1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
39 */
40
41 #include "e1000.h"
42
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 struct ich8_hsfsts {
47 u16 flcdone:1; /* bit 0 Flash Cycle Done */
48 u16 flcerr:1; /* bit 1 Flash Cycle Error */
49 u16 dael:1; /* bit 2 Direct Access error Log */
50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
52 u16 reserved1:2; /* bit 13:6 Reserved */
53 u16 reserved2:6; /* bit 13:6 Reserved */
54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
56 } hsf_status;
57 u16 regval;
58 };
59
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 struct ich8_hsflctl {
64 u16 flcgo:1; /* 0 Flash Cycle Go */
65 u16 flcycle:2; /* 2:1 Flash Cycle */
66 u16 reserved:5; /* 7:3 Reserved */
67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
68 u16 flockdn:6; /* 15:10 Reserved */
69 } hsf_ctrl;
70 u16 regval;
71 };
72
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 struct ich8_flracc {
76 u32 grra:8; /* 0:7 GbE region Read Access */
77 u32 grwa:8; /* 8:15 GbE region Write Access */
78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
80 } hsf_flregacc;
81 u16 regval;
82 };
83
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 struct ich8_pr {
87 u32 base:13; /* 0:12 Protected Range Base */
88 u32 reserved1:2; /* 13:14 Reserved */
89 u32 rpe:1; /* 15 Read Protection Enable */
90 u32 limit:13; /* 16:28 Protected Range Limit */
91 u32 reserved2:2; /* 29:30 Reserved */
92 u32 wpe:1; /* 31 Write Protection Enable */
93 } range;
94 u32 regval;
95 };
96
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
__er16flash(struct e1000_hw * hw,unsigned long reg)141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 return readw(hw->flash_address + reg);
144 }
145
__er32flash(struct e1000_hw * hw,unsigned long reg)146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 return readl(hw->flash_address + reg);
149 }
150
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 writew(val, hw->flash_address + reg);
154 }
155
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 writel(val, hw->flash_address + reg);
159 }
160
161 #define er16flash(reg) __er16flash(hw, (reg))
162 #define er32flash(reg) __er32flash(hw, (reg))
163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
165
166 /**
167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 * @hw: pointer to the HW structure
169 *
170 * Test access to the PHY registers by reading the PHY ID registers. If
171 * the PHY ID is already known (e.g. resume path) compare it with known ID,
172 * otherwise assume the read PHY ID is correct if it is valid.
173 *
174 * Assumes the sw/fw/hw semaphore is already acquired.
175 **/
e1000_phy_is_accessible_pchlan(struct e1000_hw * hw)176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 u16 phy_reg = 0;
179 u32 phy_id = 0;
180 s32 ret_val = 0;
181 u16 retry_count;
182 u32 mac_reg = 0;
183
184 for (retry_count = 0; retry_count < 2; retry_count++) {
185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 if (ret_val || (phy_reg == 0xFFFF))
187 continue;
188 phy_id = (u32)(phy_reg << 16);
189
190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 if (ret_val || (phy_reg == 0xFFFF)) {
192 phy_id = 0;
193 continue;
194 }
195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 break;
197 }
198
199 if (hw->phy.id) {
200 if (hw->phy.id == phy_id)
201 goto out;
202 } else if (phy_id) {
203 hw->phy.id = phy_id;
204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 goto out;
206 }
207
208 /* In case the PHY needs to be in mdio slow mode,
209 * set slow mode and try to get the PHY id again.
210 */
211 if (hw->mac.type < e1000_pch_lpt) {
212 hw->phy.ops.release(hw);
213 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 if (!ret_val)
215 ret_val = e1000e_get_phy_id(hw);
216 hw->phy.ops.acquire(hw);
217 }
218
219 if (ret_val)
220 return false;
221 out:
222 if (hw->mac.type >= e1000_pch_lpt) {
223 /* Only unforce SMBus if ME is not active */
224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 /* Unforce SMBus mode in PHY */
226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230 /* Unforce SMBus mode in MAC */
231 mac_reg = er32(CTRL_EXT);
232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 ew32(CTRL_EXT, mac_reg);
234 }
235 }
236
237 return true;
238 }
239
240 /**
241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242 * @hw: pointer to the HW structure
243 *
244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245 * used to reset the PHY to a quiescent state when necessary.
246 **/
e1000_toggle_lanphypc_pch_lpt(struct e1000_hw * hw)247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 u32 mac_reg;
250
251 /* Set Phy Config Counter to 50msec */
252 mac_reg = er32(FEXTNVM3);
253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 ew32(FEXTNVM3, mac_reg);
256
257 /* Toggle LANPHYPC Value bit */
258 mac_reg = er32(CTRL);
259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 ew32(CTRL, mac_reg);
262 e1e_flush();
263 usleep_range(10, 20);
264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 ew32(CTRL, mac_reg);
266 e1e_flush();
267
268 if (hw->mac.type < e1000_pch_lpt) {
269 msleep(50);
270 } else {
271 u16 count = 20;
272
273 do {
274 usleep_range(5000, 6000);
275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277 msleep(30);
278 }
279 }
280
281 /**
282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283 * @hw: pointer to the HW structure
284 *
285 * Workarounds/flow necessary for PHY initialization during driver load
286 * and resume paths.
287 **/
e1000_init_phy_workarounds_pchlan(struct e1000_hw * hw)288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 struct e1000_adapter *adapter = hw->adapter;
291 u32 mac_reg, fwsm = er32(FWSM);
292 s32 ret_val;
293
294 /* Gate automatic PHY configuration by hardware on managed and
295 * non-managed 82579 and newer adapters.
296 */
297 e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299 /* It is not possible to be certain of the current state of ULP
300 * so forcibly disable it.
301 */
302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 if (ret_val)
305 e_warn("Failed to disable ULP\n");
306
307 ret_val = hw->phy.ops.acquire(hw);
308 if (ret_val) {
309 e_dbg("Failed to initialize PHY flow\n");
310 goto out;
311 }
312
313 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
314 * inaccessible and resetting the PHY is not blocked, toggle the
315 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 */
317 switch (hw->mac.type) {
318 case e1000_pch_lpt:
319 case e1000_pch_spt:
320 case e1000_pch_cnp:
321 case e1000_pch_tgp:
322 case e1000_pch_adp:
323 case e1000_pch_mtp:
324 if (e1000_phy_is_accessible_pchlan(hw))
325 break;
326
327 /* Before toggling LANPHYPC, see if PHY is accessible by
328 * forcing MAC to SMBus mode first.
329 */
330 mac_reg = er32(CTRL_EXT);
331 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332 ew32(CTRL_EXT, mac_reg);
333
334 /* Wait 50 milliseconds for MAC to finish any retries
335 * that it might be trying to perform from previous
336 * attempts to acknowledge any phy read requests.
337 */
338 msleep(50);
339
340 fallthrough;
341 case e1000_pch2lan:
342 if (e1000_phy_is_accessible_pchlan(hw))
343 break;
344
345 fallthrough;
346 case e1000_pchlan:
347 if ((hw->mac.type == e1000_pchlan) &&
348 (fwsm & E1000_ICH_FWSM_FW_VALID))
349 break;
350
351 if (hw->phy.ops.check_reset_block(hw)) {
352 e_dbg("Required LANPHYPC toggle blocked by ME\n");
353 ret_val = -E1000_ERR_PHY;
354 break;
355 }
356
357 /* Toggle LANPHYPC Value bit */
358 e1000_toggle_lanphypc_pch_lpt(hw);
359 if (hw->mac.type >= e1000_pch_lpt) {
360 if (e1000_phy_is_accessible_pchlan(hw))
361 break;
362
363 /* Toggling LANPHYPC brings the PHY out of SMBus mode
364 * so ensure that the MAC is also out of SMBus mode
365 */
366 mac_reg = er32(CTRL_EXT);
367 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368 ew32(CTRL_EXT, mac_reg);
369
370 if (e1000_phy_is_accessible_pchlan(hw))
371 break;
372
373 ret_val = -E1000_ERR_PHY;
374 }
375 break;
376 default:
377 break;
378 }
379
380 hw->phy.ops.release(hw);
381 if (!ret_val) {
382
383 /* Check to see if able to reset PHY. Print error if not */
384 if (hw->phy.ops.check_reset_block(hw)) {
385 e_err("Reset blocked by ME\n");
386 goto out;
387 }
388
389 /* Reset the PHY before any access to it. Doing so, ensures
390 * that the PHY is in a known good state before we read/write
391 * PHY registers. The generic reset is sufficient here,
392 * because we haven't determined the PHY type yet.
393 */
394 ret_val = e1000e_phy_hw_reset_generic(hw);
395 if (ret_val)
396 goto out;
397
398 /* On a successful reset, possibly need to wait for the PHY
399 * to quiesce to an accessible state before returning control
400 * to the calling function. If the PHY does not quiesce, then
401 * return E1000E_BLK_PHY_RESET, as this is the condition that
402 * the PHY is in.
403 */
404 ret_val = hw->phy.ops.check_reset_block(hw);
405 if (ret_val)
406 e_err("ME blocked access to PHY after reset\n");
407 }
408
409 out:
410 /* Ungate automatic PHY configuration on non-managed 82579 */
411 if ((hw->mac.type == e1000_pch2lan) &&
412 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413 usleep_range(10000, 11000);
414 e1000_gate_hw_phy_config_ich8lan(hw, false);
415 }
416
417 return ret_val;
418 }
419
420 /**
421 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
422 * @hw: pointer to the HW structure
423 *
424 * Initialize family-specific PHY parameters and function pointers.
425 **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427 {
428 struct e1000_phy_info *phy = &hw->phy;
429 s32 ret_val;
430
431 phy->addr = 1;
432 phy->reset_delay_us = 100;
433
434 phy->ops.set_page = e1000_set_page_igp;
435 phy->ops.read_reg = e1000_read_phy_reg_hv;
436 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440 phy->ops.write_reg = e1000_write_phy_reg_hv;
441 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443 phy->ops.power_up = e1000_power_up_phy_copper;
444 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446
447 phy->id = e1000_phy_unknown;
448
449 ret_val = e1000_init_phy_workarounds_pchlan(hw);
450 if (ret_val)
451 return ret_val;
452
453 if (phy->id == e1000_phy_unknown)
454 switch (hw->mac.type) {
455 default:
456 ret_val = e1000e_get_phy_id(hw);
457 if (ret_val)
458 return ret_val;
459 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460 break;
461 fallthrough;
462 case e1000_pch2lan:
463 case e1000_pch_lpt:
464 case e1000_pch_spt:
465 case e1000_pch_cnp:
466 case e1000_pch_tgp:
467 case e1000_pch_adp:
468 case e1000_pch_mtp:
469 /* In case the PHY needs to be in mdio slow mode,
470 * set slow mode and try to get the PHY id again.
471 */
472 ret_val = e1000_set_mdio_slow_mode_hv(hw);
473 if (ret_val)
474 return ret_val;
475 ret_val = e1000e_get_phy_id(hw);
476 if (ret_val)
477 return ret_val;
478 break;
479 }
480 phy->type = e1000e_get_phy_type_from_id(phy->id);
481
482 switch (phy->type) {
483 case e1000_phy_82577:
484 case e1000_phy_82579:
485 case e1000_phy_i217:
486 phy->ops.check_polarity = e1000_check_polarity_82577;
487 phy->ops.force_speed_duplex =
488 e1000_phy_force_speed_duplex_82577;
489 phy->ops.get_cable_length = e1000_get_cable_length_82577;
490 phy->ops.get_info = e1000_get_phy_info_82577;
491 phy->ops.commit = e1000e_phy_sw_reset;
492 break;
493 case e1000_phy_82578:
494 phy->ops.check_polarity = e1000_check_polarity_m88;
495 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
496 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
497 phy->ops.get_info = e1000e_get_phy_info_m88;
498 break;
499 default:
500 ret_val = -E1000_ERR_PHY;
501 break;
502 }
503
504 return ret_val;
505 }
506
507 /**
508 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
509 * @hw: pointer to the HW structure
510 *
511 * Initialize family-specific PHY parameters and function pointers.
512 **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)513 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
514 {
515 struct e1000_phy_info *phy = &hw->phy;
516 s32 ret_val;
517 u16 i = 0;
518
519 phy->addr = 1;
520 phy->reset_delay_us = 100;
521
522 phy->ops.power_up = e1000_power_up_phy_copper;
523 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
524
525 /* We may need to do this twice - once for IGP and if that fails,
526 * we'll set BM func pointers and try again
527 */
528 ret_val = e1000e_determine_phy_address(hw);
529 if (ret_val) {
530 phy->ops.write_reg = e1000e_write_phy_reg_bm;
531 phy->ops.read_reg = e1000e_read_phy_reg_bm;
532 ret_val = e1000e_determine_phy_address(hw);
533 if (ret_val) {
534 e_dbg("Cannot determine PHY addr. Erroring out\n");
535 return ret_val;
536 }
537 }
538
539 phy->id = 0;
540 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
541 (i++ < 100)) {
542 usleep_range(1000, 1100);
543 ret_val = e1000e_get_phy_id(hw);
544 if (ret_val)
545 return ret_val;
546 }
547
548 /* Verify phy id */
549 switch (phy->id) {
550 case IGP03E1000_E_PHY_ID:
551 phy->type = e1000_phy_igp_3;
552 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
553 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
554 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
555 phy->ops.get_info = e1000e_get_phy_info_igp;
556 phy->ops.check_polarity = e1000_check_polarity_igp;
557 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
558 break;
559 case IFE_E_PHY_ID:
560 case IFE_PLUS_E_PHY_ID:
561 case IFE_C_E_PHY_ID:
562 phy->type = e1000_phy_ife;
563 phy->autoneg_mask = E1000_ALL_NOT_GIG;
564 phy->ops.get_info = e1000_get_phy_info_ife;
565 phy->ops.check_polarity = e1000_check_polarity_ife;
566 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
567 break;
568 case BME1000_E_PHY_ID:
569 phy->type = e1000_phy_bm;
570 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
571 phy->ops.read_reg = e1000e_read_phy_reg_bm;
572 phy->ops.write_reg = e1000e_write_phy_reg_bm;
573 phy->ops.commit = e1000e_phy_sw_reset;
574 phy->ops.get_info = e1000e_get_phy_info_m88;
575 phy->ops.check_polarity = e1000_check_polarity_m88;
576 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
577 break;
578 default:
579 return -E1000_ERR_PHY;
580 }
581
582 return 0;
583 }
584
585 /**
586 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
587 * @hw: pointer to the HW structure
588 *
589 * Initialize family-specific NVM parameters and function
590 * pointers.
591 **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)592 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
593 {
594 struct e1000_nvm_info *nvm = &hw->nvm;
595 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
596 u32 gfpreg, sector_base_addr, sector_end_addr;
597 u16 i;
598 u32 nvm_size;
599
600 nvm->type = e1000_nvm_flash_sw;
601
602 if (hw->mac.type >= e1000_pch_spt) {
603 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
604 * STRAP register. This is because in SPT the GbE Flash region
605 * is no longer accessed through the flash registers. Instead,
606 * the mechanism has changed, and the Flash region access
607 * registers are now implemented in GbE memory space.
608 */
609 nvm->flash_base_addr = 0;
610 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
611 * NVM_SIZE_MULTIPLIER;
612 nvm->flash_bank_size = nvm_size / 2;
613 /* Adjust to word count */
614 nvm->flash_bank_size /= sizeof(u16);
615 /* Set the base address for flash register access */
616 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
617 } else {
618 /* Can't read flash registers if register set isn't mapped. */
619 if (!hw->flash_address) {
620 e_dbg("ERROR: Flash registers not mapped\n");
621 return -E1000_ERR_CONFIG;
622 }
623
624 gfpreg = er32flash(ICH_FLASH_GFPREG);
625
626 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
627 * Add 1 to sector_end_addr since this sector is included in
628 * the overall size.
629 */
630 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
631 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
632
633 /* flash_base_addr is byte-aligned */
634 nvm->flash_base_addr = sector_base_addr
635 << FLASH_SECTOR_ADDR_SHIFT;
636
637 /* find total size of the NVM, then cut in half since the total
638 * size represents two separate NVM banks.
639 */
640 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
641 << FLASH_SECTOR_ADDR_SHIFT);
642 nvm->flash_bank_size /= 2;
643 /* Adjust to word count */
644 nvm->flash_bank_size /= sizeof(u16);
645 }
646
647 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
648
649 /* Clear shadow ram */
650 for (i = 0; i < nvm->word_size; i++) {
651 dev_spec->shadow_ram[i].modified = false;
652 dev_spec->shadow_ram[i].value = 0xFFFF;
653 }
654
655 return 0;
656 }
657
658 /**
659 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
660 * @hw: pointer to the HW structure
661 *
662 * Initialize family-specific MAC parameters and function
663 * pointers.
664 **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)665 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
666 {
667 struct e1000_mac_info *mac = &hw->mac;
668
669 /* Set media type function pointer */
670 hw->phy.media_type = e1000_media_type_copper;
671
672 /* Set mta register count */
673 mac->mta_reg_count = 32;
674 /* Set rar entry count */
675 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
676 if (mac->type == e1000_ich8lan)
677 mac->rar_entry_count--;
678 /* FWSM register */
679 mac->has_fwsm = true;
680 /* ARC subsystem not supported */
681 mac->arc_subsystem_valid = false;
682 /* Adaptive IFS supported */
683 mac->adaptive_ifs = true;
684
685 /* LED and other operations */
686 switch (mac->type) {
687 case e1000_ich8lan:
688 case e1000_ich9lan:
689 case e1000_ich10lan:
690 /* check management mode */
691 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
692 /* ID LED init */
693 mac->ops.id_led_init = e1000e_id_led_init_generic;
694 /* blink LED */
695 mac->ops.blink_led = e1000e_blink_led_generic;
696 /* setup LED */
697 mac->ops.setup_led = e1000e_setup_led_generic;
698 /* cleanup LED */
699 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
700 /* turn on/off LED */
701 mac->ops.led_on = e1000_led_on_ich8lan;
702 mac->ops.led_off = e1000_led_off_ich8lan;
703 break;
704 case e1000_pch2lan:
705 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
706 mac->ops.rar_set = e1000_rar_set_pch2lan;
707 fallthrough;
708 case e1000_pch_lpt:
709 case e1000_pch_spt:
710 case e1000_pch_cnp:
711 case e1000_pch_tgp:
712 case e1000_pch_adp:
713 case e1000_pch_mtp:
714 case e1000_pchlan:
715 /* check management mode */
716 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
717 /* ID LED init */
718 mac->ops.id_led_init = e1000_id_led_init_pchlan;
719 /* setup LED */
720 mac->ops.setup_led = e1000_setup_led_pchlan;
721 /* cleanup LED */
722 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
723 /* turn on/off LED */
724 mac->ops.led_on = e1000_led_on_pchlan;
725 mac->ops.led_off = e1000_led_off_pchlan;
726 break;
727 default:
728 break;
729 }
730
731 if (mac->type >= e1000_pch_lpt) {
732 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
733 mac->ops.rar_set = e1000_rar_set_pch_lpt;
734 mac->ops.setup_physical_interface =
735 e1000_setup_copper_link_pch_lpt;
736 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
737 }
738
739 /* Enable PCS Lock-loss workaround for ICH8 */
740 if (mac->type == e1000_ich8lan)
741 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
742
743 return 0;
744 }
745
746 /**
747 * __e1000_access_emi_reg_locked - Read/write EMI register
748 * @hw: pointer to the HW structure
749 * @address: EMI address to program
750 * @data: pointer to value to read/write from/to the EMI address
751 * @read: boolean flag to indicate read or write
752 *
753 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
754 **/
__e1000_access_emi_reg_locked(struct e1000_hw * hw,u16 address,u16 * data,bool read)755 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
756 u16 *data, bool read)
757 {
758 s32 ret_val;
759
760 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
761 if (ret_val)
762 return ret_val;
763
764 if (read)
765 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
766 else
767 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
768
769 return ret_val;
770 }
771
772 /**
773 * e1000_read_emi_reg_locked - Read Extended Management Interface register
774 * @hw: pointer to the HW structure
775 * @addr: EMI address to program
776 * @data: value to be read from the EMI address
777 *
778 * Assumes the SW/FW/HW Semaphore is already acquired.
779 **/
e1000_read_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 * data)780 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
781 {
782 return __e1000_access_emi_reg_locked(hw, addr, data, true);
783 }
784
785 /**
786 * e1000_write_emi_reg_locked - Write Extended Management Interface register
787 * @hw: pointer to the HW structure
788 * @addr: EMI address to program
789 * @data: value to be written to the EMI address
790 *
791 * Assumes the SW/FW/HW Semaphore is already acquired.
792 **/
e1000_write_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 data)793 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
794 {
795 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
796 }
797
798 /**
799 * e1000_set_eee_pchlan - Enable/disable EEE support
800 * @hw: pointer to the HW structure
801 *
802 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
803 * the link and the EEE capabilities of the link partner. The LPI Control
804 * register bits will remain set only if/when link is up.
805 *
806 * EEE LPI must not be asserted earlier than one second after link is up.
807 * On 82579, EEE LPI should not be enabled until such time otherwise there
808 * can be link issues with some switches. Other devices can have EEE LPI
809 * enabled immediately upon link up since they have a timer in hardware which
810 * prevents LPI from being asserted too early.
811 **/
e1000_set_eee_pchlan(struct e1000_hw * hw)812 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
813 {
814 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
815 s32 ret_val;
816 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
817
818 switch (hw->phy.type) {
819 case e1000_phy_82579:
820 lpa = I82579_EEE_LP_ABILITY;
821 pcs_status = I82579_EEE_PCS_STATUS;
822 adv_addr = I82579_EEE_ADVERTISEMENT;
823 break;
824 case e1000_phy_i217:
825 lpa = I217_EEE_LP_ABILITY;
826 pcs_status = I217_EEE_PCS_STATUS;
827 adv_addr = I217_EEE_ADVERTISEMENT;
828 break;
829 default:
830 return 0;
831 }
832
833 ret_val = hw->phy.ops.acquire(hw);
834 if (ret_val)
835 return ret_val;
836
837 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
838 if (ret_val)
839 goto release;
840
841 /* Clear bits that enable EEE in various speeds */
842 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
843
844 /* Enable EEE if not disabled by user */
845 if (!dev_spec->eee_disable) {
846 /* Save off link partner's EEE ability */
847 ret_val = e1000_read_emi_reg_locked(hw, lpa,
848 &dev_spec->eee_lp_ability);
849 if (ret_val)
850 goto release;
851
852 /* Read EEE advertisement */
853 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
854 if (ret_val)
855 goto release;
856
857 /* Enable EEE only for speeds in which the link partner is
858 * EEE capable and for which we advertise EEE.
859 */
860 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
861 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
862
863 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
864 e1e_rphy_locked(hw, MII_LPA, &data);
865 if (data & LPA_100FULL)
866 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
867 else
868 /* EEE is not supported in 100Half, so ignore
869 * partner's EEE in 100 ability if full-duplex
870 * is not advertised.
871 */
872 dev_spec->eee_lp_ability &=
873 ~I82579_EEE_100_SUPPORTED;
874 }
875 }
876
877 if (hw->phy.type == e1000_phy_82579) {
878 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
879 &data);
880 if (ret_val)
881 goto release;
882
883 data &= ~I82579_LPI_100_PLL_SHUT;
884 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
885 data);
886 }
887
888 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
889 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
890 if (ret_val)
891 goto release;
892
893 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
894 release:
895 hw->phy.ops.release(hw);
896
897 return ret_val;
898 }
899
900 /**
901 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
902 * @hw: pointer to the HW structure
903 * @link: link up bool flag
904 *
905 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
906 * preventing further DMA write requests. Workaround the issue by disabling
907 * the de-assertion of the clock request when in 1Gpbs mode.
908 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
909 * speeds in order to avoid Tx hangs.
910 **/
e1000_k1_workaround_lpt_lp(struct e1000_hw * hw,bool link)911 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
912 {
913 u32 fextnvm6 = er32(FEXTNVM6);
914 u32 status = er32(STATUS);
915 s32 ret_val = 0;
916 u16 reg;
917
918 if (link && (status & E1000_STATUS_SPEED_1000)) {
919 ret_val = hw->phy.ops.acquire(hw);
920 if (ret_val)
921 return ret_val;
922
923 ret_val =
924 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
925 ®);
926 if (ret_val)
927 goto release;
928
929 ret_val =
930 e1000e_write_kmrn_reg_locked(hw,
931 E1000_KMRNCTRLSTA_K1_CONFIG,
932 reg &
933 ~E1000_KMRNCTRLSTA_K1_ENABLE);
934 if (ret_val)
935 goto release;
936
937 usleep_range(10, 20);
938
939 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
940
941 ret_val =
942 e1000e_write_kmrn_reg_locked(hw,
943 E1000_KMRNCTRLSTA_K1_CONFIG,
944 reg);
945 release:
946 hw->phy.ops.release(hw);
947 } else {
948 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
949 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
950
951 if ((hw->phy.revision > 5) || !link ||
952 ((status & E1000_STATUS_SPEED_100) &&
953 (status & E1000_STATUS_FD)))
954 goto update_fextnvm6;
955
956 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®);
957 if (ret_val)
958 return ret_val;
959
960 /* Clear link status transmit timeout */
961 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
962
963 if (status & E1000_STATUS_SPEED_100) {
964 /* Set inband Tx timeout to 5x10us for 100Half */
965 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
966
967 /* Do not extend the K1 entry latency for 100Half */
968 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
969 } else {
970 /* Set inband Tx timeout to 50x10us for 10Full/Half */
971 reg |= 50 <<
972 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973
974 /* Extend the K1 entry latency for 10 Mbps */
975 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976 }
977
978 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
979 if (ret_val)
980 return ret_val;
981
982 update_fextnvm6:
983 ew32(FEXTNVM6, fextnvm6);
984 }
985
986 return ret_val;
987 }
988
989 /**
990 * e1000_platform_pm_pch_lpt - Set platform power management values
991 * @hw: pointer to the HW structure
992 * @link: bool indicating link status
993 *
994 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
995 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
996 * when link is up (which must not exceed the maximum latency supported
997 * by the platform), otherwise specify there is no LTR requirement.
998 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
999 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1000 * Capability register set, on this device LTR is set by writing the
1001 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1002 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1003 * message to the PMC.
1004 **/
e1000_platform_pm_pch_lpt(struct e1000_hw * hw,bool link)1005 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1006 {
1007 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1008 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1009 u16 lat_enc = 0; /* latency encoded */
1010
1011 if (link) {
1012 u16 speed, duplex, scale = 0;
1013 u16 max_snoop, max_nosnoop;
1014 u16 max_ltr_enc; /* max LTR latency encoded */
1015 u64 value;
1016 u32 rxa;
1017
1018 if (!hw->adapter->max_frame_size) {
1019 e_dbg("max_frame_size not set.\n");
1020 return -E1000_ERR_CONFIG;
1021 }
1022
1023 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1024 if (!speed) {
1025 e_dbg("Speed not set.\n");
1026 return -E1000_ERR_CONFIG;
1027 }
1028
1029 /* Rx Packet Buffer Allocation size (KB) */
1030 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1031
1032 /* Determine the maximum latency tolerated by the device.
1033 *
1034 * Per the PCIe spec, the tolerated latencies are encoded as
1035 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1036 * a 10-bit value (0-1023) to provide a range from 1 ns to
1037 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1038 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1039 */
1040 rxa *= 512;
1041 value = (rxa > hw->adapter->max_frame_size) ?
1042 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1043 0;
1044
1045 while (value > PCI_LTR_VALUE_MASK) {
1046 scale++;
1047 value = DIV_ROUND_UP(value, BIT(5));
1048 }
1049 if (scale > E1000_LTRV_SCALE_MAX) {
1050 e_dbg("Invalid LTR latency scale %d\n", scale);
1051 return -E1000_ERR_CONFIG;
1052 }
1053 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1054
1055 /* Determine the maximum latency tolerated by the platform */
1056 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1057 &max_snoop);
1058 pci_read_config_word(hw->adapter->pdev,
1059 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1060 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1061
1062 if (lat_enc > max_ltr_enc)
1063 lat_enc = max_ltr_enc;
1064 }
1065
1066 /* Set Snoop and No-Snoop latencies the same */
1067 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1068 ew32(LTRV, reg);
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1075 * @hw: pointer to the HW structure
1076 * @to_sx: boolean indicating a system power state transition to Sx
1077 *
1078 * When link is down, configure ULP mode to significantly reduce the power
1079 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1080 * ME firmware to start the ULP configuration. If not on an ME enabled
1081 * system, configure the ULP mode by software.
1082 */
e1000_enable_ulp_lpt_lp(struct e1000_hw * hw,bool to_sx)1083 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1084 {
1085 u32 mac_reg;
1086 s32 ret_val = 0;
1087 u16 phy_reg;
1088 u16 oem_reg = 0;
1089
1090 if ((hw->mac.type < e1000_pch_lpt) ||
1091 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1092 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1093 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1094 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1095 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1096 return 0;
1097
1098 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1099 /* Request ME configure ULP mode in the PHY */
1100 mac_reg = er32(H2ME);
1101 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1102 ew32(H2ME, mac_reg);
1103
1104 goto out;
1105 }
1106
1107 if (!to_sx) {
1108 int i = 0;
1109
1110 /* Poll up to 5 seconds for Cable Disconnected indication */
1111 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1112 /* Bail if link is re-acquired */
1113 if (er32(STATUS) & E1000_STATUS_LU)
1114 return -E1000_ERR_PHY;
1115
1116 if (i++ == 100)
1117 break;
1118
1119 msleep(50);
1120 }
1121 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1122 (er32(FEXT) &
1123 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1124 }
1125
1126 ret_val = hw->phy.ops.acquire(hw);
1127 if (ret_val)
1128 goto out;
1129
1130 /* Force SMBus mode in PHY */
1131 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1132 if (ret_val)
1133 goto release;
1134 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1135 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1136
1137 /* Force SMBus mode in MAC */
1138 mac_reg = er32(CTRL_EXT);
1139 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1140 ew32(CTRL_EXT, mac_reg);
1141
1142 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1143 * LPLU and disable Gig speed when entering ULP
1144 */
1145 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1146 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1147 &oem_reg);
1148 if (ret_val)
1149 goto release;
1150
1151 phy_reg = oem_reg;
1152 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1153
1154 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1155 phy_reg);
1156
1157 if (ret_val)
1158 goto release;
1159 }
1160
1161 /* Set Inband ULP Exit, Reset to SMBus mode and
1162 * Disable SMBus Release on PERST# in PHY
1163 */
1164 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1165 if (ret_val)
1166 goto release;
1167 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1168 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1169 if (to_sx) {
1170 if (er32(WUFC) & E1000_WUFC_LNKC)
1171 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1172 else
1173 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1174
1175 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1176 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1177 } else {
1178 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1179 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1180 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181 }
1182 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1183
1184 /* Set Disable SMBus Release on PERST# in MAC */
1185 mac_reg = er32(FEXTNVM7);
1186 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1187 ew32(FEXTNVM7, mac_reg);
1188
1189 /* Commit ULP changes in PHY by starting auto ULP configuration */
1190 phy_reg |= I218_ULP_CONFIG1_START;
1191 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1192
1193 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1194 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1195 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1196 oem_reg);
1197 if (ret_val)
1198 goto release;
1199 }
1200
1201 release:
1202 hw->phy.ops.release(hw);
1203 out:
1204 if (ret_val)
1205 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1206 else
1207 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1208
1209 return ret_val;
1210 }
1211
1212 /**
1213 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1214 * @hw: pointer to the HW structure
1215 * @force: boolean indicating whether or not to force disabling ULP
1216 *
1217 * Un-configure ULP mode when link is up, the system is transitioned from
1218 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1219 * system, poll for an indication from ME that ULP has been un-configured.
1220 * If not on an ME enabled system, un-configure the ULP mode by software.
1221 *
1222 * During nominal operation, this function is called when link is acquired
1223 * to disable ULP mode (force=false); otherwise, for example when unloading
1224 * the driver or during Sx->S0 transitions, this is called with force=true
1225 * to forcibly disable ULP.
1226 */
e1000_disable_ulp_lpt_lp(struct e1000_hw * hw,bool force)1227 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1228 {
1229 s32 ret_val = 0;
1230 u32 mac_reg;
1231 u16 phy_reg;
1232 int i = 0;
1233
1234 if ((hw->mac.type < e1000_pch_lpt) ||
1235 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1236 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1237 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1238 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1239 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1240 return 0;
1241
1242 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1243 struct e1000_adapter *adapter = hw->adapter;
1244 bool firmware_bug = false;
1245
1246 if (force) {
1247 /* Request ME un-configure ULP mode in the PHY */
1248 mac_reg = er32(H2ME);
1249 mac_reg &= ~E1000_H2ME_ULP;
1250 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1251 ew32(H2ME, mac_reg);
1252 }
1253
1254 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1255 * If this takes more than 1 second, show a warning indicating a
1256 * firmware bug
1257 */
1258 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1259 if (i++ == 250) {
1260 ret_val = -E1000_ERR_PHY;
1261 goto out;
1262 }
1263 if (i > 100 && !firmware_bug)
1264 firmware_bug = true;
1265
1266 usleep_range(10000, 11000);
1267 }
1268 if (firmware_bug)
1269 e_warn("ULP_CONFIG_DONE took %dmsec. This is a firmware bug\n", i * 10);
1270 else
1271 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1272
1273 if (force) {
1274 mac_reg = er32(H2ME);
1275 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1276 ew32(H2ME, mac_reg);
1277 } else {
1278 /* Clear H2ME.ULP after ME ULP configuration */
1279 mac_reg = er32(H2ME);
1280 mac_reg &= ~E1000_H2ME_ULP;
1281 ew32(H2ME, mac_reg);
1282 }
1283
1284 goto out;
1285 }
1286
1287 ret_val = hw->phy.ops.acquire(hw);
1288 if (ret_val)
1289 goto out;
1290
1291 if (force)
1292 /* Toggle LANPHYPC Value bit */
1293 e1000_toggle_lanphypc_pch_lpt(hw);
1294
1295 /* Unforce SMBus mode in PHY */
1296 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1297 if (ret_val) {
1298 /* The MAC might be in PCIe mode, so temporarily force to
1299 * SMBus mode in order to access the PHY.
1300 */
1301 mac_reg = er32(CTRL_EXT);
1302 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1303 ew32(CTRL_EXT, mac_reg);
1304
1305 msleep(50);
1306
1307 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1308 &phy_reg);
1309 if (ret_val)
1310 goto release;
1311 }
1312 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1313 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1314
1315 /* Unforce SMBus mode in MAC */
1316 mac_reg = er32(CTRL_EXT);
1317 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1318 ew32(CTRL_EXT, mac_reg);
1319
1320 /* When ULP mode was previously entered, K1 was disabled by the
1321 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1322 */
1323 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1324 if (ret_val)
1325 goto release;
1326 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1327 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1328
1329 /* Clear ULP enabled configuration */
1330 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1331 if (ret_val)
1332 goto release;
1333 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1334 I218_ULP_CONFIG1_STICKY_ULP |
1335 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1336 I218_ULP_CONFIG1_WOL_HOST |
1337 I218_ULP_CONFIG1_INBAND_EXIT |
1338 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1339 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1340 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1341 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1342
1343 /* Commit ULP changes by starting auto ULP configuration */
1344 phy_reg |= I218_ULP_CONFIG1_START;
1345 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1346
1347 /* Clear Disable SMBus Release on PERST# in MAC */
1348 mac_reg = er32(FEXTNVM7);
1349 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1350 ew32(FEXTNVM7, mac_reg);
1351
1352 release:
1353 hw->phy.ops.release(hw);
1354 if (force) {
1355 e1000_phy_hw_reset(hw);
1356 msleep(50);
1357 }
1358 out:
1359 if (ret_val)
1360 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1361 else
1362 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1363
1364 return ret_val;
1365 }
1366
1367 /**
1368 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1369 * @hw: pointer to the HW structure
1370 *
1371 * Checks to see of the link status of the hardware has changed. If a
1372 * change in link status has been detected, then we read the PHY registers
1373 * to get the current speed/duplex if link exists.
1374 **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)1375 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1376 {
1377 struct e1000_mac_info *mac = &hw->mac;
1378 s32 ret_val, tipg_reg = 0;
1379 u16 emi_addr, emi_val = 0;
1380 bool link;
1381 u16 phy_reg;
1382
1383 /* We only want to go out to the PHY registers to see if Auto-Neg
1384 * has completed and/or if our link status has changed. The
1385 * get_link_status flag is set upon receiving a Link Status
1386 * Change or Rx Sequence Error interrupt.
1387 */
1388 if (!mac->get_link_status)
1389 return 0;
1390 mac->get_link_status = false;
1391
1392 /* First we want to see if the MII Status Register reports
1393 * link. If so, then we want to get the current speed/duplex
1394 * of the PHY.
1395 */
1396 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1397 if (ret_val)
1398 goto out;
1399
1400 if (hw->mac.type == e1000_pchlan) {
1401 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1402 if (ret_val)
1403 goto out;
1404 }
1405
1406 /* When connected at 10Mbps half-duplex, some parts are excessively
1407 * aggressive resulting in many collisions. To avoid this, increase
1408 * the IPG and reduce Rx latency in the PHY.
1409 */
1410 if ((hw->mac.type >= e1000_pch2lan) && link) {
1411 u16 speed, duplex;
1412
1413 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1414 tipg_reg = er32(TIPG);
1415 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1416
1417 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1418 tipg_reg |= 0xFF;
1419 /* Reduce Rx latency in analog PHY */
1420 emi_val = 0;
1421 } else if (hw->mac.type >= e1000_pch_spt &&
1422 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1423 tipg_reg |= 0xC;
1424 emi_val = 1;
1425 } else {
1426
1427 /* Roll back the default values */
1428 tipg_reg |= 0x08;
1429 emi_val = 1;
1430 }
1431
1432 ew32(TIPG, tipg_reg);
1433
1434 ret_val = hw->phy.ops.acquire(hw);
1435 if (ret_val)
1436 goto out;
1437
1438 if (hw->mac.type == e1000_pch2lan)
1439 emi_addr = I82579_RX_CONFIG;
1440 else
1441 emi_addr = I217_RX_CONFIG;
1442 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1443
1444 if (hw->mac.type >= e1000_pch_lpt) {
1445 u16 phy_reg;
1446
1447 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1448 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1449 if (speed == SPEED_100 || speed == SPEED_10)
1450 phy_reg |= 0x3E8;
1451 else
1452 phy_reg |= 0xFA;
1453 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1454
1455 if (speed == SPEED_1000) {
1456 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1457 &phy_reg);
1458
1459 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1460
1461 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1462 phy_reg);
1463 }
1464 }
1465 hw->phy.ops.release(hw);
1466
1467 if (ret_val)
1468 goto out;
1469
1470 if (hw->mac.type >= e1000_pch_spt) {
1471 u16 data;
1472 u16 ptr_gap;
1473
1474 if (speed == SPEED_1000) {
1475 ret_val = hw->phy.ops.acquire(hw);
1476 if (ret_val)
1477 goto out;
1478
1479 ret_val = e1e_rphy_locked(hw,
1480 PHY_REG(776, 20),
1481 &data);
1482 if (ret_val) {
1483 hw->phy.ops.release(hw);
1484 goto out;
1485 }
1486
1487 ptr_gap = (data & (0x3FF << 2)) >> 2;
1488 if (ptr_gap < 0x18) {
1489 data &= ~(0x3FF << 2);
1490 data |= (0x18 << 2);
1491 ret_val =
1492 e1e_wphy_locked(hw,
1493 PHY_REG(776, 20),
1494 data);
1495 }
1496 hw->phy.ops.release(hw);
1497 if (ret_val)
1498 goto out;
1499 } else {
1500 ret_val = hw->phy.ops.acquire(hw);
1501 if (ret_val)
1502 goto out;
1503
1504 ret_val = e1e_wphy_locked(hw,
1505 PHY_REG(776, 20),
1506 0xC023);
1507 hw->phy.ops.release(hw);
1508 if (ret_val)
1509 goto out;
1510
1511 }
1512 }
1513 }
1514
1515 /* I217 Packet Loss issue:
1516 * ensure that FEXTNVM4 Beacon Duration is set correctly
1517 * on power up.
1518 * Set the Beacon Duration for I217 to 8 usec
1519 */
1520 if (hw->mac.type >= e1000_pch_lpt) {
1521 u32 mac_reg;
1522
1523 mac_reg = er32(FEXTNVM4);
1524 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1525 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1526 ew32(FEXTNVM4, mac_reg);
1527 }
1528
1529 /* Work-around I218 hang issue */
1530 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1531 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1532 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1533 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1534 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1535 if (ret_val)
1536 goto out;
1537 }
1538 if (hw->mac.type >= e1000_pch_lpt) {
1539 /* Set platform power management values for
1540 * Latency Tolerance Reporting (LTR)
1541 */
1542 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1543 if (ret_val)
1544 goto out;
1545 }
1546
1547 /* Clear link partner's EEE ability */
1548 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1549
1550 if (hw->mac.type >= e1000_pch_lpt) {
1551 u32 fextnvm6 = er32(FEXTNVM6);
1552
1553 if (hw->mac.type == e1000_pch_spt) {
1554 /* FEXTNVM6 K1-off workaround - for SPT only */
1555 u32 pcieanacfg = er32(PCIEANACFG);
1556
1557 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1558 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1559 else
1560 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1561 }
1562
1563 ew32(FEXTNVM6, fextnvm6);
1564 }
1565
1566 if (!link)
1567 goto out;
1568
1569 switch (hw->mac.type) {
1570 case e1000_pch2lan:
1571 ret_val = e1000_k1_workaround_lv(hw);
1572 if (ret_val)
1573 return ret_val;
1574 fallthrough;
1575 case e1000_pchlan:
1576 if (hw->phy.type == e1000_phy_82578) {
1577 ret_val = e1000_link_stall_workaround_hv(hw);
1578 if (ret_val)
1579 return ret_val;
1580 }
1581
1582 /* Workaround for PCHx parts in half-duplex:
1583 * Set the number of preambles removed from the packet
1584 * when it is passed from the PHY to the MAC to prevent
1585 * the MAC from misinterpreting the packet type.
1586 */
1587 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1588 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1589
1590 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1591 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1592
1593 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1594 break;
1595 default:
1596 break;
1597 }
1598
1599 /* Check if there was DownShift, must be checked
1600 * immediately after link-up
1601 */
1602 e1000e_check_downshift(hw);
1603
1604 /* Enable/Disable EEE after link up */
1605 if (hw->phy.type > e1000_phy_82579) {
1606 ret_val = e1000_set_eee_pchlan(hw);
1607 if (ret_val)
1608 return ret_val;
1609 }
1610
1611 /* If we are forcing speed/duplex, then we simply return since
1612 * we have already determined whether we have link or not.
1613 */
1614 if (!mac->autoneg)
1615 return -E1000_ERR_CONFIG;
1616
1617 /* Auto-Neg is enabled. Auto Speed Detection takes care
1618 * of MAC speed/duplex configuration. So we only need to
1619 * configure Collision Distance in the MAC.
1620 */
1621 mac->ops.config_collision_dist(hw);
1622
1623 /* Configure Flow Control now that Auto-Neg has completed.
1624 * First, we need to restore the desired flow control
1625 * settings because we may have had to re-autoneg with a
1626 * different link partner.
1627 */
1628 ret_val = e1000e_config_fc_after_link_up(hw);
1629 if (ret_val)
1630 e_dbg("Error configuring flow control\n");
1631
1632 return ret_val;
1633
1634 out:
1635 mac->get_link_status = true;
1636 return ret_val;
1637 }
1638
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)1639 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1640 {
1641 struct e1000_hw *hw = &adapter->hw;
1642 s32 rc;
1643
1644 rc = e1000_init_mac_params_ich8lan(hw);
1645 if (rc)
1646 return rc;
1647
1648 rc = e1000_init_nvm_params_ich8lan(hw);
1649 if (rc)
1650 return rc;
1651
1652 switch (hw->mac.type) {
1653 case e1000_ich8lan:
1654 case e1000_ich9lan:
1655 case e1000_ich10lan:
1656 rc = e1000_init_phy_params_ich8lan(hw);
1657 break;
1658 case e1000_pchlan:
1659 case e1000_pch2lan:
1660 case e1000_pch_lpt:
1661 case e1000_pch_spt:
1662 case e1000_pch_cnp:
1663 case e1000_pch_tgp:
1664 case e1000_pch_adp:
1665 case e1000_pch_mtp:
1666 rc = e1000_init_phy_params_pchlan(hw);
1667 break;
1668 default:
1669 break;
1670 }
1671 if (rc)
1672 return rc;
1673
1674 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1675 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1676 */
1677 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1678 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1679 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1680 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1681 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1682
1683 hw->mac.ops.blink_led = NULL;
1684 }
1685
1686 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1687 (adapter->hw.phy.type != e1000_phy_ife))
1688 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1689
1690 /* Enable workaround for 82579 w/ ME enabled */
1691 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1692 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1693 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1694
1695 return 0;
1696 }
1697
1698 static DEFINE_MUTEX(nvm_mutex);
1699
1700 /**
1701 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1702 * @hw: pointer to the HW structure
1703 *
1704 * Acquires the mutex for performing NVM operations.
1705 **/
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused * hw)1706 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1707 {
1708 mutex_lock(&nvm_mutex);
1709
1710 return 0;
1711 }
1712
1713 /**
1714 * e1000_release_nvm_ich8lan - Release NVM mutex
1715 * @hw: pointer to the HW structure
1716 *
1717 * Releases the mutex used while performing NVM operations.
1718 **/
e1000_release_nvm_ich8lan(struct e1000_hw __always_unused * hw)1719 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1720 {
1721 mutex_unlock(&nvm_mutex);
1722 }
1723
1724 /**
1725 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1726 * @hw: pointer to the HW structure
1727 *
1728 * Acquires the software control flag for performing PHY and select
1729 * MAC CSR accesses.
1730 **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)1731 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1732 {
1733 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1734 s32 ret_val = 0;
1735
1736 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1737 &hw->adapter->state)) {
1738 e_dbg("contention for Phy access\n");
1739 return -E1000_ERR_PHY;
1740 }
1741
1742 while (timeout) {
1743 extcnf_ctrl = er32(EXTCNF_CTRL);
1744 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1745 break;
1746
1747 mdelay(1);
1748 timeout--;
1749 }
1750
1751 if (!timeout) {
1752 e_dbg("SW has already locked the resource.\n");
1753 ret_val = -E1000_ERR_CONFIG;
1754 goto out;
1755 }
1756
1757 timeout = SW_FLAG_TIMEOUT;
1758
1759 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1760 ew32(EXTCNF_CTRL, extcnf_ctrl);
1761
1762 while (timeout) {
1763 extcnf_ctrl = er32(EXTCNF_CTRL);
1764 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1765 break;
1766
1767 mdelay(1);
1768 timeout--;
1769 }
1770
1771 if (!timeout) {
1772 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1773 er32(FWSM), extcnf_ctrl);
1774 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1775 ew32(EXTCNF_CTRL, extcnf_ctrl);
1776 ret_val = -E1000_ERR_CONFIG;
1777 goto out;
1778 }
1779
1780 out:
1781 if (ret_val)
1782 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1783
1784 return ret_val;
1785 }
1786
1787 /**
1788 * e1000_release_swflag_ich8lan - Release software control flag
1789 * @hw: pointer to the HW structure
1790 *
1791 * Releases the software control flag for performing PHY and select
1792 * MAC CSR accesses.
1793 **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)1794 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1795 {
1796 u32 extcnf_ctrl;
1797
1798 extcnf_ctrl = er32(EXTCNF_CTRL);
1799
1800 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1801 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1802 ew32(EXTCNF_CTRL, extcnf_ctrl);
1803 } else {
1804 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1805 }
1806
1807 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1808 }
1809
1810 /**
1811 * e1000_check_mng_mode_ich8lan - Checks management mode
1812 * @hw: pointer to the HW structure
1813 *
1814 * This checks if the adapter has any manageability enabled.
1815 * This is a function pointer entry point only called by read/write
1816 * routines for the PHY and NVM parts.
1817 **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)1818 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1819 {
1820 u32 fwsm;
1821
1822 fwsm = er32(FWSM);
1823 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1824 ((fwsm & E1000_FWSM_MODE_MASK) ==
1825 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1826 }
1827
1828 /**
1829 * e1000_check_mng_mode_pchlan - Checks management mode
1830 * @hw: pointer to the HW structure
1831 *
1832 * This checks if the adapter has iAMT enabled.
1833 * This is a function pointer entry point only called by read/write
1834 * routines for the PHY and NVM parts.
1835 **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)1836 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1837 {
1838 u32 fwsm;
1839
1840 fwsm = er32(FWSM);
1841 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1842 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1843 }
1844
1845 /**
1846 * e1000_rar_set_pch2lan - Set receive address register
1847 * @hw: pointer to the HW structure
1848 * @addr: pointer to the receive address
1849 * @index: receive address array register
1850 *
1851 * Sets the receive address array register at index to the address passed
1852 * in by addr. For 82579, RAR[0] is the base address register that is to
1853 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1854 * Use SHRA[0-3] in place of those reserved for ME.
1855 **/
e1000_rar_set_pch2lan(struct e1000_hw * hw,u8 * addr,u32 index)1856 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1857 {
1858 u32 rar_low, rar_high;
1859
1860 /* HW expects these in little endian so we reverse the byte order
1861 * from network order (big endian) to little endian
1862 */
1863 rar_low = ((u32)addr[0] |
1864 ((u32)addr[1] << 8) |
1865 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1866
1867 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1868
1869 /* If MAC address zero, no need to set the AV bit */
1870 if (rar_low || rar_high)
1871 rar_high |= E1000_RAH_AV;
1872
1873 if (index == 0) {
1874 ew32(RAL(index), rar_low);
1875 e1e_flush();
1876 ew32(RAH(index), rar_high);
1877 e1e_flush();
1878 return 0;
1879 }
1880
1881 /* RAR[1-6] are owned by manageability. Skip those and program the
1882 * next address into the SHRA register array.
1883 */
1884 if (index < (u32)(hw->mac.rar_entry_count)) {
1885 s32 ret_val;
1886
1887 ret_val = e1000_acquire_swflag_ich8lan(hw);
1888 if (ret_val)
1889 goto out;
1890
1891 ew32(SHRAL(index - 1), rar_low);
1892 e1e_flush();
1893 ew32(SHRAH(index - 1), rar_high);
1894 e1e_flush();
1895
1896 e1000_release_swflag_ich8lan(hw);
1897
1898 /* verify the register updates */
1899 if ((er32(SHRAL(index - 1)) == rar_low) &&
1900 (er32(SHRAH(index - 1)) == rar_high))
1901 return 0;
1902
1903 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1904 (index - 1), er32(FWSM));
1905 }
1906
1907 out:
1908 e_dbg("Failed to write receive address at index %d\n", index);
1909 return -E1000_ERR_CONFIG;
1910 }
1911
1912 /**
1913 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1914 * @hw: pointer to the HW structure
1915 *
1916 * Get the number of available receive registers that the Host can
1917 * program. SHRA[0-10] are the shared receive address registers
1918 * that are shared between the Host and manageability engine (ME).
1919 * ME can reserve any number of addresses and the host needs to be
1920 * able to tell how many available registers it has access to.
1921 **/
e1000_rar_get_count_pch_lpt(struct e1000_hw * hw)1922 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1923 {
1924 u32 wlock_mac;
1925 u32 num_entries;
1926
1927 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1928 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1929
1930 switch (wlock_mac) {
1931 case 0:
1932 /* All SHRA[0..10] and RAR[0] available */
1933 num_entries = hw->mac.rar_entry_count;
1934 break;
1935 case 1:
1936 /* Only RAR[0] available */
1937 num_entries = 1;
1938 break;
1939 default:
1940 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1941 num_entries = wlock_mac + 1;
1942 break;
1943 }
1944
1945 return num_entries;
1946 }
1947
1948 /**
1949 * e1000_rar_set_pch_lpt - Set receive address registers
1950 * @hw: pointer to the HW structure
1951 * @addr: pointer to the receive address
1952 * @index: receive address array register
1953 *
1954 * Sets the receive address register array at index to the address passed
1955 * in by addr. For LPT, RAR[0] is the base address register that is to
1956 * contain the MAC address. SHRA[0-10] are the shared receive address
1957 * registers that are shared between the Host and manageability engine (ME).
1958 **/
e1000_rar_set_pch_lpt(struct e1000_hw * hw,u8 * addr,u32 index)1959 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1960 {
1961 u32 rar_low, rar_high;
1962 u32 wlock_mac;
1963
1964 /* HW expects these in little endian so we reverse the byte order
1965 * from network order (big endian) to little endian
1966 */
1967 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1968 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1969
1970 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1971
1972 /* If MAC address zero, no need to set the AV bit */
1973 if (rar_low || rar_high)
1974 rar_high |= E1000_RAH_AV;
1975
1976 if (index == 0) {
1977 ew32(RAL(index), rar_low);
1978 e1e_flush();
1979 ew32(RAH(index), rar_high);
1980 e1e_flush();
1981 return 0;
1982 }
1983
1984 /* The manageability engine (ME) can lock certain SHRAR registers that
1985 * it is using - those registers are unavailable for use.
1986 */
1987 if (index < hw->mac.rar_entry_count) {
1988 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1989 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1990
1991 /* Check if all SHRAR registers are locked */
1992 if (wlock_mac == 1)
1993 goto out;
1994
1995 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1996 s32 ret_val;
1997
1998 ret_val = e1000_acquire_swflag_ich8lan(hw);
1999
2000 if (ret_val)
2001 goto out;
2002
2003 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2004 e1e_flush();
2005 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2006 e1e_flush();
2007
2008 e1000_release_swflag_ich8lan(hw);
2009
2010 /* verify the register updates */
2011 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2012 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2013 return 0;
2014 }
2015 }
2016
2017 out:
2018 e_dbg("Failed to write receive address at index %d\n", index);
2019 return -E1000_ERR_CONFIG;
2020 }
2021
2022 /**
2023 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2024 * @hw: pointer to the HW structure
2025 *
2026 * Checks if firmware is blocking the reset of the PHY.
2027 * This is a function pointer entry point only called by
2028 * reset routines.
2029 **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)2030 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2031 {
2032 bool blocked = false;
2033 int i = 0;
2034
2035 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2036 (i++ < 30))
2037 usleep_range(10000, 11000);
2038 return blocked ? E1000_BLK_PHY_RESET : 0;
2039 }
2040
2041 /**
2042 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2043 * @hw: pointer to the HW structure
2044 *
2045 * Assumes semaphore already acquired.
2046 *
2047 **/
e1000_write_smbus_addr(struct e1000_hw * hw)2048 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2049 {
2050 u16 phy_data;
2051 u32 strap = er32(STRAP);
2052 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2053 E1000_STRAP_SMT_FREQ_SHIFT;
2054 s32 ret_val;
2055
2056 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2057
2058 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2059 if (ret_val)
2060 return ret_val;
2061
2062 phy_data &= ~HV_SMB_ADDR_MASK;
2063 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2064 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2065
2066 if (hw->phy.type == e1000_phy_i217) {
2067 /* Restore SMBus frequency */
2068 if (freq--) {
2069 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2070 phy_data |= (freq & BIT(0)) <<
2071 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2072 phy_data |= (freq & BIT(1)) <<
2073 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2074 } else {
2075 e_dbg("Unsupported SMB frequency in PHY\n");
2076 }
2077 }
2078
2079 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2080 }
2081
2082 /**
2083 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2084 * @hw: pointer to the HW structure
2085 *
2086 * SW should configure the LCD from the NVM extended configuration region
2087 * as a workaround for certain parts.
2088 **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)2089 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2090 {
2091 struct e1000_phy_info *phy = &hw->phy;
2092 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2093 s32 ret_val = 0;
2094 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2095
2096 /* Initialize the PHY from the NVM on ICH platforms. This
2097 * is needed due to an issue where the NVM configuration is
2098 * not properly autoloaded after power transitions.
2099 * Therefore, after each PHY reset, we will load the
2100 * configuration data out of the NVM manually.
2101 */
2102 switch (hw->mac.type) {
2103 case e1000_ich8lan:
2104 if (phy->type != e1000_phy_igp_3)
2105 return ret_val;
2106
2107 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2108 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2109 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2110 break;
2111 }
2112 fallthrough;
2113 case e1000_pchlan:
2114 case e1000_pch2lan:
2115 case e1000_pch_lpt:
2116 case e1000_pch_spt:
2117 case e1000_pch_cnp:
2118 case e1000_pch_tgp:
2119 case e1000_pch_adp:
2120 case e1000_pch_mtp:
2121 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2122 break;
2123 default:
2124 return ret_val;
2125 }
2126
2127 ret_val = hw->phy.ops.acquire(hw);
2128 if (ret_val)
2129 return ret_val;
2130
2131 data = er32(FEXTNVM);
2132 if (!(data & sw_cfg_mask))
2133 goto release;
2134
2135 /* Make sure HW does not configure LCD from PHY
2136 * extended configuration before SW configuration
2137 */
2138 data = er32(EXTCNF_CTRL);
2139 if ((hw->mac.type < e1000_pch2lan) &&
2140 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2141 goto release;
2142
2143 cnf_size = er32(EXTCNF_SIZE);
2144 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2145 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2146 if (!cnf_size)
2147 goto release;
2148
2149 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2150 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2151
2152 if (((hw->mac.type == e1000_pchlan) &&
2153 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2154 (hw->mac.type > e1000_pchlan)) {
2155 /* HW configures the SMBus address and LEDs when the
2156 * OEM and LCD Write Enable bits are set in the NVM.
2157 * When both NVM bits are cleared, SW will configure
2158 * them instead.
2159 */
2160 ret_val = e1000_write_smbus_addr(hw);
2161 if (ret_val)
2162 goto release;
2163
2164 data = er32(LEDCTL);
2165 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2166 (u16)data);
2167 if (ret_val)
2168 goto release;
2169 }
2170
2171 /* Configure LCD from extended configuration region. */
2172
2173 /* cnf_base_addr is in DWORD */
2174 word_addr = (u16)(cnf_base_addr << 1);
2175
2176 for (i = 0; i < cnf_size; i++) {
2177 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data);
2178 if (ret_val)
2179 goto release;
2180
2181 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2182 1, ®_addr);
2183 if (ret_val)
2184 goto release;
2185
2186 /* Save off the PHY page for future writes. */
2187 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2188 phy_page = reg_data;
2189 continue;
2190 }
2191
2192 reg_addr &= PHY_REG_MASK;
2193 reg_addr |= phy_page;
2194
2195 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2196 if (ret_val)
2197 goto release;
2198 }
2199
2200 release:
2201 hw->phy.ops.release(hw);
2202 return ret_val;
2203 }
2204
2205 /**
2206 * e1000_k1_gig_workaround_hv - K1 Si workaround
2207 * @hw: pointer to the HW structure
2208 * @link: link up bool flag
2209 *
2210 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2211 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2212 * If link is down, the function will restore the default K1 setting located
2213 * in the NVM.
2214 **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)2215 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2216 {
2217 s32 ret_val = 0;
2218 u16 status_reg = 0;
2219 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2220
2221 if (hw->mac.type != e1000_pchlan)
2222 return 0;
2223
2224 /* Wrap the whole flow with the sw flag */
2225 ret_val = hw->phy.ops.acquire(hw);
2226 if (ret_val)
2227 return ret_val;
2228
2229 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2230 if (link) {
2231 if (hw->phy.type == e1000_phy_82578) {
2232 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2233 &status_reg);
2234 if (ret_val)
2235 goto release;
2236
2237 status_reg &= (BM_CS_STATUS_LINK_UP |
2238 BM_CS_STATUS_RESOLVED |
2239 BM_CS_STATUS_SPEED_MASK);
2240
2241 if (status_reg == (BM_CS_STATUS_LINK_UP |
2242 BM_CS_STATUS_RESOLVED |
2243 BM_CS_STATUS_SPEED_1000))
2244 k1_enable = false;
2245 }
2246
2247 if (hw->phy.type == e1000_phy_82577) {
2248 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2249 if (ret_val)
2250 goto release;
2251
2252 status_reg &= (HV_M_STATUS_LINK_UP |
2253 HV_M_STATUS_AUTONEG_COMPLETE |
2254 HV_M_STATUS_SPEED_MASK);
2255
2256 if (status_reg == (HV_M_STATUS_LINK_UP |
2257 HV_M_STATUS_AUTONEG_COMPLETE |
2258 HV_M_STATUS_SPEED_1000))
2259 k1_enable = false;
2260 }
2261
2262 /* Link stall fix for link up */
2263 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2264 if (ret_val)
2265 goto release;
2266
2267 } else {
2268 /* Link stall fix for link down */
2269 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2270 if (ret_val)
2271 goto release;
2272 }
2273
2274 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2275
2276 release:
2277 hw->phy.ops.release(hw);
2278
2279 return ret_val;
2280 }
2281
2282 /**
2283 * e1000_configure_k1_ich8lan - Configure K1 power state
2284 * @hw: pointer to the HW structure
2285 * @k1_enable: K1 state to configure
2286 *
2287 * Configure the K1 power state based on the provided parameter.
2288 * Assumes semaphore already acquired.
2289 *
2290 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2291 **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)2292 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2293 {
2294 s32 ret_val;
2295 u32 ctrl_reg = 0;
2296 u32 ctrl_ext = 0;
2297 u32 reg = 0;
2298 u16 kmrn_reg = 0;
2299
2300 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2301 &kmrn_reg);
2302 if (ret_val)
2303 return ret_val;
2304
2305 if (k1_enable)
2306 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2307 else
2308 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2309
2310 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2311 kmrn_reg);
2312 if (ret_val)
2313 return ret_val;
2314
2315 usleep_range(20, 40);
2316 ctrl_ext = er32(CTRL_EXT);
2317 ctrl_reg = er32(CTRL);
2318
2319 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2320 reg |= E1000_CTRL_FRCSPD;
2321 ew32(CTRL, reg);
2322
2323 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2324 e1e_flush();
2325 usleep_range(20, 40);
2326 ew32(CTRL, ctrl_reg);
2327 ew32(CTRL_EXT, ctrl_ext);
2328 e1e_flush();
2329 usleep_range(20, 40);
2330
2331 return 0;
2332 }
2333
2334 /**
2335 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2336 * @hw: pointer to the HW structure
2337 * @d0_state: boolean if entering d0 or d3 device state
2338 *
2339 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2340 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2341 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2342 **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)2343 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2344 {
2345 s32 ret_val = 0;
2346 u32 mac_reg;
2347 u16 oem_reg;
2348
2349 if (hw->mac.type < e1000_pchlan)
2350 return ret_val;
2351
2352 ret_val = hw->phy.ops.acquire(hw);
2353 if (ret_val)
2354 return ret_val;
2355
2356 if (hw->mac.type == e1000_pchlan) {
2357 mac_reg = er32(EXTCNF_CTRL);
2358 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2359 goto release;
2360 }
2361
2362 mac_reg = er32(FEXTNVM);
2363 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2364 goto release;
2365
2366 mac_reg = er32(PHY_CTRL);
2367
2368 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2369 if (ret_val)
2370 goto release;
2371
2372 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2373
2374 if (d0_state) {
2375 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2376 oem_reg |= HV_OEM_BITS_GBE_DIS;
2377
2378 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2379 oem_reg |= HV_OEM_BITS_LPLU;
2380 } else {
2381 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2382 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2383 oem_reg |= HV_OEM_BITS_GBE_DIS;
2384
2385 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2386 E1000_PHY_CTRL_NOND0A_LPLU))
2387 oem_reg |= HV_OEM_BITS_LPLU;
2388 }
2389
2390 /* Set Restart auto-neg to activate the bits */
2391 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2392 !hw->phy.ops.check_reset_block(hw))
2393 oem_reg |= HV_OEM_BITS_RESTART_AN;
2394
2395 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2396
2397 release:
2398 hw->phy.ops.release(hw);
2399
2400 return ret_val;
2401 }
2402
2403 /**
2404 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2405 * @hw: pointer to the HW structure
2406 **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)2407 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2408 {
2409 s32 ret_val;
2410 u16 data;
2411
2412 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2413 if (ret_val)
2414 return ret_val;
2415
2416 data |= HV_KMRN_MDIO_SLOW;
2417
2418 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2419
2420 return ret_val;
2421 }
2422
2423 /**
2424 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2425 * @hw: pointer to the HW structure
2426 *
2427 * A series of PHY workarounds to be done after every PHY reset.
2428 **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)2429 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2430 {
2431 s32 ret_val = 0;
2432 u16 phy_data;
2433
2434 if (hw->mac.type != e1000_pchlan)
2435 return 0;
2436
2437 /* Set MDIO slow mode before any other MDIO access */
2438 if (hw->phy.type == e1000_phy_82577) {
2439 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2440 if (ret_val)
2441 return ret_val;
2442 }
2443
2444 if (((hw->phy.type == e1000_phy_82577) &&
2445 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2446 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2447 /* Disable generation of early preamble */
2448 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2449 if (ret_val)
2450 return ret_val;
2451
2452 /* Preamble tuning for SSC */
2453 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2454 if (ret_val)
2455 return ret_val;
2456 }
2457
2458 if (hw->phy.type == e1000_phy_82578) {
2459 /* Return registers to default by doing a soft reset then
2460 * writing 0x3140 to the control register.
2461 */
2462 if (hw->phy.revision < 2) {
2463 e1000e_phy_sw_reset(hw);
2464 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2465 if (ret_val)
2466 return ret_val;
2467 }
2468 }
2469
2470 /* Select page 0 */
2471 ret_val = hw->phy.ops.acquire(hw);
2472 if (ret_val)
2473 return ret_val;
2474
2475 hw->phy.addr = 1;
2476 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2477 hw->phy.ops.release(hw);
2478 if (ret_val)
2479 return ret_val;
2480
2481 /* Configure the K1 Si workaround during phy reset assuming there is
2482 * link so that it disables K1 if link is in 1Gbps.
2483 */
2484 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2485 if (ret_val)
2486 return ret_val;
2487
2488 /* Workaround for link disconnects on a busy hub in half duplex */
2489 ret_val = hw->phy.ops.acquire(hw);
2490 if (ret_val)
2491 return ret_val;
2492 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2493 if (ret_val)
2494 goto release;
2495 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2496 if (ret_val)
2497 goto release;
2498
2499 /* set MSE higher to enable link to stay up when noise is high */
2500 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2501 release:
2502 hw->phy.ops.release(hw);
2503
2504 return ret_val;
2505 }
2506
2507 /**
2508 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2509 * @hw: pointer to the HW structure
2510 **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)2511 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2512 {
2513 u32 mac_reg;
2514 u16 i, phy_reg = 0;
2515 s32 ret_val;
2516
2517 ret_val = hw->phy.ops.acquire(hw);
2518 if (ret_val)
2519 return;
2520 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2521 if (ret_val)
2522 goto release;
2523
2524 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2525 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2526 mac_reg = er32(RAL(i));
2527 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2528 (u16)(mac_reg & 0xFFFF));
2529 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2530 (u16)((mac_reg >> 16) & 0xFFFF));
2531
2532 mac_reg = er32(RAH(i));
2533 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2534 (u16)(mac_reg & 0xFFFF));
2535 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2536 (u16)((mac_reg & E1000_RAH_AV)
2537 >> 16));
2538 }
2539
2540 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2541
2542 release:
2543 hw->phy.ops.release(hw);
2544 }
2545
2546 /**
2547 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2548 * with 82579 PHY
2549 * @hw: pointer to the HW structure
2550 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2551 **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)2552 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2553 {
2554 s32 ret_val = 0;
2555 u16 phy_reg, data;
2556 u32 mac_reg;
2557 u16 i;
2558
2559 if (hw->mac.type < e1000_pch2lan)
2560 return 0;
2561
2562 /* disable Rx path while enabling/disabling workaround */
2563 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2564 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2565 if (ret_val)
2566 return ret_val;
2567
2568 if (enable) {
2569 /* Write Rx addresses (rar_entry_count for RAL/H, and
2570 * SHRAL/H) and initial CRC values to the MAC
2571 */
2572 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2573 u8 mac_addr[ETH_ALEN] = { 0 };
2574 u32 addr_high, addr_low;
2575
2576 addr_high = er32(RAH(i));
2577 if (!(addr_high & E1000_RAH_AV))
2578 continue;
2579 addr_low = er32(RAL(i));
2580 mac_addr[0] = (addr_low & 0xFF);
2581 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2582 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2583 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2584 mac_addr[4] = (addr_high & 0xFF);
2585 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2586
2587 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2588 }
2589
2590 /* Write Rx addresses to the PHY */
2591 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2592
2593 /* Enable jumbo frame workaround in the MAC */
2594 mac_reg = er32(FFLT_DBG);
2595 mac_reg &= ~BIT(14);
2596 mac_reg |= (7 << 15);
2597 ew32(FFLT_DBG, mac_reg);
2598
2599 mac_reg = er32(RCTL);
2600 mac_reg |= E1000_RCTL_SECRC;
2601 ew32(RCTL, mac_reg);
2602
2603 ret_val = e1000e_read_kmrn_reg(hw,
2604 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2605 &data);
2606 if (ret_val)
2607 return ret_val;
2608 ret_val = e1000e_write_kmrn_reg(hw,
2609 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2610 data | BIT(0));
2611 if (ret_val)
2612 return ret_val;
2613 ret_val = e1000e_read_kmrn_reg(hw,
2614 E1000_KMRNCTRLSTA_HD_CTRL,
2615 &data);
2616 if (ret_val)
2617 return ret_val;
2618 data &= ~(0xF << 8);
2619 data |= (0xB << 8);
2620 ret_val = e1000e_write_kmrn_reg(hw,
2621 E1000_KMRNCTRLSTA_HD_CTRL,
2622 data);
2623 if (ret_val)
2624 return ret_val;
2625
2626 /* Enable jumbo frame workaround in the PHY */
2627 e1e_rphy(hw, PHY_REG(769, 23), &data);
2628 data &= ~(0x7F << 5);
2629 data |= (0x37 << 5);
2630 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2631 if (ret_val)
2632 return ret_val;
2633 e1e_rphy(hw, PHY_REG(769, 16), &data);
2634 data &= ~BIT(13);
2635 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2636 if (ret_val)
2637 return ret_val;
2638 e1e_rphy(hw, PHY_REG(776, 20), &data);
2639 data &= ~(0x3FF << 2);
2640 data |= (E1000_TX_PTR_GAP << 2);
2641 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2642 if (ret_val)
2643 return ret_val;
2644 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2645 if (ret_val)
2646 return ret_val;
2647 e1e_rphy(hw, HV_PM_CTRL, &data);
2648 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2649 if (ret_val)
2650 return ret_val;
2651 } else {
2652 /* Write MAC register values back to h/w defaults */
2653 mac_reg = er32(FFLT_DBG);
2654 mac_reg &= ~(0xF << 14);
2655 ew32(FFLT_DBG, mac_reg);
2656
2657 mac_reg = er32(RCTL);
2658 mac_reg &= ~E1000_RCTL_SECRC;
2659 ew32(RCTL, mac_reg);
2660
2661 ret_val = e1000e_read_kmrn_reg(hw,
2662 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2663 &data);
2664 if (ret_val)
2665 return ret_val;
2666 ret_val = e1000e_write_kmrn_reg(hw,
2667 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2668 data & ~BIT(0));
2669 if (ret_val)
2670 return ret_val;
2671 ret_val = e1000e_read_kmrn_reg(hw,
2672 E1000_KMRNCTRLSTA_HD_CTRL,
2673 &data);
2674 if (ret_val)
2675 return ret_val;
2676 data &= ~(0xF << 8);
2677 data |= (0xB << 8);
2678 ret_val = e1000e_write_kmrn_reg(hw,
2679 E1000_KMRNCTRLSTA_HD_CTRL,
2680 data);
2681 if (ret_val)
2682 return ret_val;
2683
2684 /* Write PHY register values back to h/w defaults */
2685 e1e_rphy(hw, PHY_REG(769, 23), &data);
2686 data &= ~(0x7F << 5);
2687 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2688 if (ret_val)
2689 return ret_val;
2690 e1e_rphy(hw, PHY_REG(769, 16), &data);
2691 data |= BIT(13);
2692 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2693 if (ret_val)
2694 return ret_val;
2695 e1e_rphy(hw, PHY_REG(776, 20), &data);
2696 data &= ~(0x3FF << 2);
2697 data |= (0x8 << 2);
2698 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2699 if (ret_val)
2700 return ret_val;
2701 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2702 if (ret_val)
2703 return ret_val;
2704 e1e_rphy(hw, HV_PM_CTRL, &data);
2705 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2706 if (ret_val)
2707 return ret_val;
2708 }
2709
2710 /* re-enable Rx path after enabling/disabling workaround */
2711 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2712 }
2713
2714 /**
2715 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2716 * @hw: pointer to the HW structure
2717 *
2718 * A series of PHY workarounds to be done after every PHY reset.
2719 **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)2720 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2721 {
2722 s32 ret_val = 0;
2723
2724 if (hw->mac.type != e1000_pch2lan)
2725 return 0;
2726
2727 /* Set MDIO slow mode before any other MDIO access */
2728 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2729 if (ret_val)
2730 return ret_val;
2731
2732 ret_val = hw->phy.ops.acquire(hw);
2733 if (ret_val)
2734 return ret_val;
2735 /* set MSE higher to enable link to stay up when noise is high */
2736 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2737 if (ret_val)
2738 goto release;
2739 /* drop link after 5 times MSE threshold was reached */
2740 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2741 release:
2742 hw->phy.ops.release(hw);
2743
2744 return ret_val;
2745 }
2746
2747 /**
2748 * e1000_k1_workaround_lv - K1 Si workaround
2749 * @hw: pointer to the HW structure
2750 *
2751 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2752 * Disable K1 in 1000Mbps and 100Mbps
2753 **/
e1000_k1_workaround_lv(struct e1000_hw * hw)2754 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2755 {
2756 s32 ret_val = 0;
2757 u16 status_reg = 0;
2758
2759 if (hw->mac.type != e1000_pch2lan)
2760 return 0;
2761
2762 /* Set K1 beacon duration based on 10Mbs speed */
2763 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2764 if (ret_val)
2765 return ret_val;
2766
2767 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2768 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2769 if (status_reg &
2770 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2771 u16 pm_phy_reg;
2772
2773 /* LV 1G/100 Packet drop issue wa */
2774 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2775 if (ret_val)
2776 return ret_val;
2777 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2778 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2779 if (ret_val)
2780 return ret_val;
2781 } else {
2782 u32 mac_reg;
2783
2784 mac_reg = er32(FEXTNVM4);
2785 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2786 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2787 ew32(FEXTNVM4, mac_reg);
2788 }
2789 }
2790
2791 return ret_val;
2792 }
2793
2794 /**
2795 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2796 * @hw: pointer to the HW structure
2797 * @gate: boolean set to true to gate, false to ungate
2798 *
2799 * Gate/ungate the automatic PHY configuration via hardware; perform
2800 * the configuration via software instead.
2801 **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)2802 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2803 {
2804 u32 extcnf_ctrl;
2805
2806 if (hw->mac.type < e1000_pch2lan)
2807 return;
2808
2809 extcnf_ctrl = er32(EXTCNF_CTRL);
2810
2811 if (gate)
2812 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2813 else
2814 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2815
2816 ew32(EXTCNF_CTRL, extcnf_ctrl);
2817 }
2818
2819 /**
2820 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2821 * @hw: pointer to the HW structure
2822 *
2823 * Check the appropriate indication the MAC has finished configuring the
2824 * PHY after a software reset.
2825 **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)2826 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2827 {
2828 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2829
2830 /* Wait for basic configuration completes before proceeding */
2831 do {
2832 data = er32(STATUS);
2833 data &= E1000_STATUS_LAN_INIT_DONE;
2834 usleep_range(100, 200);
2835 } while ((!data) && --loop);
2836
2837 /* If basic configuration is incomplete before the above loop
2838 * count reaches 0, loading the configuration from NVM will
2839 * leave the PHY in a bad state possibly resulting in no link.
2840 */
2841 if (loop == 0)
2842 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2843
2844 /* Clear the Init Done bit for the next init event */
2845 data = er32(STATUS);
2846 data &= ~E1000_STATUS_LAN_INIT_DONE;
2847 ew32(STATUS, data);
2848 }
2849
2850 /**
2851 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2852 * @hw: pointer to the HW structure
2853 **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)2854 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2855 {
2856 s32 ret_val = 0;
2857 u16 reg;
2858
2859 if (hw->phy.ops.check_reset_block(hw))
2860 return 0;
2861
2862 /* Allow time for h/w to get to quiescent state after reset */
2863 usleep_range(10000, 11000);
2864
2865 /* Perform any necessary post-reset workarounds */
2866 switch (hw->mac.type) {
2867 case e1000_pchlan:
2868 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2869 if (ret_val)
2870 return ret_val;
2871 break;
2872 case e1000_pch2lan:
2873 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2874 if (ret_val)
2875 return ret_val;
2876 break;
2877 default:
2878 break;
2879 }
2880
2881 /* Clear the host wakeup bit after lcd reset */
2882 if (hw->mac.type >= e1000_pchlan) {
2883 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2884 reg &= ~BM_WUC_HOST_WU_BIT;
2885 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2886 }
2887
2888 /* Configure the LCD with the extended configuration region in NVM */
2889 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2890 if (ret_val)
2891 return ret_val;
2892
2893 /* Configure the LCD with the OEM bits in NVM */
2894 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2895
2896 if (hw->mac.type == e1000_pch2lan) {
2897 /* Ungate automatic PHY configuration on non-managed 82579 */
2898 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2899 usleep_range(10000, 11000);
2900 e1000_gate_hw_phy_config_ich8lan(hw, false);
2901 }
2902
2903 /* Set EEE LPI Update Timer to 200usec */
2904 ret_val = hw->phy.ops.acquire(hw);
2905 if (ret_val)
2906 return ret_val;
2907 ret_val = e1000_write_emi_reg_locked(hw,
2908 I82579_LPI_UPDATE_TIMER,
2909 0x1387);
2910 hw->phy.ops.release(hw);
2911 }
2912
2913 return ret_val;
2914 }
2915
2916 /**
2917 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2918 * @hw: pointer to the HW structure
2919 *
2920 * Resets the PHY
2921 * This is a function pointer entry point called by drivers
2922 * or other shared routines.
2923 **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)2924 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2925 {
2926 s32 ret_val = 0;
2927
2928 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2929 if ((hw->mac.type == e1000_pch2lan) &&
2930 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2931 e1000_gate_hw_phy_config_ich8lan(hw, true);
2932
2933 ret_val = e1000e_phy_hw_reset_generic(hw);
2934 if (ret_val)
2935 return ret_val;
2936
2937 return e1000_post_phy_reset_ich8lan(hw);
2938 }
2939
2940 /**
2941 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2942 * @hw: pointer to the HW structure
2943 * @active: true to enable LPLU, false to disable
2944 *
2945 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2946 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2947 * the phy speed. This function will manually set the LPLU bit and restart
2948 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2949 * since it configures the same bit.
2950 **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)2951 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2952 {
2953 s32 ret_val;
2954 u16 oem_reg;
2955
2956 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2957 if (ret_val)
2958 return ret_val;
2959
2960 if (active)
2961 oem_reg |= HV_OEM_BITS_LPLU;
2962 else
2963 oem_reg &= ~HV_OEM_BITS_LPLU;
2964
2965 if (!hw->phy.ops.check_reset_block(hw))
2966 oem_reg |= HV_OEM_BITS_RESTART_AN;
2967
2968 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2969 }
2970
2971 /**
2972 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2973 * @hw: pointer to the HW structure
2974 * @active: true to enable LPLU, false to disable
2975 *
2976 * Sets the LPLU D0 state according to the active flag. When
2977 * activating LPLU this function also disables smart speed
2978 * and vice versa. LPLU will not be activated unless the
2979 * device autonegotiation advertisement meets standards of
2980 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2981 * This is a function pointer entry point only called by
2982 * PHY setup routines.
2983 **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)2984 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2985 {
2986 struct e1000_phy_info *phy = &hw->phy;
2987 u32 phy_ctrl;
2988 s32 ret_val = 0;
2989 u16 data;
2990
2991 if (phy->type == e1000_phy_ife)
2992 return 0;
2993
2994 phy_ctrl = er32(PHY_CTRL);
2995
2996 if (active) {
2997 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2998 ew32(PHY_CTRL, phy_ctrl);
2999
3000 if (phy->type != e1000_phy_igp_3)
3001 return 0;
3002
3003 /* Call gig speed drop workaround on LPLU before accessing
3004 * any PHY registers
3005 */
3006 if (hw->mac.type == e1000_ich8lan)
3007 e1000e_gig_downshift_workaround_ich8lan(hw);
3008
3009 /* When LPLU is enabled, we should disable SmartSpeed */
3010 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3011 if (ret_val)
3012 return ret_val;
3013 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3014 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3015 if (ret_val)
3016 return ret_val;
3017 } else {
3018 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3019 ew32(PHY_CTRL, phy_ctrl);
3020
3021 if (phy->type != e1000_phy_igp_3)
3022 return 0;
3023
3024 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3025 * during Dx states where the power conservation is most
3026 * important. During driver activity we should enable
3027 * SmartSpeed, so performance is maintained.
3028 */
3029 if (phy->smart_speed == e1000_smart_speed_on) {
3030 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3031 &data);
3032 if (ret_val)
3033 return ret_val;
3034
3035 data |= IGP01E1000_PSCFR_SMART_SPEED;
3036 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3037 data);
3038 if (ret_val)
3039 return ret_val;
3040 } else if (phy->smart_speed == e1000_smart_speed_off) {
3041 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3042 &data);
3043 if (ret_val)
3044 return ret_val;
3045
3046 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3047 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3048 data);
3049 if (ret_val)
3050 return ret_val;
3051 }
3052 }
3053
3054 return 0;
3055 }
3056
3057 /**
3058 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3059 * @hw: pointer to the HW structure
3060 * @active: true to enable LPLU, false to disable
3061 *
3062 * Sets the LPLU D3 state according to the active flag. When
3063 * activating LPLU this function also disables smart speed
3064 * and vice versa. LPLU will not be activated unless the
3065 * device autonegotiation advertisement meets standards of
3066 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3067 * This is a function pointer entry point only called by
3068 * PHY setup routines.
3069 **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3070 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3071 {
3072 struct e1000_phy_info *phy = &hw->phy;
3073 u32 phy_ctrl;
3074 s32 ret_val = 0;
3075 u16 data;
3076
3077 phy_ctrl = er32(PHY_CTRL);
3078
3079 if (!active) {
3080 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3081 ew32(PHY_CTRL, phy_ctrl);
3082
3083 if (phy->type != e1000_phy_igp_3)
3084 return 0;
3085
3086 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3087 * during Dx states where the power conservation is most
3088 * important. During driver activity we should enable
3089 * SmartSpeed, so performance is maintained.
3090 */
3091 if (phy->smart_speed == e1000_smart_speed_on) {
3092 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3093 &data);
3094 if (ret_val)
3095 return ret_val;
3096
3097 data |= IGP01E1000_PSCFR_SMART_SPEED;
3098 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3099 data);
3100 if (ret_val)
3101 return ret_val;
3102 } else if (phy->smart_speed == e1000_smart_speed_off) {
3103 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3104 &data);
3105 if (ret_val)
3106 return ret_val;
3107
3108 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3109 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3110 data);
3111 if (ret_val)
3112 return ret_val;
3113 }
3114 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3115 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3116 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3117 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3118 ew32(PHY_CTRL, phy_ctrl);
3119
3120 if (phy->type != e1000_phy_igp_3)
3121 return 0;
3122
3123 /* Call gig speed drop workaround on LPLU before accessing
3124 * any PHY registers
3125 */
3126 if (hw->mac.type == e1000_ich8lan)
3127 e1000e_gig_downshift_workaround_ich8lan(hw);
3128
3129 /* When LPLU is enabled, we should disable SmartSpeed */
3130 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3131 if (ret_val)
3132 return ret_val;
3133
3134 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3135 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3136 }
3137
3138 return ret_val;
3139 }
3140
3141 /**
3142 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3143 * @hw: pointer to the HW structure
3144 * @bank: pointer to the variable that returns the active bank
3145 *
3146 * Reads signature byte from the NVM using the flash access registers.
3147 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3148 **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)3149 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3150 {
3151 u32 eecd;
3152 struct e1000_nvm_info *nvm = &hw->nvm;
3153 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3154 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3155 u32 nvm_dword = 0;
3156 u8 sig_byte = 0;
3157 s32 ret_val;
3158
3159 switch (hw->mac.type) {
3160 case e1000_pch_spt:
3161 case e1000_pch_cnp:
3162 case e1000_pch_tgp:
3163 case e1000_pch_adp:
3164 case e1000_pch_mtp:
3165 bank1_offset = nvm->flash_bank_size;
3166 act_offset = E1000_ICH_NVM_SIG_WORD;
3167
3168 /* set bank to 0 in case flash read fails */
3169 *bank = 0;
3170
3171 /* Check bank 0 */
3172 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3173 &nvm_dword);
3174 if (ret_val)
3175 return ret_val;
3176 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3177 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3178 E1000_ICH_NVM_SIG_VALUE) {
3179 *bank = 0;
3180 return 0;
3181 }
3182
3183 /* Check bank 1 */
3184 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3185 bank1_offset,
3186 &nvm_dword);
3187 if (ret_val)
3188 return ret_val;
3189 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3190 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3191 E1000_ICH_NVM_SIG_VALUE) {
3192 *bank = 1;
3193 return 0;
3194 }
3195
3196 e_dbg("ERROR: No valid NVM bank present\n");
3197 return -E1000_ERR_NVM;
3198 case e1000_ich8lan:
3199 case e1000_ich9lan:
3200 eecd = er32(EECD);
3201 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3202 E1000_EECD_SEC1VAL_VALID_MASK) {
3203 if (eecd & E1000_EECD_SEC1VAL)
3204 *bank = 1;
3205 else
3206 *bank = 0;
3207
3208 return 0;
3209 }
3210 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3211 fallthrough;
3212 default:
3213 /* set bank to 0 in case flash read fails */
3214 *bank = 0;
3215
3216 /* Check bank 0 */
3217 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3218 &sig_byte);
3219 if (ret_val)
3220 return ret_val;
3221 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3222 E1000_ICH_NVM_SIG_VALUE) {
3223 *bank = 0;
3224 return 0;
3225 }
3226
3227 /* Check bank 1 */
3228 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3229 bank1_offset,
3230 &sig_byte);
3231 if (ret_val)
3232 return ret_val;
3233 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3234 E1000_ICH_NVM_SIG_VALUE) {
3235 *bank = 1;
3236 return 0;
3237 }
3238
3239 e_dbg("ERROR: No valid NVM bank present\n");
3240 return -E1000_ERR_NVM;
3241 }
3242 }
3243
3244 /**
3245 * e1000_read_nvm_spt - NVM access for SPT
3246 * @hw: pointer to the HW structure
3247 * @offset: The offset (in bytes) of the word(s) to read.
3248 * @words: Size of data to read in words.
3249 * @data: pointer to the word(s) to read at offset.
3250 *
3251 * Reads a word(s) from the NVM
3252 **/
e1000_read_nvm_spt(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3253 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3254 u16 *data)
3255 {
3256 struct e1000_nvm_info *nvm = &hw->nvm;
3257 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3258 u32 act_offset;
3259 s32 ret_val = 0;
3260 u32 bank = 0;
3261 u32 dword = 0;
3262 u16 offset_to_read;
3263 u16 i;
3264
3265 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3266 (words == 0)) {
3267 e_dbg("nvm parameter(s) out of bounds\n");
3268 ret_val = -E1000_ERR_NVM;
3269 goto out;
3270 }
3271
3272 nvm->ops.acquire(hw);
3273
3274 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3275 if (ret_val) {
3276 e_dbg("Could not detect valid bank, assuming bank 0\n");
3277 bank = 0;
3278 }
3279
3280 act_offset = (bank) ? nvm->flash_bank_size : 0;
3281 act_offset += offset;
3282
3283 ret_val = 0;
3284
3285 for (i = 0; i < words; i += 2) {
3286 if (words - i == 1) {
3287 if (dev_spec->shadow_ram[offset + i].modified) {
3288 data[i] =
3289 dev_spec->shadow_ram[offset + i].value;
3290 } else {
3291 offset_to_read = act_offset + i -
3292 ((act_offset + i) % 2);
3293 ret_val =
3294 e1000_read_flash_dword_ich8lan(hw,
3295 offset_to_read,
3296 &dword);
3297 if (ret_val)
3298 break;
3299 if ((act_offset + i) % 2 == 0)
3300 data[i] = (u16)(dword & 0xFFFF);
3301 else
3302 data[i] = (u16)((dword >> 16) & 0xFFFF);
3303 }
3304 } else {
3305 offset_to_read = act_offset + i;
3306 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3307 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3308 ret_val =
3309 e1000_read_flash_dword_ich8lan(hw,
3310 offset_to_read,
3311 &dword);
3312 if (ret_val)
3313 break;
3314 }
3315 if (dev_spec->shadow_ram[offset + i].modified)
3316 data[i] =
3317 dev_spec->shadow_ram[offset + i].value;
3318 else
3319 data[i] = (u16)(dword & 0xFFFF);
3320 if (dev_spec->shadow_ram[offset + i].modified)
3321 data[i + 1] =
3322 dev_spec->shadow_ram[offset + i + 1].value;
3323 else
3324 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3325 }
3326 }
3327
3328 nvm->ops.release(hw);
3329
3330 out:
3331 if (ret_val)
3332 e_dbg("NVM read error: %d\n", ret_val);
3333
3334 return ret_val;
3335 }
3336
3337 /**
3338 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3339 * @hw: pointer to the HW structure
3340 * @offset: The offset (in bytes) of the word(s) to read.
3341 * @words: Size of data to read in words
3342 * @data: Pointer to the word(s) to read at offset.
3343 *
3344 * Reads a word(s) from the NVM using the flash access registers.
3345 **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3346 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3347 u16 *data)
3348 {
3349 struct e1000_nvm_info *nvm = &hw->nvm;
3350 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3351 u32 act_offset;
3352 s32 ret_val = 0;
3353 u32 bank = 0;
3354 u16 i, word;
3355
3356 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3357 (words == 0)) {
3358 e_dbg("nvm parameter(s) out of bounds\n");
3359 ret_val = -E1000_ERR_NVM;
3360 goto out;
3361 }
3362
3363 nvm->ops.acquire(hw);
3364
3365 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3366 if (ret_val) {
3367 e_dbg("Could not detect valid bank, assuming bank 0\n");
3368 bank = 0;
3369 }
3370
3371 act_offset = (bank) ? nvm->flash_bank_size : 0;
3372 act_offset += offset;
3373
3374 ret_val = 0;
3375 for (i = 0; i < words; i++) {
3376 if (dev_spec->shadow_ram[offset + i].modified) {
3377 data[i] = dev_spec->shadow_ram[offset + i].value;
3378 } else {
3379 ret_val = e1000_read_flash_word_ich8lan(hw,
3380 act_offset + i,
3381 &word);
3382 if (ret_val)
3383 break;
3384 data[i] = word;
3385 }
3386 }
3387
3388 nvm->ops.release(hw);
3389
3390 out:
3391 if (ret_val)
3392 e_dbg("NVM read error: %d\n", ret_val);
3393
3394 return ret_val;
3395 }
3396
3397 /**
3398 * e1000_flash_cycle_init_ich8lan - Initialize flash
3399 * @hw: pointer to the HW structure
3400 *
3401 * This function does initial flash setup so that a new read/write/erase cycle
3402 * can be started.
3403 **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)3404 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3405 {
3406 union ich8_hws_flash_status hsfsts;
3407 s32 ret_val = -E1000_ERR_NVM;
3408
3409 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3410
3411 /* Check if the flash descriptor is valid */
3412 if (!hsfsts.hsf_status.fldesvalid) {
3413 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3414 return -E1000_ERR_NVM;
3415 }
3416
3417 /* Clear FCERR and DAEL in hw status by writing 1 */
3418 hsfsts.hsf_status.flcerr = 1;
3419 hsfsts.hsf_status.dael = 1;
3420 if (hw->mac.type >= e1000_pch_spt)
3421 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3422 else
3423 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3424
3425 /* Either we should have a hardware SPI cycle in progress
3426 * bit to check against, in order to start a new cycle or
3427 * FDONE bit should be changed in the hardware so that it
3428 * is 1 after hardware reset, which can then be used as an
3429 * indication whether a cycle is in progress or has been
3430 * completed.
3431 */
3432
3433 if (!hsfsts.hsf_status.flcinprog) {
3434 /* There is no cycle running at present,
3435 * so we can start a cycle.
3436 * Begin by setting Flash Cycle Done.
3437 */
3438 hsfsts.hsf_status.flcdone = 1;
3439 if (hw->mac.type >= e1000_pch_spt)
3440 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3441 else
3442 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3443 ret_val = 0;
3444 } else {
3445 s32 i;
3446
3447 /* Otherwise poll for sometime so the current
3448 * cycle has a chance to end before giving up.
3449 */
3450 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3451 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3452 if (!hsfsts.hsf_status.flcinprog) {
3453 ret_val = 0;
3454 break;
3455 }
3456 udelay(1);
3457 }
3458 if (!ret_val) {
3459 /* Successful in waiting for previous cycle to timeout,
3460 * now set the Flash Cycle Done.
3461 */
3462 hsfsts.hsf_status.flcdone = 1;
3463 if (hw->mac.type >= e1000_pch_spt)
3464 ew32flash(ICH_FLASH_HSFSTS,
3465 hsfsts.regval & 0xFFFF);
3466 else
3467 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3468 } else {
3469 e_dbg("Flash controller busy, cannot get access\n");
3470 }
3471 }
3472
3473 return ret_val;
3474 }
3475
3476 /**
3477 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3478 * @hw: pointer to the HW structure
3479 * @timeout: maximum time to wait for completion
3480 *
3481 * This function starts a flash cycle and waits for its completion.
3482 **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)3483 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3484 {
3485 union ich8_hws_flash_ctrl hsflctl;
3486 union ich8_hws_flash_status hsfsts;
3487 u32 i = 0;
3488
3489 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3490 if (hw->mac.type >= e1000_pch_spt)
3491 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3492 else
3493 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3494 hsflctl.hsf_ctrl.flcgo = 1;
3495
3496 if (hw->mac.type >= e1000_pch_spt)
3497 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3498 else
3499 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3500
3501 /* wait till FDONE bit is set to 1 */
3502 do {
3503 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3504 if (hsfsts.hsf_status.flcdone)
3505 break;
3506 udelay(1);
3507 } while (i++ < timeout);
3508
3509 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3510 return 0;
3511
3512 return -E1000_ERR_NVM;
3513 }
3514
3515 /**
3516 * e1000_read_flash_dword_ich8lan - Read dword from flash
3517 * @hw: pointer to the HW structure
3518 * @offset: offset to data location
3519 * @data: pointer to the location for storing the data
3520 *
3521 * Reads the flash dword at offset into data. Offset is converted
3522 * to bytes before read.
3523 **/
e1000_read_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3524 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3525 u32 *data)
3526 {
3527 /* Must convert word offset into bytes. */
3528 offset <<= 1;
3529 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3530 }
3531
3532 /**
3533 * e1000_read_flash_word_ich8lan - Read word from flash
3534 * @hw: pointer to the HW structure
3535 * @offset: offset to data location
3536 * @data: pointer to the location for storing the data
3537 *
3538 * Reads the flash word at offset into data. Offset is converted
3539 * to bytes before read.
3540 **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)3541 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3542 u16 *data)
3543 {
3544 /* Must convert offset into bytes. */
3545 offset <<= 1;
3546
3547 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3548 }
3549
3550 /**
3551 * e1000_read_flash_byte_ich8lan - Read byte from flash
3552 * @hw: pointer to the HW structure
3553 * @offset: The offset of the byte to read.
3554 * @data: Pointer to a byte to store the value read.
3555 *
3556 * Reads a single byte from the NVM using the flash access registers.
3557 **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)3558 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3559 u8 *data)
3560 {
3561 s32 ret_val;
3562 u16 word = 0;
3563
3564 /* In SPT, only 32 bits access is supported,
3565 * so this function should not be called.
3566 */
3567 if (hw->mac.type >= e1000_pch_spt)
3568 return -E1000_ERR_NVM;
3569 else
3570 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3571
3572 if (ret_val)
3573 return ret_val;
3574
3575 *data = (u8)word;
3576
3577 return 0;
3578 }
3579
3580 /**
3581 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3582 * @hw: pointer to the HW structure
3583 * @offset: The offset (in bytes) of the byte or word to read.
3584 * @size: Size of data to read, 1=byte 2=word
3585 * @data: Pointer to the word to store the value read.
3586 *
3587 * Reads a byte or word from the NVM using the flash access registers.
3588 **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)3589 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3590 u8 size, u16 *data)
3591 {
3592 union ich8_hws_flash_status hsfsts;
3593 union ich8_hws_flash_ctrl hsflctl;
3594 u32 flash_linear_addr;
3595 u32 flash_data = 0;
3596 s32 ret_val = -E1000_ERR_NVM;
3597 u8 count = 0;
3598
3599 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3600 return -E1000_ERR_NVM;
3601
3602 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3603 hw->nvm.flash_base_addr);
3604
3605 do {
3606 udelay(1);
3607 /* Steps */
3608 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3609 if (ret_val)
3610 break;
3611
3612 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3613 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3614 hsflctl.hsf_ctrl.fldbcount = size - 1;
3615 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3616 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3617
3618 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3619
3620 ret_val =
3621 e1000_flash_cycle_ich8lan(hw,
3622 ICH_FLASH_READ_COMMAND_TIMEOUT);
3623
3624 /* Check if FCERR is set to 1, if set to 1, clear it
3625 * and try the whole sequence a few more times, else
3626 * read in (shift in) the Flash Data0, the order is
3627 * least significant byte first msb to lsb
3628 */
3629 if (!ret_val) {
3630 flash_data = er32flash(ICH_FLASH_FDATA0);
3631 if (size == 1)
3632 *data = (u8)(flash_data & 0x000000FF);
3633 else if (size == 2)
3634 *data = (u16)(flash_data & 0x0000FFFF);
3635 break;
3636 } else {
3637 /* If we've gotten here, then things are probably
3638 * completely hosed, but if the error condition is
3639 * detected, it won't hurt to give it another try...
3640 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3641 */
3642 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3643 if (hsfsts.hsf_status.flcerr) {
3644 /* Repeat for some time before giving up. */
3645 continue;
3646 } else if (!hsfsts.hsf_status.flcdone) {
3647 e_dbg("Timeout error - flash cycle did not complete.\n");
3648 break;
3649 }
3650 }
3651 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3652
3653 return ret_val;
3654 }
3655
3656 /**
3657 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3658 * @hw: pointer to the HW structure
3659 * @offset: The offset (in bytes) of the dword to read.
3660 * @data: Pointer to the dword to store the value read.
3661 *
3662 * Reads a byte or word from the NVM using the flash access registers.
3663 **/
3664
e1000_read_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3665 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3666 u32 *data)
3667 {
3668 union ich8_hws_flash_status hsfsts;
3669 union ich8_hws_flash_ctrl hsflctl;
3670 u32 flash_linear_addr;
3671 s32 ret_val = -E1000_ERR_NVM;
3672 u8 count = 0;
3673
3674 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3675 return -E1000_ERR_NVM;
3676 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3677 hw->nvm.flash_base_addr);
3678
3679 do {
3680 udelay(1);
3681 /* Steps */
3682 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3683 if (ret_val)
3684 break;
3685 /* In SPT, This register is in Lan memory space, not flash.
3686 * Therefore, only 32 bit access is supported
3687 */
3688 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3689
3690 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3691 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3692 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3693 /* In SPT, This register is in Lan memory space, not flash.
3694 * Therefore, only 32 bit access is supported
3695 */
3696 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3697 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3698
3699 ret_val =
3700 e1000_flash_cycle_ich8lan(hw,
3701 ICH_FLASH_READ_COMMAND_TIMEOUT);
3702
3703 /* Check if FCERR is set to 1, if set to 1, clear it
3704 * and try the whole sequence a few more times, else
3705 * read in (shift in) the Flash Data0, the order is
3706 * least significant byte first msb to lsb
3707 */
3708 if (!ret_val) {
3709 *data = er32flash(ICH_FLASH_FDATA0);
3710 break;
3711 } else {
3712 /* If we've gotten here, then things are probably
3713 * completely hosed, but if the error condition is
3714 * detected, it won't hurt to give it another try...
3715 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3716 */
3717 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3718 if (hsfsts.hsf_status.flcerr) {
3719 /* Repeat for some time before giving up. */
3720 continue;
3721 } else if (!hsfsts.hsf_status.flcdone) {
3722 e_dbg("Timeout error - flash cycle did not complete.\n");
3723 break;
3724 }
3725 }
3726 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3727
3728 return ret_val;
3729 }
3730
3731 /**
3732 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3733 * @hw: pointer to the HW structure
3734 * @offset: The offset (in bytes) of the word(s) to write.
3735 * @words: Size of data to write in words
3736 * @data: Pointer to the word(s) to write at offset.
3737 *
3738 * Writes a byte or word to the NVM using the flash access registers.
3739 **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3740 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3741 u16 *data)
3742 {
3743 struct e1000_nvm_info *nvm = &hw->nvm;
3744 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3745 u16 i;
3746
3747 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3748 (words == 0)) {
3749 e_dbg("nvm parameter(s) out of bounds\n");
3750 return -E1000_ERR_NVM;
3751 }
3752
3753 nvm->ops.acquire(hw);
3754
3755 for (i = 0; i < words; i++) {
3756 dev_spec->shadow_ram[offset + i].modified = true;
3757 dev_spec->shadow_ram[offset + i].value = data[i];
3758 }
3759
3760 nvm->ops.release(hw);
3761
3762 return 0;
3763 }
3764
3765 /**
3766 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3767 * @hw: pointer to the HW structure
3768 *
3769 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3770 * which writes the checksum to the shadow ram. The changes in the shadow
3771 * ram are then committed to the EEPROM by processing each bank at a time
3772 * checking for the modified bit and writing only the pending changes.
3773 * After a successful commit, the shadow ram is cleared and is ready for
3774 * future writes.
3775 **/
e1000_update_nvm_checksum_spt(struct e1000_hw * hw)3776 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3777 {
3778 struct e1000_nvm_info *nvm = &hw->nvm;
3779 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3780 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3781 s32 ret_val;
3782 u32 dword = 0;
3783
3784 ret_val = e1000e_update_nvm_checksum_generic(hw);
3785 if (ret_val)
3786 goto out;
3787
3788 if (nvm->type != e1000_nvm_flash_sw)
3789 goto out;
3790
3791 nvm->ops.acquire(hw);
3792
3793 /* We're writing to the opposite bank so if we're on bank 1,
3794 * write to bank 0 etc. We also need to erase the segment that
3795 * is going to be written
3796 */
3797 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3798 if (ret_val) {
3799 e_dbg("Could not detect valid bank, assuming bank 0\n");
3800 bank = 0;
3801 }
3802
3803 if (bank == 0) {
3804 new_bank_offset = nvm->flash_bank_size;
3805 old_bank_offset = 0;
3806 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3807 if (ret_val)
3808 goto release;
3809 } else {
3810 old_bank_offset = nvm->flash_bank_size;
3811 new_bank_offset = 0;
3812 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3813 if (ret_val)
3814 goto release;
3815 }
3816 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3817 /* Determine whether to write the value stored
3818 * in the other NVM bank or a modified value stored
3819 * in the shadow RAM
3820 */
3821 ret_val = e1000_read_flash_dword_ich8lan(hw,
3822 i + old_bank_offset,
3823 &dword);
3824
3825 if (dev_spec->shadow_ram[i].modified) {
3826 dword &= 0xffff0000;
3827 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3828 }
3829 if (dev_spec->shadow_ram[i + 1].modified) {
3830 dword &= 0x0000ffff;
3831 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3832 << 16);
3833 }
3834 if (ret_val)
3835 break;
3836
3837 /* If the word is 0x13, then make sure the signature bits
3838 * (15:14) are 11b until the commit has completed.
3839 * This will allow us to write 10b which indicates the
3840 * signature is valid. We want to do this after the write
3841 * has completed so that we don't mark the segment valid
3842 * while the write is still in progress
3843 */
3844 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3845 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3846
3847 /* Convert offset to bytes. */
3848 act_offset = (i + new_bank_offset) << 1;
3849
3850 usleep_range(100, 200);
3851
3852 /* Write the data to the new bank. Offset in words */
3853 act_offset = i + new_bank_offset;
3854 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3855 dword);
3856 if (ret_val)
3857 break;
3858 }
3859
3860 /* Don't bother writing the segment valid bits if sector
3861 * programming failed.
3862 */
3863 if (ret_val) {
3864 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3865 e_dbg("Flash commit failed.\n");
3866 goto release;
3867 }
3868
3869 /* Finally validate the new segment by setting bit 15:14
3870 * to 10b in word 0x13 , this can be done without an
3871 * erase as well since these bits are 11 to start with
3872 * and we need to change bit 14 to 0b
3873 */
3874 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3875
3876 /*offset in words but we read dword */
3877 --act_offset;
3878 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3879
3880 if (ret_val)
3881 goto release;
3882
3883 dword &= 0xBFFFFFFF;
3884 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3885
3886 if (ret_val)
3887 goto release;
3888
3889 /* offset in words but we read dword */
3890 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3891 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3892
3893 if (ret_val)
3894 goto release;
3895
3896 dword &= 0x00FFFFFF;
3897 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3898
3899 if (ret_val)
3900 goto release;
3901
3902 /* Great! Everything worked, we can now clear the cached entries. */
3903 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3904 dev_spec->shadow_ram[i].modified = false;
3905 dev_spec->shadow_ram[i].value = 0xFFFF;
3906 }
3907
3908 release:
3909 nvm->ops.release(hw);
3910
3911 /* Reload the EEPROM, or else modifications will not appear
3912 * until after the next adapter reset.
3913 */
3914 if (!ret_val) {
3915 nvm->ops.reload(hw);
3916 usleep_range(10000, 11000);
3917 }
3918
3919 out:
3920 if (ret_val)
3921 e_dbg("NVM update error: %d\n", ret_val);
3922
3923 return ret_val;
3924 }
3925
3926 /**
3927 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3928 * @hw: pointer to the HW structure
3929 *
3930 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3931 * which writes the checksum to the shadow ram. The changes in the shadow
3932 * ram are then committed to the EEPROM by processing each bank at a time
3933 * checking for the modified bit and writing only the pending changes.
3934 * After a successful commit, the shadow ram is cleared and is ready for
3935 * future writes.
3936 **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)3937 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3938 {
3939 struct e1000_nvm_info *nvm = &hw->nvm;
3940 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3941 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3942 s32 ret_val;
3943 u16 data = 0;
3944
3945 ret_val = e1000e_update_nvm_checksum_generic(hw);
3946 if (ret_val)
3947 goto out;
3948
3949 if (nvm->type != e1000_nvm_flash_sw)
3950 goto out;
3951
3952 nvm->ops.acquire(hw);
3953
3954 /* We're writing to the opposite bank so if we're on bank 1,
3955 * write to bank 0 etc. We also need to erase the segment that
3956 * is going to be written
3957 */
3958 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3959 if (ret_val) {
3960 e_dbg("Could not detect valid bank, assuming bank 0\n");
3961 bank = 0;
3962 }
3963
3964 if (bank == 0) {
3965 new_bank_offset = nvm->flash_bank_size;
3966 old_bank_offset = 0;
3967 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3968 if (ret_val)
3969 goto release;
3970 } else {
3971 old_bank_offset = nvm->flash_bank_size;
3972 new_bank_offset = 0;
3973 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3974 if (ret_val)
3975 goto release;
3976 }
3977 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3978 if (dev_spec->shadow_ram[i].modified) {
3979 data = dev_spec->shadow_ram[i].value;
3980 } else {
3981 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3982 old_bank_offset,
3983 &data);
3984 if (ret_val)
3985 break;
3986 }
3987
3988 /* If the word is 0x13, then make sure the signature bits
3989 * (15:14) are 11b until the commit has completed.
3990 * This will allow us to write 10b which indicates the
3991 * signature is valid. We want to do this after the write
3992 * has completed so that we don't mark the segment valid
3993 * while the write is still in progress
3994 */
3995 if (i == E1000_ICH_NVM_SIG_WORD)
3996 data |= E1000_ICH_NVM_SIG_MASK;
3997
3998 /* Convert offset to bytes. */
3999 act_offset = (i + new_bank_offset) << 1;
4000
4001 usleep_range(100, 200);
4002 /* Write the bytes to the new bank. */
4003 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4004 act_offset,
4005 (u8)data);
4006 if (ret_val)
4007 break;
4008
4009 usleep_range(100, 200);
4010 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4011 act_offset + 1,
4012 (u8)(data >> 8));
4013 if (ret_val)
4014 break;
4015 }
4016
4017 /* Don't bother writing the segment valid bits if sector
4018 * programming failed.
4019 */
4020 if (ret_val) {
4021 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4022 e_dbg("Flash commit failed.\n");
4023 goto release;
4024 }
4025
4026 /* Finally validate the new segment by setting bit 15:14
4027 * to 10b in word 0x13 , this can be done without an
4028 * erase as well since these bits are 11 to start with
4029 * and we need to change bit 14 to 0b
4030 */
4031 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4032 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4033 if (ret_val)
4034 goto release;
4035
4036 data &= 0xBFFF;
4037 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4038 act_offset * 2 + 1,
4039 (u8)(data >> 8));
4040 if (ret_val)
4041 goto release;
4042
4043 /* And invalidate the previously valid segment by setting
4044 * its signature word (0x13) high_byte to 0b. This can be
4045 * done without an erase because flash erase sets all bits
4046 * to 1's. We can write 1's to 0's without an erase
4047 */
4048 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4049 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4050 if (ret_val)
4051 goto release;
4052
4053 /* Great! Everything worked, we can now clear the cached entries. */
4054 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4055 dev_spec->shadow_ram[i].modified = false;
4056 dev_spec->shadow_ram[i].value = 0xFFFF;
4057 }
4058
4059 release:
4060 nvm->ops.release(hw);
4061
4062 /* Reload the EEPROM, or else modifications will not appear
4063 * until after the next adapter reset.
4064 */
4065 if (!ret_val) {
4066 nvm->ops.reload(hw);
4067 usleep_range(10000, 11000);
4068 }
4069
4070 out:
4071 if (ret_val)
4072 e_dbg("NVM update error: %d\n", ret_val);
4073
4074 return ret_val;
4075 }
4076
4077 /**
4078 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4079 * @hw: pointer to the HW structure
4080 *
4081 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4082 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4083 * calculated, in which case we need to calculate the checksum and set bit 6.
4084 **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)4085 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4086 {
4087 s32 ret_val;
4088 u16 data;
4089 u16 word;
4090 u16 valid_csum_mask;
4091
4092 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4093 * the checksum needs to be fixed. This bit is an indication that
4094 * the NVM was prepared by OEM software and did not calculate
4095 * the checksum...a likely scenario.
4096 */
4097 switch (hw->mac.type) {
4098 case e1000_pch_lpt:
4099 case e1000_pch_spt:
4100 case e1000_pch_cnp:
4101 case e1000_pch_tgp:
4102 case e1000_pch_adp:
4103 case e1000_pch_mtp:
4104 word = NVM_COMPAT;
4105 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4106 break;
4107 default:
4108 word = NVM_FUTURE_INIT_WORD1;
4109 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4110 break;
4111 }
4112
4113 ret_val = e1000_read_nvm(hw, word, 1, &data);
4114 if (ret_val)
4115 return ret_val;
4116
4117 if (!(data & valid_csum_mask)) {
4118 data |= valid_csum_mask;
4119 ret_val = e1000_write_nvm(hw, word, 1, &data);
4120 if (ret_val)
4121 return ret_val;
4122 ret_val = e1000e_update_nvm_checksum(hw);
4123 if (ret_val)
4124 return ret_val;
4125 }
4126
4127 return e1000e_validate_nvm_checksum_generic(hw);
4128 }
4129
4130 /**
4131 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4132 * @hw: pointer to the HW structure
4133 *
4134 * To prevent malicious write/erase of the NVM, set it to be read-only
4135 * so that the hardware ignores all write/erase cycles of the NVM via
4136 * the flash control registers. The shadow-ram copy of the NVM will
4137 * still be updated, however any updates to this copy will not stick
4138 * across driver reloads.
4139 **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)4140 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4141 {
4142 struct e1000_nvm_info *nvm = &hw->nvm;
4143 union ich8_flash_protected_range pr0;
4144 union ich8_hws_flash_status hsfsts;
4145 u32 gfpreg;
4146
4147 nvm->ops.acquire(hw);
4148
4149 gfpreg = er32flash(ICH_FLASH_GFPREG);
4150
4151 /* Write-protect GbE Sector of NVM */
4152 pr0.regval = er32flash(ICH_FLASH_PR0);
4153 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4154 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4155 pr0.range.wpe = true;
4156 ew32flash(ICH_FLASH_PR0, pr0.regval);
4157
4158 /* Lock down a subset of GbE Flash Control Registers, e.g.
4159 * PR0 to prevent the write-protection from being lifted.
4160 * Once FLOCKDN is set, the registers protected by it cannot
4161 * be written until FLOCKDN is cleared by a hardware reset.
4162 */
4163 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4164 hsfsts.hsf_status.flockdn = true;
4165 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4166
4167 nvm->ops.release(hw);
4168 }
4169
4170 /**
4171 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4172 * @hw: pointer to the HW structure
4173 * @offset: The offset (in bytes) of the byte/word to read.
4174 * @size: Size of data to read, 1=byte 2=word
4175 * @data: The byte(s) to write to the NVM.
4176 *
4177 * Writes one/two bytes to the NVM using the flash access registers.
4178 **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)4179 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4180 u8 size, u16 data)
4181 {
4182 union ich8_hws_flash_status hsfsts;
4183 union ich8_hws_flash_ctrl hsflctl;
4184 u32 flash_linear_addr;
4185 u32 flash_data = 0;
4186 s32 ret_val;
4187 u8 count = 0;
4188
4189 if (hw->mac.type >= e1000_pch_spt) {
4190 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4191 return -E1000_ERR_NVM;
4192 } else {
4193 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4194 return -E1000_ERR_NVM;
4195 }
4196
4197 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4198 hw->nvm.flash_base_addr);
4199
4200 do {
4201 udelay(1);
4202 /* Steps */
4203 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4204 if (ret_val)
4205 break;
4206 /* In SPT, This register is in Lan memory space, not
4207 * flash. Therefore, only 32 bit access is supported
4208 */
4209 if (hw->mac.type >= e1000_pch_spt)
4210 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4211 else
4212 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4213
4214 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4215 hsflctl.hsf_ctrl.fldbcount = size - 1;
4216 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4217 /* In SPT, This register is in Lan memory space,
4218 * not flash. Therefore, only 32 bit access is
4219 * supported
4220 */
4221 if (hw->mac.type >= e1000_pch_spt)
4222 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4223 else
4224 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4225
4226 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4227
4228 if (size == 1)
4229 flash_data = (u32)data & 0x00FF;
4230 else
4231 flash_data = (u32)data;
4232
4233 ew32flash(ICH_FLASH_FDATA0, flash_data);
4234
4235 /* check if FCERR is set to 1 , if set to 1, clear it
4236 * and try the whole sequence a few more times else done
4237 */
4238 ret_val =
4239 e1000_flash_cycle_ich8lan(hw,
4240 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4241 if (!ret_val)
4242 break;
4243
4244 /* If we're here, then things are most likely
4245 * completely hosed, but if the error condition
4246 * is detected, it won't hurt to give it another
4247 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4248 */
4249 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4250 if (hsfsts.hsf_status.flcerr)
4251 /* Repeat for some time before giving up. */
4252 continue;
4253 if (!hsfsts.hsf_status.flcdone) {
4254 e_dbg("Timeout error - flash cycle did not complete.\n");
4255 break;
4256 }
4257 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4258
4259 return ret_val;
4260 }
4261
4262 /**
4263 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4264 * @hw: pointer to the HW structure
4265 * @offset: The offset (in bytes) of the dwords to read.
4266 * @data: The 4 bytes to write to the NVM.
4267 *
4268 * Writes one/two/four bytes to the NVM using the flash access registers.
4269 **/
e1000_write_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 data)4270 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4271 u32 data)
4272 {
4273 union ich8_hws_flash_status hsfsts;
4274 union ich8_hws_flash_ctrl hsflctl;
4275 u32 flash_linear_addr;
4276 s32 ret_val;
4277 u8 count = 0;
4278
4279 if (hw->mac.type >= e1000_pch_spt) {
4280 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4281 return -E1000_ERR_NVM;
4282 }
4283 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4284 hw->nvm.flash_base_addr);
4285 do {
4286 udelay(1);
4287 /* Steps */
4288 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4289 if (ret_val)
4290 break;
4291
4292 /* In SPT, This register is in Lan memory space, not
4293 * flash. Therefore, only 32 bit access is supported
4294 */
4295 if (hw->mac.type >= e1000_pch_spt)
4296 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4297 >> 16;
4298 else
4299 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4300
4301 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4302 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4303
4304 /* In SPT, This register is in Lan memory space,
4305 * not flash. Therefore, only 32 bit access is
4306 * supported
4307 */
4308 if (hw->mac.type >= e1000_pch_spt)
4309 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4310 else
4311 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4312
4313 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4314
4315 ew32flash(ICH_FLASH_FDATA0, data);
4316
4317 /* check if FCERR is set to 1 , if set to 1, clear it
4318 * and try the whole sequence a few more times else done
4319 */
4320 ret_val =
4321 e1000_flash_cycle_ich8lan(hw,
4322 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4323
4324 if (!ret_val)
4325 break;
4326
4327 /* If we're here, then things are most likely
4328 * completely hosed, but if the error condition
4329 * is detected, it won't hurt to give it another
4330 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4331 */
4332 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4333
4334 if (hsfsts.hsf_status.flcerr)
4335 /* Repeat for some time before giving up. */
4336 continue;
4337 if (!hsfsts.hsf_status.flcdone) {
4338 e_dbg("Timeout error - flash cycle did not complete.\n");
4339 break;
4340 }
4341 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4342
4343 return ret_val;
4344 }
4345
4346 /**
4347 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4348 * @hw: pointer to the HW structure
4349 * @offset: The index of the byte to read.
4350 * @data: The byte to write to the NVM.
4351 *
4352 * Writes a single byte to the NVM using the flash access registers.
4353 **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)4354 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4355 u8 data)
4356 {
4357 u16 word = (u16)data;
4358
4359 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4360 }
4361
4362 /**
4363 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4364 * @hw: pointer to the HW structure
4365 * @offset: The offset of the word to write.
4366 * @dword: The dword to write to the NVM.
4367 *
4368 * Writes a single dword to the NVM using the flash access registers.
4369 * Goes through a retry algorithm before giving up.
4370 **/
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 dword)4371 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4372 u32 offset, u32 dword)
4373 {
4374 s32 ret_val;
4375 u16 program_retries;
4376
4377 /* Must convert word offset into bytes. */
4378 offset <<= 1;
4379 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4380
4381 if (!ret_val)
4382 return ret_val;
4383 for (program_retries = 0; program_retries < 100; program_retries++) {
4384 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4385 usleep_range(100, 200);
4386 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4387 if (!ret_val)
4388 break;
4389 }
4390 if (program_retries == 100)
4391 return -E1000_ERR_NVM;
4392
4393 return 0;
4394 }
4395
4396 /**
4397 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4398 * @hw: pointer to the HW structure
4399 * @offset: The offset of the byte to write.
4400 * @byte: The byte to write to the NVM.
4401 *
4402 * Writes a single byte to the NVM using the flash access registers.
4403 * Goes through a retry algorithm before giving up.
4404 **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)4405 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4406 u32 offset, u8 byte)
4407 {
4408 s32 ret_val;
4409 u16 program_retries;
4410
4411 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4412 if (!ret_val)
4413 return ret_val;
4414
4415 for (program_retries = 0; program_retries < 100; program_retries++) {
4416 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4417 usleep_range(100, 200);
4418 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4419 if (!ret_val)
4420 break;
4421 }
4422 if (program_retries == 100)
4423 return -E1000_ERR_NVM;
4424
4425 return 0;
4426 }
4427
4428 /**
4429 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4430 * @hw: pointer to the HW structure
4431 * @bank: 0 for first bank, 1 for second bank, etc.
4432 *
4433 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4434 * bank N is 4096 * N + flash_reg_addr.
4435 **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)4436 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4437 {
4438 struct e1000_nvm_info *nvm = &hw->nvm;
4439 union ich8_hws_flash_status hsfsts;
4440 union ich8_hws_flash_ctrl hsflctl;
4441 u32 flash_linear_addr;
4442 /* bank size is in 16bit words - adjust to bytes */
4443 u32 flash_bank_size = nvm->flash_bank_size * 2;
4444 s32 ret_val;
4445 s32 count = 0;
4446 s32 j, iteration, sector_size;
4447
4448 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4449
4450 /* Determine HW Sector size: Read BERASE bits of hw flash status
4451 * register
4452 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4453 * consecutive sectors. The start index for the nth Hw sector
4454 * can be calculated as = bank * 4096 + n * 256
4455 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4456 * The start index for the nth Hw sector can be calculated
4457 * as = bank * 4096
4458 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4459 * (ich9 only, otherwise error condition)
4460 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4461 */
4462 switch (hsfsts.hsf_status.berasesz) {
4463 case 0:
4464 /* Hw sector size 256 */
4465 sector_size = ICH_FLASH_SEG_SIZE_256;
4466 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4467 break;
4468 case 1:
4469 sector_size = ICH_FLASH_SEG_SIZE_4K;
4470 iteration = 1;
4471 break;
4472 case 2:
4473 sector_size = ICH_FLASH_SEG_SIZE_8K;
4474 iteration = 1;
4475 break;
4476 case 3:
4477 sector_size = ICH_FLASH_SEG_SIZE_64K;
4478 iteration = 1;
4479 break;
4480 default:
4481 return -E1000_ERR_NVM;
4482 }
4483
4484 /* Start with the base address, then add the sector offset. */
4485 flash_linear_addr = hw->nvm.flash_base_addr;
4486 flash_linear_addr += (bank) ? flash_bank_size : 0;
4487
4488 for (j = 0; j < iteration; j++) {
4489 do {
4490 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4491
4492 /* Steps */
4493 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4494 if (ret_val)
4495 return ret_val;
4496
4497 /* Write a value 11 (block Erase) in Flash
4498 * Cycle field in hw flash control
4499 */
4500 if (hw->mac.type >= e1000_pch_spt)
4501 hsflctl.regval =
4502 er32flash(ICH_FLASH_HSFSTS) >> 16;
4503 else
4504 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4505
4506 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4507 if (hw->mac.type >= e1000_pch_spt)
4508 ew32flash(ICH_FLASH_HSFSTS,
4509 hsflctl.regval << 16);
4510 else
4511 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4512
4513 /* Write the last 24 bits of an index within the
4514 * block into Flash Linear address field in Flash
4515 * Address.
4516 */
4517 flash_linear_addr += (j * sector_size);
4518 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4519
4520 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4521 if (!ret_val)
4522 break;
4523
4524 /* Check if FCERR is set to 1. If 1,
4525 * clear it and try the whole sequence
4526 * a few more times else Done
4527 */
4528 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4529 if (hsfsts.hsf_status.flcerr)
4530 /* repeat for some time before giving up */
4531 continue;
4532 else if (!hsfsts.hsf_status.flcdone)
4533 return ret_val;
4534 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4535 }
4536
4537 return 0;
4538 }
4539
4540 /**
4541 * e1000_valid_led_default_ich8lan - Set the default LED settings
4542 * @hw: pointer to the HW structure
4543 * @data: Pointer to the LED settings
4544 *
4545 * Reads the LED default settings from the NVM to data. If the NVM LED
4546 * settings is all 0's or F's, set the LED default to a valid LED default
4547 * setting.
4548 **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)4549 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4550 {
4551 s32 ret_val;
4552
4553 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4554 if (ret_val) {
4555 e_dbg("NVM Read Error\n");
4556 return ret_val;
4557 }
4558
4559 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4560 *data = ID_LED_DEFAULT_ICH8LAN;
4561
4562 return 0;
4563 }
4564
4565 /**
4566 * e1000_id_led_init_pchlan - store LED configurations
4567 * @hw: pointer to the HW structure
4568 *
4569 * PCH does not control LEDs via the LEDCTL register, rather it uses
4570 * the PHY LED configuration register.
4571 *
4572 * PCH also does not have an "always on" or "always off" mode which
4573 * complicates the ID feature. Instead of using the "on" mode to indicate
4574 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4575 * use "link_up" mode. The LEDs will still ID on request if there is no
4576 * link based on logic in e1000_led_[on|off]_pchlan().
4577 **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)4578 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4579 {
4580 struct e1000_mac_info *mac = &hw->mac;
4581 s32 ret_val;
4582 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4583 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4584 u16 data, i, temp, shift;
4585
4586 /* Get default ID LED modes */
4587 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4588 if (ret_val)
4589 return ret_val;
4590
4591 mac->ledctl_default = er32(LEDCTL);
4592 mac->ledctl_mode1 = mac->ledctl_default;
4593 mac->ledctl_mode2 = mac->ledctl_default;
4594
4595 for (i = 0; i < 4; i++) {
4596 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4597 shift = (i * 5);
4598 switch (temp) {
4599 case ID_LED_ON1_DEF2:
4600 case ID_LED_ON1_ON2:
4601 case ID_LED_ON1_OFF2:
4602 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4603 mac->ledctl_mode1 |= (ledctl_on << shift);
4604 break;
4605 case ID_LED_OFF1_DEF2:
4606 case ID_LED_OFF1_ON2:
4607 case ID_LED_OFF1_OFF2:
4608 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4609 mac->ledctl_mode1 |= (ledctl_off << shift);
4610 break;
4611 default:
4612 /* Do nothing */
4613 break;
4614 }
4615 switch (temp) {
4616 case ID_LED_DEF1_ON2:
4617 case ID_LED_ON1_ON2:
4618 case ID_LED_OFF1_ON2:
4619 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4620 mac->ledctl_mode2 |= (ledctl_on << shift);
4621 break;
4622 case ID_LED_DEF1_OFF2:
4623 case ID_LED_ON1_OFF2:
4624 case ID_LED_OFF1_OFF2:
4625 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4626 mac->ledctl_mode2 |= (ledctl_off << shift);
4627 break;
4628 default:
4629 /* Do nothing */
4630 break;
4631 }
4632 }
4633
4634 return 0;
4635 }
4636
4637 /**
4638 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4639 * @hw: pointer to the HW structure
4640 *
4641 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4642 * register, so the the bus width is hard coded.
4643 **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)4644 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4645 {
4646 struct e1000_bus_info *bus = &hw->bus;
4647 s32 ret_val;
4648
4649 ret_val = e1000e_get_bus_info_pcie(hw);
4650
4651 /* ICH devices are "PCI Express"-ish. They have
4652 * a configuration space, but do not contain
4653 * PCI Express Capability registers, so bus width
4654 * must be hardcoded.
4655 */
4656 if (bus->width == e1000_bus_width_unknown)
4657 bus->width = e1000_bus_width_pcie_x1;
4658
4659 return ret_val;
4660 }
4661
4662 /**
4663 * e1000_reset_hw_ich8lan - Reset the hardware
4664 * @hw: pointer to the HW structure
4665 *
4666 * Does a full reset of the hardware which includes a reset of the PHY and
4667 * MAC.
4668 **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)4669 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4670 {
4671 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4672 u16 kum_cfg;
4673 u32 ctrl, reg;
4674 s32 ret_val;
4675
4676 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4677 * on the last TLP read/write transaction when MAC is reset.
4678 */
4679 ret_val = e1000e_disable_pcie_master(hw);
4680 if (ret_val)
4681 e_dbg("PCI-E Master disable polling has failed.\n");
4682
4683 e_dbg("Masking off all interrupts\n");
4684 ew32(IMC, 0xffffffff);
4685
4686 /* Disable the Transmit and Receive units. Then delay to allow
4687 * any pending transactions to complete before we hit the MAC
4688 * with the global reset.
4689 */
4690 ew32(RCTL, 0);
4691 ew32(TCTL, E1000_TCTL_PSP);
4692 e1e_flush();
4693
4694 usleep_range(10000, 11000);
4695
4696 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4697 if (hw->mac.type == e1000_ich8lan) {
4698 /* Set Tx and Rx buffer allocation to 8k apiece. */
4699 ew32(PBA, E1000_PBA_8K);
4700 /* Set Packet Buffer Size to 16k. */
4701 ew32(PBS, E1000_PBS_16K);
4702 }
4703
4704 if (hw->mac.type == e1000_pchlan) {
4705 /* Save the NVM K1 bit setting */
4706 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4707 if (ret_val)
4708 return ret_val;
4709
4710 if (kum_cfg & E1000_NVM_K1_ENABLE)
4711 dev_spec->nvm_k1_enabled = true;
4712 else
4713 dev_spec->nvm_k1_enabled = false;
4714 }
4715
4716 ctrl = er32(CTRL);
4717
4718 if (!hw->phy.ops.check_reset_block(hw)) {
4719 /* Full-chip reset requires MAC and PHY reset at the same
4720 * time to make sure the interface between MAC and the
4721 * external PHY is reset.
4722 */
4723 ctrl |= E1000_CTRL_PHY_RST;
4724
4725 /* Gate automatic PHY configuration by hardware on
4726 * non-managed 82579
4727 */
4728 if ((hw->mac.type == e1000_pch2lan) &&
4729 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4730 e1000_gate_hw_phy_config_ich8lan(hw, true);
4731 }
4732 ret_val = e1000_acquire_swflag_ich8lan(hw);
4733 e_dbg("Issuing a global reset to ich8lan\n");
4734 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4735 /* cannot issue a flush here because it hangs the hardware */
4736 msleep(20);
4737
4738 /* Set Phy Config Counter to 50msec */
4739 if (hw->mac.type == e1000_pch2lan) {
4740 reg = er32(FEXTNVM3);
4741 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4742 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4743 ew32(FEXTNVM3, reg);
4744 }
4745
4746 if (!ret_val)
4747 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4748
4749 if (ctrl & E1000_CTRL_PHY_RST) {
4750 ret_val = hw->phy.ops.get_cfg_done(hw);
4751 if (ret_val)
4752 return ret_val;
4753
4754 ret_val = e1000_post_phy_reset_ich8lan(hw);
4755 if (ret_val)
4756 return ret_val;
4757 }
4758
4759 /* For PCH, this write will make sure that any noise
4760 * will be detected as a CRC error and be dropped rather than show up
4761 * as a bad packet to the DMA engine.
4762 */
4763 if (hw->mac.type == e1000_pchlan)
4764 ew32(CRC_OFFSET, 0x65656565);
4765
4766 ew32(IMC, 0xffffffff);
4767 er32(ICR);
4768
4769 reg = er32(KABGTXD);
4770 reg |= E1000_KABGTXD_BGSQLBIAS;
4771 ew32(KABGTXD, reg);
4772
4773 return 0;
4774 }
4775
4776 /**
4777 * e1000_init_hw_ich8lan - Initialize the hardware
4778 * @hw: pointer to the HW structure
4779 *
4780 * Prepares the hardware for transmit and receive by doing the following:
4781 * - initialize hardware bits
4782 * - initialize LED identification
4783 * - setup receive address registers
4784 * - setup flow control
4785 * - setup transmit descriptors
4786 * - clear statistics
4787 **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)4788 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4789 {
4790 struct e1000_mac_info *mac = &hw->mac;
4791 u32 ctrl_ext, txdctl, snoop;
4792 s32 ret_val;
4793 u16 i;
4794
4795 e1000_initialize_hw_bits_ich8lan(hw);
4796
4797 /* Initialize identification LED */
4798 ret_val = mac->ops.id_led_init(hw);
4799 /* An error is not fatal and we should not stop init due to this */
4800 if (ret_val)
4801 e_dbg("Error initializing identification LED\n");
4802
4803 /* Setup the receive address. */
4804 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4805
4806 /* Zero out the Multicast HASH table */
4807 e_dbg("Zeroing the MTA\n");
4808 for (i = 0; i < mac->mta_reg_count; i++)
4809 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4810
4811 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4812 * the ME. Disable wakeup by clearing the host wakeup bit.
4813 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4814 */
4815 if (hw->phy.type == e1000_phy_82578) {
4816 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4817 i &= ~BM_WUC_HOST_WU_BIT;
4818 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4819 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4820 if (ret_val)
4821 return ret_val;
4822 }
4823
4824 /* Setup link and flow control */
4825 ret_val = mac->ops.setup_link(hw);
4826
4827 /* Set the transmit descriptor write-back policy for both queues */
4828 txdctl = er32(TXDCTL(0));
4829 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4830 E1000_TXDCTL_FULL_TX_DESC_WB);
4831 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4832 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4833 ew32(TXDCTL(0), txdctl);
4834 txdctl = er32(TXDCTL(1));
4835 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4836 E1000_TXDCTL_FULL_TX_DESC_WB);
4837 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4838 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4839 ew32(TXDCTL(1), txdctl);
4840
4841 /* ICH8 has opposite polarity of no_snoop bits.
4842 * By default, we should use snoop behavior.
4843 */
4844 if (mac->type == e1000_ich8lan)
4845 snoop = PCIE_ICH8_SNOOP_ALL;
4846 else
4847 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4848 e1000e_set_pcie_no_snoop(hw, snoop);
4849
4850 ctrl_ext = er32(CTRL_EXT);
4851 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4852 ew32(CTRL_EXT, ctrl_ext);
4853
4854 /* Clear all of the statistics registers (clear on read). It is
4855 * important that we do this after we have tried to establish link
4856 * because the symbol error count will increment wildly if there
4857 * is no link.
4858 */
4859 e1000_clear_hw_cntrs_ich8lan(hw);
4860
4861 return ret_val;
4862 }
4863
4864 /**
4865 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4866 * @hw: pointer to the HW structure
4867 *
4868 * Sets/Clears required hardware bits necessary for correctly setting up the
4869 * hardware for transmit and receive.
4870 **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)4871 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4872 {
4873 u32 reg;
4874
4875 /* Extended Device Control */
4876 reg = er32(CTRL_EXT);
4877 reg |= BIT(22);
4878 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4879 if (hw->mac.type >= e1000_pchlan)
4880 reg |= E1000_CTRL_EXT_PHYPDEN;
4881 ew32(CTRL_EXT, reg);
4882
4883 /* Transmit Descriptor Control 0 */
4884 reg = er32(TXDCTL(0));
4885 reg |= BIT(22);
4886 ew32(TXDCTL(0), reg);
4887
4888 /* Transmit Descriptor Control 1 */
4889 reg = er32(TXDCTL(1));
4890 reg |= BIT(22);
4891 ew32(TXDCTL(1), reg);
4892
4893 /* Transmit Arbitration Control 0 */
4894 reg = er32(TARC(0));
4895 if (hw->mac.type == e1000_ich8lan)
4896 reg |= BIT(28) | BIT(29);
4897 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4898 ew32(TARC(0), reg);
4899
4900 /* Transmit Arbitration Control 1 */
4901 reg = er32(TARC(1));
4902 if (er32(TCTL) & E1000_TCTL_MULR)
4903 reg &= ~BIT(28);
4904 else
4905 reg |= BIT(28);
4906 reg |= BIT(24) | BIT(26) | BIT(30);
4907 ew32(TARC(1), reg);
4908
4909 /* Device Status */
4910 if (hw->mac.type == e1000_ich8lan) {
4911 reg = er32(STATUS);
4912 reg &= ~BIT(31);
4913 ew32(STATUS, reg);
4914 }
4915
4916 /* work-around descriptor data corruption issue during nfs v2 udp
4917 * traffic, just disable the nfs filtering capability
4918 */
4919 reg = er32(RFCTL);
4920 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4921
4922 /* Disable IPv6 extension header parsing because some malformed
4923 * IPv6 headers can hang the Rx.
4924 */
4925 if (hw->mac.type == e1000_ich8lan)
4926 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4927 ew32(RFCTL, reg);
4928
4929 /* Enable ECC on Lynxpoint */
4930 if (hw->mac.type >= e1000_pch_lpt) {
4931 reg = er32(PBECCSTS);
4932 reg |= E1000_PBECCSTS_ECC_ENABLE;
4933 ew32(PBECCSTS, reg);
4934
4935 reg = er32(CTRL);
4936 reg |= E1000_CTRL_MEHE;
4937 ew32(CTRL, reg);
4938 }
4939 }
4940
4941 /**
4942 * e1000_setup_link_ich8lan - Setup flow control and link settings
4943 * @hw: pointer to the HW structure
4944 *
4945 * Determines which flow control settings to use, then configures flow
4946 * control. Calls the appropriate media-specific link configuration
4947 * function. Assuming the adapter has a valid link partner, a valid link
4948 * should be established. Assumes the hardware has previously been reset
4949 * and the transmitter and receiver are not enabled.
4950 **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)4951 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4952 {
4953 s32 ret_val;
4954
4955 if (hw->phy.ops.check_reset_block(hw))
4956 return 0;
4957
4958 /* ICH parts do not have a word in the NVM to determine
4959 * the default flow control setting, so we explicitly
4960 * set it to full.
4961 */
4962 if (hw->fc.requested_mode == e1000_fc_default) {
4963 /* Workaround h/w hang when Tx flow control enabled */
4964 if (hw->mac.type == e1000_pchlan)
4965 hw->fc.requested_mode = e1000_fc_rx_pause;
4966 else
4967 hw->fc.requested_mode = e1000_fc_full;
4968 }
4969
4970 /* Save off the requested flow control mode for use later. Depending
4971 * on the link partner's capabilities, we may or may not use this mode.
4972 */
4973 hw->fc.current_mode = hw->fc.requested_mode;
4974
4975 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4976
4977 /* Continue to configure the copper link. */
4978 ret_val = hw->mac.ops.setup_physical_interface(hw);
4979 if (ret_val)
4980 return ret_val;
4981
4982 ew32(FCTTV, hw->fc.pause_time);
4983 if ((hw->phy.type == e1000_phy_82578) ||
4984 (hw->phy.type == e1000_phy_82579) ||
4985 (hw->phy.type == e1000_phy_i217) ||
4986 (hw->phy.type == e1000_phy_82577)) {
4987 ew32(FCRTV_PCH, hw->fc.refresh_time);
4988
4989 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4990 hw->fc.pause_time);
4991 if (ret_val)
4992 return ret_val;
4993 }
4994
4995 return e1000e_set_fc_watermarks(hw);
4996 }
4997
4998 /**
4999 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5000 * @hw: pointer to the HW structure
5001 *
5002 * Configures the kumeran interface to the PHY to wait the appropriate time
5003 * when polling the PHY, then call the generic setup_copper_link to finish
5004 * configuring the copper link.
5005 **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)5006 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5007 {
5008 u32 ctrl;
5009 s32 ret_val;
5010 u16 reg_data;
5011
5012 ctrl = er32(CTRL);
5013 ctrl |= E1000_CTRL_SLU;
5014 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5015 ew32(CTRL, ctrl);
5016
5017 /* Set the mac to wait the maximum time between each iteration
5018 * and increase the max iterations when polling the phy;
5019 * this fixes erroneous timeouts at 10Mbps.
5020 */
5021 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5022 if (ret_val)
5023 return ret_val;
5024 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5025 ®_data);
5026 if (ret_val)
5027 return ret_val;
5028 reg_data |= 0x3F;
5029 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5030 reg_data);
5031 if (ret_val)
5032 return ret_val;
5033
5034 switch (hw->phy.type) {
5035 case e1000_phy_igp_3:
5036 ret_val = e1000e_copper_link_setup_igp(hw);
5037 if (ret_val)
5038 return ret_val;
5039 break;
5040 case e1000_phy_bm:
5041 case e1000_phy_82578:
5042 ret_val = e1000e_copper_link_setup_m88(hw);
5043 if (ret_val)
5044 return ret_val;
5045 break;
5046 case e1000_phy_82577:
5047 case e1000_phy_82579:
5048 ret_val = e1000_copper_link_setup_82577(hw);
5049 if (ret_val)
5050 return ret_val;
5051 break;
5052 case e1000_phy_ife:
5053 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
5054 if (ret_val)
5055 return ret_val;
5056
5057 reg_data &= ~IFE_PMC_AUTO_MDIX;
5058
5059 switch (hw->phy.mdix) {
5060 case 1:
5061 reg_data &= ~IFE_PMC_FORCE_MDIX;
5062 break;
5063 case 2:
5064 reg_data |= IFE_PMC_FORCE_MDIX;
5065 break;
5066 case 0:
5067 default:
5068 reg_data |= IFE_PMC_AUTO_MDIX;
5069 break;
5070 }
5071 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5072 if (ret_val)
5073 return ret_val;
5074 break;
5075 default:
5076 break;
5077 }
5078
5079 return e1000e_setup_copper_link(hw);
5080 }
5081
5082 /**
5083 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5084 * @hw: pointer to the HW structure
5085 *
5086 * Calls the PHY specific link setup function and then calls the
5087 * generic setup_copper_link to finish configuring the link for
5088 * Lynxpoint PCH devices
5089 **/
e1000_setup_copper_link_pch_lpt(struct e1000_hw * hw)5090 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5091 {
5092 u32 ctrl;
5093 s32 ret_val;
5094
5095 ctrl = er32(CTRL);
5096 ctrl |= E1000_CTRL_SLU;
5097 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5098 ew32(CTRL, ctrl);
5099
5100 ret_val = e1000_copper_link_setup_82577(hw);
5101 if (ret_val)
5102 return ret_val;
5103
5104 return e1000e_setup_copper_link(hw);
5105 }
5106
5107 /**
5108 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5109 * @hw: pointer to the HW structure
5110 * @speed: pointer to store current link speed
5111 * @duplex: pointer to store the current link duplex
5112 *
5113 * Calls the generic get_speed_and_duplex to retrieve the current link
5114 * information and then calls the Kumeran lock loss workaround for links at
5115 * gigabit speeds.
5116 **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)5117 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5118 u16 *duplex)
5119 {
5120 s32 ret_val;
5121
5122 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5123 if (ret_val)
5124 return ret_val;
5125
5126 if ((hw->mac.type == e1000_ich8lan) &&
5127 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5128 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5129 }
5130
5131 return ret_val;
5132 }
5133
5134 /**
5135 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5136 * @hw: pointer to the HW structure
5137 *
5138 * Work-around for 82566 Kumeran PCS lock loss:
5139 * On link status change (i.e. PCI reset, speed change) and link is up and
5140 * speed is gigabit-
5141 * 0) if workaround is optionally disabled do nothing
5142 * 1) wait 1ms for Kumeran link to come up
5143 * 2) check Kumeran Diagnostic register PCS lock loss bit
5144 * 3) if not set the link is locked (all is good), otherwise...
5145 * 4) reset the PHY
5146 * 5) repeat up to 10 times
5147 * Note: this is only called for IGP3 copper when speed is 1gb.
5148 **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)5149 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5150 {
5151 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5152 u32 phy_ctrl;
5153 s32 ret_val;
5154 u16 i, data;
5155 bool link;
5156
5157 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5158 return 0;
5159
5160 /* Make sure link is up before proceeding. If not just return.
5161 * Attempting this while link is negotiating fouled up link
5162 * stability
5163 */
5164 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5165 if (!link)
5166 return 0;
5167
5168 for (i = 0; i < 10; i++) {
5169 /* read once to clear */
5170 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5171 if (ret_val)
5172 return ret_val;
5173 /* and again to get new status */
5174 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5175 if (ret_val)
5176 return ret_val;
5177
5178 /* check for PCS lock */
5179 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5180 return 0;
5181
5182 /* Issue PHY reset */
5183 e1000_phy_hw_reset(hw);
5184 mdelay(5);
5185 }
5186 /* Disable GigE link negotiation */
5187 phy_ctrl = er32(PHY_CTRL);
5188 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5189 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5190 ew32(PHY_CTRL, phy_ctrl);
5191
5192 /* Call gig speed drop workaround on Gig disable before accessing
5193 * any PHY registers
5194 */
5195 e1000e_gig_downshift_workaround_ich8lan(hw);
5196
5197 /* unable to acquire PCS lock */
5198 return -E1000_ERR_PHY;
5199 }
5200
5201 /**
5202 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5203 * @hw: pointer to the HW structure
5204 * @state: boolean value used to set the current Kumeran workaround state
5205 *
5206 * If ICH8, set the current Kumeran workaround state (enabled - true
5207 * /disabled - false).
5208 **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)5209 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5210 bool state)
5211 {
5212 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5213
5214 if (hw->mac.type != e1000_ich8lan) {
5215 e_dbg("Workaround applies to ICH8 only.\n");
5216 return;
5217 }
5218
5219 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5220 }
5221
5222 /**
5223 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5224 * @hw: pointer to the HW structure
5225 *
5226 * Workaround for 82566 power-down on D3 entry:
5227 * 1) disable gigabit link
5228 * 2) write VR power-down enable
5229 * 3) read it back
5230 * Continue if successful, else issue LCD reset and repeat
5231 **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)5232 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5233 {
5234 u32 reg;
5235 u16 data;
5236 u8 retry = 0;
5237
5238 if (hw->phy.type != e1000_phy_igp_3)
5239 return;
5240
5241 /* Try the workaround twice (if needed) */
5242 do {
5243 /* Disable link */
5244 reg = er32(PHY_CTRL);
5245 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5246 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5247 ew32(PHY_CTRL, reg);
5248
5249 /* Call gig speed drop workaround on Gig disable before
5250 * accessing any PHY registers
5251 */
5252 if (hw->mac.type == e1000_ich8lan)
5253 e1000e_gig_downshift_workaround_ich8lan(hw);
5254
5255 /* Write VR power-down enable */
5256 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5257 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5258 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5259
5260 /* Read it back and test */
5261 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5262 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5263 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5264 break;
5265
5266 /* Issue PHY reset and repeat at most one more time */
5267 reg = er32(CTRL);
5268 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5269 retry++;
5270 } while (retry);
5271 }
5272
5273 /**
5274 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5275 * @hw: pointer to the HW structure
5276 *
5277 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5278 * LPLU, Gig disable, MDIC PHY reset):
5279 * 1) Set Kumeran Near-end loopback
5280 * 2) Clear Kumeran Near-end loopback
5281 * Should only be called for ICH8[m] devices with any 1G Phy.
5282 **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)5283 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5284 {
5285 s32 ret_val;
5286 u16 reg_data;
5287
5288 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5289 return;
5290
5291 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5292 ®_data);
5293 if (ret_val)
5294 return;
5295 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5296 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5297 reg_data);
5298 if (ret_val)
5299 return;
5300 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5301 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5302 }
5303
5304 /**
5305 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5306 * @hw: pointer to the HW structure
5307 *
5308 * During S0 to Sx transition, it is possible the link remains at gig
5309 * instead of negotiating to a lower speed. Before going to Sx, set
5310 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5311 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5312 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5313 * needs to be written.
5314 * Parts that support (and are linked to a partner which support) EEE in
5315 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5316 * than 10Mbps w/o EEE.
5317 **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)5318 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5319 {
5320 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5321 u32 phy_ctrl;
5322 s32 ret_val;
5323
5324 phy_ctrl = er32(PHY_CTRL);
5325 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5326
5327 if (hw->phy.type == e1000_phy_i217) {
5328 u16 phy_reg, device_id = hw->adapter->pdev->device;
5329
5330 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5331 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5332 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5333 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5334 (hw->mac.type >= e1000_pch_spt)) {
5335 u32 fextnvm6 = er32(FEXTNVM6);
5336
5337 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5338 }
5339
5340 ret_val = hw->phy.ops.acquire(hw);
5341 if (ret_val)
5342 goto out;
5343
5344 if (!dev_spec->eee_disable) {
5345 u16 eee_advert;
5346
5347 ret_val =
5348 e1000_read_emi_reg_locked(hw,
5349 I217_EEE_ADVERTISEMENT,
5350 &eee_advert);
5351 if (ret_val)
5352 goto release;
5353
5354 /* Disable LPLU if both link partners support 100BaseT
5355 * EEE and 100Full is advertised on both ends of the
5356 * link, and enable Auto Enable LPI since there will
5357 * be no driver to enable LPI while in Sx.
5358 */
5359 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5360 (dev_spec->eee_lp_ability &
5361 I82579_EEE_100_SUPPORTED) &&
5362 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5363 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5364 E1000_PHY_CTRL_NOND0A_LPLU);
5365
5366 /* Set Auto Enable LPI after link up */
5367 e1e_rphy_locked(hw,
5368 I217_LPI_GPIO_CTRL, &phy_reg);
5369 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5370 e1e_wphy_locked(hw,
5371 I217_LPI_GPIO_CTRL, phy_reg);
5372 }
5373 }
5374
5375 /* For i217 Intel Rapid Start Technology support,
5376 * when the system is going into Sx and no manageability engine
5377 * is present, the driver must configure proxy to reset only on
5378 * power good. LPI (Low Power Idle) state must also reset only
5379 * on power good, as well as the MTA (Multicast table array).
5380 * The SMBus release must also be disabled on LCD reset.
5381 */
5382 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5383 /* Enable proxy to reset only on power good. */
5384 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5385 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5386 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5387
5388 /* Set bit enable LPI (EEE) to reset only on
5389 * power good.
5390 */
5391 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5392 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5393 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5394
5395 /* Disable the SMB release on LCD reset. */
5396 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5397 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5398 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5399 }
5400
5401 /* Enable MTA to reset for Intel Rapid Start Technology
5402 * Support
5403 */
5404 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5405 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5406 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5407
5408 release:
5409 hw->phy.ops.release(hw);
5410 }
5411 out:
5412 ew32(PHY_CTRL, phy_ctrl);
5413
5414 if (hw->mac.type == e1000_ich8lan)
5415 e1000e_gig_downshift_workaround_ich8lan(hw);
5416
5417 if (hw->mac.type >= e1000_pchlan) {
5418 e1000_oem_bits_config_ich8lan(hw, false);
5419
5420 /* Reset PHY to activate OEM bits on 82577/8 */
5421 if (hw->mac.type == e1000_pchlan)
5422 e1000e_phy_hw_reset_generic(hw);
5423
5424 ret_val = hw->phy.ops.acquire(hw);
5425 if (ret_val)
5426 return;
5427 e1000_write_smbus_addr(hw);
5428 hw->phy.ops.release(hw);
5429 }
5430 }
5431
5432 /**
5433 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5434 * @hw: pointer to the HW structure
5435 *
5436 * During Sx to S0 transitions on non-managed devices or managed devices
5437 * on which PHY resets are not blocked, if the PHY registers cannot be
5438 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5439 * the PHY.
5440 * On i217, setup Intel Rapid Start Technology.
5441 **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)5442 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5443 {
5444 s32 ret_val;
5445
5446 if (hw->mac.type < e1000_pch2lan)
5447 return;
5448
5449 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5450 if (ret_val) {
5451 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5452 return;
5453 }
5454
5455 /* For i217 Intel Rapid Start Technology support when the system
5456 * is transitioning from Sx and no manageability engine is present
5457 * configure SMBus to restore on reset, disable proxy, and enable
5458 * the reset on MTA (Multicast table array).
5459 */
5460 if (hw->phy.type == e1000_phy_i217) {
5461 u16 phy_reg;
5462
5463 ret_val = hw->phy.ops.acquire(hw);
5464 if (ret_val) {
5465 e_dbg("Failed to setup iRST\n");
5466 return;
5467 }
5468
5469 /* Clear Auto Enable LPI after link up */
5470 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5471 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5472 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5473
5474 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5475 /* Restore clear on SMB if no manageability engine
5476 * is present
5477 */
5478 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5479 if (ret_val)
5480 goto release;
5481 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5482 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5483
5484 /* Disable Proxy */
5485 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5486 }
5487 /* Enable reset on MTA */
5488 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5489 if (ret_val)
5490 goto release;
5491 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5492 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5493 release:
5494 if (ret_val)
5495 e_dbg("Error %d in resume workarounds\n", ret_val);
5496 hw->phy.ops.release(hw);
5497 }
5498 }
5499
5500 /**
5501 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5502 * @hw: pointer to the HW structure
5503 *
5504 * Return the LED back to the default configuration.
5505 **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)5506 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5507 {
5508 if (hw->phy.type == e1000_phy_ife)
5509 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5510
5511 ew32(LEDCTL, hw->mac.ledctl_default);
5512 return 0;
5513 }
5514
5515 /**
5516 * e1000_led_on_ich8lan - Turn LEDs on
5517 * @hw: pointer to the HW structure
5518 *
5519 * Turn on the LEDs.
5520 **/
e1000_led_on_ich8lan(struct e1000_hw * hw)5521 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5522 {
5523 if (hw->phy.type == e1000_phy_ife)
5524 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5525 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5526
5527 ew32(LEDCTL, hw->mac.ledctl_mode2);
5528 return 0;
5529 }
5530
5531 /**
5532 * e1000_led_off_ich8lan - Turn LEDs off
5533 * @hw: pointer to the HW structure
5534 *
5535 * Turn off the LEDs.
5536 **/
e1000_led_off_ich8lan(struct e1000_hw * hw)5537 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5538 {
5539 if (hw->phy.type == e1000_phy_ife)
5540 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5541 (IFE_PSCL_PROBE_MODE |
5542 IFE_PSCL_PROBE_LEDS_OFF));
5543
5544 ew32(LEDCTL, hw->mac.ledctl_mode1);
5545 return 0;
5546 }
5547
5548 /**
5549 * e1000_setup_led_pchlan - Configures SW controllable LED
5550 * @hw: pointer to the HW structure
5551 *
5552 * This prepares the SW controllable LED for use.
5553 **/
e1000_setup_led_pchlan(struct e1000_hw * hw)5554 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5555 {
5556 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5557 }
5558
5559 /**
5560 * e1000_cleanup_led_pchlan - Restore the default LED operation
5561 * @hw: pointer to the HW structure
5562 *
5563 * Return the LED back to the default configuration.
5564 **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)5565 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5566 {
5567 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5568 }
5569
5570 /**
5571 * e1000_led_on_pchlan - Turn LEDs on
5572 * @hw: pointer to the HW structure
5573 *
5574 * Turn on the LEDs.
5575 **/
e1000_led_on_pchlan(struct e1000_hw * hw)5576 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5577 {
5578 u16 data = (u16)hw->mac.ledctl_mode2;
5579 u32 i, led;
5580
5581 /* If no link, then turn LED on by setting the invert bit
5582 * for each LED that's mode is "link_up" in ledctl_mode2.
5583 */
5584 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5585 for (i = 0; i < 3; i++) {
5586 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5587 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5588 E1000_LEDCTL_MODE_LINK_UP)
5589 continue;
5590 if (led & E1000_PHY_LED0_IVRT)
5591 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5592 else
5593 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5594 }
5595 }
5596
5597 return e1e_wphy(hw, HV_LED_CONFIG, data);
5598 }
5599
5600 /**
5601 * e1000_led_off_pchlan - Turn LEDs off
5602 * @hw: pointer to the HW structure
5603 *
5604 * Turn off the LEDs.
5605 **/
e1000_led_off_pchlan(struct e1000_hw * hw)5606 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5607 {
5608 u16 data = (u16)hw->mac.ledctl_mode1;
5609 u32 i, led;
5610
5611 /* If no link, then turn LED off by clearing the invert bit
5612 * for each LED that's mode is "link_up" in ledctl_mode1.
5613 */
5614 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5615 for (i = 0; i < 3; i++) {
5616 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5617 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5618 E1000_LEDCTL_MODE_LINK_UP)
5619 continue;
5620 if (led & E1000_PHY_LED0_IVRT)
5621 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5622 else
5623 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5624 }
5625 }
5626
5627 return e1e_wphy(hw, HV_LED_CONFIG, data);
5628 }
5629
5630 /**
5631 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5632 * @hw: pointer to the HW structure
5633 *
5634 * Read appropriate register for the config done bit for completion status
5635 * and configure the PHY through s/w for EEPROM-less parts.
5636 *
5637 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5638 * config done bit, so only an error is logged and continues. If we were
5639 * to return with error, EEPROM-less silicon would not be able to be reset
5640 * or change link.
5641 **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)5642 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5643 {
5644 s32 ret_val = 0;
5645 u32 bank = 0;
5646 u32 status;
5647
5648 e1000e_get_cfg_done_generic(hw);
5649
5650 /* Wait for indication from h/w that it has completed basic config */
5651 if (hw->mac.type >= e1000_ich10lan) {
5652 e1000_lan_init_done_ich8lan(hw);
5653 } else {
5654 ret_val = e1000e_get_auto_rd_done(hw);
5655 if (ret_val) {
5656 /* When auto config read does not complete, do not
5657 * return with an error. This can happen in situations
5658 * where there is no eeprom and prevents getting link.
5659 */
5660 e_dbg("Auto Read Done did not complete\n");
5661 ret_val = 0;
5662 }
5663 }
5664
5665 /* Clear PHY Reset Asserted bit */
5666 status = er32(STATUS);
5667 if (status & E1000_STATUS_PHYRA)
5668 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5669 else
5670 e_dbg("PHY Reset Asserted not set - needs delay\n");
5671
5672 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5673 if (hw->mac.type <= e1000_ich9lan) {
5674 if (!(er32(EECD) & E1000_EECD_PRES) &&
5675 (hw->phy.type == e1000_phy_igp_3)) {
5676 e1000e_phy_init_script_igp3(hw);
5677 }
5678 } else {
5679 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5680 /* Maybe we should do a basic PHY config */
5681 e_dbg("EEPROM not present\n");
5682 ret_val = -E1000_ERR_CONFIG;
5683 }
5684 }
5685
5686 return ret_val;
5687 }
5688
5689 /**
5690 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5691 * @hw: pointer to the HW structure
5692 *
5693 * In the case of a PHY power down to save power, or to turn off link during a
5694 * driver unload, or wake on lan is not enabled, remove the link.
5695 **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)5696 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5697 {
5698 /* If the management interface is not enabled, then power down */
5699 if (!(hw->mac.ops.check_mng_mode(hw) ||
5700 hw->phy.ops.check_reset_block(hw)))
5701 e1000_power_down_phy_copper(hw);
5702 }
5703
5704 /**
5705 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5706 * @hw: pointer to the HW structure
5707 *
5708 * Clears hardware counters specific to the silicon family and calls
5709 * clear_hw_cntrs_generic to clear all general purpose counters.
5710 **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)5711 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5712 {
5713 u16 phy_data;
5714 s32 ret_val;
5715
5716 e1000e_clear_hw_cntrs_base(hw);
5717
5718 er32(ALGNERRC);
5719 er32(RXERRC);
5720 er32(TNCRS);
5721 er32(CEXTERR);
5722 er32(TSCTC);
5723 er32(TSCTFC);
5724
5725 er32(MGTPRC);
5726 er32(MGTPDC);
5727 er32(MGTPTC);
5728
5729 er32(IAC);
5730 er32(ICRXOC);
5731
5732 /* Clear PHY statistics registers */
5733 if ((hw->phy.type == e1000_phy_82578) ||
5734 (hw->phy.type == e1000_phy_82579) ||
5735 (hw->phy.type == e1000_phy_i217) ||
5736 (hw->phy.type == e1000_phy_82577)) {
5737 ret_val = hw->phy.ops.acquire(hw);
5738 if (ret_val)
5739 return;
5740 ret_val = hw->phy.ops.set_page(hw,
5741 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5742 if (ret_val)
5743 goto release;
5744 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5745 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5746 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5747 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5748 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5749 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5750 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5751 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5752 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5753 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5754 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5755 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5756 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5757 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5758 release:
5759 hw->phy.ops.release(hw);
5760 }
5761 }
5762
5763 static const struct e1000_mac_operations ich8_mac_ops = {
5764 /* check_mng_mode dependent on mac type */
5765 .check_for_link = e1000_check_for_copper_link_ich8lan,
5766 /* cleanup_led dependent on mac type */
5767 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5768 .get_bus_info = e1000_get_bus_info_ich8lan,
5769 .set_lan_id = e1000_set_lan_id_single_port,
5770 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5771 /* led_on dependent on mac type */
5772 /* led_off dependent on mac type */
5773 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5774 .reset_hw = e1000_reset_hw_ich8lan,
5775 .init_hw = e1000_init_hw_ich8lan,
5776 .setup_link = e1000_setup_link_ich8lan,
5777 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5778 /* id_led_init dependent on mac type */
5779 .config_collision_dist = e1000e_config_collision_dist_generic,
5780 .rar_set = e1000e_rar_set_generic,
5781 .rar_get_count = e1000e_rar_get_count_generic,
5782 };
5783
5784 static const struct e1000_phy_operations ich8_phy_ops = {
5785 .acquire = e1000_acquire_swflag_ich8lan,
5786 .check_reset_block = e1000_check_reset_block_ich8lan,
5787 .commit = NULL,
5788 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5789 .get_cable_length = e1000e_get_cable_length_igp_2,
5790 .read_reg = e1000e_read_phy_reg_igp,
5791 .release = e1000_release_swflag_ich8lan,
5792 .reset = e1000_phy_hw_reset_ich8lan,
5793 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5794 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5795 .write_reg = e1000e_write_phy_reg_igp,
5796 };
5797
5798 static const struct e1000_nvm_operations ich8_nvm_ops = {
5799 .acquire = e1000_acquire_nvm_ich8lan,
5800 .read = e1000_read_nvm_ich8lan,
5801 .release = e1000_release_nvm_ich8lan,
5802 .reload = e1000e_reload_nvm_generic,
5803 .update = e1000_update_nvm_checksum_ich8lan,
5804 .valid_led_default = e1000_valid_led_default_ich8lan,
5805 .validate = e1000_validate_nvm_checksum_ich8lan,
5806 .write = e1000_write_nvm_ich8lan,
5807 };
5808
5809 static const struct e1000_nvm_operations spt_nvm_ops = {
5810 .acquire = e1000_acquire_nvm_ich8lan,
5811 .release = e1000_release_nvm_ich8lan,
5812 .read = e1000_read_nvm_spt,
5813 .update = e1000_update_nvm_checksum_spt,
5814 .reload = e1000e_reload_nvm_generic,
5815 .valid_led_default = e1000_valid_led_default_ich8lan,
5816 .validate = e1000_validate_nvm_checksum_ich8lan,
5817 .write = e1000_write_nvm_ich8lan,
5818 };
5819
5820 const struct e1000_info e1000_ich8_info = {
5821 .mac = e1000_ich8lan,
5822 .flags = FLAG_HAS_WOL
5823 | FLAG_IS_ICH
5824 | FLAG_HAS_CTRLEXT_ON_LOAD
5825 | FLAG_HAS_AMT
5826 | FLAG_HAS_FLASH
5827 | FLAG_APME_IN_WUC,
5828 .pba = 8,
5829 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5830 .get_variants = e1000_get_variants_ich8lan,
5831 .mac_ops = &ich8_mac_ops,
5832 .phy_ops = &ich8_phy_ops,
5833 .nvm_ops = &ich8_nvm_ops,
5834 };
5835
5836 const struct e1000_info e1000_ich9_info = {
5837 .mac = e1000_ich9lan,
5838 .flags = FLAG_HAS_JUMBO_FRAMES
5839 | FLAG_IS_ICH
5840 | FLAG_HAS_WOL
5841 | FLAG_HAS_CTRLEXT_ON_LOAD
5842 | FLAG_HAS_AMT
5843 | FLAG_HAS_FLASH
5844 | FLAG_APME_IN_WUC,
5845 .pba = 18,
5846 .max_hw_frame_size = DEFAULT_JUMBO,
5847 .get_variants = e1000_get_variants_ich8lan,
5848 .mac_ops = &ich8_mac_ops,
5849 .phy_ops = &ich8_phy_ops,
5850 .nvm_ops = &ich8_nvm_ops,
5851 };
5852
5853 const struct e1000_info e1000_ich10_info = {
5854 .mac = e1000_ich10lan,
5855 .flags = FLAG_HAS_JUMBO_FRAMES
5856 | FLAG_IS_ICH
5857 | FLAG_HAS_WOL
5858 | FLAG_HAS_CTRLEXT_ON_LOAD
5859 | FLAG_HAS_AMT
5860 | FLAG_HAS_FLASH
5861 | FLAG_APME_IN_WUC,
5862 .pba = 18,
5863 .max_hw_frame_size = DEFAULT_JUMBO,
5864 .get_variants = e1000_get_variants_ich8lan,
5865 .mac_ops = &ich8_mac_ops,
5866 .phy_ops = &ich8_phy_ops,
5867 .nvm_ops = &ich8_nvm_ops,
5868 };
5869
5870 const struct e1000_info e1000_pch_info = {
5871 .mac = e1000_pchlan,
5872 .flags = FLAG_IS_ICH
5873 | FLAG_HAS_WOL
5874 | FLAG_HAS_CTRLEXT_ON_LOAD
5875 | FLAG_HAS_AMT
5876 | FLAG_HAS_FLASH
5877 | FLAG_HAS_JUMBO_FRAMES
5878 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5879 | FLAG_APME_IN_WUC,
5880 .flags2 = FLAG2_HAS_PHY_STATS,
5881 .pba = 26,
5882 .max_hw_frame_size = 4096,
5883 .get_variants = e1000_get_variants_ich8lan,
5884 .mac_ops = &ich8_mac_ops,
5885 .phy_ops = &ich8_phy_ops,
5886 .nvm_ops = &ich8_nvm_ops,
5887 };
5888
5889 const struct e1000_info e1000_pch2_info = {
5890 .mac = e1000_pch2lan,
5891 .flags = FLAG_IS_ICH
5892 | FLAG_HAS_WOL
5893 | FLAG_HAS_HW_TIMESTAMP
5894 | FLAG_HAS_CTRLEXT_ON_LOAD
5895 | FLAG_HAS_AMT
5896 | FLAG_HAS_FLASH
5897 | FLAG_HAS_JUMBO_FRAMES
5898 | FLAG_APME_IN_WUC,
5899 .flags2 = FLAG2_HAS_PHY_STATS
5900 | FLAG2_HAS_EEE
5901 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5902 .pba = 26,
5903 .max_hw_frame_size = 9022,
5904 .get_variants = e1000_get_variants_ich8lan,
5905 .mac_ops = &ich8_mac_ops,
5906 .phy_ops = &ich8_phy_ops,
5907 .nvm_ops = &ich8_nvm_ops,
5908 };
5909
5910 const struct e1000_info e1000_pch_lpt_info = {
5911 .mac = e1000_pch_lpt,
5912 .flags = FLAG_IS_ICH
5913 | FLAG_HAS_WOL
5914 | FLAG_HAS_HW_TIMESTAMP
5915 | FLAG_HAS_CTRLEXT_ON_LOAD
5916 | FLAG_HAS_AMT
5917 | FLAG_HAS_FLASH
5918 | FLAG_HAS_JUMBO_FRAMES
5919 | FLAG_APME_IN_WUC,
5920 .flags2 = FLAG2_HAS_PHY_STATS
5921 | FLAG2_HAS_EEE
5922 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5923 .pba = 26,
5924 .max_hw_frame_size = 9022,
5925 .get_variants = e1000_get_variants_ich8lan,
5926 .mac_ops = &ich8_mac_ops,
5927 .phy_ops = &ich8_phy_ops,
5928 .nvm_ops = &ich8_nvm_ops,
5929 };
5930
5931 const struct e1000_info e1000_pch_spt_info = {
5932 .mac = e1000_pch_spt,
5933 .flags = FLAG_IS_ICH
5934 | FLAG_HAS_WOL
5935 | FLAG_HAS_HW_TIMESTAMP
5936 | FLAG_HAS_CTRLEXT_ON_LOAD
5937 | FLAG_HAS_AMT
5938 | FLAG_HAS_FLASH
5939 | FLAG_HAS_JUMBO_FRAMES
5940 | FLAG_APME_IN_WUC,
5941 .flags2 = FLAG2_HAS_PHY_STATS
5942 | FLAG2_HAS_EEE,
5943 .pba = 26,
5944 .max_hw_frame_size = 9022,
5945 .get_variants = e1000_get_variants_ich8lan,
5946 .mac_ops = &ich8_mac_ops,
5947 .phy_ops = &ich8_phy_ops,
5948 .nvm_ops = &spt_nvm_ops,
5949 };
5950
5951 const struct e1000_info e1000_pch_cnp_info = {
5952 .mac = e1000_pch_cnp,
5953 .flags = FLAG_IS_ICH
5954 | FLAG_HAS_WOL
5955 | FLAG_HAS_HW_TIMESTAMP
5956 | FLAG_HAS_CTRLEXT_ON_LOAD
5957 | FLAG_HAS_AMT
5958 | FLAG_HAS_FLASH
5959 | FLAG_HAS_JUMBO_FRAMES
5960 | FLAG_APME_IN_WUC,
5961 .flags2 = FLAG2_HAS_PHY_STATS
5962 | FLAG2_HAS_EEE,
5963 .pba = 26,
5964 .max_hw_frame_size = 9022,
5965 .get_variants = e1000_get_variants_ich8lan,
5966 .mac_ops = &ich8_mac_ops,
5967 .phy_ops = &ich8_phy_ops,
5968 .nvm_ops = &spt_nvm_ops,
5969 };
5970