1 /*
2  *   fs/cifs/misc.c
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  *   This library is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU Lesser General Public License as published
9  *   by the Free Software Foundation; either version 2.1 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This library is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
15  *   the GNU Lesser General Public License for more details.
16  *
17  *   You should have received a copy of the GNU Lesser General Public License
18  *   along with this library; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21 
22 #include <linux/slab.h>
23 #include <linux/ctype.h>
24 #include <linux/mempool.h>
25 #include <linux/vmalloc.h>
26 #include "cifspdu.h"
27 #include "cifsglob.h"
28 #include "cifsproto.h"
29 #include "cifs_debug.h"
30 #include "smberr.h"
31 #include "nterr.h"
32 #include "cifs_unicode.h"
33 #include "smb2pdu.h"
34 #include "cifsfs.h"
35 #ifdef CONFIG_CIFS_DFS_UPCALL
36 #include "dns_resolve.h"
37 #endif
38 #include "fs_context.h"
39 
40 extern mempool_t *cifs_sm_req_poolp;
41 extern mempool_t *cifs_req_poolp;
42 
43 /* The xid serves as a useful identifier for each incoming vfs request,
44    in a similar way to the mid which is useful to track each sent smb,
45    and CurrentXid can also provide a running counter (although it
46    will eventually wrap past zero) of the total vfs operations handled
47    since the cifs fs was mounted */
48 
49 unsigned int
_get_xid(void)50 _get_xid(void)
51 {
52 	unsigned int xid;
53 
54 	spin_lock(&GlobalMid_Lock);
55 	GlobalTotalActiveXid++;
56 
57 	/* keep high water mark for number of simultaneous ops in filesystem */
58 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
59 		GlobalMaxActiveXid = GlobalTotalActiveXid;
60 	if (GlobalTotalActiveXid > 65000)
61 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
62 	xid = GlobalCurrentXid++;
63 	spin_unlock(&GlobalMid_Lock);
64 	return xid;
65 }
66 
67 void
_free_xid(unsigned int xid)68 _free_xid(unsigned int xid)
69 {
70 	spin_lock(&GlobalMid_Lock);
71 	/* if (GlobalTotalActiveXid == 0)
72 		BUG(); */
73 	GlobalTotalActiveXid--;
74 	spin_unlock(&GlobalMid_Lock);
75 }
76 
77 struct cifs_ses *
sesInfoAlloc(void)78 sesInfoAlloc(void)
79 {
80 	struct cifs_ses *ret_buf;
81 
82 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
83 	if (ret_buf) {
84 		atomic_inc(&sesInfoAllocCount);
85 		ret_buf->status = CifsNew;
86 		++ret_buf->ses_count;
87 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
88 		INIT_LIST_HEAD(&ret_buf->tcon_list);
89 		mutex_init(&ret_buf->session_mutex);
90 		spin_lock_init(&ret_buf->iface_lock);
91 	}
92 	return ret_buf;
93 }
94 
95 void
sesInfoFree(struct cifs_ses * buf_to_free)96 sesInfoFree(struct cifs_ses *buf_to_free)
97 {
98 	if (buf_to_free == NULL) {
99 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
100 		return;
101 	}
102 
103 	atomic_dec(&sesInfoAllocCount);
104 	kfree(buf_to_free->serverOS);
105 	kfree(buf_to_free->serverDomain);
106 	kfree(buf_to_free->serverNOS);
107 	kfree_sensitive(buf_to_free->password);
108 	kfree(buf_to_free->user_name);
109 	kfree(buf_to_free->domainName);
110 	kfree_sensitive(buf_to_free->auth_key.response);
111 	kfree(buf_to_free->iface_list);
112 	kfree_sensitive(buf_to_free);
113 }
114 
115 struct cifs_tcon *
tconInfoAlloc(void)116 tconInfoAlloc(void)
117 {
118 	struct cifs_tcon *ret_buf;
119 
120 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121 	if (!ret_buf)
122 		return NULL;
123 	ret_buf->crfid.fid = kzalloc(sizeof(*ret_buf->crfid.fid), GFP_KERNEL);
124 	if (!ret_buf->crfid.fid) {
125 		kfree(ret_buf);
126 		return NULL;
127 	}
128 
129 	atomic_inc(&tconInfoAllocCount);
130 	ret_buf->tidStatus = CifsNew;
131 	++ret_buf->tc_count;
132 	INIT_LIST_HEAD(&ret_buf->openFileList);
133 	INIT_LIST_HEAD(&ret_buf->tcon_list);
134 	spin_lock_init(&ret_buf->open_file_lock);
135 	mutex_init(&ret_buf->crfid.fid_mutex);
136 	spin_lock_init(&ret_buf->stat_lock);
137 	atomic_set(&ret_buf->num_local_opens, 0);
138 	atomic_set(&ret_buf->num_remote_opens, 0);
139 
140 	return ret_buf;
141 }
142 
143 void
tconInfoFree(struct cifs_tcon * buf_to_free)144 tconInfoFree(struct cifs_tcon *buf_to_free)
145 {
146 	if (buf_to_free == NULL) {
147 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
148 		return;
149 	}
150 	atomic_dec(&tconInfoAllocCount);
151 	kfree(buf_to_free->nativeFileSystem);
152 	kfree_sensitive(buf_to_free->password);
153 	kfree(buf_to_free->crfid.fid);
154 #ifdef CONFIG_CIFS_DFS_UPCALL
155 	kfree(buf_to_free->dfs_path);
156 #endif
157 	kfree(buf_to_free);
158 }
159 
160 struct smb_hdr *
cifs_buf_get(void)161 cifs_buf_get(void)
162 {
163 	struct smb_hdr *ret_buf = NULL;
164 	/*
165 	 * SMB2 header is bigger than CIFS one - no problems to clean some
166 	 * more bytes for CIFS.
167 	 */
168 	size_t buf_size = sizeof(struct smb2_sync_hdr);
169 
170 	/*
171 	 * We could use negotiated size instead of max_msgsize -
172 	 * but it may be more efficient to always alloc same size
173 	 * albeit slightly larger than necessary and maxbuffersize
174 	 * defaults to this and can not be bigger.
175 	 */
176 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
177 
178 	/* clear the first few header bytes */
179 	/* for most paths, more is cleared in header_assemble */
180 	memset(ret_buf, 0, buf_size + 3);
181 	atomic_inc(&bufAllocCount);
182 #ifdef CONFIG_CIFS_STATS2
183 	atomic_inc(&totBufAllocCount);
184 #endif /* CONFIG_CIFS_STATS2 */
185 
186 	return ret_buf;
187 }
188 
189 void
cifs_buf_release(void * buf_to_free)190 cifs_buf_release(void *buf_to_free)
191 {
192 	if (buf_to_free == NULL) {
193 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
194 		return;
195 	}
196 	mempool_free(buf_to_free, cifs_req_poolp);
197 
198 	atomic_dec(&bufAllocCount);
199 	return;
200 }
201 
202 struct smb_hdr *
cifs_small_buf_get(void)203 cifs_small_buf_get(void)
204 {
205 	struct smb_hdr *ret_buf = NULL;
206 
207 /* We could use negotiated size instead of max_msgsize -
208    but it may be more efficient to always alloc same size
209    albeit slightly larger than necessary and maxbuffersize
210    defaults to this and can not be bigger */
211 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
212 	/* No need to clear memory here, cleared in header assemble */
213 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
214 	atomic_inc(&smBufAllocCount);
215 #ifdef CONFIG_CIFS_STATS2
216 	atomic_inc(&totSmBufAllocCount);
217 #endif /* CONFIG_CIFS_STATS2 */
218 
219 	return ret_buf;
220 }
221 
222 void
cifs_small_buf_release(void * buf_to_free)223 cifs_small_buf_release(void *buf_to_free)
224 {
225 
226 	if (buf_to_free == NULL) {
227 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
228 		return;
229 	}
230 	mempool_free(buf_to_free, cifs_sm_req_poolp);
231 
232 	atomic_dec(&smBufAllocCount);
233 	return;
234 }
235 
236 void
free_rsp_buf(int resp_buftype,void * rsp)237 free_rsp_buf(int resp_buftype, void *rsp)
238 {
239 	if (resp_buftype == CIFS_SMALL_BUFFER)
240 		cifs_small_buf_release(rsp);
241 	else if (resp_buftype == CIFS_LARGE_BUFFER)
242 		cifs_buf_release(rsp);
243 }
244 
245 /* NB: MID can not be set if treeCon not passed in, in that
246    case it is responsbility of caller to set the mid */
247 void
header_assemble(struct smb_hdr * buffer,char smb_command,const struct cifs_tcon * treeCon,int word_count)248 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
249 		const struct cifs_tcon *treeCon, int word_count
250 		/* length of fixed section (word count) in two byte units  */)
251 {
252 	char *temp = (char *) buffer;
253 
254 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
255 
256 	buffer->smb_buf_length = cpu_to_be32(
257 	    (2 * word_count) + sizeof(struct smb_hdr) -
258 	    4 /*  RFC 1001 length field does not count */  +
259 	    2 /* for bcc field itself */) ;
260 
261 	buffer->Protocol[0] = 0xFF;
262 	buffer->Protocol[1] = 'S';
263 	buffer->Protocol[2] = 'M';
264 	buffer->Protocol[3] = 'B';
265 	buffer->Command = smb_command;
266 	buffer->Flags = 0x00;	/* case sensitive */
267 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
268 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
269 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
270 	if (treeCon) {
271 		buffer->Tid = treeCon->tid;
272 		if (treeCon->ses) {
273 			if (treeCon->ses->capabilities & CAP_UNICODE)
274 				buffer->Flags2 |= SMBFLG2_UNICODE;
275 			if (treeCon->ses->capabilities & CAP_STATUS32)
276 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
277 
278 			/* Uid is not converted */
279 			buffer->Uid = treeCon->ses->Suid;
280 			buffer->Mid = get_next_mid(treeCon->ses->server);
281 		}
282 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
283 			buffer->Flags2 |= SMBFLG2_DFS;
284 		if (treeCon->nocase)
285 			buffer->Flags  |= SMBFLG_CASELESS;
286 		if ((treeCon->ses) && (treeCon->ses->server))
287 			if (treeCon->ses->server->sign)
288 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
289 	}
290 
291 /*  endian conversion of flags is now done just before sending */
292 	buffer->WordCount = (char) word_count;
293 	return;
294 }
295 
296 static int
check_smb_hdr(struct smb_hdr * smb)297 check_smb_hdr(struct smb_hdr *smb)
298 {
299 	/* does it have the right SMB "signature" ? */
300 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
301 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
302 			 *(unsigned int *)smb->Protocol);
303 		return 1;
304 	}
305 
306 	/* if it's a response then accept */
307 	if (smb->Flags & SMBFLG_RESPONSE)
308 		return 0;
309 
310 	/* only one valid case where server sends us request */
311 	if (smb->Command == SMB_COM_LOCKING_ANDX)
312 		return 0;
313 
314 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
315 		 get_mid(smb));
316 	return 1;
317 }
318 
319 int
checkSMB(char * buf,unsigned int total_read,struct TCP_Server_Info * server)320 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
321 {
322 	struct smb_hdr *smb = (struct smb_hdr *)buf;
323 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
324 	__u32 clc_len;  /* calculated length */
325 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
326 		 total_read, rfclen);
327 
328 	/* is this frame too small to even get to a BCC? */
329 	if (total_read < 2 + sizeof(struct smb_hdr)) {
330 		if ((total_read >= sizeof(struct smb_hdr) - 1)
331 			    && (smb->Status.CifsError != 0)) {
332 			/* it's an error return */
333 			smb->WordCount = 0;
334 			/* some error cases do not return wct and bcc */
335 			return 0;
336 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
337 				(smb->WordCount == 0)) {
338 			char *tmp = (char *)smb;
339 			/* Need to work around a bug in two servers here */
340 			/* First, check if the part of bcc they sent was zero */
341 			if (tmp[sizeof(struct smb_hdr)] == 0) {
342 				/* some servers return only half of bcc
343 				 * on simple responses (wct, bcc both zero)
344 				 * in particular have seen this on
345 				 * ulogoffX and FindClose. This leaves
346 				 * one byte of bcc potentially unitialized
347 				 */
348 				/* zero rest of bcc */
349 				tmp[sizeof(struct smb_hdr)+1] = 0;
350 				return 0;
351 			}
352 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
353 		} else {
354 			cifs_dbg(VFS, "Length less than smb header size\n");
355 		}
356 		return -EIO;
357 	}
358 
359 	/* otherwise, there is enough to get to the BCC */
360 	if (check_smb_hdr(smb))
361 		return -EIO;
362 	clc_len = smbCalcSize(smb, server);
363 
364 	if (4 + rfclen != total_read) {
365 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
366 			 rfclen);
367 		return -EIO;
368 	}
369 
370 	if (4 + rfclen != clc_len) {
371 		__u16 mid = get_mid(smb);
372 		/* check if bcc wrapped around for large read responses */
373 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
374 			/* check if lengths match mod 64K */
375 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
376 				return 0; /* bcc wrapped */
377 		}
378 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
379 			 clc_len, 4 + rfclen, mid);
380 
381 		if (4 + rfclen < clc_len) {
382 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
383 				 rfclen, mid);
384 			return -EIO;
385 		} else if (rfclen > clc_len + 512) {
386 			/*
387 			 * Some servers (Windows XP in particular) send more
388 			 * data than the lengths in the SMB packet would
389 			 * indicate on certain calls (byte range locks and
390 			 * trans2 find first calls in particular). While the
391 			 * client can handle such a frame by ignoring the
392 			 * trailing data, we choose limit the amount of extra
393 			 * data to 512 bytes.
394 			 */
395 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
396 				 rfclen, mid);
397 			return -EIO;
398 		}
399 	}
400 	return 0;
401 }
402 
403 bool
is_valid_oplock_break(char * buffer,struct TCP_Server_Info * srv)404 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
405 {
406 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
407 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
408 	struct list_head *tmp, *tmp1, *tmp2;
409 	struct cifs_ses *ses;
410 	struct cifs_tcon *tcon;
411 	struct cifsInodeInfo *pCifsInode;
412 	struct cifsFileInfo *netfile;
413 
414 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
415 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
416 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
417 		struct smb_com_transaction_change_notify_rsp *pSMBr =
418 			(struct smb_com_transaction_change_notify_rsp *)buf;
419 		struct file_notify_information *pnotify;
420 		__u32 data_offset = 0;
421 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
422 
423 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
424 			data_offset = le32_to_cpu(pSMBr->DataOffset);
425 
426 			if (data_offset >
427 			    len - sizeof(struct file_notify_information)) {
428 				cifs_dbg(FYI, "Invalid data_offset %u\n",
429 					 data_offset);
430 				return true;
431 			}
432 			pnotify = (struct file_notify_information *)
433 				((char *)&pSMBr->hdr.Protocol + data_offset);
434 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
435 				 pnotify->FileName, pnotify->Action);
436 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
437 				sizeof(struct smb_hdr)+60); */
438 			return true;
439 		}
440 		if (pSMBr->hdr.Status.CifsError) {
441 			cifs_dbg(FYI, "notify err 0x%x\n",
442 				 pSMBr->hdr.Status.CifsError);
443 			return true;
444 		}
445 		return false;
446 	}
447 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
448 		return false;
449 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
450 		/* no sense logging error on invalid handle on oplock
451 		   break - harmless race between close request and oplock
452 		   break response is expected from time to time writing out
453 		   large dirty files cached on the client */
454 		if ((NT_STATUS_INVALID_HANDLE) ==
455 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
456 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
457 			return true;
458 		} else if (ERRbadfid ==
459 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
460 			return true;
461 		} else {
462 			return false; /* on valid oplock brk we get "request" */
463 		}
464 	}
465 	if (pSMB->hdr.WordCount != 8)
466 		return false;
467 
468 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
469 		 pSMB->LockType, pSMB->OplockLevel);
470 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
471 		return false;
472 
473 	/* look up tcon based on tid & uid */
474 	spin_lock(&cifs_tcp_ses_lock);
475 	list_for_each(tmp, &srv->smb_ses_list) {
476 		ses = list_entry(tmp, struct cifs_ses, smb_ses_list);
477 		list_for_each(tmp1, &ses->tcon_list) {
478 			tcon = list_entry(tmp1, struct cifs_tcon, tcon_list);
479 			if (tcon->tid != buf->Tid)
480 				continue;
481 
482 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
483 			spin_lock(&tcon->open_file_lock);
484 			list_for_each(tmp2, &tcon->openFileList) {
485 				netfile = list_entry(tmp2, struct cifsFileInfo,
486 						     tlist);
487 				if (pSMB->Fid != netfile->fid.netfid)
488 					continue;
489 
490 				cifs_dbg(FYI, "file id match, oplock break\n");
491 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
492 
493 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
494 					&pCifsInode->flags);
495 
496 				netfile->oplock_epoch = 0;
497 				netfile->oplock_level = pSMB->OplockLevel;
498 				netfile->oplock_break_cancelled = false;
499 				cifs_queue_oplock_break(netfile);
500 
501 				spin_unlock(&tcon->open_file_lock);
502 				spin_unlock(&cifs_tcp_ses_lock);
503 				return true;
504 			}
505 			spin_unlock(&tcon->open_file_lock);
506 			spin_unlock(&cifs_tcp_ses_lock);
507 			cifs_dbg(FYI, "No matching file for oplock break\n");
508 			return true;
509 		}
510 	}
511 	spin_unlock(&cifs_tcp_ses_lock);
512 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
513 	return true;
514 }
515 
516 void
dump_smb(void * buf,int smb_buf_length)517 dump_smb(void *buf, int smb_buf_length)
518 {
519 	if (traceSMB == 0)
520 		return;
521 
522 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
523 		       smb_buf_length, true);
524 }
525 
526 void
cifs_autodisable_serverino(struct cifs_sb_info * cifs_sb)527 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
528 {
529 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
530 		struct cifs_tcon *tcon = NULL;
531 
532 		if (cifs_sb->master_tlink)
533 			tcon = cifs_sb_master_tcon(cifs_sb);
534 
535 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
536 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
537 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
538 			 tcon ? tcon->treeName : "new server");
539 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
540 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
541 
542 	}
543 }
544 
cifs_set_oplock_level(struct cifsInodeInfo * cinode,__u32 oplock)545 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
546 {
547 	oplock &= 0xF;
548 
549 	if (oplock == OPLOCK_EXCLUSIVE) {
550 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
551 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
552 			 &cinode->vfs_inode);
553 	} else if (oplock == OPLOCK_READ) {
554 		cinode->oplock = CIFS_CACHE_READ_FLG;
555 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
556 			 &cinode->vfs_inode);
557 	} else
558 		cinode->oplock = 0;
559 }
560 
561 /*
562  * We wait for oplock breaks to be processed before we attempt to perform
563  * writes.
564  */
cifs_get_writer(struct cifsInodeInfo * cinode)565 int cifs_get_writer(struct cifsInodeInfo *cinode)
566 {
567 	int rc;
568 
569 start:
570 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
571 			 TASK_KILLABLE);
572 	if (rc)
573 		return rc;
574 
575 	spin_lock(&cinode->writers_lock);
576 	if (!cinode->writers)
577 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
578 	cinode->writers++;
579 	/* Check to see if we have started servicing an oplock break */
580 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
581 		cinode->writers--;
582 		if (cinode->writers == 0) {
583 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
584 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
585 		}
586 		spin_unlock(&cinode->writers_lock);
587 		goto start;
588 	}
589 	spin_unlock(&cinode->writers_lock);
590 	return 0;
591 }
592 
cifs_put_writer(struct cifsInodeInfo * cinode)593 void cifs_put_writer(struct cifsInodeInfo *cinode)
594 {
595 	spin_lock(&cinode->writers_lock);
596 	cinode->writers--;
597 	if (cinode->writers == 0) {
598 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
599 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
600 	}
601 	spin_unlock(&cinode->writers_lock);
602 }
603 
604 /**
605  * cifs_queue_oplock_break - queue the oplock break handler for cfile
606  *
607  * This function is called from the demultiplex thread when it
608  * receives an oplock break for @cfile.
609  *
610  * Assumes the tcon->open_file_lock is held.
611  * Assumes cfile->file_info_lock is NOT held.
612  */
cifs_queue_oplock_break(struct cifsFileInfo * cfile)613 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
614 {
615 	/*
616 	 * Bump the handle refcount now while we hold the
617 	 * open_file_lock to enforce the validity of it for the oplock
618 	 * break handler. The matching put is done at the end of the
619 	 * handler.
620 	 */
621 	cifsFileInfo_get(cfile);
622 
623 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
624 }
625 
cifs_done_oplock_break(struct cifsInodeInfo * cinode)626 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
627 {
628 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
629 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
630 }
631 
632 bool
backup_cred(struct cifs_sb_info * cifs_sb)633 backup_cred(struct cifs_sb_info *cifs_sb)
634 {
635 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
636 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
637 			return true;
638 	}
639 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
640 		if (in_group_p(cifs_sb->ctx->backupgid))
641 			return true;
642 	}
643 
644 	return false;
645 }
646 
647 void
cifs_del_pending_open(struct cifs_pending_open * open)648 cifs_del_pending_open(struct cifs_pending_open *open)
649 {
650 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
651 	list_del(&open->olist);
652 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
653 }
654 
655 void
cifs_add_pending_open_locked(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)656 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
657 			     struct cifs_pending_open *open)
658 {
659 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
660 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
661 	open->tlink = tlink;
662 	fid->pending_open = open;
663 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
664 }
665 
666 void
cifs_add_pending_open(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)667 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
668 		      struct cifs_pending_open *open)
669 {
670 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
671 	cifs_add_pending_open_locked(fid, tlink, open);
672 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
673 }
674 
675 bool
cifs_is_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close ** pdclose)676 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
677 {
678 	struct cifs_deferred_close *dclose;
679 
680 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
681 		if ((dclose->netfid == cfile->fid.netfid) &&
682 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
683 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
684 			*pdclose = dclose;
685 			return true;
686 		}
687 	}
688 	return false;
689 }
690 
691 void
cifs_add_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close * dclose)692 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
693 {
694 	bool is_deferred = false;
695 	struct cifs_deferred_close *pdclose;
696 
697 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
698 	if (is_deferred) {
699 		kfree(dclose);
700 		return;
701 	}
702 
703 	dclose->tlink = cfile->tlink;
704 	dclose->netfid = cfile->fid.netfid;
705 	dclose->persistent_fid = cfile->fid.persistent_fid;
706 	dclose->volatile_fid = cfile->fid.volatile_fid;
707 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
708 }
709 
710 void
cifs_del_deferred_close(struct cifsFileInfo * cfile)711 cifs_del_deferred_close(struct cifsFileInfo *cfile)
712 {
713 	bool is_deferred = false;
714 	struct cifs_deferred_close *dclose;
715 
716 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
717 	if (!is_deferred)
718 		return;
719 	list_del(&dclose->dlist);
720 	kfree(dclose);
721 }
722 
723 void
cifs_close_deferred_file(struct cifsInodeInfo * cifs_inode)724 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
725 {
726 	struct cifsFileInfo *cfile = NULL;
727 	struct cifs_deferred_close *dclose;
728 
729 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
730 		spin_lock(&cifs_inode->deferred_lock);
731 		if (cifs_is_deferred_close(cfile, &dclose))
732 			mod_delayed_work(deferredclose_wq, &cfile->deferred, 0);
733 		spin_unlock(&cifs_inode->deferred_lock);
734 	}
735 }
736 
737 void
cifs_close_all_deferred_files(struct cifs_tcon * tcon)738 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
739 {
740 	struct cifsFileInfo *cfile;
741 	struct cifsInodeInfo *cinode;
742 	struct list_head *tmp;
743 
744 	spin_lock(&tcon->open_file_lock);
745 	list_for_each(tmp, &tcon->openFileList) {
746 		cfile = list_entry(tmp, struct cifsFileInfo, tlist);
747 		cinode = CIFS_I(d_inode(cfile->dentry));
748 		if (delayed_work_pending(&cfile->deferred))
749 			mod_delayed_work(deferredclose_wq, &cfile->deferred, 0);
750 	}
751 	spin_unlock(&tcon->open_file_lock);
752 }
753 
754 /* parses DFS refferal V3 structure
755  * caller is responsible for freeing target_nodes
756  * returns:
757  * - on success - 0
758  * - on failure - errno
759  */
760 int
parse_dfs_referrals(struct get_dfs_referral_rsp * rsp,u32 rsp_size,unsigned int * num_of_nodes,struct dfs_info3_param ** target_nodes,const struct nls_table * nls_codepage,int remap,const char * searchName,bool is_unicode)761 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
762 		    unsigned int *num_of_nodes,
763 		    struct dfs_info3_param **target_nodes,
764 		    const struct nls_table *nls_codepage, int remap,
765 		    const char *searchName, bool is_unicode)
766 {
767 	int i, rc = 0;
768 	char *data_end;
769 	struct dfs_referral_level_3 *ref;
770 
771 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
772 
773 	if (*num_of_nodes < 1) {
774 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
775 			 *num_of_nodes);
776 		rc = -EINVAL;
777 		goto parse_DFS_referrals_exit;
778 	}
779 
780 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
781 	if (ref->VersionNumber != cpu_to_le16(3)) {
782 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
783 			 le16_to_cpu(ref->VersionNumber));
784 		rc = -EINVAL;
785 		goto parse_DFS_referrals_exit;
786 	}
787 
788 	/* get the upper boundary of the resp buffer */
789 	data_end = (char *)rsp + rsp_size;
790 
791 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
792 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
793 
794 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
795 				GFP_KERNEL);
796 	if (*target_nodes == NULL) {
797 		rc = -ENOMEM;
798 		goto parse_DFS_referrals_exit;
799 	}
800 
801 	/* collect necessary data from referrals */
802 	for (i = 0; i < *num_of_nodes; i++) {
803 		char *temp;
804 		int max_len;
805 		struct dfs_info3_param *node = (*target_nodes)+i;
806 
807 		node->flags = le32_to_cpu(rsp->DFSFlags);
808 		if (is_unicode) {
809 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
810 						GFP_KERNEL);
811 			if (tmp == NULL) {
812 				rc = -ENOMEM;
813 				goto parse_DFS_referrals_exit;
814 			}
815 			cifsConvertToUTF16((__le16 *) tmp, searchName,
816 					   PATH_MAX, nls_codepage, remap);
817 			node->path_consumed = cifs_utf16_bytes(tmp,
818 					le16_to_cpu(rsp->PathConsumed),
819 					nls_codepage);
820 			kfree(tmp);
821 		} else
822 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
823 
824 		node->server_type = le16_to_cpu(ref->ServerType);
825 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
826 
827 		/* copy DfsPath */
828 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
829 		max_len = data_end - temp;
830 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
831 						is_unicode, nls_codepage);
832 		if (!node->path_name) {
833 			rc = -ENOMEM;
834 			goto parse_DFS_referrals_exit;
835 		}
836 
837 		/* copy link target UNC */
838 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
839 		max_len = data_end - temp;
840 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
841 						is_unicode, nls_codepage);
842 		if (!node->node_name) {
843 			rc = -ENOMEM;
844 			goto parse_DFS_referrals_exit;
845 		}
846 
847 		node->ttl = le32_to_cpu(ref->TimeToLive);
848 
849 		ref++;
850 	}
851 
852 parse_DFS_referrals_exit:
853 	if (rc) {
854 		free_dfs_info_array(*target_nodes, *num_of_nodes);
855 		*target_nodes = NULL;
856 		*num_of_nodes = 0;
857 	}
858 	return rc;
859 }
860 
861 struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)862 cifs_aio_ctx_alloc(void)
863 {
864 	struct cifs_aio_ctx *ctx;
865 
866 	/*
867 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
868 	 * to false so that we know when we have to unreference pages within
869 	 * cifs_aio_ctx_release()
870 	 */
871 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
872 	if (!ctx)
873 		return NULL;
874 
875 	INIT_LIST_HEAD(&ctx->list);
876 	mutex_init(&ctx->aio_mutex);
877 	init_completion(&ctx->done);
878 	kref_init(&ctx->refcount);
879 	return ctx;
880 }
881 
882 void
cifs_aio_ctx_release(struct kref * refcount)883 cifs_aio_ctx_release(struct kref *refcount)
884 {
885 	struct cifs_aio_ctx *ctx = container_of(refcount,
886 					struct cifs_aio_ctx, refcount);
887 
888 	cifsFileInfo_put(ctx->cfile);
889 
890 	/*
891 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
892 	 * which means that iov_iter_get_pages() was a success and thus that
893 	 * we have taken reference on pages.
894 	 */
895 	if (ctx->bv) {
896 		unsigned i;
897 
898 		for (i = 0; i < ctx->npages; i++) {
899 			if (ctx->should_dirty)
900 				set_page_dirty(ctx->bv[i].bv_page);
901 			put_page(ctx->bv[i].bv_page);
902 		}
903 		kvfree(ctx->bv);
904 	}
905 
906 	kfree(ctx);
907 }
908 
909 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
910 
911 int
setup_aio_ctx_iter(struct cifs_aio_ctx * ctx,struct iov_iter * iter,int rw)912 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
913 {
914 	ssize_t rc;
915 	unsigned int cur_npages;
916 	unsigned int npages = 0;
917 	unsigned int i;
918 	size_t len;
919 	size_t count = iov_iter_count(iter);
920 	unsigned int saved_len;
921 	size_t start;
922 	unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
923 	struct page **pages = NULL;
924 	struct bio_vec *bv = NULL;
925 
926 	if (iov_iter_is_kvec(iter)) {
927 		memcpy(&ctx->iter, iter, sizeof(*iter));
928 		ctx->len = count;
929 		iov_iter_advance(iter, count);
930 		return 0;
931 	}
932 
933 	if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
934 		bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
935 
936 	if (!bv) {
937 		bv = vmalloc(array_size(max_pages, sizeof(*bv)));
938 		if (!bv)
939 			return -ENOMEM;
940 	}
941 
942 	if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
943 		pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
944 
945 	if (!pages) {
946 		pages = vmalloc(array_size(max_pages, sizeof(*pages)));
947 		if (!pages) {
948 			kvfree(bv);
949 			return -ENOMEM;
950 		}
951 	}
952 
953 	saved_len = count;
954 
955 	while (count && npages < max_pages) {
956 		rc = iov_iter_get_pages(iter, pages, count, max_pages, &start);
957 		if (rc < 0) {
958 			cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
959 			break;
960 		}
961 
962 		if (rc > count) {
963 			cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
964 				 count);
965 			break;
966 		}
967 
968 		iov_iter_advance(iter, rc);
969 		count -= rc;
970 		rc += start;
971 		cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
972 
973 		if (npages + cur_npages > max_pages) {
974 			cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
975 				 npages + cur_npages, max_pages);
976 			break;
977 		}
978 
979 		for (i = 0; i < cur_npages; i++) {
980 			len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
981 			bv[npages + i].bv_page = pages[i];
982 			bv[npages + i].bv_offset = start;
983 			bv[npages + i].bv_len = len - start;
984 			rc -= len;
985 			start = 0;
986 		}
987 
988 		npages += cur_npages;
989 	}
990 
991 	kvfree(pages);
992 	ctx->bv = bv;
993 	ctx->len = saved_len - count;
994 	ctx->npages = npages;
995 	iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
996 	return 0;
997 }
998 
999 /**
1000  * cifs_alloc_hash - allocate hash and hash context together
1001  *
1002  * The caller has to make sure @sdesc is initialized to either NULL or
1003  * a valid context. Both can be freed via cifs_free_hash().
1004  */
1005 int
cifs_alloc_hash(const char * name,struct crypto_shash ** shash,struct sdesc ** sdesc)1006 cifs_alloc_hash(const char *name,
1007 		struct crypto_shash **shash, struct sdesc **sdesc)
1008 {
1009 	int rc = 0;
1010 	size_t size;
1011 
1012 	if (*sdesc != NULL)
1013 		return 0;
1014 
1015 	*shash = crypto_alloc_shash(name, 0, 0);
1016 	if (IS_ERR(*shash)) {
1017 		cifs_dbg(VFS, "Could not allocate crypto %s\n", name);
1018 		rc = PTR_ERR(*shash);
1019 		*shash = NULL;
1020 		*sdesc = NULL;
1021 		return rc;
1022 	}
1023 
1024 	size = sizeof(struct shash_desc) + crypto_shash_descsize(*shash);
1025 	*sdesc = kmalloc(size, GFP_KERNEL);
1026 	if (*sdesc == NULL) {
1027 		cifs_dbg(VFS, "no memory left to allocate crypto %s\n", name);
1028 		crypto_free_shash(*shash);
1029 		*shash = NULL;
1030 		return -ENOMEM;
1031 	}
1032 
1033 	(*sdesc)->shash.tfm = *shash;
1034 	return 0;
1035 }
1036 
1037 /**
1038  * cifs_free_hash - free hash and hash context together
1039  *
1040  * Freeing a NULL hash or context is safe.
1041  */
1042 void
cifs_free_hash(struct crypto_shash ** shash,struct sdesc ** sdesc)1043 cifs_free_hash(struct crypto_shash **shash, struct sdesc **sdesc)
1044 {
1045 	kfree(*sdesc);
1046 	*sdesc = NULL;
1047 	if (*shash)
1048 		crypto_free_shash(*shash);
1049 	*shash = NULL;
1050 }
1051 
1052 /**
1053  * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1054  * Input: rqst - a smb_rqst, page - a page index for rqst
1055  * Output: *len - the length for this page, *offset - the offset for this page
1056  */
rqst_page_get_length(struct smb_rqst * rqst,unsigned int page,unsigned int * len,unsigned int * offset)1057 void rqst_page_get_length(struct smb_rqst *rqst, unsigned int page,
1058 				unsigned int *len, unsigned int *offset)
1059 {
1060 	*len = rqst->rq_pagesz;
1061 	*offset = (page == 0) ? rqst->rq_offset : 0;
1062 
1063 	if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1064 		*len = rqst->rq_tailsz;
1065 	else if (page == 0)
1066 		*len = rqst->rq_pagesz - rqst->rq_offset;
1067 }
1068 
extract_unc_hostname(const char * unc,const char ** h,size_t * len)1069 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1070 {
1071 	const char *end;
1072 
1073 	/* skip initial slashes */
1074 	while (*unc && (*unc == '\\' || *unc == '/'))
1075 		unc++;
1076 
1077 	end = unc;
1078 
1079 	while (*end && !(*end == '\\' || *end == '/'))
1080 		end++;
1081 
1082 	*h = unc;
1083 	*len = end - unc;
1084 }
1085 
1086 /**
1087  * copy_path_name - copy src path to dst, possibly truncating
1088  *
1089  * returns number of bytes written (including trailing nul)
1090  */
copy_path_name(char * dst,const char * src)1091 int copy_path_name(char *dst, const char *src)
1092 {
1093 	int name_len;
1094 
1095 	/*
1096 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1097 	 * will truncate and strlen(dst) will be PATH_MAX-1
1098 	 */
1099 	name_len = strscpy(dst, src, PATH_MAX);
1100 	if (WARN_ON_ONCE(name_len < 0))
1101 		name_len = PATH_MAX-1;
1102 
1103 	/* we count the trailing nul */
1104 	name_len++;
1105 	return name_len;
1106 }
1107 
1108 struct super_cb_data {
1109 	void *data;
1110 	struct super_block *sb;
1111 };
1112 
tcp_super_cb(struct super_block * sb,void * arg)1113 static void tcp_super_cb(struct super_block *sb, void *arg)
1114 {
1115 	struct super_cb_data *sd = arg;
1116 	struct TCP_Server_Info *server = sd->data;
1117 	struct cifs_sb_info *cifs_sb;
1118 	struct cifs_tcon *tcon;
1119 
1120 	if (sd->sb)
1121 		return;
1122 
1123 	cifs_sb = CIFS_SB(sb);
1124 	tcon = cifs_sb_master_tcon(cifs_sb);
1125 	if (tcon->ses->server == server)
1126 		sd->sb = sb;
1127 }
1128 
__cifs_get_super(void (* f)(struct super_block *,void *),void * data)1129 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1130 					    void *data)
1131 {
1132 	struct super_cb_data sd = {
1133 		.data = data,
1134 		.sb = NULL,
1135 	};
1136 
1137 	iterate_supers_type(&cifs_fs_type, f, &sd);
1138 
1139 	if (!sd.sb)
1140 		return ERR_PTR(-EINVAL);
1141 	/*
1142 	 * Grab an active reference in order to prevent automounts (DFS links)
1143 	 * of expiring and then freeing up our cifs superblock pointer while
1144 	 * we're doing failover.
1145 	 */
1146 	cifs_sb_active(sd.sb);
1147 	return sd.sb;
1148 }
1149 
__cifs_put_super(struct super_block * sb)1150 static void __cifs_put_super(struct super_block *sb)
1151 {
1152 	if (!IS_ERR_OR_NULL(sb))
1153 		cifs_sb_deactive(sb);
1154 }
1155 
cifs_get_tcp_super(struct TCP_Server_Info * server)1156 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1157 {
1158 	return __cifs_get_super(tcp_super_cb, server);
1159 }
1160 
cifs_put_tcp_super(struct super_block * sb)1161 void cifs_put_tcp_super(struct super_block *sb)
1162 {
1163 	__cifs_put_super(sb);
1164 }
1165 
1166 #ifdef CONFIG_CIFS_DFS_UPCALL
match_target_ip(struct TCP_Server_Info * server,const char * share,size_t share_len,bool * result)1167 int match_target_ip(struct TCP_Server_Info *server,
1168 		    const char *share, size_t share_len,
1169 		    bool *result)
1170 {
1171 	int rc;
1172 	char *target, *tip = NULL;
1173 	struct sockaddr tipaddr;
1174 
1175 	*result = false;
1176 
1177 	target = kzalloc(share_len + 3, GFP_KERNEL);
1178 	if (!target) {
1179 		rc = -ENOMEM;
1180 		goto out;
1181 	}
1182 
1183 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1184 
1185 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1186 
1187 	rc = dns_resolve_server_name_to_ip(target, &tip);
1188 	if (rc < 0)
1189 		goto out;
1190 
1191 	cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1192 
1193 	if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1194 		cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1195 			 __func__);
1196 		rc = -EINVAL;
1197 		goto out;
1198 	}
1199 
1200 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1201 				    &tipaddr);
1202 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1203 	rc = 0;
1204 
1205 out:
1206 	kfree(target);
1207 	kfree(tip);
1208 
1209 	return rc;
1210 }
1211 
tcon_super_cb(struct super_block * sb,void * arg)1212 static void tcon_super_cb(struct super_block *sb, void *arg)
1213 {
1214 	struct super_cb_data *sd = arg;
1215 	struct cifs_tcon *tcon = sd->data;
1216 	struct cifs_sb_info *cifs_sb;
1217 
1218 	if (sd->sb)
1219 		return;
1220 
1221 	cifs_sb = CIFS_SB(sb);
1222 	if (tcon->dfs_path && cifs_sb->origin_fullpath &&
1223 	    !strcasecmp(tcon->dfs_path, cifs_sb->origin_fullpath))
1224 		sd->sb = sb;
1225 }
1226 
cifs_get_tcon_super(struct cifs_tcon * tcon)1227 static inline struct super_block *cifs_get_tcon_super(struct cifs_tcon *tcon)
1228 {
1229 	return __cifs_get_super(tcon_super_cb, tcon);
1230 }
1231 
cifs_put_tcon_super(struct super_block * sb)1232 static inline void cifs_put_tcon_super(struct super_block *sb)
1233 {
1234 	__cifs_put_super(sb);
1235 }
1236 #else
cifs_get_tcon_super(struct cifs_tcon * tcon)1237 static inline struct super_block *cifs_get_tcon_super(struct cifs_tcon *tcon)
1238 {
1239 	return ERR_PTR(-EOPNOTSUPP);
1240 }
1241 
cifs_put_tcon_super(struct super_block * sb)1242 static inline void cifs_put_tcon_super(struct super_block *sb)
1243 {
1244 }
1245 #endif
1246 
update_super_prepath(struct cifs_tcon * tcon,char * prefix)1247 int update_super_prepath(struct cifs_tcon *tcon, char *prefix)
1248 {
1249 	struct super_block *sb;
1250 	struct cifs_sb_info *cifs_sb;
1251 	int rc = 0;
1252 
1253 	sb = cifs_get_tcon_super(tcon);
1254 	if (IS_ERR(sb))
1255 		return PTR_ERR(sb);
1256 
1257 	cifs_sb = CIFS_SB(sb);
1258 
1259 	kfree(cifs_sb->prepath);
1260 
1261 	if (prefix && *prefix) {
1262 		cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1263 		if (!cifs_sb->prepath) {
1264 			rc = -ENOMEM;
1265 			goto out;
1266 		}
1267 
1268 		convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1269 	} else
1270 		cifs_sb->prepath = NULL;
1271 
1272 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1273 
1274 out:
1275 	cifs_put_tcon_super(sb);
1276 	return rc;
1277 }
1278