1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/bpf_trace.h>
6 #include <linux/tcp.h>
7 #include <linux/udp.h>
8 #include <linux/vmalloc.h>
9 #include <linux/ptp_classify.h>
10 #include <net/pkt_sched.h>
11 
enetc_num_stack_tx_queues(struct enetc_ndev_priv * priv)12 static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv)
13 {
14 	int num_tx_rings = priv->num_tx_rings;
15 	int i;
16 
17 	for (i = 0; i < priv->num_rx_rings; i++)
18 		if (priv->rx_ring[i]->xdp.prog)
19 			return num_tx_rings - num_possible_cpus();
20 
21 	return num_tx_rings;
22 }
23 
enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv * priv,struct enetc_bdr * tx_ring)24 static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv,
25 							struct enetc_bdr *tx_ring)
26 {
27 	int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring;
28 
29 	return priv->rx_ring[index];
30 }
31 
enetc_tx_swbd_get_skb(struct enetc_tx_swbd * tx_swbd)32 static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd)
33 {
34 	if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect)
35 		return NULL;
36 
37 	return tx_swbd->skb;
38 }
39 
40 static struct xdp_frame *
enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd * tx_swbd)41 enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd)
42 {
43 	if (tx_swbd->is_xdp_redirect)
44 		return tx_swbd->xdp_frame;
45 
46 	return NULL;
47 }
48 
enetc_unmap_tx_buff(struct enetc_bdr * tx_ring,struct enetc_tx_swbd * tx_swbd)49 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
50 				struct enetc_tx_swbd *tx_swbd)
51 {
52 	/* For XDP_TX, pages come from RX, whereas for the other contexts where
53 	 * we have is_dma_page_set, those come from skb_frag_dma_map. We need
54 	 * to match the DMA mapping length, so we need to differentiate those.
55 	 */
56 	if (tx_swbd->is_dma_page)
57 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
58 			       tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len,
59 			       tx_swbd->dir);
60 	else
61 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
62 				 tx_swbd->len, tx_swbd->dir);
63 	tx_swbd->dma = 0;
64 }
65 
enetc_free_tx_frame(struct enetc_bdr * tx_ring,struct enetc_tx_swbd * tx_swbd)66 static void enetc_free_tx_frame(struct enetc_bdr *tx_ring,
67 				struct enetc_tx_swbd *tx_swbd)
68 {
69 	struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
70 	struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
71 
72 	if (tx_swbd->dma)
73 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
74 
75 	if (xdp_frame) {
76 		xdp_return_frame(tx_swbd->xdp_frame);
77 		tx_swbd->xdp_frame = NULL;
78 	} else if (skb) {
79 		dev_kfree_skb_any(skb);
80 		tx_swbd->skb = NULL;
81 	}
82 }
83 
84 /* Let H/W know BD ring has been updated */
enetc_update_tx_ring_tail(struct enetc_bdr * tx_ring)85 static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring)
86 {
87 	/* includes wmb() */
88 	enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use);
89 }
90 
enetc_ptp_parse(struct sk_buff * skb,u8 * udp,u8 * msgtype,u8 * twostep,u16 * correction_offset,u16 * body_offset)91 static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp,
92 			   u8 *msgtype, u8 *twostep,
93 			   u16 *correction_offset, u16 *body_offset)
94 {
95 	unsigned int ptp_class;
96 	struct ptp_header *hdr;
97 	unsigned int type;
98 	u8 *base;
99 
100 	ptp_class = ptp_classify_raw(skb);
101 	if (ptp_class == PTP_CLASS_NONE)
102 		return -EINVAL;
103 
104 	hdr = ptp_parse_header(skb, ptp_class);
105 	if (!hdr)
106 		return -EINVAL;
107 
108 	type = ptp_class & PTP_CLASS_PMASK;
109 	if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6)
110 		*udp = 1;
111 	else
112 		*udp = 0;
113 
114 	*msgtype = ptp_get_msgtype(hdr, ptp_class);
115 	*twostep = hdr->flag_field[0] & 0x2;
116 
117 	base = skb_mac_header(skb);
118 	*correction_offset = (u8 *)&hdr->correction - base;
119 	*body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base;
120 
121 	return 0;
122 }
123 
enetc_map_tx_buffs(struct enetc_bdr * tx_ring,struct sk_buff * skb)124 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
125 {
126 	bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false;
127 	struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
128 	struct enetc_hw *hw = &priv->si->hw;
129 	struct enetc_tx_swbd *tx_swbd;
130 	int len = skb_headlen(skb);
131 	union enetc_tx_bd temp_bd;
132 	u8 msgtype, twostep, udp;
133 	union enetc_tx_bd *txbd;
134 	u16 offset1, offset2;
135 	int i, count = 0;
136 	skb_frag_t *frag;
137 	unsigned int f;
138 	dma_addr_t dma;
139 	u8 flags = 0;
140 
141 	i = tx_ring->next_to_use;
142 	txbd = ENETC_TXBD(*tx_ring, i);
143 	prefetchw(txbd);
144 
145 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
146 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
147 		goto dma_err;
148 
149 	temp_bd.addr = cpu_to_le64(dma);
150 	temp_bd.buf_len = cpu_to_le16(len);
151 	temp_bd.lstatus = 0;
152 
153 	tx_swbd = &tx_ring->tx_swbd[i];
154 	tx_swbd->dma = dma;
155 	tx_swbd->len = len;
156 	tx_swbd->is_dma_page = 0;
157 	tx_swbd->dir = DMA_TO_DEVICE;
158 	count++;
159 
160 	do_vlan = skb_vlan_tag_present(skb);
161 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
162 		if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1,
163 				    &offset2) ||
164 		    msgtype != PTP_MSGTYPE_SYNC || twostep)
165 			WARN_ONCE(1, "Bad packet for one-step timestamping\n");
166 		else
167 			do_onestep_tstamp = true;
168 	} else if (skb->cb[0] & ENETC_F_TX_TSTAMP) {
169 		do_twostep_tstamp = true;
170 	}
171 
172 	tx_swbd->do_twostep_tstamp = do_twostep_tstamp;
173 	tx_swbd->check_wb = tx_swbd->do_twostep_tstamp;
174 
175 	if (do_vlan || do_onestep_tstamp || do_twostep_tstamp)
176 		flags |= ENETC_TXBD_FLAGS_EX;
177 
178 	if (tx_ring->tsd_enable)
179 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
180 
181 	/* first BD needs frm_len and offload flags set */
182 	temp_bd.frm_len = cpu_to_le16(skb->len);
183 	temp_bd.flags = flags;
184 
185 	if (flags & ENETC_TXBD_FLAGS_TSE)
186 		temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns,
187 							  flags);
188 
189 	if (flags & ENETC_TXBD_FLAGS_EX) {
190 		u8 e_flags = 0;
191 		*txbd = temp_bd;
192 		enetc_clear_tx_bd(&temp_bd);
193 
194 		/* add extension BD for VLAN and/or timestamping */
195 		flags = 0;
196 		tx_swbd++;
197 		txbd++;
198 		i++;
199 		if (unlikely(i == tx_ring->bd_count)) {
200 			i = 0;
201 			tx_swbd = tx_ring->tx_swbd;
202 			txbd = ENETC_TXBD(*tx_ring, 0);
203 		}
204 		prefetchw(txbd);
205 
206 		if (do_vlan) {
207 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
208 			temp_bd.ext.tpid = 0; /* < C-TAG */
209 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
210 		}
211 
212 		if (do_onestep_tstamp) {
213 			u32 lo, hi, val;
214 			u64 sec, nsec;
215 			u8 *data;
216 
217 			lo = enetc_rd_hot(hw, ENETC_SICTR0);
218 			hi = enetc_rd_hot(hw, ENETC_SICTR1);
219 			sec = (u64)hi << 32 | lo;
220 			nsec = do_div(sec, 1000000000);
221 
222 			/* Configure extension BD */
223 			temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff);
224 			e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP;
225 
226 			/* Update originTimestamp field of Sync packet
227 			 * - 48 bits seconds field
228 			 * - 32 bits nanseconds field
229 			 */
230 			data = skb_mac_header(skb);
231 			*(__be16 *)(data + offset2) =
232 				htons((sec >> 32) & 0xffff);
233 			*(__be32 *)(data + offset2 + 2) =
234 				htonl(sec & 0xffffffff);
235 			*(__be32 *)(data + offset2 + 6) = htonl(nsec);
236 
237 			/* Configure single-step register */
238 			val = ENETC_PM0_SINGLE_STEP_EN;
239 			val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1);
240 			if (udp)
241 				val |= ENETC_PM0_SINGLE_STEP_CH;
242 
243 			enetc_port_wr(hw, ENETC_PM0_SINGLE_STEP, val);
244 			enetc_port_wr(hw, ENETC_PM1_SINGLE_STEP, val);
245 		} else if (do_twostep_tstamp) {
246 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
247 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
248 		}
249 
250 		temp_bd.ext.e_flags = e_flags;
251 		count++;
252 	}
253 
254 	frag = &skb_shinfo(skb)->frags[0];
255 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
256 		len = skb_frag_size(frag);
257 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
258 				       DMA_TO_DEVICE);
259 		if (dma_mapping_error(tx_ring->dev, dma))
260 			goto dma_err;
261 
262 		*txbd = temp_bd;
263 		enetc_clear_tx_bd(&temp_bd);
264 
265 		flags = 0;
266 		tx_swbd++;
267 		txbd++;
268 		i++;
269 		if (unlikely(i == tx_ring->bd_count)) {
270 			i = 0;
271 			tx_swbd = tx_ring->tx_swbd;
272 			txbd = ENETC_TXBD(*tx_ring, 0);
273 		}
274 		prefetchw(txbd);
275 
276 		temp_bd.addr = cpu_to_le64(dma);
277 		temp_bd.buf_len = cpu_to_le16(len);
278 
279 		tx_swbd->dma = dma;
280 		tx_swbd->len = len;
281 		tx_swbd->is_dma_page = 1;
282 		tx_swbd->dir = DMA_TO_DEVICE;
283 		count++;
284 	}
285 
286 	/* last BD needs 'F' bit set */
287 	flags |= ENETC_TXBD_FLAGS_F;
288 	temp_bd.flags = flags;
289 	*txbd = temp_bd;
290 
291 	tx_ring->tx_swbd[i].is_eof = true;
292 	tx_ring->tx_swbd[i].skb = skb;
293 
294 	enetc_bdr_idx_inc(tx_ring, &i);
295 	tx_ring->next_to_use = i;
296 
297 	skb_tx_timestamp(skb);
298 
299 	enetc_update_tx_ring_tail(tx_ring);
300 
301 	return count;
302 
303 dma_err:
304 	dev_err(tx_ring->dev, "DMA map error");
305 
306 	do {
307 		tx_swbd = &tx_ring->tx_swbd[i];
308 		enetc_free_tx_frame(tx_ring, tx_swbd);
309 		if (i == 0)
310 			i = tx_ring->bd_count;
311 		i--;
312 	} while (count--);
313 
314 	return 0;
315 }
316 
enetc_start_xmit(struct sk_buff * skb,struct net_device * ndev)317 static netdev_tx_t enetc_start_xmit(struct sk_buff *skb,
318 				    struct net_device *ndev)
319 {
320 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
321 	struct enetc_bdr *tx_ring;
322 	int count;
323 
324 	/* Queue one-step Sync packet if already locked */
325 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
326 		if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS,
327 					  &priv->flags)) {
328 			skb_queue_tail(&priv->tx_skbs, skb);
329 			return NETDEV_TX_OK;
330 		}
331 	}
332 
333 	tx_ring = priv->tx_ring[skb->queue_mapping];
334 
335 	if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
336 		if (unlikely(skb_linearize(skb)))
337 			goto drop_packet_err;
338 
339 	count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
340 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
341 		netif_stop_subqueue(ndev, tx_ring->index);
342 		return NETDEV_TX_BUSY;
343 	}
344 
345 	enetc_lock_mdio();
346 	count = enetc_map_tx_buffs(tx_ring, skb);
347 	enetc_unlock_mdio();
348 
349 	if (unlikely(!count))
350 		goto drop_packet_err;
351 
352 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
353 		netif_stop_subqueue(ndev, tx_ring->index);
354 
355 	return NETDEV_TX_OK;
356 
357 drop_packet_err:
358 	dev_kfree_skb_any(skb);
359 	return NETDEV_TX_OK;
360 }
361 
enetc_xmit(struct sk_buff * skb,struct net_device * ndev)362 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
363 {
364 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
365 	u8 udp, msgtype, twostep;
366 	u16 offset1, offset2;
367 
368 	/* Mark tx timestamp type on skb->cb[0] if requires */
369 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
370 	    (priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) {
371 		skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK;
372 	} else {
373 		skb->cb[0] = 0;
374 	}
375 
376 	/* Fall back to two-step timestamp if not one-step Sync packet */
377 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
378 		if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep,
379 				    &offset1, &offset2) ||
380 		    msgtype != PTP_MSGTYPE_SYNC || twostep != 0)
381 			skb->cb[0] = ENETC_F_TX_TSTAMP;
382 	}
383 
384 	return enetc_start_xmit(skb, ndev);
385 }
386 
enetc_msix(int irq,void * data)387 static irqreturn_t enetc_msix(int irq, void *data)
388 {
389 	struct enetc_int_vector	*v = data;
390 	int i;
391 
392 	enetc_lock_mdio();
393 
394 	/* disable interrupts */
395 	enetc_wr_reg_hot(v->rbier, 0);
396 	enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
397 
398 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
399 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
400 
401 	enetc_unlock_mdio();
402 
403 	napi_schedule(&v->napi);
404 
405 	return IRQ_HANDLED;
406 }
407 
enetc_rx_dim_work(struct work_struct * w)408 static void enetc_rx_dim_work(struct work_struct *w)
409 {
410 	struct dim *dim = container_of(w, struct dim, work);
411 	struct dim_cq_moder moder =
412 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
413 	struct enetc_int_vector	*v =
414 		container_of(dim, struct enetc_int_vector, rx_dim);
415 
416 	v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
417 	dim->state = DIM_START_MEASURE;
418 }
419 
enetc_rx_net_dim(struct enetc_int_vector * v)420 static void enetc_rx_net_dim(struct enetc_int_vector *v)
421 {
422 	struct dim_sample dim_sample;
423 
424 	v->comp_cnt++;
425 
426 	if (!v->rx_napi_work)
427 		return;
428 
429 	dim_update_sample(v->comp_cnt,
430 			  v->rx_ring.stats.packets,
431 			  v->rx_ring.stats.bytes,
432 			  &dim_sample);
433 	net_dim(&v->rx_dim, dim_sample);
434 }
435 
enetc_bd_ready_count(struct enetc_bdr * tx_ring,int ci)436 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
437 {
438 	int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
439 
440 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
441 }
442 
enetc_page_reusable(struct page * page)443 static bool enetc_page_reusable(struct page *page)
444 {
445 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
446 }
447 
enetc_reuse_page(struct enetc_bdr * rx_ring,struct enetc_rx_swbd * old)448 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
449 			     struct enetc_rx_swbd *old)
450 {
451 	struct enetc_rx_swbd *new;
452 
453 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
454 
455 	/* next buf that may reuse a page */
456 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
457 
458 	/* copy page reference */
459 	*new = *old;
460 }
461 
enetc_get_tx_tstamp(struct enetc_hw * hw,union enetc_tx_bd * txbd,u64 * tstamp)462 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
463 				u64 *tstamp)
464 {
465 	u32 lo, hi, tstamp_lo;
466 
467 	lo = enetc_rd_hot(hw, ENETC_SICTR0);
468 	hi = enetc_rd_hot(hw, ENETC_SICTR1);
469 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
470 	if (lo <= tstamp_lo)
471 		hi -= 1;
472 	*tstamp = (u64)hi << 32 | tstamp_lo;
473 }
474 
enetc_tstamp_tx(struct sk_buff * skb,u64 tstamp)475 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
476 {
477 	struct skb_shared_hwtstamps shhwtstamps;
478 
479 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
480 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
481 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
482 		skb_txtime_consumed(skb);
483 		skb_tstamp_tx(skb, &shhwtstamps);
484 	}
485 }
486 
enetc_recycle_xdp_tx_buff(struct enetc_bdr * tx_ring,struct enetc_tx_swbd * tx_swbd)487 static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring,
488 				      struct enetc_tx_swbd *tx_swbd)
489 {
490 	struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
491 	struct enetc_rx_swbd rx_swbd = {
492 		.dma = tx_swbd->dma,
493 		.page = tx_swbd->page,
494 		.page_offset = tx_swbd->page_offset,
495 		.dir = tx_swbd->dir,
496 		.len = tx_swbd->len,
497 	};
498 	struct enetc_bdr *rx_ring;
499 
500 	rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring);
501 
502 	if (likely(enetc_swbd_unused(rx_ring))) {
503 		enetc_reuse_page(rx_ring, &rx_swbd);
504 
505 		/* sync for use by the device */
506 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma,
507 						 rx_swbd.page_offset,
508 						 ENETC_RXB_DMA_SIZE_XDP,
509 						 rx_swbd.dir);
510 
511 		rx_ring->stats.recycles++;
512 	} else {
513 		/* RX ring is already full, we need to unmap and free the
514 		 * page, since there's nothing useful we can do with it.
515 		 */
516 		rx_ring->stats.recycle_failures++;
517 
518 		dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE,
519 			       rx_swbd.dir);
520 		__free_page(rx_swbd.page);
521 	}
522 
523 	rx_ring->xdp.xdp_tx_in_flight--;
524 }
525 
enetc_clean_tx_ring(struct enetc_bdr * tx_ring,int napi_budget)526 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
527 {
528 	struct net_device *ndev = tx_ring->ndev;
529 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
530 	int tx_frm_cnt = 0, tx_byte_cnt = 0;
531 	struct enetc_tx_swbd *tx_swbd;
532 	int i, bds_to_clean;
533 	bool do_twostep_tstamp;
534 	u64 tstamp = 0;
535 
536 	i = tx_ring->next_to_clean;
537 	tx_swbd = &tx_ring->tx_swbd[i];
538 
539 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
540 
541 	do_twostep_tstamp = false;
542 
543 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
544 		struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
545 		struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
546 		bool is_eof = tx_swbd->is_eof;
547 
548 		if (unlikely(tx_swbd->check_wb)) {
549 			struct enetc_ndev_priv *priv = netdev_priv(ndev);
550 			union enetc_tx_bd *txbd;
551 
552 			txbd = ENETC_TXBD(*tx_ring, i);
553 
554 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
555 			    tx_swbd->do_twostep_tstamp) {
556 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
557 						    &tstamp);
558 				do_twostep_tstamp = true;
559 			}
560 		}
561 
562 		if (tx_swbd->is_xdp_tx)
563 			enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd);
564 		else if (likely(tx_swbd->dma))
565 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
566 
567 		if (xdp_frame) {
568 			xdp_return_frame(xdp_frame);
569 		} else if (skb) {
570 			if (unlikely(tx_swbd->skb->cb[0] &
571 				     ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) {
572 				/* Start work to release lock for next one-step
573 				 * timestamping packet. And send one skb in
574 				 * tx_skbs queue if has.
575 				 */
576 				schedule_work(&priv->tx_onestep_tstamp);
577 			} else if (unlikely(do_twostep_tstamp)) {
578 				enetc_tstamp_tx(skb, tstamp);
579 				do_twostep_tstamp = false;
580 			}
581 			napi_consume_skb(skb, napi_budget);
582 		}
583 
584 		tx_byte_cnt += tx_swbd->len;
585 		/* Scrub the swbd here so we don't have to do that
586 		 * when we reuse it during xmit
587 		 */
588 		memset(tx_swbd, 0, sizeof(*tx_swbd));
589 
590 		bds_to_clean--;
591 		tx_swbd++;
592 		i++;
593 		if (unlikely(i == tx_ring->bd_count)) {
594 			i = 0;
595 			tx_swbd = tx_ring->tx_swbd;
596 		}
597 
598 		/* BD iteration loop end */
599 		if (is_eof) {
600 			tx_frm_cnt++;
601 			/* re-arm interrupt source */
602 			enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
603 					 BIT(16 + tx_ring->index));
604 		}
605 
606 		if (unlikely(!bds_to_clean))
607 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
608 	}
609 
610 	tx_ring->next_to_clean = i;
611 	tx_ring->stats.packets += tx_frm_cnt;
612 	tx_ring->stats.bytes += tx_byte_cnt;
613 
614 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
615 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
616 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
617 		netif_wake_subqueue(ndev, tx_ring->index);
618 	}
619 
620 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
621 }
622 
enetc_new_page(struct enetc_bdr * rx_ring,struct enetc_rx_swbd * rx_swbd)623 static bool enetc_new_page(struct enetc_bdr *rx_ring,
624 			   struct enetc_rx_swbd *rx_swbd)
625 {
626 	bool xdp = !!(rx_ring->xdp.prog);
627 	struct page *page;
628 	dma_addr_t addr;
629 
630 	page = dev_alloc_page();
631 	if (unlikely(!page))
632 		return false;
633 
634 	/* For XDP_TX, we forgo dma_unmap -> dma_map */
635 	rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
636 
637 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir);
638 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
639 		__free_page(page);
640 
641 		return false;
642 	}
643 
644 	rx_swbd->dma = addr;
645 	rx_swbd->page = page;
646 	rx_swbd->page_offset = rx_ring->buffer_offset;
647 
648 	return true;
649 }
650 
enetc_refill_rx_ring(struct enetc_bdr * rx_ring,const int buff_cnt)651 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
652 {
653 	struct enetc_rx_swbd *rx_swbd;
654 	union enetc_rx_bd *rxbd;
655 	int i, j;
656 
657 	i = rx_ring->next_to_use;
658 	rx_swbd = &rx_ring->rx_swbd[i];
659 	rxbd = enetc_rxbd(rx_ring, i);
660 
661 	for (j = 0; j < buff_cnt; j++) {
662 		/* try reuse page */
663 		if (unlikely(!rx_swbd->page)) {
664 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
665 				rx_ring->stats.rx_alloc_errs++;
666 				break;
667 			}
668 		}
669 
670 		/* update RxBD */
671 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
672 					   rx_swbd->page_offset);
673 		/* clear 'R" as well */
674 		rxbd->r.lstatus = 0;
675 
676 		enetc_rxbd_next(rx_ring, &rxbd, &i);
677 		rx_swbd = &rx_ring->rx_swbd[i];
678 	}
679 
680 	if (likely(j)) {
681 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
682 		rx_ring->next_to_use = i;
683 
684 		/* update ENETC's consumer index */
685 		enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
686 	}
687 
688 	return j;
689 }
690 
691 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
enetc_get_rx_tstamp(struct net_device * ndev,union enetc_rx_bd * rxbd,struct sk_buff * skb)692 static void enetc_get_rx_tstamp(struct net_device *ndev,
693 				union enetc_rx_bd *rxbd,
694 				struct sk_buff *skb)
695 {
696 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
697 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
698 	struct enetc_hw *hw = &priv->si->hw;
699 	u32 lo, hi, tstamp_lo;
700 	u64 tstamp;
701 
702 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
703 		lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
704 		hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
705 		rxbd = enetc_rxbd_ext(rxbd);
706 		tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
707 		if (lo <= tstamp_lo)
708 			hi -= 1;
709 
710 		tstamp = (u64)hi << 32 | tstamp_lo;
711 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
712 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
713 	}
714 }
715 #endif
716 
enetc_get_offloads(struct enetc_bdr * rx_ring,union enetc_rx_bd * rxbd,struct sk_buff * skb)717 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
718 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
719 {
720 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
721 
722 	/* TODO: hashing */
723 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
724 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
725 
726 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
727 		skb->ip_summed = CHECKSUM_COMPLETE;
728 	}
729 
730 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
731 		__be16 tpid = 0;
732 
733 		switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
734 		case 0:
735 			tpid = htons(ETH_P_8021Q);
736 			break;
737 		case 1:
738 			tpid = htons(ETH_P_8021AD);
739 			break;
740 		case 2:
741 			tpid = htons(enetc_port_rd(&priv->si->hw,
742 						   ENETC_PCVLANR1));
743 			break;
744 		case 3:
745 			tpid = htons(enetc_port_rd(&priv->si->hw,
746 						   ENETC_PCVLANR2));
747 			break;
748 		default:
749 			break;
750 		}
751 
752 		__vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
753 	}
754 
755 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
756 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
757 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
758 #endif
759 }
760 
761 /* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS,
762  * so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL
763  * mapped buffers.
764  */
enetc_get_rx_buff(struct enetc_bdr * rx_ring,int i,u16 size)765 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
766 					       int i, u16 size)
767 {
768 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
769 
770 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
771 				      rx_swbd->page_offset,
772 				      size, rx_swbd->dir);
773 	return rx_swbd;
774 }
775 
776 /* Reuse the current page without performing half-page buffer flipping */
enetc_put_rx_buff(struct enetc_bdr * rx_ring,struct enetc_rx_swbd * rx_swbd)777 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
778 			      struct enetc_rx_swbd *rx_swbd)
779 {
780 	size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset;
781 
782 	enetc_reuse_page(rx_ring, rx_swbd);
783 
784 	dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
785 					 rx_swbd->page_offset,
786 					 buffer_size, rx_swbd->dir);
787 
788 	rx_swbd->page = NULL;
789 }
790 
791 /* Reuse the current page by performing half-page buffer flipping */
enetc_flip_rx_buff(struct enetc_bdr * rx_ring,struct enetc_rx_swbd * rx_swbd)792 static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring,
793 			       struct enetc_rx_swbd *rx_swbd)
794 {
795 	if (likely(enetc_page_reusable(rx_swbd->page))) {
796 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
797 		page_ref_inc(rx_swbd->page);
798 
799 		enetc_put_rx_buff(rx_ring, rx_swbd);
800 	} else {
801 		dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
802 			       rx_swbd->dir);
803 		rx_swbd->page = NULL;
804 	}
805 }
806 
enetc_map_rx_buff_to_skb(struct enetc_bdr * rx_ring,int i,u16 size)807 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
808 						int i, u16 size)
809 {
810 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
811 	struct sk_buff *skb;
812 	void *ba;
813 
814 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
815 	skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE);
816 	if (unlikely(!skb)) {
817 		rx_ring->stats.rx_alloc_errs++;
818 		return NULL;
819 	}
820 
821 	skb_reserve(skb, rx_ring->buffer_offset);
822 	__skb_put(skb, size);
823 
824 	enetc_flip_rx_buff(rx_ring, rx_swbd);
825 
826 	return skb;
827 }
828 
enetc_add_rx_buff_to_skb(struct enetc_bdr * rx_ring,int i,u16 size,struct sk_buff * skb)829 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
830 				     u16 size, struct sk_buff *skb)
831 {
832 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
833 
834 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
835 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
836 
837 	enetc_flip_rx_buff(rx_ring, rx_swbd);
838 }
839 
enetc_check_bd_errors_and_consume(struct enetc_bdr * rx_ring,u32 bd_status,union enetc_rx_bd ** rxbd,int * i)840 static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring,
841 					      u32 bd_status,
842 					      union enetc_rx_bd **rxbd, int *i)
843 {
844 	if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))))
845 		return false;
846 
847 	enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
848 	enetc_rxbd_next(rx_ring, rxbd, i);
849 
850 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
851 		dma_rmb();
852 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
853 
854 		enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
855 		enetc_rxbd_next(rx_ring, rxbd, i);
856 	}
857 
858 	rx_ring->ndev->stats.rx_dropped++;
859 	rx_ring->ndev->stats.rx_errors++;
860 
861 	return true;
862 }
863 
enetc_build_skb(struct enetc_bdr * rx_ring,u32 bd_status,union enetc_rx_bd ** rxbd,int * i,int * cleaned_cnt,int buffer_size)864 static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring,
865 				       u32 bd_status, union enetc_rx_bd **rxbd,
866 				       int *i, int *cleaned_cnt, int buffer_size)
867 {
868 	struct sk_buff *skb;
869 	u16 size;
870 
871 	size = le16_to_cpu((*rxbd)->r.buf_len);
872 	skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size);
873 	if (!skb)
874 		return NULL;
875 
876 	enetc_get_offloads(rx_ring, *rxbd, skb);
877 
878 	(*cleaned_cnt)++;
879 
880 	enetc_rxbd_next(rx_ring, rxbd, i);
881 
882 	/* not last BD in frame? */
883 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
884 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
885 		size = buffer_size;
886 
887 		if (bd_status & ENETC_RXBD_LSTATUS_F) {
888 			dma_rmb();
889 			size = le16_to_cpu((*rxbd)->r.buf_len);
890 		}
891 
892 		enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb);
893 
894 		(*cleaned_cnt)++;
895 
896 		enetc_rxbd_next(rx_ring, rxbd, i);
897 	}
898 
899 	skb_record_rx_queue(skb, rx_ring->index);
900 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
901 
902 	return skb;
903 }
904 
905 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
906 
enetc_clean_rx_ring(struct enetc_bdr * rx_ring,struct napi_struct * napi,int work_limit)907 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
908 			       struct napi_struct *napi, int work_limit)
909 {
910 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
911 	int cleaned_cnt, i;
912 
913 	cleaned_cnt = enetc_bd_unused(rx_ring);
914 	/* next descriptor to process */
915 	i = rx_ring->next_to_clean;
916 
917 	while (likely(rx_frm_cnt < work_limit)) {
918 		union enetc_rx_bd *rxbd;
919 		struct sk_buff *skb;
920 		u32 bd_status;
921 
922 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE)
923 			cleaned_cnt -= enetc_refill_rx_ring(rx_ring,
924 							    cleaned_cnt);
925 
926 		rxbd = enetc_rxbd(rx_ring, i);
927 		bd_status = le32_to_cpu(rxbd->r.lstatus);
928 		if (!bd_status)
929 			break;
930 
931 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
932 		dma_rmb(); /* for reading other rxbd fields */
933 
934 		if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
935 						      &rxbd, &i))
936 			break;
937 
938 		skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i,
939 				      &cleaned_cnt, ENETC_RXB_DMA_SIZE);
940 		if (!skb)
941 			break;
942 
943 		rx_byte_cnt += skb->len;
944 		rx_frm_cnt++;
945 
946 		napi_gro_receive(napi, skb);
947 	}
948 
949 	rx_ring->next_to_clean = i;
950 
951 	rx_ring->stats.packets += rx_frm_cnt;
952 	rx_ring->stats.bytes += rx_byte_cnt;
953 
954 	return rx_frm_cnt;
955 }
956 
enetc_xdp_map_tx_buff(struct enetc_bdr * tx_ring,int i,struct enetc_tx_swbd * tx_swbd,int frm_len)957 static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i,
958 				  struct enetc_tx_swbd *tx_swbd,
959 				  int frm_len)
960 {
961 	union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
962 
963 	prefetchw(txbd);
964 
965 	enetc_clear_tx_bd(txbd);
966 	txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset);
967 	txbd->buf_len = cpu_to_le16(tx_swbd->len);
968 	txbd->frm_len = cpu_to_le16(frm_len);
969 
970 	memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd));
971 }
972 
973 /* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer
974  * descriptors.
975  */
enetc_xdp_tx(struct enetc_bdr * tx_ring,struct enetc_tx_swbd * xdp_tx_arr,int num_tx_swbd)976 static bool enetc_xdp_tx(struct enetc_bdr *tx_ring,
977 			 struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd)
978 {
979 	struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr;
980 	int i, k, frm_len = tmp_tx_swbd->len;
981 
982 	if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd)))
983 		return false;
984 
985 	while (unlikely(!tmp_tx_swbd->is_eof)) {
986 		tmp_tx_swbd++;
987 		frm_len += tmp_tx_swbd->len;
988 	}
989 
990 	i = tx_ring->next_to_use;
991 
992 	for (k = 0; k < num_tx_swbd; k++) {
993 		struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k];
994 
995 		enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len);
996 
997 		/* last BD needs 'F' bit set */
998 		if (xdp_tx_swbd->is_eof) {
999 			union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1000 
1001 			txbd->flags = ENETC_TXBD_FLAGS_F;
1002 		}
1003 
1004 		enetc_bdr_idx_inc(tx_ring, &i);
1005 	}
1006 
1007 	tx_ring->next_to_use = i;
1008 
1009 	return true;
1010 }
1011 
enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr * tx_ring,struct enetc_tx_swbd * xdp_tx_arr,struct xdp_frame * xdp_frame)1012 static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring,
1013 					  struct enetc_tx_swbd *xdp_tx_arr,
1014 					  struct xdp_frame *xdp_frame)
1015 {
1016 	struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0];
1017 	struct skb_shared_info *shinfo;
1018 	void *data = xdp_frame->data;
1019 	int len = xdp_frame->len;
1020 	skb_frag_t *frag;
1021 	dma_addr_t dma;
1022 	unsigned int f;
1023 	int n = 0;
1024 
1025 	dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1026 	if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1027 		netdev_err(tx_ring->ndev, "DMA map error\n");
1028 		return -1;
1029 	}
1030 
1031 	xdp_tx_swbd->dma = dma;
1032 	xdp_tx_swbd->dir = DMA_TO_DEVICE;
1033 	xdp_tx_swbd->len = len;
1034 	xdp_tx_swbd->is_xdp_redirect = true;
1035 	xdp_tx_swbd->is_eof = false;
1036 	xdp_tx_swbd->xdp_frame = NULL;
1037 
1038 	n++;
1039 	xdp_tx_swbd = &xdp_tx_arr[n];
1040 
1041 	shinfo = xdp_get_shared_info_from_frame(xdp_frame);
1042 
1043 	for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags;
1044 	     f++, frag++) {
1045 		data = skb_frag_address(frag);
1046 		len = skb_frag_size(frag);
1047 
1048 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1049 		if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1050 			/* Undo the DMA mapping for all fragments */
1051 			while (--n >= 0)
1052 				enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]);
1053 
1054 			netdev_err(tx_ring->ndev, "DMA map error\n");
1055 			return -1;
1056 		}
1057 
1058 		xdp_tx_swbd->dma = dma;
1059 		xdp_tx_swbd->dir = DMA_TO_DEVICE;
1060 		xdp_tx_swbd->len = len;
1061 		xdp_tx_swbd->is_xdp_redirect = true;
1062 		xdp_tx_swbd->is_eof = false;
1063 		xdp_tx_swbd->xdp_frame = NULL;
1064 
1065 		n++;
1066 		xdp_tx_swbd = &xdp_tx_arr[n];
1067 	}
1068 
1069 	xdp_tx_arr[n - 1].is_eof = true;
1070 	xdp_tx_arr[n - 1].xdp_frame = xdp_frame;
1071 
1072 	return n;
1073 }
1074 
enetc_xdp_xmit(struct net_device * ndev,int num_frames,struct xdp_frame ** frames,u32 flags)1075 int enetc_xdp_xmit(struct net_device *ndev, int num_frames,
1076 		   struct xdp_frame **frames, u32 flags)
1077 {
1078 	struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0};
1079 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1080 	struct enetc_bdr *tx_ring;
1081 	int xdp_tx_bd_cnt, i, k;
1082 	int xdp_tx_frm_cnt = 0;
1083 
1084 	enetc_lock_mdio();
1085 
1086 	tx_ring = priv->xdp_tx_ring[smp_processor_id()];
1087 
1088 	prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use));
1089 
1090 	for (k = 0; k < num_frames; k++) {
1091 		xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring,
1092 							       xdp_redirect_arr,
1093 							       frames[k]);
1094 		if (unlikely(xdp_tx_bd_cnt < 0))
1095 			break;
1096 
1097 		if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr,
1098 					   xdp_tx_bd_cnt))) {
1099 			for (i = 0; i < xdp_tx_bd_cnt; i++)
1100 				enetc_unmap_tx_buff(tx_ring,
1101 						    &xdp_redirect_arr[i]);
1102 			tx_ring->stats.xdp_tx_drops++;
1103 			break;
1104 		}
1105 
1106 		xdp_tx_frm_cnt++;
1107 	}
1108 
1109 	if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt))
1110 		enetc_update_tx_ring_tail(tx_ring);
1111 
1112 	tx_ring->stats.xdp_tx += xdp_tx_frm_cnt;
1113 
1114 	enetc_unlock_mdio();
1115 
1116 	return xdp_tx_frm_cnt;
1117 }
1118 
enetc_map_rx_buff_to_xdp(struct enetc_bdr * rx_ring,int i,struct xdp_buff * xdp_buff,u16 size)1119 static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1120 				     struct xdp_buff *xdp_buff, u16 size)
1121 {
1122 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1123 	void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset;
1124 	struct skb_shared_info *shinfo;
1125 
1126 	/* To be used for XDP_TX */
1127 	rx_swbd->len = size;
1128 
1129 	xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset,
1130 			 rx_ring->buffer_offset, size, false);
1131 
1132 	shinfo = xdp_get_shared_info_from_buff(xdp_buff);
1133 	shinfo->nr_frags = 0;
1134 }
1135 
enetc_add_rx_buff_to_xdp(struct enetc_bdr * rx_ring,int i,u16 size,struct xdp_buff * xdp_buff)1136 static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1137 				     u16 size, struct xdp_buff *xdp_buff)
1138 {
1139 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff);
1140 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1141 	skb_frag_t *frag = &shinfo->frags[shinfo->nr_frags];
1142 
1143 	/* To be used for XDP_TX */
1144 	rx_swbd->len = size;
1145 
1146 	skb_frag_off_set(frag, rx_swbd->page_offset);
1147 	skb_frag_size_set(frag, size);
1148 	__skb_frag_set_page(frag, rx_swbd->page);
1149 
1150 	shinfo->nr_frags++;
1151 }
1152 
enetc_build_xdp_buff(struct enetc_bdr * rx_ring,u32 bd_status,union enetc_rx_bd ** rxbd,int * i,int * cleaned_cnt,struct xdp_buff * xdp_buff)1153 static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status,
1154 				 union enetc_rx_bd **rxbd, int *i,
1155 				 int *cleaned_cnt, struct xdp_buff *xdp_buff)
1156 {
1157 	u16 size = le16_to_cpu((*rxbd)->r.buf_len);
1158 
1159 	xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq);
1160 
1161 	enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size);
1162 	(*cleaned_cnt)++;
1163 	enetc_rxbd_next(rx_ring, rxbd, i);
1164 
1165 	/* not last BD in frame? */
1166 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1167 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1168 		size = ENETC_RXB_DMA_SIZE_XDP;
1169 
1170 		if (bd_status & ENETC_RXBD_LSTATUS_F) {
1171 			dma_rmb();
1172 			size = le16_to_cpu((*rxbd)->r.buf_len);
1173 		}
1174 
1175 		enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff);
1176 		(*cleaned_cnt)++;
1177 		enetc_rxbd_next(rx_ring, rxbd, i);
1178 	}
1179 }
1180 
1181 /* Convert RX buffer descriptors to TX buffer descriptors. These will be
1182  * recycled back into the RX ring in enetc_clean_tx_ring.
1183  */
enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd * xdp_tx_arr,struct enetc_bdr * rx_ring,int rx_ring_first,int rx_ring_last)1184 static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr,
1185 					struct enetc_bdr *rx_ring,
1186 					int rx_ring_first, int rx_ring_last)
1187 {
1188 	int n = 0;
1189 
1190 	for (; rx_ring_first != rx_ring_last;
1191 	     n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) {
1192 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
1193 		struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n];
1194 
1195 		/* No need to dma_map, we already have DMA_BIDIRECTIONAL */
1196 		tx_swbd->dma = rx_swbd->dma;
1197 		tx_swbd->dir = rx_swbd->dir;
1198 		tx_swbd->page = rx_swbd->page;
1199 		tx_swbd->page_offset = rx_swbd->page_offset;
1200 		tx_swbd->len = rx_swbd->len;
1201 		tx_swbd->is_dma_page = true;
1202 		tx_swbd->is_xdp_tx = true;
1203 		tx_swbd->is_eof = false;
1204 	}
1205 
1206 	/* We rely on caller providing an rx_ring_last > rx_ring_first */
1207 	xdp_tx_arr[n - 1].is_eof = true;
1208 
1209 	return n;
1210 }
1211 
enetc_xdp_drop(struct enetc_bdr * rx_ring,int rx_ring_first,int rx_ring_last)1212 static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first,
1213 			   int rx_ring_last)
1214 {
1215 	while (rx_ring_first != rx_ring_last) {
1216 		enetc_put_rx_buff(rx_ring,
1217 				  &rx_ring->rx_swbd[rx_ring_first]);
1218 		enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
1219 	}
1220 	rx_ring->stats.xdp_drops++;
1221 }
1222 
enetc_xdp_free(struct enetc_bdr * rx_ring,int rx_ring_first,int rx_ring_last)1223 static void enetc_xdp_free(struct enetc_bdr *rx_ring, int rx_ring_first,
1224 			   int rx_ring_last)
1225 {
1226 	while (rx_ring_first != rx_ring_last) {
1227 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
1228 
1229 		if (rx_swbd->page) {
1230 			dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1231 				       rx_swbd->dir);
1232 			__free_page(rx_swbd->page);
1233 			rx_swbd->page = NULL;
1234 		}
1235 		enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
1236 	}
1237 	rx_ring->stats.xdp_redirect_failures++;
1238 }
1239 
enetc_clean_rx_ring_xdp(struct enetc_bdr * rx_ring,struct napi_struct * napi,int work_limit,struct bpf_prog * prog)1240 static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring,
1241 				   struct napi_struct *napi, int work_limit,
1242 				   struct bpf_prog *prog)
1243 {
1244 	int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0;
1245 	struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0};
1246 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
1247 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
1248 	struct enetc_bdr *tx_ring;
1249 	int cleaned_cnt, i;
1250 	u32 xdp_act;
1251 
1252 	cleaned_cnt = enetc_bd_unused(rx_ring);
1253 	/* next descriptor to process */
1254 	i = rx_ring->next_to_clean;
1255 
1256 	while (likely(rx_frm_cnt < work_limit)) {
1257 		union enetc_rx_bd *rxbd, *orig_rxbd;
1258 		int orig_i, orig_cleaned_cnt;
1259 		struct xdp_buff xdp_buff;
1260 		struct sk_buff *skb;
1261 		int tmp_orig_i, err;
1262 		u32 bd_status;
1263 
1264 		rxbd = enetc_rxbd(rx_ring, i);
1265 		bd_status = le32_to_cpu(rxbd->r.lstatus);
1266 		if (!bd_status)
1267 			break;
1268 
1269 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1270 		dma_rmb(); /* for reading other rxbd fields */
1271 
1272 		if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1273 						      &rxbd, &i))
1274 			break;
1275 
1276 		orig_rxbd = rxbd;
1277 		orig_cleaned_cnt = cleaned_cnt;
1278 		orig_i = i;
1279 
1280 		enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i,
1281 				     &cleaned_cnt, &xdp_buff);
1282 
1283 		xdp_act = bpf_prog_run_xdp(prog, &xdp_buff);
1284 
1285 		switch (xdp_act) {
1286 		default:
1287 			bpf_warn_invalid_xdp_action(xdp_act);
1288 			fallthrough;
1289 		case XDP_ABORTED:
1290 			trace_xdp_exception(rx_ring->ndev, prog, xdp_act);
1291 			fallthrough;
1292 		case XDP_DROP:
1293 			enetc_xdp_drop(rx_ring, orig_i, i);
1294 			break;
1295 		case XDP_PASS:
1296 			rxbd = orig_rxbd;
1297 			cleaned_cnt = orig_cleaned_cnt;
1298 			i = orig_i;
1299 
1300 			skb = enetc_build_skb(rx_ring, bd_status, &rxbd,
1301 					      &i, &cleaned_cnt,
1302 					      ENETC_RXB_DMA_SIZE_XDP);
1303 			if (unlikely(!skb))
1304 				goto out;
1305 
1306 			napi_gro_receive(napi, skb);
1307 			break;
1308 		case XDP_TX:
1309 			tx_ring = priv->xdp_tx_ring[rx_ring->index];
1310 			xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr,
1311 								     rx_ring,
1312 								     orig_i, i);
1313 
1314 			if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) {
1315 				enetc_xdp_drop(rx_ring, orig_i, i);
1316 				tx_ring->stats.xdp_tx_drops++;
1317 			} else {
1318 				tx_ring->stats.xdp_tx += xdp_tx_bd_cnt;
1319 				rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt;
1320 				xdp_tx_frm_cnt++;
1321 				/* The XDP_TX enqueue was successful, so we
1322 				 * need to scrub the RX software BDs because
1323 				 * the ownership of the buffers no longer
1324 				 * belongs to the RX ring, and we must prevent
1325 				 * enetc_refill_rx_ring() from reusing
1326 				 * rx_swbd->page.
1327 				 */
1328 				while (orig_i != i) {
1329 					rx_ring->rx_swbd[orig_i].page = NULL;
1330 					enetc_bdr_idx_inc(rx_ring, &orig_i);
1331 				}
1332 			}
1333 			break;
1334 		case XDP_REDIRECT:
1335 			/* xdp_return_frame does not support S/G in the sense
1336 			 * that it leaks the fragments (__xdp_return should not
1337 			 * call page_frag_free only for the initial buffer).
1338 			 * Until XDP_REDIRECT gains support for S/G let's keep
1339 			 * the code structure in place, but dead. We drop the
1340 			 * S/G frames ourselves to avoid memory leaks which
1341 			 * would otherwise leave the kernel OOM.
1342 			 */
1343 			if (unlikely(cleaned_cnt - orig_cleaned_cnt != 1)) {
1344 				enetc_xdp_drop(rx_ring, orig_i, i);
1345 				rx_ring->stats.xdp_redirect_sg++;
1346 				break;
1347 			}
1348 
1349 			tmp_orig_i = orig_i;
1350 
1351 			while (orig_i != i) {
1352 				enetc_flip_rx_buff(rx_ring,
1353 						   &rx_ring->rx_swbd[orig_i]);
1354 				enetc_bdr_idx_inc(rx_ring, &orig_i);
1355 			}
1356 
1357 			err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog);
1358 			if (unlikely(err)) {
1359 				enetc_xdp_free(rx_ring, tmp_orig_i, i);
1360 			} else {
1361 				xdp_redirect_frm_cnt++;
1362 				rx_ring->stats.xdp_redirect++;
1363 			}
1364 		}
1365 
1366 		rx_frm_cnt++;
1367 	}
1368 
1369 out:
1370 	rx_ring->next_to_clean = i;
1371 
1372 	rx_ring->stats.packets += rx_frm_cnt;
1373 	rx_ring->stats.bytes += rx_byte_cnt;
1374 
1375 	if (xdp_redirect_frm_cnt)
1376 		xdp_do_flush_map();
1377 
1378 	if (xdp_tx_frm_cnt)
1379 		enetc_update_tx_ring_tail(tx_ring);
1380 
1381 	if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight)
1382 		enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) -
1383 				     rx_ring->xdp.xdp_tx_in_flight);
1384 
1385 	return rx_frm_cnt;
1386 }
1387 
enetc_poll(struct napi_struct * napi,int budget)1388 static int enetc_poll(struct napi_struct *napi, int budget)
1389 {
1390 	struct enetc_int_vector
1391 		*v = container_of(napi, struct enetc_int_vector, napi);
1392 	struct enetc_bdr *rx_ring = &v->rx_ring;
1393 	struct bpf_prog *prog;
1394 	bool complete = true;
1395 	int work_done;
1396 	int i;
1397 
1398 	enetc_lock_mdio();
1399 
1400 	for (i = 0; i < v->count_tx_rings; i++)
1401 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
1402 			complete = false;
1403 
1404 	prog = rx_ring->xdp.prog;
1405 	if (prog)
1406 		work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog);
1407 	else
1408 		work_done = enetc_clean_rx_ring(rx_ring, napi, budget);
1409 	if (work_done == budget)
1410 		complete = false;
1411 	if (work_done)
1412 		v->rx_napi_work = true;
1413 
1414 	if (!complete) {
1415 		enetc_unlock_mdio();
1416 		return budget;
1417 	}
1418 
1419 	napi_complete_done(napi, work_done);
1420 
1421 	if (likely(v->rx_dim_en))
1422 		enetc_rx_net_dim(v);
1423 
1424 	v->rx_napi_work = false;
1425 
1426 	/* enable interrupts */
1427 	enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
1428 
1429 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
1430 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
1431 				 ENETC_TBIER_TXTIE);
1432 
1433 	enetc_unlock_mdio();
1434 
1435 	return work_done;
1436 }
1437 
1438 /* Probing and Init */
1439 #define ENETC_MAX_RFS_SIZE 64
enetc_get_si_caps(struct enetc_si * si)1440 void enetc_get_si_caps(struct enetc_si *si)
1441 {
1442 	struct enetc_hw *hw = &si->hw;
1443 	u32 val;
1444 
1445 	/* find out how many of various resources we have to work with */
1446 	val = enetc_rd(hw, ENETC_SICAPR0);
1447 	si->num_rx_rings = (val >> 16) & 0xff;
1448 	si->num_tx_rings = val & 0xff;
1449 
1450 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
1451 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
1452 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
1453 
1454 	si->num_rss = 0;
1455 	val = enetc_rd(hw, ENETC_SIPCAPR0);
1456 	if (val & ENETC_SIPCAPR0_RSS) {
1457 		u32 rss;
1458 
1459 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
1460 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
1461 	}
1462 
1463 	if (val & ENETC_SIPCAPR0_QBV)
1464 		si->hw_features |= ENETC_SI_F_QBV;
1465 
1466 	if (val & ENETC_SIPCAPR0_PSFP)
1467 		si->hw_features |= ENETC_SI_F_PSFP;
1468 }
1469 
enetc_dma_alloc_bdr(struct enetc_bdr * r,size_t bd_size)1470 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
1471 {
1472 	r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
1473 					&r->bd_dma_base, GFP_KERNEL);
1474 	if (!r->bd_base)
1475 		return -ENOMEM;
1476 
1477 	/* h/w requires 128B alignment */
1478 	if (!IS_ALIGNED(r->bd_dma_base, 128)) {
1479 		dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
1480 				  r->bd_dma_base);
1481 		return -EINVAL;
1482 	}
1483 
1484 	return 0;
1485 }
1486 
enetc_alloc_txbdr(struct enetc_bdr * txr)1487 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
1488 {
1489 	int err;
1490 
1491 	txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
1492 	if (!txr->tx_swbd)
1493 		return -ENOMEM;
1494 
1495 	err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
1496 	if (err) {
1497 		vfree(txr->tx_swbd);
1498 		return err;
1499 	}
1500 
1501 	txr->next_to_clean = 0;
1502 	txr->next_to_use = 0;
1503 
1504 	return 0;
1505 }
1506 
enetc_free_txbdr(struct enetc_bdr * txr)1507 static void enetc_free_txbdr(struct enetc_bdr *txr)
1508 {
1509 	int size, i;
1510 
1511 	for (i = 0; i < txr->bd_count; i++)
1512 		enetc_free_tx_frame(txr, &txr->tx_swbd[i]);
1513 
1514 	size = txr->bd_count * sizeof(union enetc_tx_bd);
1515 
1516 	dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
1517 	txr->bd_base = NULL;
1518 
1519 	vfree(txr->tx_swbd);
1520 	txr->tx_swbd = NULL;
1521 }
1522 
enetc_alloc_tx_resources(struct enetc_ndev_priv * priv)1523 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
1524 {
1525 	int i, err;
1526 
1527 	for (i = 0; i < priv->num_tx_rings; i++) {
1528 		err = enetc_alloc_txbdr(priv->tx_ring[i]);
1529 
1530 		if (err)
1531 			goto fail;
1532 	}
1533 
1534 	return 0;
1535 
1536 fail:
1537 	while (i-- > 0)
1538 		enetc_free_txbdr(priv->tx_ring[i]);
1539 
1540 	return err;
1541 }
1542 
enetc_free_tx_resources(struct enetc_ndev_priv * priv)1543 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
1544 {
1545 	int i;
1546 
1547 	for (i = 0; i < priv->num_tx_rings; i++)
1548 		enetc_free_txbdr(priv->tx_ring[i]);
1549 }
1550 
enetc_alloc_rxbdr(struct enetc_bdr * rxr,bool extended)1551 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
1552 {
1553 	size_t size = sizeof(union enetc_rx_bd);
1554 	int err;
1555 
1556 	rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
1557 	if (!rxr->rx_swbd)
1558 		return -ENOMEM;
1559 
1560 	if (extended)
1561 		size *= 2;
1562 
1563 	err = enetc_dma_alloc_bdr(rxr, size);
1564 	if (err) {
1565 		vfree(rxr->rx_swbd);
1566 		return err;
1567 	}
1568 
1569 	rxr->next_to_clean = 0;
1570 	rxr->next_to_use = 0;
1571 	rxr->next_to_alloc = 0;
1572 	rxr->ext_en = extended;
1573 
1574 	return 0;
1575 }
1576 
enetc_free_rxbdr(struct enetc_bdr * rxr)1577 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
1578 {
1579 	int size;
1580 
1581 	size = rxr->bd_count * sizeof(union enetc_rx_bd);
1582 
1583 	dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
1584 	rxr->bd_base = NULL;
1585 
1586 	vfree(rxr->rx_swbd);
1587 	rxr->rx_swbd = NULL;
1588 }
1589 
enetc_alloc_rx_resources(struct enetc_ndev_priv * priv)1590 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
1591 {
1592 	bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
1593 	int i, err;
1594 
1595 	for (i = 0; i < priv->num_rx_rings; i++) {
1596 		err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
1597 
1598 		if (err)
1599 			goto fail;
1600 	}
1601 
1602 	return 0;
1603 
1604 fail:
1605 	while (i-- > 0)
1606 		enetc_free_rxbdr(priv->rx_ring[i]);
1607 
1608 	return err;
1609 }
1610 
enetc_free_rx_resources(struct enetc_ndev_priv * priv)1611 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
1612 {
1613 	int i;
1614 
1615 	for (i = 0; i < priv->num_rx_rings; i++)
1616 		enetc_free_rxbdr(priv->rx_ring[i]);
1617 }
1618 
enetc_free_tx_ring(struct enetc_bdr * tx_ring)1619 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
1620 {
1621 	int i;
1622 
1623 	if (!tx_ring->tx_swbd)
1624 		return;
1625 
1626 	for (i = 0; i < tx_ring->bd_count; i++) {
1627 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
1628 
1629 		enetc_free_tx_frame(tx_ring, tx_swbd);
1630 	}
1631 
1632 	tx_ring->next_to_clean = 0;
1633 	tx_ring->next_to_use = 0;
1634 }
1635 
enetc_free_rx_ring(struct enetc_bdr * rx_ring)1636 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
1637 {
1638 	int i;
1639 
1640 	if (!rx_ring->rx_swbd)
1641 		return;
1642 
1643 	for (i = 0; i < rx_ring->bd_count; i++) {
1644 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1645 
1646 		if (!rx_swbd->page)
1647 			continue;
1648 
1649 		dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1650 			       rx_swbd->dir);
1651 		__free_page(rx_swbd->page);
1652 		rx_swbd->page = NULL;
1653 	}
1654 
1655 	rx_ring->next_to_clean = 0;
1656 	rx_ring->next_to_use = 0;
1657 	rx_ring->next_to_alloc = 0;
1658 }
1659 
enetc_free_rxtx_rings(struct enetc_ndev_priv * priv)1660 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
1661 {
1662 	int i;
1663 
1664 	for (i = 0; i < priv->num_rx_rings; i++)
1665 		enetc_free_rx_ring(priv->rx_ring[i]);
1666 
1667 	for (i = 0; i < priv->num_tx_rings; i++)
1668 		enetc_free_tx_ring(priv->tx_ring[i]);
1669 }
1670 
enetc_setup_default_rss_table(struct enetc_si * si,int num_groups)1671 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1672 {
1673 	int *rss_table;
1674 	int i;
1675 
1676 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1677 	if (!rss_table)
1678 		return -ENOMEM;
1679 
1680 	/* Set up RSS table defaults */
1681 	for (i = 0; i < si->num_rss; i++)
1682 		rss_table[i] = i % num_groups;
1683 
1684 	enetc_set_rss_table(si, rss_table, si->num_rss);
1685 
1686 	kfree(rss_table);
1687 
1688 	return 0;
1689 }
1690 
enetc_configure_si(struct enetc_ndev_priv * priv)1691 int enetc_configure_si(struct enetc_ndev_priv *priv)
1692 {
1693 	struct enetc_si *si = priv->si;
1694 	struct enetc_hw *hw = &si->hw;
1695 	int err;
1696 
1697 	/* set SI cache attributes */
1698 	enetc_wr(hw, ENETC_SICAR0,
1699 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1700 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1701 	/* enable SI */
1702 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1703 
1704 	if (si->num_rss) {
1705 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1706 		if (err)
1707 			return err;
1708 	}
1709 
1710 	return 0;
1711 }
1712 
enetc_init_si_rings_params(struct enetc_ndev_priv * priv)1713 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1714 {
1715 	struct enetc_si *si = priv->si;
1716 	int cpus = num_online_cpus();
1717 
1718 	priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
1719 	priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
1720 
1721 	/* Enable all available TX rings in order to configure as many
1722 	 * priorities as possible, when needed.
1723 	 * TODO: Make # of TX rings run-time configurable
1724 	 */
1725 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1726 	priv->num_tx_rings = si->num_tx_rings;
1727 	priv->bdr_int_num = cpus;
1728 	priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
1729 	priv->tx_ictt = ENETC_TXIC_TIMETHR;
1730 }
1731 
enetc_alloc_si_resources(struct enetc_ndev_priv * priv)1732 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
1733 {
1734 	struct enetc_si *si = priv->si;
1735 
1736 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
1737 				  GFP_KERNEL);
1738 	if (!priv->cls_rules)
1739 		return -ENOMEM;
1740 
1741 	return 0;
1742 }
1743 
enetc_free_si_resources(struct enetc_ndev_priv * priv)1744 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
1745 {
1746 	kfree(priv->cls_rules);
1747 }
1748 
enetc_setup_txbdr(struct enetc_hw * hw,struct enetc_bdr * tx_ring)1749 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1750 {
1751 	int idx = tx_ring->index;
1752 	u32 tbmr;
1753 
1754 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
1755 		       lower_32_bits(tx_ring->bd_dma_base));
1756 
1757 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
1758 		       upper_32_bits(tx_ring->bd_dma_base));
1759 
1760 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
1761 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
1762 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
1763 
1764 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
1765 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
1766 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
1767 
1768 	/* enable Tx ints by setting pkt thr to 1 */
1769 	enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
1770 
1771 	tbmr = ENETC_TBMR_EN;
1772 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
1773 		tbmr |= ENETC_TBMR_VIH;
1774 
1775 	/* enable ring */
1776 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
1777 
1778 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
1779 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
1780 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
1781 }
1782 
enetc_setup_rxbdr(struct enetc_hw * hw,struct enetc_bdr * rx_ring)1783 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1784 {
1785 	int idx = rx_ring->index;
1786 	u32 rbmr;
1787 
1788 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
1789 		       lower_32_bits(rx_ring->bd_dma_base));
1790 
1791 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
1792 		       upper_32_bits(rx_ring->bd_dma_base));
1793 
1794 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
1795 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
1796 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
1797 
1798 	if (rx_ring->xdp.prog)
1799 		enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP);
1800 	else
1801 		enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
1802 
1803 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
1804 
1805 	/* enable Rx ints by setting pkt thr to 1 */
1806 	enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
1807 
1808 	rbmr = ENETC_RBMR_EN;
1809 
1810 	if (rx_ring->ext_en)
1811 		rbmr |= ENETC_RBMR_BDS;
1812 
1813 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1814 		rbmr |= ENETC_RBMR_VTE;
1815 
1816 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
1817 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
1818 
1819 	enetc_lock_mdio();
1820 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
1821 	enetc_unlock_mdio();
1822 
1823 	/* enable ring */
1824 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
1825 }
1826 
enetc_setup_bdrs(struct enetc_ndev_priv * priv)1827 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
1828 {
1829 	int i;
1830 
1831 	for (i = 0; i < priv->num_tx_rings; i++)
1832 		enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
1833 
1834 	for (i = 0; i < priv->num_rx_rings; i++)
1835 		enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1836 }
1837 
enetc_clear_rxbdr(struct enetc_hw * hw,struct enetc_bdr * rx_ring)1838 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1839 {
1840 	int idx = rx_ring->index;
1841 
1842 	/* disable EN bit on ring */
1843 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
1844 }
1845 
enetc_clear_txbdr(struct enetc_hw * hw,struct enetc_bdr * tx_ring)1846 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1847 {
1848 	int delay = 8, timeout = 100;
1849 	int idx = tx_ring->index;
1850 
1851 	/* disable EN bit on ring */
1852 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
1853 
1854 	/* wait for busy to clear */
1855 	while (delay < timeout &&
1856 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
1857 		msleep(delay);
1858 		delay *= 2;
1859 	}
1860 
1861 	if (delay >= timeout)
1862 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
1863 			    idx);
1864 }
1865 
enetc_clear_bdrs(struct enetc_ndev_priv * priv)1866 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
1867 {
1868 	int i;
1869 
1870 	for (i = 0; i < priv->num_tx_rings; i++)
1871 		enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
1872 
1873 	for (i = 0; i < priv->num_rx_rings; i++)
1874 		enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1875 
1876 	udelay(1);
1877 }
1878 
enetc_setup_irqs(struct enetc_ndev_priv * priv)1879 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
1880 {
1881 	struct pci_dev *pdev = priv->si->pdev;
1882 	cpumask_t cpu_mask;
1883 	int i, j, err;
1884 
1885 	for (i = 0; i < priv->bdr_int_num; i++) {
1886 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1887 		struct enetc_int_vector *v = priv->int_vector[i];
1888 		int entry = ENETC_BDR_INT_BASE_IDX + i;
1889 		struct enetc_hw *hw = &priv->si->hw;
1890 
1891 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
1892 			 priv->ndev->name, i);
1893 		err = request_irq(irq, enetc_msix, 0, v->name, v);
1894 		if (err) {
1895 			dev_err(priv->dev, "request_irq() failed!\n");
1896 			goto irq_err;
1897 		}
1898 		disable_irq(irq);
1899 
1900 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
1901 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
1902 		v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
1903 
1904 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
1905 
1906 		for (j = 0; j < v->count_tx_rings; j++) {
1907 			int idx = v->tx_ring[j].index;
1908 
1909 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
1910 		}
1911 		cpumask_clear(&cpu_mask);
1912 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
1913 		irq_set_affinity_hint(irq, &cpu_mask);
1914 	}
1915 
1916 	return 0;
1917 
1918 irq_err:
1919 	while (i--) {
1920 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1921 
1922 		irq_set_affinity_hint(irq, NULL);
1923 		free_irq(irq, priv->int_vector[i]);
1924 	}
1925 
1926 	return err;
1927 }
1928 
enetc_free_irqs(struct enetc_ndev_priv * priv)1929 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
1930 {
1931 	struct pci_dev *pdev = priv->si->pdev;
1932 	int i;
1933 
1934 	for (i = 0; i < priv->bdr_int_num; i++) {
1935 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1936 
1937 		irq_set_affinity_hint(irq, NULL);
1938 		free_irq(irq, priv->int_vector[i]);
1939 	}
1940 }
1941 
enetc_setup_interrupts(struct enetc_ndev_priv * priv)1942 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
1943 {
1944 	struct enetc_hw *hw = &priv->si->hw;
1945 	u32 icpt, ictt;
1946 	int i;
1947 
1948 	/* enable Tx & Rx event indication */
1949 	if (priv->ic_mode &
1950 	    (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
1951 		icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
1952 		/* init to non-0 minimum, will be adjusted later */
1953 		ictt = 0x1;
1954 	} else {
1955 		icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
1956 		ictt = 0;
1957 	}
1958 
1959 	for (i = 0; i < priv->num_rx_rings; i++) {
1960 		enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
1961 		enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
1962 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
1963 	}
1964 
1965 	if (priv->ic_mode & ENETC_IC_TX_MANUAL)
1966 		icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
1967 	else
1968 		icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
1969 
1970 	for (i = 0; i < priv->num_tx_rings; i++) {
1971 		enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
1972 		enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
1973 		enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
1974 	}
1975 }
1976 
enetc_clear_interrupts(struct enetc_ndev_priv * priv)1977 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
1978 {
1979 	int i;
1980 
1981 	for (i = 0; i < priv->num_tx_rings; i++)
1982 		enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
1983 
1984 	for (i = 0; i < priv->num_rx_rings; i++)
1985 		enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
1986 }
1987 
enetc_phylink_connect(struct net_device * ndev)1988 static int enetc_phylink_connect(struct net_device *ndev)
1989 {
1990 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1991 	struct ethtool_eee edata;
1992 	int err;
1993 
1994 	if (!priv->phylink)
1995 		return 0; /* phy-less mode */
1996 
1997 	err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
1998 	if (err) {
1999 		dev_err(&ndev->dev, "could not attach to PHY\n");
2000 		return err;
2001 	}
2002 
2003 	/* disable EEE autoneg, until ENETC driver supports it */
2004 	memset(&edata, 0, sizeof(struct ethtool_eee));
2005 	phylink_ethtool_set_eee(priv->phylink, &edata);
2006 
2007 	return 0;
2008 }
2009 
enetc_tx_onestep_tstamp(struct work_struct * work)2010 static void enetc_tx_onestep_tstamp(struct work_struct *work)
2011 {
2012 	struct enetc_ndev_priv *priv;
2013 	struct sk_buff *skb;
2014 
2015 	priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp);
2016 
2017 	netif_tx_lock(priv->ndev);
2018 
2019 	clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags);
2020 	skb = skb_dequeue(&priv->tx_skbs);
2021 	if (skb)
2022 		enetc_start_xmit(skb, priv->ndev);
2023 
2024 	netif_tx_unlock(priv->ndev);
2025 }
2026 
enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv * priv)2027 static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv)
2028 {
2029 	INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp);
2030 	skb_queue_head_init(&priv->tx_skbs);
2031 }
2032 
enetc_start(struct net_device * ndev)2033 void enetc_start(struct net_device *ndev)
2034 {
2035 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2036 	int i;
2037 
2038 	enetc_setup_interrupts(priv);
2039 
2040 	for (i = 0; i < priv->bdr_int_num; i++) {
2041 		int irq = pci_irq_vector(priv->si->pdev,
2042 					 ENETC_BDR_INT_BASE_IDX + i);
2043 
2044 		napi_enable(&priv->int_vector[i]->napi);
2045 		enable_irq(irq);
2046 	}
2047 
2048 	if (priv->phylink)
2049 		phylink_start(priv->phylink);
2050 	else
2051 		netif_carrier_on(ndev);
2052 
2053 	netif_tx_start_all_queues(ndev);
2054 }
2055 
enetc_open(struct net_device * ndev)2056 int enetc_open(struct net_device *ndev)
2057 {
2058 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2059 	int num_stack_tx_queues;
2060 	int err;
2061 
2062 	err = enetc_setup_irqs(priv);
2063 	if (err)
2064 		return err;
2065 
2066 	err = enetc_phylink_connect(ndev);
2067 	if (err)
2068 		goto err_phy_connect;
2069 
2070 	err = enetc_alloc_tx_resources(priv);
2071 	if (err)
2072 		goto err_alloc_tx;
2073 
2074 	err = enetc_alloc_rx_resources(priv);
2075 	if (err)
2076 		goto err_alloc_rx;
2077 
2078 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2079 
2080 	err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2081 	if (err)
2082 		goto err_set_queues;
2083 
2084 	err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
2085 	if (err)
2086 		goto err_set_queues;
2087 
2088 	enetc_tx_onestep_tstamp_init(priv);
2089 	enetc_setup_bdrs(priv);
2090 	enetc_start(ndev);
2091 
2092 	return 0;
2093 
2094 err_set_queues:
2095 	enetc_free_rx_resources(priv);
2096 err_alloc_rx:
2097 	enetc_free_tx_resources(priv);
2098 err_alloc_tx:
2099 	if (priv->phylink)
2100 		phylink_disconnect_phy(priv->phylink);
2101 err_phy_connect:
2102 	enetc_free_irqs(priv);
2103 
2104 	return err;
2105 }
2106 
enetc_stop(struct net_device * ndev)2107 void enetc_stop(struct net_device *ndev)
2108 {
2109 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2110 	int i;
2111 
2112 	netif_tx_stop_all_queues(ndev);
2113 
2114 	for (i = 0; i < priv->bdr_int_num; i++) {
2115 		int irq = pci_irq_vector(priv->si->pdev,
2116 					 ENETC_BDR_INT_BASE_IDX + i);
2117 
2118 		disable_irq(irq);
2119 		napi_synchronize(&priv->int_vector[i]->napi);
2120 		napi_disable(&priv->int_vector[i]->napi);
2121 	}
2122 
2123 	if (priv->phylink)
2124 		phylink_stop(priv->phylink);
2125 	else
2126 		netif_carrier_off(ndev);
2127 
2128 	enetc_clear_interrupts(priv);
2129 }
2130 
enetc_close(struct net_device * ndev)2131 int enetc_close(struct net_device *ndev)
2132 {
2133 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2134 
2135 	enetc_stop(ndev);
2136 	enetc_clear_bdrs(priv);
2137 
2138 	if (priv->phylink)
2139 		phylink_disconnect_phy(priv->phylink);
2140 	enetc_free_rxtx_rings(priv);
2141 	enetc_free_rx_resources(priv);
2142 	enetc_free_tx_resources(priv);
2143 	enetc_free_irqs(priv);
2144 
2145 	return 0;
2146 }
2147 
enetc_setup_tc_mqprio(struct net_device * ndev,void * type_data)2148 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
2149 {
2150 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2151 	struct tc_mqprio_qopt *mqprio = type_data;
2152 	struct enetc_bdr *tx_ring;
2153 	int num_stack_tx_queues;
2154 	u8 num_tc;
2155 	int i;
2156 
2157 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2158 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
2159 	num_tc = mqprio->num_tc;
2160 
2161 	if (!num_tc) {
2162 		netdev_reset_tc(ndev);
2163 		netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2164 
2165 		/* Reset all ring priorities to 0 */
2166 		for (i = 0; i < priv->num_tx_rings; i++) {
2167 			tx_ring = priv->tx_ring[i];
2168 			enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
2169 		}
2170 
2171 		return 0;
2172 	}
2173 
2174 	/* Check if we have enough BD rings available to accommodate all TCs */
2175 	if (num_tc > num_stack_tx_queues) {
2176 		netdev_err(ndev, "Max %d traffic classes supported\n",
2177 			   priv->num_tx_rings);
2178 		return -EINVAL;
2179 	}
2180 
2181 	/* For the moment, we use only one BD ring per TC.
2182 	 *
2183 	 * Configure num_tc BD rings with increasing priorities.
2184 	 */
2185 	for (i = 0; i < num_tc; i++) {
2186 		tx_ring = priv->tx_ring[i];
2187 		enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
2188 	}
2189 
2190 	/* Reset the number of netdev queues based on the TC count */
2191 	netif_set_real_num_tx_queues(ndev, num_tc);
2192 
2193 	netdev_set_num_tc(ndev, num_tc);
2194 
2195 	/* Each TC is associated with one netdev queue */
2196 	for (i = 0; i < num_tc; i++)
2197 		netdev_set_tc_queue(ndev, i, 1, i);
2198 
2199 	return 0;
2200 }
2201 
enetc_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)2202 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
2203 		   void *type_data)
2204 {
2205 	switch (type) {
2206 	case TC_SETUP_QDISC_MQPRIO:
2207 		return enetc_setup_tc_mqprio(ndev, type_data);
2208 	case TC_SETUP_QDISC_TAPRIO:
2209 		return enetc_setup_tc_taprio(ndev, type_data);
2210 	case TC_SETUP_QDISC_CBS:
2211 		return enetc_setup_tc_cbs(ndev, type_data);
2212 	case TC_SETUP_QDISC_ETF:
2213 		return enetc_setup_tc_txtime(ndev, type_data);
2214 	case TC_SETUP_BLOCK:
2215 		return enetc_setup_tc_psfp(ndev, type_data);
2216 	default:
2217 		return -EOPNOTSUPP;
2218 	}
2219 }
2220 
enetc_setup_xdp_prog(struct net_device * dev,struct bpf_prog * prog,struct netlink_ext_ack * extack)2221 static int enetc_setup_xdp_prog(struct net_device *dev, struct bpf_prog *prog,
2222 				struct netlink_ext_ack *extack)
2223 {
2224 	struct enetc_ndev_priv *priv = netdev_priv(dev);
2225 	struct bpf_prog *old_prog;
2226 	bool is_up;
2227 	int i;
2228 
2229 	/* The buffer layout is changing, so we need to drain the old
2230 	 * RX buffers and seed new ones.
2231 	 */
2232 	is_up = netif_running(dev);
2233 	if (is_up)
2234 		dev_close(dev);
2235 
2236 	old_prog = xchg(&priv->xdp_prog, prog);
2237 	if (old_prog)
2238 		bpf_prog_put(old_prog);
2239 
2240 	for (i = 0; i < priv->num_rx_rings; i++) {
2241 		struct enetc_bdr *rx_ring = priv->rx_ring[i];
2242 
2243 		rx_ring->xdp.prog = prog;
2244 
2245 		if (prog)
2246 			rx_ring->buffer_offset = XDP_PACKET_HEADROOM;
2247 		else
2248 			rx_ring->buffer_offset = ENETC_RXB_PAD;
2249 	}
2250 
2251 	if (is_up)
2252 		return dev_open(dev, extack);
2253 
2254 	return 0;
2255 }
2256 
enetc_setup_bpf(struct net_device * dev,struct netdev_bpf * xdp)2257 int enetc_setup_bpf(struct net_device *dev, struct netdev_bpf *xdp)
2258 {
2259 	switch (xdp->command) {
2260 	case XDP_SETUP_PROG:
2261 		return enetc_setup_xdp_prog(dev, xdp->prog, xdp->extack);
2262 	default:
2263 		return -EINVAL;
2264 	}
2265 
2266 	return 0;
2267 }
2268 
enetc_get_stats(struct net_device * ndev)2269 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
2270 {
2271 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2272 	struct net_device_stats *stats = &ndev->stats;
2273 	unsigned long packets = 0, bytes = 0;
2274 	int i;
2275 
2276 	for (i = 0; i < priv->num_rx_rings; i++) {
2277 		packets += priv->rx_ring[i]->stats.packets;
2278 		bytes	+= priv->rx_ring[i]->stats.bytes;
2279 	}
2280 
2281 	stats->rx_packets = packets;
2282 	stats->rx_bytes = bytes;
2283 	bytes = 0;
2284 	packets = 0;
2285 
2286 	for (i = 0; i < priv->num_tx_rings; i++) {
2287 		packets += priv->tx_ring[i]->stats.packets;
2288 		bytes	+= priv->tx_ring[i]->stats.bytes;
2289 	}
2290 
2291 	stats->tx_packets = packets;
2292 	stats->tx_bytes = bytes;
2293 
2294 	return stats;
2295 }
2296 
enetc_set_rss(struct net_device * ndev,int en)2297 static int enetc_set_rss(struct net_device *ndev, int en)
2298 {
2299 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2300 	struct enetc_hw *hw = &priv->si->hw;
2301 	u32 reg;
2302 
2303 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
2304 
2305 	reg = enetc_rd(hw, ENETC_SIMR);
2306 	reg &= ~ENETC_SIMR_RSSE;
2307 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
2308 	enetc_wr(hw, ENETC_SIMR, reg);
2309 
2310 	return 0;
2311 }
2312 
enetc_set_psfp(struct net_device * ndev,int en)2313 static int enetc_set_psfp(struct net_device *ndev, int en)
2314 {
2315 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2316 	int err;
2317 
2318 	if (en) {
2319 		err = enetc_psfp_enable(priv);
2320 		if (err)
2321 			return err;
2322 
2323 		priv->active_offloads |= ENETC_F_QCI;
2324 		return 0;
2325 	}
2326 
2327 	err = enetc_psfp_disable(priv);
2328 	if (err)
2329 		return err;
2330 
2331 	priv->active_offloads &= ~ENETC_F_QCI;
2332 
2333 	return 0;
2334 }
2335 
enetc_enable_rxvlan(struct net_device * ndev,bool en)2336 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
2337 {
2338 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2339 	int i;
2340 
2341 	for (i = 0; i < priv->num_rx_rings; i++)
2342 		enetc_bdr_enable_rxvlan(&priv->si->hw, i, en);
2343 }
2344 
enetc_enable_txvlan(struct net_device * ndev,bool en)2345 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
2346 {
2347 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2348 	int i;
2349 
2350 	for (i = 0; i < priv->num_tx_rings; i++)
2351 		enetc_bdr_enable_txvlan(&priv->si->hw, i, en);
2352 }
2353 
enetc_set_features(struct net_device * ndev,netdev_features_t features)2354 int enetc_set_features(struct net_device *ndev,
2355 		       netdev_features_t features)
2356 {
2357 	netdev_features_t changed = ndev->features ^ features;
2358 	int err = 0;
2359 
2360 	if (changed & NETIF_F_RXHASH)
2361 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
2362 
2363 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2364 		enetc_enable_rxvlan(ndev,
2365 				    !!(features & NETIF_F_HW_VLAN_CTAG_RX));
2366 
2367 	if (changed & NETIF_F_HW_VLAN_CTAG_TX)
2368 		enetc_enable_txvlan(ndev,
2369 				    !!(features & NETIF_F_HW_VLAN_CTAG_TX));
2370 
2371 	if (changed & NETIF_F_HW_TC)
2372 		err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC));
2373 
2374 	return err;
2375 }
2376 
2377 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
enetc_hwtstamp_set(struct net_device * ndev,struct ifreq * ifr)2378 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
2379 {
2380 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2381 	struct hwtstamp_config config;
2382 	int ao;
2383 
2384 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2385 		return -EFAULT;
2386 
2387 	switch (config.tx_type) {
2388 	case HWTSTAMP_TX_OFF:
2389 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2390 		break;
2391 	case HWTSTAMP_TX_ON:
2392 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2393 		priv->active_offloads |= ENETC_F_TX_TSTAMP;
2394 		break;
2395 	case HWTSTAMP_TX_ONESTEP_SYNC:
2396 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2397 		priv->active_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP;
2398 		break;
2399 	default:
2400 		return -ERANGE;
2401 	}
2402 
2403 	ao = priv->active_offloads;
2404 	switch (config.rx_filter) {
2405 	case HWTSTAMP_FILTER_NONE:
2406 		priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
2407 		break;
2408 	default:
2409 		priv->active_offloads |= ENETC_F_RX_TSTAMP;
2410 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2411 	}
2412 
2413 	if (netif_running(ndev) && ao != priv->active_offloads) {
2414 		enetc_close(ndev);
2415 		enetc_open(ndev);
2416 	}
2417 
2418 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2419 	       -EFAULT : 0;
2420 }
2421 
enetc_hwtstamp_get(struct net_device * ndev,struct ifreq * ifr)2422 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
2423 {
2424 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2425 	struct hwtstamp_config config;
2426 
2427 	config.flags = 0;
2428 
2429 	if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)
2430 		config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC;
2431 	else if (priv->active_offloads & ENETC_F_TX_TSTAMP)
2432 		config.tx_type = HWTSTAMP_TX_ON;
2433 	else
2434 		config.tx_type = HWTSTAMP_TX_OFF;
2435 
2436 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
2437 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
2438 
2439 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2440 	       -EFAULT : 0;
2441 }
2442 #endif
2443 
enetc_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)2444 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2445 {
2446 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2447 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
2448 	if (cmd == SIOCSHWTSTAMP)
2449 		return enetc_hwtstamp_set(ndev, rq);
2450 	if (cmd == SIOCGHWTSTAMP)
2451 		return enetc_hwtstamp_get(ndev, rq);
2452 #endif
2453 
2454 	if (!priv->phylink)
2455 		return -EOPNOTSUPP;
2456 
2457 	return phylink_mii_ioctl(priv->phylink, rq, cmd);
2458 }
2459 
enetc_alloc_msix(struct enetc_ndev_priv * priv)2460 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
2461 {
2462 	struct pci_dev *pdev = priv->si->pdev;
2463 	int first_xdp_tx_ring;
2464 	int i, n, err, nvec;
2465 	int v_tx_rings;
2466 
2467 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
2468 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
2469 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
2470 
2471 	if (n < 0)
2472 		return n;
2473 
2474 	if (n != nvec)
2475 		return -EPERM;
2476 
2477 	/* # of tx rings per int vector */
2478 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
2479 
2480 	for (i = 0; i < priv->bdr_int_num; i++) {
2481 		struct enetc_int_vector *v;
2482 		struct enetc_bdr *bdr;
2483 		int j;
2484 
2485 		v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
2486 		if (!v) {
2487 			err = -ENOMEM;
2488 			goto fail;
2489 		}
2490 
2491 		priv->int_vector[i] = v;
2492 
2493 		bdr = &v->rx_ring;
2494 		bdr->index = i;
2495 		bdr->ndev = priv->ndev;
2496 		bdr->dev = priv->dev;
2497 		bdr->bd_count = priv->rx_bd_count;
2498 		bdr->buffer_offset = ENETC_RXB_PAD;
2499 		priv->rx_ring[i] = bdr;
2500 
2501 		err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0);
2502 		if (err) {
2503 			kfree(v);
2504 			goto fail;
2505 		}
2506 
2507 		err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq,
2508 						 MEM_TYPE_PAGE_SHARED, NULL);
2509 		if (err) {
2510 			xdp_rxq_info_unreg(&bdr->xdp.rxq);
2511 			kfree(v);
2512 			goto fail;
2513 		}
2514 
2515 		/* init defaults for adaptive IC */
2516 		if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
2517 			v->rx_ictt = 0x1;
2518 			v->rx_dim_en = true;
2519 		}
2520 		INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
2521 		netif_napi_add(priv->ndev, &v->napi, enetc_poll,
2522 			       NAPI_POLL_WEIGHT);
2523 		v->count_tx_rings = v_tx_rings;
2524 
2525 		for (j = 0; j < v_tx_rings; j++) {
2526 			int idx;
2527 
2528 			/* default tx ring mapping policy */
2529 			idx = priv->bdr_int_num * j + i;
2530 			__set_bit(idx, &v->tx_rings_map);
2531 			bdr = &v->tx_ring[j];
2532 			bdr->index = idx;
2533 			bdr->ndev = priv->ndev;
2534 			bdr->dev = priv->dev;
2535 			bdr->bd_count = priv->tx_bd_count;
2536 			priv->tx_ring[idx] = bdr;
2537 		}
2538 	}
2539 
2540 	first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus();
2541 	priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring];
2542 
2543 	return 0;
2544 
2545 fail:
2546 	while (i--) {
2547 		struct enetc_int_vector *v = priv->int_vector[i];
2548 		struct enetc_bdr *rx_ring = &v->rx_ring;
2549 
2550 		xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
2551 		xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
2552 		netif_napi_del(&v->napi);
2553 		cancel_work_sync(&v->rx_dim.work);
2554 		kfree(v);
2555 	}
2556 
2557 	pci_free_irq_vectors(pdev);
2558 
2559 	return err;
2560 }
2561 
enetc_free_msix(struct enetc_ndev_priv * priv)2562 void enetc_free_msix(struct enetc_ndev_priv *priv)
2563 {
2564 	int i;
2565 
2566 	for (i = 0; i < priv->bdr_int_num; i++) {
2567 		struct enetc_int_vector *v = priv->int_vector[i];
2568 		struct enetc_bdr *rx_ring = &v->rx_ring;
2569 
2570 		xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
2571 		xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
2572 		netif_napi_del(&v->napi);
2573 		cancel_work_sync(&v->rx_dim.work);
2574 	}
2575 
2576 	for (i = 0; i < priv->num_rx_rings; i++)
2577 		priv->rx_ring[i] = NULL;
2578 
2579 	for (i = 0; i < priv->num_tx_rings; i++)
2580 		priv->tx_ring[i] = NULL;
2581 
2582 	for (i = 0; i < priv->bdr_int_num; i++) {
2583 		kfree(priv->int_vector[i]);
2584 		priv->int_vector[i] = NULL;
2585 	}
2586 
2587 	/* disable all MSIX for this device */
2588 	pci_free_irq_vectors(priv->si->pdev);
2589 }
2590 
enetc_kfree_si(struct enetc_si * si)2591 static void enetc_kfree_si(struct enetc_si *si)
2592 {
2593 	char *p = (char *)si - si->pad;
2594 
2595 	kfree(p);
2596 }
2597 
enetc_detect_errata(struct enetc_si * si)2598 static void enetc_detect_errata(struct enetc_si *si)
2599 {
2600 	if (si->pdev->revision == ENETC_REV1)
2601 		si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP;
2602 }
2603 
enetc_pci_probe(struct pci_dev * pdev,const char * name,int sizeof_priv)2604 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
2605 {
2606 	struct enetc_si *si, *p;
2607 	struct enetc_hw *hw;
2608 	size_t alloc_size;
2609 	int err, len;
2610 
2611 	pcie_flr(pdev);
2612 	err = pci_enable_device_mem(pdev);
2613 	if (err) {
2614 		dev_err(&pdev->dev, "device enable failed\n");
2615 		return err;
2616 	}
2617 
2618 	/* set up for high or low dma */
2619 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2620 	if (err) {
2621 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2622 		if (err) {
2623 			dev_err(&pdev->dev,
2624 				"DMA configuration failed: 0x%x\n", err);
2625 			goto err_dma;
2626 		}
2627 	}
2628 
2629 	err = pci_request_mem_regions(pdev, name);
2630 	if (err) {
2631 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
2632 		goto err_pci_mem_reg;
2633 	}
2634 
2635 	pci_set_master(pdev);
2636 
2637 	alloc_size = sizeof(struct enetc_si);
2638 	if (sizeof_priv) {
2639 		/* align priv to 32B */
2640 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
2641 		alloc_size += sizeof_priv;
2642 	}
2643 	/* force 32B alignment for enetc_si */
2644 	alloc_size += ENETC_SI_ALIGN - 1;
2645 
2646 	p = kzalloc(alloc_size, GFP_KERNEL);
2647 	if (!p) {
2648 		err = -ENOMEM;
2649 		goto err_alloc_si;
2650 	}
2651 
2652 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
2653 	si->pad = (char *)si - (char *)p;
2654 
2655 	pci_set_drvdata(pdev, si);
2656 	si->pdev = pdev;
2657 	hw = &si->hw;
2658 
2659 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
2660 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
2661 	if (!hw->reg) {
2662 		err = -ENXIO;
2663 		dev_err(&pdev->dev, "ioremap() failed\n");
2664 		goto err_ioremap;
2665 	}
2666 	if (len > ENETC_PORT_BASE)
2667 		hw->port = hw->reg + ENETC_PORT_BASE;
2668 	if (len > ENETC_GLOBAL_BASE)
2669 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
2670 
2671 	enetc_detect_errata(si);
2672 
2673 	return 0;
2674 
2675 err_ioremap:
2676 	enetc_kfree_si(si);
2677 err_alloc_si:
2678 	pci_release_mem_regions(pdev);
2679 err_pci_mem_reg:
2680 err_dma:
2681 	pci_disable_device(pdev);
2682 
2683 	return err;
2684 }
2685 
enetc_pci_remove(struct pci_dev * pdev)2686 void enetc_pci_remove(struct pci_dev *pdev)
2687 {
2688 	struct enetc_si *si = pci_get_drvdata(pdev);
2689 	struct enetc_hw *hw = &si->hw;
2690 
2691 	iounmap(hw->reg);
2692 	enetc_kfree_si(si);
2693 	pci_release_mem_regions(pdev);
2694 	pci_disable_device(pdev);
2695 }
2696