1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "efx_common.h"
27 #include "efx_channels.h"
28 #include "ef100.h"
29 #include "rx_common.h"
30 #include "tx_common.h"
31 #include "nic.h"
32 #include "io.h"
33 #include "selftest.h"
34 #include "sriov.h"
35
36 #include "mcdi_port_common.h"
37 #include "mcdi_pcol.h"
38 #include "workarounds.h"
39
40 /**************************************************************************
41 *
42 * Configurable values
43 *
44 *************************************************************************/
45
46 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
47 MODULE_PARM_DESC(interrupt_mode,
48 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
49
50 module_param(rss_cpus, uint, 0444);
51 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
52
53 /*
54 * Use separate channels for TX and RX events
55 *
56 * Set this to 1 to use separate channels for TX and RX. It allows us
57 * to control interrupt affinity separately for TX and RX.
58 *
59 * This is only used in MSI-X interrupt mode
60 */
61 bool efx_separate_tx_channels;
62 module_param(efx_separate_tx_channels, bool, 0444);
63 MODULE_PARM_DESC(efx_separate_tx_channels,
64 "Use separate channels for TX and RX");
65
66 /* Initial interrupt moderation settings. They can be modified after
67 * module load with ethtool.
68 *
69 * The default for RX should strike a balance between increasing the
70 * round-trip latency and reducing overhead.
71 */
72 static unsigned int rx_irq_mod_usec = 60;
73
74 /* Initial interrupt moderation settings. They can be modified after
75 * module load with ethtool.
76 *
77 * This default is chosen to ensure that a 10G link does not go idle
78 * while a TX queue is stopped after it has become full. A queue is
79 * restarted when it drops below half full. The time this takes (assuming
80 * worst case 3 descriptors per packet and 1024 descriptors) is
81 * 512 / 3 * 1.2 = 205 usec.
82 */
83 static unsigned int tx_irq_mod_usec = 150;
84
85 static bool phy_flash_cfg;
86 module_param(phy_flash_cfg, bool, 0644);
87 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
88
89 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
91 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
92 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
93 module_param(debug, uint, 0);
94 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
95
96 /**************************************************************************
97 *
98 * Utility functions and prototypes
99 *
100 *************************************************************************/
101
102 static void efx_remove_port(struct efx_nic *efx);
103 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
104 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
105 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
106 u32 flags);
107
108 #define EFX_ASSERT_RESET_SERIALISED(efx) \
109 do { \
110 if ((efx->state == STATE_READY) || \
111 (efx->state == STATE_RECOVERY) || \
112 (efx->state == STATE_DISABLED)) \
113 ASSERT_RTNL(); \
114 } while (0)
115
116 /**************************************************************************
117 *
118 * Port handling
119 *
120 **************************************************************************/
121
122 static void efx_fini_port(struct efx_nic *efx);
123
efx_probe_port(struct efx_nic * efx)124 static int efx_probe_port(struct efx_nic *efx)
125 {
126 int rc;
127
128 netif_dbg(efx, probe, efx->net_dev, "create port\n");
129
130 if (phy_flash_cfg)
131 efx->phy_mode = PHY_MODE_SPECIAL;
132
133 /* Connect up MAC/PHY operations table */
134 rc = efx->type->probe_port(efx);
135 if (rc)
136 return rc;
137
138 /* Initialise MAC address to permanent address */
139 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
140
141 return 0;
142 }
143
efx_init_port(struct efx_nic * efx)144 static int efx_init_port(struct efx_nic *efx)
145 {
146 int rc;
147
148 netif_dbg(efx, drv, efx->net_dev, "init port\n");
149
150 mutex_lock(&efx->mac_lock);
151
152 efx->port_initialized = true;
153
154 /* Ensure the PHY advertises the correct flow control settings */
155 rc = efx_mcdi_port_reconfigure(efx);
156 if (rc && rc != -EPERM)
157 goto fail;
158
159 mutex_unlock(&efx->mac_lock);
160 return 0;
161
162 fail:
163 mutex_unlock(&efx->mac_lock);
164 return rc;
165 }
166
efx_fini_port(struct efx_nic * efx)167 static void efx_fini_port(struct efx_nic *efx)
168 {
169 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
170
171 if (!efx->port_initialized)
172 return;
173
174 efx->port_initialized = false;
175
176 efx->link_state.up = false;
177 efx_link_status_changed(efx);
178 }
179
efx_remove_port(struct efx_nic * efx)180 static void efx_remove_port(struct efx_nic *efx)
181 {
182 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
183
184 efx->type->remove_port(efx);
185 }
186
187 /**************************************************************************
188 *
189 * NIC handling
190 *
191 **************************************************************************/
192
193 static LIST_HEAD(efx_primary_list);
194 static LIST_HEAD(efx_unassociated_list);
195
efx_same_controller(struct efx_nic * left,struct efx_nic * right)196 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
197 {
198 return left->type == right->type &&
199 left->vpd_sn && right->vpd_sn &&
200 !strcmp(left->vpd_sn, right->vpd_sn);
201 }
202
efx_associate(struct efx_nic * efx)203 static void efx_associate(struct efx_nic *efx)
204 {
205 struct efx_nic *other, *next;
206
207 if (efx->primary == efx) {
208 /* Adding primary function; look for secondaries */
209
210 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
211 list_add_tail(&efx->node, &efx_primary_list);
212
213 list_for_each_entry_safe(other, next, &efx_unassociated_list,
214 node) {
215 if (efx_same_controller(efx, other)) {
216 list_del(&other->node);
217 netif_dbg(other, probe, other->net_dev,
218 "moving to secondary list of %s %s\n",
219 pci_name(efx->pci_dev),
220 efx->net_dev->name);
221 list_add_tail(&other->node,
222 &efx->secondary_list);
223 other->primary = efx;
224 }
225 }
226 } else {
227 /* Adding secondary function; look for primary */
228
229 list_for_each_entry(other, &efx_primary_list, node) {
230 if (efx_same_controller(efx, other)) {
231 netif_dbg(efx, probe, efx->net_dev,
232 "adding to secondary list of %s %s\n",
233 pci_name(other->pci_dev),
234 other->net_dev->name);
235 list_add_tail(&efx->node,
236 &other->secondary_list);
237 efx->primary = other;
238 return;
239 }
240 }
241
242 netif_dbg(efx, probe, efx->net_dev,
243 "adding to unassociated list\n");
244 list_add_tail(&efx->node, &efx_unassociated_list);
245 }
246 }
247
efx_dissociate(struct efx_nic * efx)248 static void efx_dissociate(struct efx_nic *efx)
249 {
250 struct efx_nic *other, *next;
251
252 list_del(&efx->node);
253 efx->primary = NULL;
254
255 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
256 list_del(&other->node);
257 netif_dbg(other, probe, other->net_dev,
258 "moving to unassociated list\n");
259 list_add_tail(&other->node, &efx_unassociated_list);
260 other->primary = NULL;
261 }
262 }
263
efx_probe_nic(struct efx_nic * efx)264 static int efx_probe_nic(struct efx_nic *efx)
265 {
266 int rc;
267
268 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
269
270 /* Carry out hardware-type specific initialisation */
271 rc = efx->type->probe(efx);
272 if (rc)
273 return rc;
274
275 do {
276 if (!efx->max_channels || !efx->max_tx_channels) {
277 netif_err(efx, drv, efx->net_dev,
278 "Insufficient resources to allocate"
279 " any channels\n");
280 rc = -ENOSPC;
281 goto fail1;
282 }
283
284 /* Determine the number of channels and queues by trying
285 * to hook in MSI-X interrupts.
286 */
287 rc = efx_probe_interrupts(efx);
288 if (rc)
289 goto fail1;
290
291 rc = efx_set_channels(efx);
292 if (rc)
293 goto fail1;
294
295 /* dimension_resources can fail with EAGAIN */
296 rc = efx->type->dimension_resources(efx);
297 if (rc != 0 && rc != -EAGAIN)
298 goto fail2;
299
300 if (rc == -EAGAIN)
301 /* try again with new max_channels */
302 efx_remove_interrupts(efx);
303
304 } while (rc == -EAGAIN);
305
306 if (efx->n_channels > 1)
307 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
308 sizeof(efx->rss_context.rx_hash_key));
309 efx_set_default_rx_indir_table(efx, &efx->rss_context);
310
311 /* Initialise the interrupt moderation settings */
312 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
313 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
314 true);
315
316 return 0;
317
318 fail2:
319 efx_remove_interrupts(efx);
320 fail1:
321 efx->type->remove(efx);
322 return rc;
323 }
324
efx_remove_nic(struct efx_nic * efx)325 static void efx_remove_nic(struct efx_nic *efx)
326 {
327 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
328
329 efx_remove_interrupts(efx);
330 efx->type->remove(efx);
331 }
332
333 /**************************************************************************
334 *
335 * NIC startup/shutdown
336 *
337 *************************************************************************/
338
efx_probe_all(struct efx_nic * efx)339 static int efx_probe_all(struct efx_nic *efx)
340 {
341 int rc;
342
343 rc = efx_probe_nic(efx);
344 if (rc) {
345 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
346 goto fail1;
347 }
348
349 rc = efx_probe_port(efx);
350 if (rc) {
351 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
352 goto fail2;
353 }
354
355 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
356 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
357 rc = -EINVAL;
358 goto fail3;
359 }
360
361 #ifdef CONFIG_SFC_SRIOV
362 rc = efx->type->vswitching_probe(efx);
363 if (rc) /* not fatal; the PF will still work fine */
364 netif_warn(efx, probe, efx->net_dev,
365 "failed to setup vswitching rc=%d;"
366 " VFs may not function\n", rc);
367 #endif
368
369 rc = efx_probe_filters(efx);
370 if (rc) {
371 netif_err(efx, probe, efx->net_dev,
372 "failed to create filter tables\n");
373 goto fail4;
374 }
375
376 rc = efx_probe_channels(efx);
377 if (rc)
378 goto fail5;
379
380 return 0;
381
382 fail5:
383 efx_remove_filters(efx);
384 fail4:
385 #ifdef CONFIG_SFC_SRIOV
386 efx->type->vswitching_remove(efx);
387 #endif
388 fail3:
389 efx_remove_port(efx);
390 fail2:
391 efx_remove_nic(efx);
392 fail1:
393 return rc;
394 }
395
efx_remove_all(struct efx_nic * efx)396 static void efx_remove_all(struct efx_nic *efx)
397 {
398 rtnl_lock();
399 efx_xdp_setup_prog(efx, NULL);
400 rtnl_unlock();
401
402 efx_remove_channels(efx);
403 efx_remove_filters(efx);
404 #ifdef CONFIG_SFC_SRIOV
405 efx->type->vswitching_remove(efx);
406 #endif
407 efx_remove_port(efx);
408 efx_remove_nic(efx);
409 }
410
411 /**************************************************************************
412 *
413 * Interrupt moderation
414 *
415 **************************************************************************/
efx_usecs_to_ticks(struct efx_nic * efx,unsigned int usecs)416 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
417 {
418 if (usecs == 0)
419 return 0;
420 if (usecs * 1000 < efx->timer_quantum_ns)
421 return 1; /* never round down to 0 */
422 return usecs * 1000 / efx->timer_quantum_ns;
423 }
424
efx_ticks_to_usecs(struct efx_nic * efx,unsigned int ticks)425 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
426 {
427 /* We must round up when converting ticks to microseconds
428 * because we round down when converting the other way.
429 */
430 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
431 }
432
433 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)434 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
435 unsigned int rx_usecs, bool rx_adaptive,
436 bool rx_may_override_tx)
437 {
438 struct efx_channel *channel;
439 unsigned int timer_max_us;
440
441 EFX_ASSERT_RESET_SERIALISED(efx);
442
443 timer_max_us = efx->timer_max_ns / 1000;
444
445 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
446 return -EINVAL;
447
448 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
449 !rx_may_override_tx) {
450 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
451 "RX and TX IRQ moderation must be equal\n");
452 return -EINVAL;
453 }
454
455 efx->irq_rx_adaptive = rx_adaptive;
456 efx->irq_rx_moderation_us = rx_usecs;
457 efx_for_each_channel(channel, efx) {
458 if (efx_channel_has_rx_queue(channel))
459 channel->irq_moderation_us = rx_usecs;
460 else if (efx_channel_has_tx_queues(channel))
461 channel->irq_moderation_us = tx_usecs;
462 else if (efx_channel_is_xdp_tx(channel))
463 channel->irq_moderation_us = tx_usecs;
464 }
465
466 return 0;
467 }
468
efx_get_irq_moderation(struct efx_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)469 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
470 unsigned int *rx_usecs, bool *rx_adaptive)
471 {
472 *rx_adaptive = efx->irq_rx_adaptive;
473 *rx_usecs = efx->irq_rx_moderation_us;
474
475 /* If channels are shared between RX and TX, so is IRQ
476 * moderation. Otherwise, IRQ moderation is the same for all
477 * TX channels and is not adaptive.
478 */
479 if (efx->tx_channel_offset == 0) {
480 *tx_usecs = *rx_usecs;
481 } else {
482 struct efx_channel *tx_channel;
483
484 tx_channel = efx->channel[efx->tx_channel_offset];
485 *tx_usecs = tx_channel->irq_moderation_us;
486 }
487 }
488
489 /**************************************************************************
490 *
491 * ioctls
492 *
493 *************************************************************************/
494
495 /* Net device ioctl
496 * Context: process, rtnl_lock() held.
497 */
efx_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)498 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
499 {
500 struct efx_nic *efx = netdev_priv(net_dev);
501 struct mii_ioctl_data *data = if_mii(ifr);
502
503 if (cmd == SIOCSHWTSTAMP)
504 return efx_ptp_set_ts_config(efx, ifr);
505 if (cmd == SIOCGHWTSTAMP)
506 return efx_ptp_get_ts_config(efx, ifr);
507
508 /* Convert phy_id from older PRTAD/DEVAD format */
509 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
510 (data->phy_id & 0xfc00) == 0x0400)
511 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
512
513 return mdio_mii_ioctl(&efx->mdio, data, cmd);
514 }
515
516 /**************************************************************************
517 *
518 * Kernel net device interface
519 *
520 *************************************************************************/
521
522 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)523 int efx_net_open(struct net_device *net_dev)
524 {
525 struct efx_nic *efx = netdev_priv(net_dev);
526 int rc;
527
528 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
529 raw_smp_processor_id());
530
531 rc = efx_check_disabled(efx);
532 if (rc)
533 return rc;
534 if (efx->phy_mode & PHY_MODE_SPECIAL)
535 return -EBUSY;
536 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
537 return -EIO;
538
539 /* Notify the kernel of the link state polled during driver load,
540 * before the monitor starts running */
541 efx_link_status_changed(efx);
542
543 efx_start_all(efx);
544 if (efx->state == STATE_DISABLED || efx->reset_pending)
545 netif_device_detach(efx->net_dev);
546 efx_selftest_async_start(efx);
547 return 0;
548 }
549
550 /* Context: process, rtnl_lock() held.
551 * Note that the kernel will ignore our return code; this method
552 * should really be a void.
553 */
efx_net_stop(struct net_device * net_dev)554 int efx_net_stop(struct net_device *net_dev)
555 {
556 struct efx_nic *efx = netdev_priv(net_dev);
557
558 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
559 raw_smp_processor_id());
560
561 /* Stop the device and flush all the channels */
562 efx_stop_all(efx);
563
564 return 0;
565 }
566
efx_vlan_rx_add_vid(struct net_device * net_dev,__be16 proto,u16 vid)567 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
568 {
569 struct efx_nic *efx = netdev_priv(net_dev);
570
571 if (efx->type->vlan_rx_add_vid)
572 return efx->type->vlan_rx_add_vid(efx, proto, vid);
573 else
574 return -EOPNOTSUPP;
575 }
576
efx_vlan_rx_kill_vid(struct net_device * net_dev,__be16 proto,u16 vid)577 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
578 {
579 struct efx_nic *efx = netdev_priv(net_dev);
580
581 if (efx->type->vlan_rx_kill_vid)
582 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
583 else
584 return -EOPNOTSUPP;
585 }
586
587 static const struct net_device_ops efx_netdev_ops = {
588 .ndo_open = efx_net_open,
589 .ndo_stop = efx_net_stop,
590 .ndo_get_stats64 = efx_net_stats,
591 .ndo_tx_timeout = efx_watchdog,
592 .ndo_start_xmit = efx_hard_start_xmit,
593 .ndo_validate_addr = eth_validate_addr,
594 .ndo_do_ioctl = efx_ioctl,
595 .ndo_change_mtu = efx_change_mtu,
596 .ndo_set_mac_address = efx_set_mac_address,
597 .ndo_set_rx_mode = efx_set_rx_mode,
598 .ndo_set_features = efx_set_features,
599 .ndo_features_check = efx_features_check,
600 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
601 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
602 #ifdef CONFIG_SFC_SRIOV
603 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
604 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
605 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
606 .ndo_get_vf_config = efx_sriov_get_vf_config,
607 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
608 #endif
609 .ndo_get_phys_port_id = efx_get_phys_port_id,
610 .ndo_get_phys_port_name = efx_get_phys_port_name,
611 .ndo_setup_tc = efx_setup_tc,
612 #ifdef CONFIG_RFS_ACCEL
613 .ndo_rx_flow_steer = efx_filter_rfs,
614 #endif
615 .ndo_xdp_xmit = efx_xdp_xmit,
616 .ndo_bpf = efx_xdp
617 };
618
efx_xdp_setup_prog(struct efx_nic * efx,struct bpf_prog * prog)619 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
620 {
621 struct bpf_prog *old_prog;
622
623 if (efx->xdp_rxq_info_failed) {
624 netif_err(efx, drv, efx->net_dev,
625 "Unable to bind XDP program due to previous failure of rxq_info\n");
626 return -EINVAL;
627 }
628
629 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
630 netif_err(efx, drv, efx->net_dev,
631 "Unable to configure XDP with MTU of %d (max: %d)\n",
632 efx->net_dev->mtu, efx_xdp_max_mtu(efx));
633 return -EINVAL;
634 }
635
636 old_prog = rtnl_dereference(efx->xdp_prog);
637 rcu_assign_pointer(efx->xdp_prog, prog);
638 /* Release the reference that was originally passed by the caller. */
639 if (old_prog)
640 bpf_prog_put(old_prog);
641
642 return 0;
643 }
644
645 /* Context: process, rtnl_lock() held. */
efx_xdp(struct net_device * dev,struct netdev_bpf * xdp)646 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
647 {
648 struct efx_nic *efx = netdev_priv(dev);
649
650 switch (xdp->command) {
651 case XDP_SETUP_PROG:
652 return efx_xdp_setup_prog(efx, xdp->prog);
653 default:
654 return -EINVAL;
655 }
656 }
657
efx_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdpfs,u32 flags)658 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
659 u32 flags)
660 {
661 struct efx_nic *efx = netdev_priv(dev);
662
663 if (!netif_running(dev))
664 return -EINVAL;
665
666 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
667 }
668
efx_update_name(struct efx_nic * efx)669 static void efx_update_name(struct efx_nic *efx)
670 {
671 strcpy(efx->name, efx->net_dev->name);
672 efx_mtd_rename(efx);
673 efx_set_channel_names(efx);
674 }
675
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)676 static int efx_netdev_event(struct notifier_block *this,
677 unsigned long event, void *ptr)
678 {
679 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
680
681 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
682 event == NETDEV_CHANGENAME)
683 efx_update_name(netdev_priv(net_dev));
684
685 return NOTIFY_DONE;
686 }
687
688 static struct notifier_block efx_netdev_notifier = {
689 .notifier_call = efx_netdev_event,
690 };
691
692 static ssize_t
show_phy_type(struct device * dev,struct device_attribute * attr,char * buf)693 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
694 {
695 struct efx_nic *efx = dev_get_drvdata(dev);
696 return sprintf(buf, "%d\n", efx->phy_type);
697 }
698 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
699
efx_register_netdev(struct efx_nic * efx)700 static int efx_register_netdev(struct efx_nic *efx)
701 {
702 struct net_device *net_dev = efx->net_dev;
703 struct efx_channel *channel;
704 int rc;
705
706 net_dev->watchdog_timeo = 5 * HZ;
707 net_dev->irq = efx->pci_dev->irq;
708 net_dev->netdev_ops = &efx_netdev_ops;
709 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
710 net_dev->priv_flags |= IFF_UNICAST_FLT;
711 net_dev->ethtool_ops = &efx_ethtool_ops;
712 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
713 net_dev->min_mtu = EFX_MIN_MTU;
714 net_dev->max_mtu = EFX_MAX_MTU;
715
716 rtnl_lock();
717
718 /* Enable resets to be scheduled and check whether any were
719 * already requested. If so, the NIC is probably hosed so we
720 * abort.
721 */
722 efx->state = STATE_READY;
723 smp_mb(); /* ensure we change state before checking reset_pending */
724 if (efx->reset_pending) {
725 netif_err(efx, probe, efx->net_dev,
726 "aborting probe due to scheduled reset\n");
727 rc = -EIO;
728 goto fail_locked;
729 }
730
731 rc = dev_alloc_name(net_dev, net_dev->name);
732 if (rc < 0)
733 goto fail_locked;
734 efx_update_name(efx);
735
736 /* Always start with carrier off; PHY events will detect the link */
737 netif_carrier_off(net_dev);
738
739 rc = register_netdevice(net_dev);
740 if (rc)
741 goto fail_locked;
742
743 efx_for_each_channel(channel, efx) {
744 struct efx_tx_queue *tx_queue;
745 efx_for_each_channel_tx_queue(tx_queue, channel)
746 efx_init_tx_queue_core_txq(tx_queue);
747 }
748
749 efx_associate(efx);
750
751 rtnl_unlock();
752
753 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
754 if (rc) {
755 netif_err(efx, drv, efx->net_dev,
756 "failed to init net dev attributes\n");
757 goto fail_registered;
758 }
759
760 efx_init_mcdi_logging(efx);
761
762 return 0;
763
764 fail_registered:
765 rtnl_lock();
766 efx_dissociate(efx);
767 unregister_netdevice(net_dev);
768 fail_locked:
769 efx->state = STATE_UNINIT;
770 rtnl_unlock();
771 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
772 return rc;
773 }
774
efx_unregister_netdev(struct efx_nic * efx)775 static void efx_unregister_netdev(struct efx_nic *efx)
776 {
777 if (!efx->net_dev)
778 return;
779
780 BUG_ON(netdev_priv(efx->net_dev) != efx);
781
782 if (efx_dev_registered(efx)) {
783 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
784 efx_fini_mcdi_logging(efx);
785 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
786 unregister_netdev(efx->net_dev);
787 }
788 }
789
790 /**************************************************************************
791 *
792 * List of NICs we support
793 *
794 **************************************************************************/
795
796 /* PCI device ID table */
797 static const struct pci_device_id efx_pci_table[] = {
798 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
799 .driver_data = (unsigned long) &siena_a0_nic_type},
800 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
801 .driver_data = (unsigned long) &siena_a0_nic_type},
802 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
803 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
804 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
805 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
806 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
807 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
808 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
809 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
810 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
811 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
812 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
813 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
814 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */
815 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
816 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */
817 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
818 {0} /* end of list */
819 };
820
821 /**************************************************************************
822 *
823 * Data housekeeping
824 *
825 **************************************************************************/
826
efx_update_sw_stats(struct efx_nic * efx,u64 * stats)827 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
828 {
829 u64 n_rx_nodesc_trunc = 0;
830 struct efx_channel *channel;
831
832 efx_for_each_channel(channel, efx)
833 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
834 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
835 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
836 }
837
838 /**************************************************************************
839 *
840 * PCI interface
841 *
842 **************************************************************************/
843
844 /* Main body of final NIC shutdown code
845 * This is called only at module unload (or hotplug removal).
846 */
efx_pci_remove_main(struct efx_nic * efx)847 static void efx_pci_remove_main(struct efx_nic *efx)
848 {
849 /* Flush reset_work. It can no longer be scheduled since we
850 * are not READY.
851 */
852 BUG_ON(efx->state == STATE_READY);
853 efx_flush_reset_workqueue(efx);
854
855 efx_disable_interrupts(efx);
856 efx_clear_interrupt_affinity(efx);
857 efx_nic_fini_interrupt(efx);
858 efx_fini_port(efx);
859 efx->type->fini(efx);
860 efx_fini_napi(efx);
861 efx_remove_all(efx);
862 }
863
864 /* Final NIC shutdown
865 * This is called only at module unload (or hotplug removal). A PF can call
866 * this on its VFs to ensure they are unbound first.
867 */
efx_pci_remove(struct pci_dev * pci_dev)868 static void efx_pci_remove(struct pci_dev *pci_dev)
869 {
870 struct efx_nic *efx;
871
872 efx = pci_get_drvdata(pci_dev);
873 if (!efx)
874 return;
875
876 /* Mark the NIC as fini, then stop the interface */
877 rtnl_lock();
878 efx_dissociate(efx);
879 dev_close(efx->net_dev);
880 efx_disable_interrupts(efx);
881 efx->state = STATE_UNINIT;
882 rtnl_unlock();
883
884 if (efx->type->sriov_fini)
885 efx->type->sriov_fini(efx);
886
887 efx_unregister_netdev(efx);
888
889 efx_mtd_remove(efx);
890
891 efx_pci_remove_main(efx);
892
893 efx_fini_io(efx);
894 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
895
896 efx_fini_struct(efx);
897 free_netdev(efx->net_dev);
898
899 pci_disable_pcie_error_reporting(pci_dev);
900 };
901
902 /* NIC VPD information
903 * Called during probe to display the part number of the
904 * installed NIC. VPD is potentially very large but this should
905 * always appear within the first 512 bytes.
906 */
907 #define SFC_VPD_LEN 512
efx_probe_vpd_strings(struct efx_nic * efx)908 static void efx_probe_vpd_strings(struct efx_nic *efx)
909 {
910 struct pci_dev *dev = efx->pci_dev;
911 char vpd_data[SFC_VPD_LEN];
912 ssize_t vpd_size;
913 int ro_start, ro_size, i, j;
914
915 /* Get the vpd data from the device */
916 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
917 if (vpd_size <= 0) {
918 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
919 return;
920 }
921
922 /* Get the Read only section */
923 ro_start = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA);
924 if (ro_start < 0) {
925 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
926 return;
927 }
928
929 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
930 j = ro_size;
931 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
932 if (i + j > vpd_size)
933 j = vpd_size - i;
934
935 /* Get the Part number */
936 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
937 if (i < 0) {
938 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
939 return;
940 }
941
942 j = pci_vpd_info_field_size(&vpd_data[i]);
943 i += PCI_VPD_INFO_FLD_HDR_SIZE;
944 if (i + j > vpd_size) {
945 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
946 return;
947 }
948
949 netif_info(efx, drv, efx->net_dev,
950 "Part Number : %.*s\n", j, &vpd_data[i]);
951
952 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
953 j = ro_size;
954 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
955 if (i < 0) {
956 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
957 return;
958 }
959
960 j = pci_vpd_info_field_size(&vpd_data[i]);
961 i += PCI_VPD_INFO_FLD_HDR_SIZE;
962 if (i + j > vpd_size) {
963 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
964 return;
965 }
966
967 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
968 if (!efx->vpd_sn)
969 return;
970
971 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
972 }
973
974
975 /* Main body of NIC initialisation
976 * This is called at module load (or hotplug insertion, theoretically).
977 */
efx_pci_probe_main(struct efx_nic * efx)978 static int efx_pci_probe_main(struct efx_nic *efx)
979 {
980 int rc;
981
982 /* Do start-of-day initialisation */
983 rc = efx_probe_all(efx);
984 if (rc)
985 goto fail1;
986
987 efx_init_napi(efx);
988
989 down_write(&efx->filter_sem);
990 rc = efx->type->init(efx);
991 up_write(&efx->filter_sem);
992 if (rc) {
993 netif_err(efx, probe, efx->net_dev,
994 "failed to initialise NIC\n");
995 goto fail3;
996 }
997
998 rc = efx_init_port(efx);
999 if (rc) {
1000 netif_err(efx, probe, efx->net_dev,
1001 "failed to initialise port\n");
1002 goto fail4;
1003 }
1004
1005 rc = efx_nic_init_interrupt(efx);
1006 if (rc)
1007 goto fail5;
1008
1009 efx_set_interrupt_affinity(efx);
1010 rc = efx_enable_interrupts(efx);
1011 if (rc)
1012 goto fail6;
1013
1014 return 0;
1015
1016 fail6:
1017 efx_clear_interrupt_affinity(efx);
1018 efx_nic_fini_interrupt(efx);
1019 fail5:
1020 efx_fini_port(efx);
1021 fail4:
1022 efx->type->fini(efx);
1023 fail3:
1024 efx_fini_napi(efx);
1025 efx_remove_all(efx);
1026 fail1:
1027 return rc;
1028 }
1029
efx_pci_probe_post_io(struct efx_nic * efx)1030 static int efx_pci_probe_post_io(struct efx_nic *efx)
1031 {
1032 struct net_device *net_dev = efx->net_dev;
1033 int rc = efx_pci_probe_main(efx);
1034
1035 if (rc)
1036 return rc;
1037
1038 if (efx->type->sriov_init) {
1039 rc = efx->type->sriov_init(efx);
1040 if (rc)
1041 netif_err(efx, probe, efx->net_dev,
1042 "SR-IOV can't be enabled rc %d\n", rc);
1043 }
1044
1045 /* Determine netdevice features */
1046 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
1047 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
1048 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
1049 net_dev->features |= NETIF_F_TSO6;
1050 /* Check whether device supports TSO */
1051 if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
1052 net_dev->features &= ~NETIF_F_ALL_TSO;
1053 /* Mask for features that also apply to VLAN devices */
1054 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1055 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1056 NETIF_F_RXCSUM);
1057
1058 net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1059
1060 /* Disable receiving frames with bad FCS, by default. */
1061 net_dev->features &= ~NETIF_F_RXALL;
1062
1063 /* Disable VLAN filtering by default. It may be enforced if
1064 * the feature is fixed (i.e. VLAN filters are required to
1065 * receive VLAN tagged packets due to vPort restrictions).
1066 */
1067 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1068 net_dev->features |= efx->fixed_features;
1069
1070 rc = efx_register_netdev(efx);
1071 if (!rc)
1072 return 0;
1073
1074 efx_pci_remove_main(efx);
1075 return rc;
1076 }
1077
1078 /* NIC initialisation
1079 *
1080 * This is called at module load (or hotplug insertion,
1081 * theoretically). It sets up PCI mappings, resets the NIC,
1082 * sets up and registers the network devices with the kernel and hooks
1083 * the interrupt service routine. It does not prepare the device for
1084 * transmission; this is left to the first time one of the network
1085 * interfaces is brought up (i.e. efx_net_open).
1086 */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)1087 static int efx_pci_probe(struct pci_dev *pci_dev,
1088 const struct pci_device_id *entry)
1089 {
1090 struct net_device *net_dev;
1091 struct efx_nic *efx;
1092 int rc;
1093
1094 /* Allocate and initialise a struct net_device and struct efx_nic */
1095 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
1096 EFX_MAX_RX_QUEUES);
1097 if (!net_dev)
1098 return -ENOMEM;
1099 efx = netdev_priv(net_dev);
1100 efx->type = (const struct efx_nic_type *) entry->driver_data;
1101 efx->fixed_features |= NETIF_F_HIGHDMA;
1102
1103 pci_set_drvdata(pci_dev, efx);
1104 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1105 rc = efx_init_struct(efx, pci_dev, net_dev);
1106 if (rc)
1107 goto fail1;
1108
1109 netif_info(efx, probe, efx->net_dev,
1110 "Solarflare NIC detected\n");
1111
1112 if (!efx->type->is_vf)
1113 efx_probe_vpd_strings(efx);
1114
1115 /* Set up basic I/O (BAR mappings etc) */
1116 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1117 efx->type->mem_map_size(efx));
1118 if (rc)
1119 goto fail2;
1120
1121 rc = efx_pci_probe_post_io(efx);
1122 if (rc) {
1123 /* On failure, retry once immediately.
1124 * If we aborted probe due to a scheduled reset, dismiss it.
1125 */
1126 efx->reset_pending = 0;
1127 rc = efx_pci_probe_post_io(efx);
1128 if (rc) {
1129 /* On another failure, retry once more
1130 * after a 50-305ms delay.
1131 */
1132 unsigned char r;
1133
1134 get_random_bytes(&r, 1);
1135 msleep((unsigned int)r + 50);
1136 efx->reset_pending = 0;
1137 rc = efx_pci_probe_post_io(efx);
1138 }
1139 }
1140 if (rc)
1141 goto fail3;
1142
1143 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1144
1145 /* Try to create MTDs, but allow this to fail */
1146 rtnl_lock();
1147 rc = efx_mtd_probe(efx);
1148 rtnl_unlock();
1149 if (rc && rc != -EPERM)
1150 netif_warn(efx, probe, efx->net_dev,
1151 "failed to create MTDs (%d)\n", rc);
1152
1153 (void)pci_enable_pcie_error_reporting(pci_dev);
1154
1155 if (efx->type->udp_tnl_push_ports)
1156 efx->type->udp_tnl_push_ports(efx);
1157
1158 return 0;
1159
1160 fail3:
1161 efx_fini_io(efx);
1162 fail2:
1163 efx_fini_struct(efx);
1164 fail1:
1165 WARN_ON(rc > 0);
1166 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1167 free_netdev(net_dev);
1168 return rc;
1169 }
1170
1171 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1172 * enabled on success
1173 */
1174 #ifdef CONFIG_SFC_SRIOV
efx_pci_sriov_configure(struct pci_dev * dev,int num_vfs)1175 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1176 {
1177 int rc;
1178 struct efx_nic *efx = pci_get_drvdata(dev);
1179
1180 if (efx->type->sriov_configure) {
1181 rc = efx->type->sriov_configure(efx, num_vfs);
1182 if (rc)
1183 return rc;
1184 else
1185 return num_vfs;
1186 } else
1187 return -EOPNOTSUPP;
1188 }
1189 #endif
1190
efx_pm_freeze(struct device * dev)1191 static int efx_pm_freeze(struct device *dev)
1192 {
1193 struct efx_nic *efx = dev_get_drvdata(dev);
1194
1195 rtnl_lock();
1196
1197 if (efx->state != STATE_DISABLED) {
1198 efx->state = STATE_UNINIT;
1199
1200 efx_device_detach_sync(efx);
1201
1202 efx_stop_all(efx);
1203 efx_disable_interrupts(efx);
1204 }
1205
1206 rtnl_unlock();
1207
1208 return 0;
1209 }
1210
efx_pm_thaw(struct device * dev)1211 static int efx_pm_thaw(struct device *dev)
1212 {
1213 int rc;
1214 struct efx_nic *efx = dev_get_drvdata(dev);
1215
1216 rtnl_lock();
1217
1218 if (efx->state != STATE_DISABLED) {
1219 rc = efx_enable_interrupts(efx);
1220 if (rc)
1221 goto fail;
1222
1223 mutex_lock(&efx->mac_lock);
1224 efx_mcdi_port_reconfigure(efx);
1225 mutex_unlock(&efx->mac_lock);
1226
1227 efx_start_all(efx);
1228
1229 efx_device_attach_if_not_resetting(efx);
1230
1231 efx->state = STATE_READY;
1232
1233 efx->type->resume_wol(efx);
1234 }
1235
1236 rtnl_unlock();
1237
1238 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1239 efx_queue_reset_work(efx);
1240
1241 return 0;
1242
1243 fail:
1244 rtnl_unlock();
1245
1246 return rc;
1247 }
1248
efx_pm_poweroff(struct device * dev)1249 static int efx_pm_poweroff(struct device *dev)
1250 {
1251 struct pci_dev *pci_dev = to_pci_dev(dev);
1252 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1253
1254 efx->type->fini(efx);
1255
1256 efx->reset_pending = 0;
1257
1258 pci_save_state(pci_dev);
1259 return pci_set_power_state(pci_dev, PCI_D3hot);
1260 }
1261
1262 /* Used for both resume and restore */
efx_pm_resume(struct device * dev)1263 static int efx_pm_resume(struct device *dev)
1264 {
1265 struct pci_dev *pci_dev = to_pci_dev(dev);
1266 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1267 int rc;
1268
1269 rc = pci_set_power_state(pci_dev, PCI_D0);
1270 if (rc)
1271 return rc;
1272 pci_restore_state(pci_dev);
1273 rc = pci_enable_device(pci_dev);
1274 if (rc)
1275 return rc;
1276 pci_set_master(efx->pci_dev);
1277 rc = efx->type->reset(efx, RESET_TYPE_ALL);
1278 if (rc)
1279 return rc;
1280 down_write(&efx->filter_sem);
1281 rc = efx->type->init(efx);
1282 up_write(&efx->filter_sem);
1283 if (rc)
1284 return rc;
1285 rc = efx_pm_thaw(dev);
1286 return rc;
1287 }
1288
efx_pm_suspend(struct device * dev)1289 static int efx_pm_suspend(struct device *dev)
1290 {
1291 int rc;
1292
1293 efx_pm_freeze(dev);
1294 rc = efx_pm_poweroff(dev);
1295 if (rc)
1296 efx_pm_resume(dev);
1297 return rc;
1298 }
1299
1300 static const struct dev_pm_ops efx_pm_ops = {
1301 .suspend = efx_pm_suspend,
1302 .resume = efx_pm_resume,
1303 .freeze = efx_pm_freeze,
1304 .thaw = efx_pm_thaw,
1305 .poweroff = efx_pm_poweroff,
1306 .restore = efx_pm_resume,
1307 };
1308
1309 static struct pci_driver efx_pci_driver = {
1310 .name = KBUILD_MODNAME,
1311 .id_table = efx_pci_table,
1312 .probe = efx_pci_probe,
1313 .remove = efx_pci_remove,
1314 .driver.pm = &efx_pm_ops,
1315 .err_handler = &efx_err_handlers,
1316 #ifdef CONFIG_SFC_SRIOV
1317 .sriov_configure = efx_pci_sriov_configure,
1318 #endif
1319 };
1320
1321 /**************************************************************************
1322 *
1323 * Kernel module interface
1324 *
1325 *************************************************************************/
1326
efx_init_module(void)1327 static int __init efx_init_module(void)
1328 {
1329 int rc;
1330
1331 printk(KERN_INFO "Solarflare NET driver\n");
1332
1333 rc = register_netdevice_notifier(&efx_netdev_notifier);
1334 if (rc)
1335 goto err_notifier;
1336
1337 #ifdef CONFIG_SFC_SRIOV
1338 rc = efx_init_sriov();
1339 if (rc)
1340 goto err_sriov;
1341 #endif
1342
1343 rc = efx_create_reset_workqueue();
1344 if (rc)
1345 goto err_reset;
1346
1347 rc = pci_register_driver(&efx_pci_driver);
1348 if (rc < 0)
1349 goto err_pci;
1350
1351 rc = pci_register_driver(&ef100_pci_driver);
1352 if (rc < 0)
1353 goto err_pci_ef100;
1354
1355 return 0;
1356
1357 err_pci_ef100:
1358 pci_unregister_driver(&efx_pci_driver);
1359 err_pci:
1360 efx_destroy_reset_workqueue();
1361 err_reset:
1362 #ifdef CONFIG_SFC_SRIOV
1363 efx_fini_sriov();
1364 err_sriov:
1365 #endif
1366 unregister_netdevice_notifier(&efx_netdev_notifier);
1367 err_notifier:
1368 return rc;
1369 }
1370
efx_exit_module(void)1371 static void __exit efx_exit_module(void)
1372 {
1373 printk(KERN_INFO "Solarflare NET driver unloading\n");
1374
1375 pci_unregister_driver(&ef100_pci_driver);
1376 pci_unregister_driver(&efx_pci_driver);
1377 efx_destroy_reset_workqueue();
1378 #ifdef CONFIG_SFC_SRIOV
1379 efx_fini_sriov();
1380 #endif
1381 unregister_netdevice_notifier(&efx_netdev_notifier);
1382
1383 }
1384
1385 module_init(efx_init_module);
1386 module_exit(efx_exit_module);
1387
1388 MODULE_AUTHOR("Solarflare Communications and "
1389 "Michael Brown <mbrown@fensystems.co.uk>");
1390 MODULE_DESCRIPTION("Solarflare network driver");
1391 MODULE_LICENSE("GPL");
1392 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1393