64)(data32 & ~0xf);
1320 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_3, &data32);
1321 BAR1 |= ((u64)data32 << 32);
1322
1323 if (!BAR0 || !BAR1) {
1324 if (!BAR0)
1325 dev_err(&oct->pci_dev->dev, "device BAR0 unassigned\n");
1326 if (!BAR1)
1327 dev_err(&oct->pci_dev->dev, "device BAR1 unassigned\n");
1328 return 1;
1329 }
1330
1331 if (octeon_map_pci_barx(oct, 0, 0))
1332 return 1;
1333
1334 if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
1335 dev_err(&oct->pci_dev->dev, "%s CN23XX BAR1 map failed\n",
1336 __func__);
1337 octeon_unmap_pci_barx(oct, 0);
1338 return 1;
1339 }
1340
1341 if (cn23xx_get_pf_num(oct) != 0)
1342 return 1;
1343
1344 if (cn23xx_sriov_config(oct)) {
1345 octeon_unmap_pci_barx(oct, 0);
1346 octeon_unmap_pci_barx(oct, 1);
1347 return 1;
1348 }
1349
1350 octeon_write_csr64(oct, CN23XX_SLI_MAC_CREDIT_CNT, 0x3F802080802080ULL);
1351
1352 oct->fn_list.setup_iq_regs = cn23xx_setup_iq_regs;
1353 oct->fn_list.setup_oq_regs = cn23xx_setup_oq_regs;
1354 oct->fn_list.setup_mbox = cn23xx_setup_pf_mbox;
1355 oct->fn_list.free_mbox = cn23xx_free_pf_mbox;
1356
1357 oct->fn_list.process_interrupt_regs = cn23xx_interrupt_handler;
1358 oct->fn_list.msix_interrupt_handler = cn23xx_pf_msix_interrupt_handler;
1359
1360 oct->fn_list.soft_reset = cn23xx_pf_soft_reset;
1361 oct->fn_list.setup_device_regs = cn23xx_setup_pf_device_regs;
1362 oct->fn_list.update_iq_read_idx = cn23xx_update_read_index;
1363
1364 oct->fn_list.bar1_idx_setup = cn23xx_bar1_idx_setup;
1365 oct->fn_list.bar1_idx_write = cn23xx_bar1_idx_write;
1366 oct->fn_list.bar1_idx_read = cn23xx_bar1_idx_read;
1367
1368 oct->fn_list.enable_interrupt = cn23xx_enable_pf_interrupt;
1369 oct->fn_list.disable_interrupt = cn23xx_disable_pf_interrupt;
1370
1371 oct->fn_list.enable_io_queues = cn23xx_enable_io_queues;
1372 oct->fn_list.disable_io_queues = cn23xx_disable_io_queues;
1373
1374 cn23xx_setup_reg_address(oct);
1375
1376 oct->coproc_clock_rate = 1000000ULL * cn23xx_coprocessor_clock(oct);
1377
1378 return 0;
1379 }
1380
validate_cn23xx_pf_config_info(struct octeon_device * oct,struct octeon_config * conf23xx)1381 int validate_cn23xx_pf_config_info(struct octeon_device *oct,
1382 struct octeon_config *conf23xx)
1383 {
1384 if (CFG_GET_IQ_MAX_Q(conf23xx) > CN23XX_MAX_INPUT_QUEUES) {
1385 dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
1386 __func__, CFG_GET_IQ_MAX_Q(conf23xx),
1387 CN23XX_MAX_INPUT_QUEUES);
1388 return 1;
1389 }
1390
1391 if (CFG_GET_OQ_MAX_Q(conf23xx) > CN23XX_MAX_OUTPUT_QUEUES) {
1392 dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
1393 __func__, CFG_GET_OQ_MAX_Q(conf23xx),
1394 CN23XX_MAX_OUTPUT_QUEUES);
1395 return 1;
1396 }
1397
1398 if (CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_32BYTE_INSTR &&
1399 CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_64BYTE_INSTR) {
1400 dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
1401 __func__);
1402 return 1;
1403 }
1404
1405 if (!CFG_GET_OQ_REFILL_THRESHOLD(conf23xx)) {
1406 dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
1407 __func__);
1408 return 1;
1409 }
1410
1411 if (!(CFG_GET_OQ_INTR_TIME(conf23xx))) {
1412 dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
1413 __func__);
1414 return 1;
1415 }
1416
1417 return 0;
1418 }
1419
cn23xx_fw_loaded(struct octeon_device * oct)1420 int cn23xx_fw_loaded(struct octeon_device *oct)
1421 {
1422 u64 val;
1423
1424 /* If there's more than one active PF on this NIC, then that
1425 * implies that the NIC firmware is loaded and running. This check
1426 * prevents a rare false negative that might occur if we only relied
1427 * on checking the SCR2_BIT_FW_LOADED flag. The false negative would
1428 * happen if the PF driver sees SCR2_BIT_FW_LOADED as cleared even
1429 * though the firmware was already loaded but still booting and has yet
1430 * to set SCR2_BIT_FW_LOADED.
1431 */
1432 if (atomic_read(oct->adapter_refcount) > 1)
1433 return 1;
1434
1435 val = octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2);
1436 return (val >> SCR2_BIT_FW_LOADED) & 1ULL;
1437 }
1438
cn23xx_tell_vf_its_macaddr_changed(struct octeon_device * oct,int vfidx,u8 * mac)1439 void cn23xx_tell_vf_its_macaddr_changed(struct octeon_device *oct, int vfidx,
1440 u8 *mac)
1441 {
1442 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vfidx)) {
1443 struct octeon_mbox_cmd mbox_cmd;
1444
1445 mbox_cmd.msg.u64 = 0;
1446 mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
1447 mbox_cmd.msg.s.resp_needed = 0;
1448 mbox_cmd.msg.s.cmd = OCTEON_PF_CHANGED_VF_MACADDR;
1449 mbox_cmd.msg.s.len = 1;
1450 mbox_cmd.recv_len = 0;
1451 mbox_cmd.recv_status = 0;
1452 mbox_cmd.fn = NULL;
1453 mbox_cmd.fn_arg = NULL;
1454 ether_addr_copy(mbox_cmd.msg.s.params, mac);
1455 mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf;
1456 octeon_mbox_write(oct, &mbox_cmd);
1457 }
1458 }
1459
1460 static void
cn23xx_get_vf_stats_callback(struct octeon_device * oct,struct octeon_mbox_cmd * cmd,void * arg)1461 cn23xx_get_vf_stats_callback(struct octeon_device *oct,
1462 struct octeon_mbox_cmd *cmd, void *arg)
1463 {
1464 struct oct_vf_stats_ctx *ctx = arg;
1465
1466 memcpy(ctx->stats, cmd->data, sizeof(struct oct_vf_stats));
1467 atomic_set(&ctx->status, 1);
1468 }
1469
cn23xx_get_vf_stats(struct octeon_device * oct,int vfidx,struct oct_vf_stats * stats)1470 int cn23xx_get_vf_stats(struct octeon_device *oct, int vfidx,
1471 struct oct_vf_stats *stats)
1472 {
1473 u32 timeout = HZ; // 1sec
1474 struct octeon_mbox_cmd mbox_cmd;
1475 struct oct_vf_stats_ctx ctx;
1476 u32 count = 0, ret;
1477
1478 if (!(oct->sriov_info.vf_drv_loaded_mask & (1ULL << vfidx)))
1479 return -1;
1480
1481 if (sizeof(struct oct_vf_stats) > sizeof(mbox_cmd.data))
1482 return -1;
1483
1484 mbox_cmd.msg.u64 = 0;
1485 mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
1486 mbox_cmd.msg.s.resp_needed = 1;
1487 mbox_cmd.msg.s.cmd = OCTEON_GET_VF_STATS;
1488 mbox_cmd.msg.s.len = 1;
1489 mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf;
1490 mbox_cmd.recv_len = 0;
1491 mbox_cmd.recv_status = 0;
1492 mbox_cmd.fn = (octeon_mbox_callback_t)cn23xx_get_vf_stats_callback;
1493 ctx.stats = stats;
1494 atomic_set(&ctx.status, 0);
1495 mbox_cmd.fn_arg = (void *)&ctx;
1496 memset(mbox_cmd.data, 0, sizeof(mbox_cmd.data));
1497 octeon_mbox_write(oct, &mbox_cmd);
1498
1499 do {
1500 schedule_timeout_uninterruptible(1);
1501 } while ((atomic_read(&ctx.status) == 0) && (count++ < timeout));
1502
1503 ret = atomic_read(&ctx.status);
1504 if (ret == 0) {
1505 octeon_mbox_cancel(oct, 0);
1506 dev_err(&oct->pci_dev->dev, "Unable to get stats from VF-%d, timedout\n",
1507 vfidx);
1508 return -1;
1509 }
1510
1511 return 0;
1512 }
1513