1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
24 
25 static struct kmem_cache *ino_entry_slab;
26 struct kmem_cache *f2fs_inode_entry_slab;
27 
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)28 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
29 {
30 	f2fs_build_fault_attr(sbi, 0, 0);
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	if (!end_io)
33 		f2fs_flush_merged_writes(sbi);
34 }
35 
36 /*
37  * We guarantee no failure on the returned page.
38  */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)39 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41 	struct address_space *mapping = META_MAPPING(sbi);
42 	struct page *page;
43 repeat:
44 	page = f2fs_grab_cache_page(mapping, index, false);
45 	if (!page) {
46 		cond_resched();
47 		goto repeat;
48 	}
49 	f2fs_wait_on_page_writeback(page, META, true, true);
50 	if (!PageUptodate(page))
51 		SetPageUptodate(page);
52 	return page;
53 }
54 
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)55 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
56 							bool is_meta)
57 {
58 	struct address_space *mapping = META_MAPPING(sbi);
59 	struct page *page;
60 	struct f2fs_io_info fio = {
61 		.sbi = sbi,
62 		.type = META,
63 		.op = REQ_OP_READ,
64 		.op_flags = REQ_META | REQ_PRIO,
65 		.old_blkaddr = index,
66 		.new_blkaddr = index,
67 		.encrypted_page = NULL,
68 		.is_por = !is_meta,
69 	};
70 	int err;
71 
72 	if (unlikely(!is_meta))
73 		fio.op_flags &= ~REQ_META;
74 repeat:
75 	page = f2fs_grab_cache_page(mapping, index, false);
76 	if (!page) {
77 		cond_resched();
78 		goto repeat;
79 	}
80 	if (PageUptodate(page))
81 		goto out;
82 
83 	fio.page = page;
84 
85 	err = f2fs_submit_page_bio(&fio);
86 	if (err) {
87 		f2fs_put_page(page, 1);
88 		return ERR_PTR(err);
89 	}
90 
91 	f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
92 
93 	lock_page(page);
94 	if (unlikely(page->mapping != mapping)) {
95 		f2fs_put_page(page, 1);
96 		goto repeat;
97 	}
98 
99 	if (unlikely(!PageUptodate(page))) {
100 		f2fs_put_page(page, 1);
101 		return ERR_PTR(-EIO);
102 	}
103 out:
104 	return page;
105 }
106 
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)107 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 {
109 	return __get_meta_page(sbi, index, true);
110 }
111 
f2fs_get_meta_page_retry(struct f2fs_sb_info * sbi,pgoff_t index)112 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
113 {
114 	struct page *page;
115 	int count = 0;
116 
117 retry:
118 	page = __get_meta_page(sbi, index, true);
119 	if (IS_ERR(page)) {
120 		if (PTR_ERR(page) == -EIO &&
121 				++count <= DEFAULT_RETRY_IO_COUNT)
122 			goto retry;
123 		f2fs_stop_checkpoint(sbi, false);
124 	}
125 	return page;
126 }
127 
128 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)129 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
130 {
131 	return __get_meta_page(sbi, index, false);
132 }
133 
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)134 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
135 							int type)
136 {
137 	struct seg_entry *se;
138 	unsigned int segno, offset;
139 	bool exist;
140 
141 	if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
142 		return true;
143 
144 	segno = GET_SEGNO(sbi, blkaddr);
145 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
146 	se = get_seg_entry(sbi, segno);
147 
148 	exist = f2fs_test_bit(offset, se->cur_valid_map);
149 	if (!exist && type == DATA_GENERIC_ENHANCE) {
150 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
151 			 blkaddr, exist);
152 		set_sbi_flag(sbi, SBI_NEED_FSCK);
153 		WARN_ON(1);
154 	}
155 	return exist;
156 }
157 
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)158 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
159 					block_t blkaddr, int type)
160 {
161 	switch (type) {
162 	case META_NAT:
163 		break;
164 	case META_SIT:
165 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
166 			return false;
167 		break;
168 	case META_SSA:
169 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
170 			blkaddr < SM_I(sbi)->ssa_blkaddr))
171 			return false;
172 		break;
173 	case META_CP:
174 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
175 			blkaddr < __start_cp_addr(sbi)))
176 			return false;
177 		break;
178 	case META_POR:
179 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
180 			blkaddr < MAIN_BLKADDR(sbi)))
181 			return false;
182 		break;
183 	case DATA_GENERIC:
184 	case DATA_GENERIC_ENHANCE:
185 	case DATA_GENERIC_ENHANCE_READ:
186 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
187 				blkaddr < MAIN_BLKADDR(sbi))) {
188 			f2fs_warn(sbi, "access invalid blkaddr:%u",
189 				  blkaddr);
190 			set_sbi_flag(sbi, SBI_NEED_FSCK);
191 			WARN_ON(1);
192 			return false;
193 		} else {
194 			return __is_bitmap_valid(sbi, blkaddr, type);
195 		}
196 		break;
197 	case META_GENERIC:
198 		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
199 			blkaddr >= MAIN_BLKADDR(sbi)))
200 			return false;
201 		break;
202 	default:
203 		BUG();
204 	}
205 
206 	return true;
207 }
208 
209 /*
210  * Readahead CP/NAT/SIT/SSA/POR pages
211  */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)212 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
213 							int type, bool sync)
214 {
215 	struct page *page;
216 	block_t blkno = start;
217 	struct f2fs_io_info fio = {
218 		.sbi = sbi,
219 		.type = META,
220 		.op = REQ_OP_READ,
221 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
222 		.encrypted_page = NULL,
223 		.in_list = false,
224 		.is_por = (type == META_POR),
225 	};
226 	struct blk_plug plug;
227 	int err;
228 
229 	if (unlikely(type == META_POR))
230 		fio.op_flags &= ~REQ_META;
231 
232 	blk_start_plug(&plug);
233 	for (; nrpages-- > 0; blkno++) {
234 
235 		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
236 			goto out;
237 
238 		switch (type) {
239 		case META_NAT:
240 			if (unlikely(blkno >=
241 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
242 				blkno = 0;
243 			/* get nat block addr */
244 			fio.new_blkaddr = current_nat_addr(sbi,
245 					blkno * NAT_ENTRY_PER_BLOCK);
246 			break;
247 		case META_SIT:
248 			if (unlikely(blkno >= TOTAL_SEGS(sbi)))
249 				goto out;
250 			/* get sit block addr */
251 			fio.new_blkaddr = current_sit_addr(sbi,
252 					blkno * SIT_ENTRY_PER_BLOCK);
253 			break;
254 		case META_SSA:
255 		case META_CP:
256 		case META_POR:
257 			fio.new_blkaddr = blkno;
258 			break;
259 		default:
260 			BUG();
261 		}
262 
263 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
264 						fio.new_blkaddr, false);
265 		if (!page)
266 			continue;
267 		if (PageUptodate(page)) {
268 			f2fs_put_page(page, 1);
269 			continue;
270 		}
271 
272 		fio.page = page;
273 		err = f2fs_submit_page_bio(&fio);
274 		f2fs_put_page(page, err ? 1 : 0);
275 
276 		if (!err)
277 			f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
278 	}
279 out:
280 	blk_finish_plug(&plug);
281 	return blkno - start;
282 }
283 
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)284 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
285 {
286 	struct page *page;
287 	bool readahead = false;
288 
289 	page = find_get_page(META_MAPPING(sbi), index);
290 	if (!page || !PageUptodate(page))
291 		readahead = true;
292 	f2fs_put_page(page, 0);
293 
294 	if (readahead)
295 		f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true);
296 }
297 
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)298 static int __f2fs_write_meta_page(struct page *page,
299 				struct writeback_control *wbc,
300 				enum iostat_type io_type)
301 {
302 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
303 
304 	trace_f2fs_writepage(page, META);
305 
306 	if (unlikely(f2fs_cp_error(sbi)))
307 		goto redirty_out;
308 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
309 		goto redirty_out;
310 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
311 		goto redirty_out;
312 
313 	f2fs_do_write_meta_page(sbi, page, io_type);
314 	dec_page_count(sbi, F2FS_DIRTY_META);
315 
316 	if (wbc->for_reclaim)
317 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
318 
319 	unlock_page(page);
320 
321 	if (unlikely(f2fs_cp_error(sbi)))
322 		f2fs_submit_merged_write(sbi, META);
323 
324 	return 0;
325 
326 redirty_out:
327 	redirty_page_for_writepage(wbc, page);
328 	return AOP_WRITEPAGE_ACTIVATE;
329 }
330 
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)331 static int f2fs_write_meta_page(struct page *page,
332 				struct writeback_control *wbc)
333 {
334 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
335 }
336 
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)337 static int f2fs_write_meta_pages(struct address_space *mapping,
338 				struct writeback_control *wbc)
339 {
340 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
341 	long diff, written;
342 
343 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
344 		goto skip_write;
345 
346 	/* collect a number of dirty meta pages and write together */
347 	if (wbc->sync_mode != WB_SYNC_ALL &&
348 			get_pages(sbi, F2FS_DIRTY_META) <
349 					nr_pages_to_skip(sbi, META))
350 		goto skip_write;
351 
352 	/* if locked failed, cp will flush dirty pages instead */
353 	if (!down_write_trylock(&sbi->cp_global_sem))
354 		goto skip_write;
355 
356 	trace_f2fs_writepages(mapping->host, wbc, META);
357 	diff = nr_pages_to_write(sbi, META, wbc);
358 	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
359 	up_write(&sbi->cp_global_sem);
360 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
361 	return 0;
362 
363 skip_write:
364 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
365 	trace_f2fs_writepages(mapping->host, wbc, META);
366 	return 0;
367 }
368 
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)369 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
370 				long nr_to_write, enum iostat_type io_type)
371 {
372 	struct address_space *mapping = META_MAPPING(sbi);
373 	pgoff_t index = 0, prev = ULONG_MAX;
374 	struct pagevec pvec;
375 	long nwritten = 0;
376 	int nr_pages;
377 	struct writeback_control wbc = {
378 		.for_reclaim = 0,
379 	};
380 	struct blk_plug plug;
381 
382 	pagevec_init(&pvec);
383 
384 	blk_start_plug(&plug);
385 
386 	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
387 				PAGECACHE_TAG_DIRTY))) {
388 		int i;
389 
390 		for (i = 0; i < nr_pages; i++) {
391 			struct page *page = pvec.pages[i];
392 
393 			if (prev == ULONG_MAX)
394 				prev = page->index - 1;
395 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
396 				pagevec_release(&pvec);
397 				goto stop;
398 			}
399 
400 			lock_page(page);
401 
402 			if (unlikely(page->mapping != mapping)) {
403 continue_unlock:
404 				unlock_page(page);
405 				continue;
406 			}
407 			if (!PageDirty(page)) {
408 				/* someone wrote it for us */
409 				goto continue_unlock;
410 			}
411 
412 			f2fs_wait_on_page_writeback(page, META, true, true);
413 
414 			if (!clear_page_dirty_for_io(page))
415 				goto continue_unlock;
416 
417 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
418 				unlock_page(page);
419 				break;
420 			}
421 			nwritten++;
422 			prev = page->index;
423 			if (unlikely(nwritten >= nr_to_write))
424 				break;
425 		}
426 		pagevec_release(&pvec);
427 		cond_resched();
428 	}
429 stop:
430 	if (nwritten)
431 		f2fs_submit_merged_write(sbi, type);
432 
433 	blk_finish_plug(&plug);
434 
435 	return nwritten;
436 }
437 
f2fs_set_meta_page_dirty(struct page * page)438 static int f2fs_set_meta_page_dirty(struct page *page)
439 {
440 	trace_f2fs_set_page_dirty(page, META);
441 
442 	if (!PageUptodate(page))
443 		SetPageUptodate(page);
444 	if (!PageDirty(page)) {
445 		__set_page_dirty_nobuffers(page);
446 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
447 		f2fs_set_page_private(page, 0);
448 		return 1;
449 	}
450 	return 0;
451 }
452 
453 const struct address_space_operations f2fs_meta_aops = {
454 	.writepage	= f2fs_write_meta_page,
455 	.writepages	= f2fs_write_meta_pages,
456 	.set_page_dirty	= f2fs_set_meta_page_dirty,
457 	.invalidatepage = f2fs_invalidate_page,
458 	.releasepage	= f2fs_release_page,
459 #ifdef CONFIG_MIGRATION
460 	.migratepage    = f2fs_migrate_page,
461 #endif
462 };
463 
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)464 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
465 						unsigned int devidx, int type)
466 {
467 	struct inode_management *im = &sbi->im[type];
468 	struct ino_entry *e, *tmp;
469 
470 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
471 
472 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
473 
474 	spin_lock(&im->ino_lock);
475 	e = radix_tree_lookup(&im->ino_root, ino);
476 	if (!e) {
477 		e = tmp;
478 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
479 			f2fs_bug_on(sbi, 1);
480 
481 		memset(e, 0, sizeof(struct ino_entry));
482 		e->ino = ino;
483 
484 		list_add_tail(&e->list, &im->ino_list);
485 		if (type != ORPHAN_INO)
486 			im->ino_num++;
487 	}
488 
489 	if (type == FLUSH_INO)
490 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
491 
492 	spin_unlock(&im->ino_lock);
493 	radix_tree_preload_end();
494 
495 	if (e != tmp)
496 		kmem_cache_free(ino_entry_slab, tmp);
497 }
498 
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)499 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
500 {
501 	struct inode_management *im = &sbi->im[type];
502 	struct ino_entry *e;
503 
504 	spin_lock(&im->ino_lock);
505 	e = radix_tree_lookup(&im->ino_root, ino);
506 	if (e) {
507 		list_del(&e->list);
508 		radix_tree_delete(&im->ino_root, ino);
509 		im->ino_num--;
510 		spin_unlock(&im->ino_lock);
511 		kmem_cache_free(ino_entry_slab, e);
512 		return;
513 	}
514 	spin_unlock(&im->ino_lock);
515 }
516 
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)517 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
518 {
519 	/* add new dirty ino entry into list */
520 	__add_ino_entry(sbi, ino, 0, type);
521 }
522 
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)523 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
524 {
525 	/* remove dirty ino entry from list */
526 	__remove_ino_entry(sbi, ino, type);
527 }
528 
529 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)530 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
531 {
532 	struct inode_management *im = &sbi->im[mode];
533 	struct ino_entry *e;
534 
535 	spin_lock(&im->ino_lock);
536 	e = radix_tree_lookup(&im->ino_root, ino);
537 	spin_unlock(&im->ino_lock);
538 	return e ? true : false;
539 }
540 
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)541 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
542 {
543 	struct ino_entry *e, *tmp;
544 	int i;
545 
546 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
547 		struct inode_management *im = &sbi->im[i];
548 
549 		spin_lock(&im->ino_lock);
550 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
551 			list_del(&e->list);
552 			radix_tree_delete(&im->ino_root, e->ino);
553 			kmem_cache_free(ino_entry_slab, e);
554 			im->ino_num--;
555 		}
556 		spin_unlock(&im->ino_lock);
557 	}
558 }
559 
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)560 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
561 					unsigned int devidx, int type)
562 {
563 	__add_ino_entry(sbi, ino, devidx, type);
564 }
565 
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)566 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
567 					unsigned int devidx, int type)
568 {
569 	struct inode_management *im = &sbi->im[type];
570 	struct ino_entry *e;
571 	bool is_dirty = false;
572 
573 	spin_lock(&im->ino_lock);
574 	e = radix_tree_lookup(&im->ino_root, ino);
575 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
576 		is_dirty = true;
577 	spin_unlock(&im->ino_lock);
578 	return is_dirty;
579 }
580 
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)581 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
582 {
583 	struct inode_management *im = &sbi->im[ORPHAN_INO];
584 	int err = 0;
585 
586 	spin_lock(&im->ino_lock);
587 
588 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
589 		spin_unlock(&im->ino_lock);
590 		f2fs_show_injection_info(sbi, FAULT_ORPHAN);
591 		return -ENOSPC;
592 	}
593 
594 	if (unlikely(im->ino_num >= sbi->max_orphans))
595 		err = -ENOSPC;
596 	else
597 		im->ino_num++;
598 	spin_unlock(&im->ino_lock);
599 
600 	return err;
601 }
602 
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)603 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
604 {
605 	struct inode_management *im = &sbi->im[ORPHAN_INO];
606 
607 	spin_lock(&im->ino_lock);
608 	f2fs_bug_on(sbi, im->ino_num == 0);
609 	im->ino_num--;
610 	spin_unlock(&im->ino_lock);
611 }
612 
f2fs_add_orphan_inode(struct inode * inode)613 void f2fs_add_orphan_inode(struct inode *inode)
614 {
615 	/* add new orphan ino entry into list */
616 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
617 	f2fs_update_inode_page(inode);
618 }
619 
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)620 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
621 {
622 	/* remove orphan entry from orphan list */
623 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
624 }
625 
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)626 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
627 {
628 	struct inode *inode;
629 	struct node_info ni;
630 	int err;
631 
632 	inode = f2fs_iget_retry(sbi->sb, ino);
633 	if (IS_ERR(inode)) {
634 		/*
635 		 * there should be a bug that we can't find the entry
636 		 * to orphan inode.
637 		 */
638 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
639 		return PTR_ERR(inode);
640 	}
641 
642 	err = dquot_initialize(inode);
643 	if (err) {
644 		iput(inode);
645 		goto err_out;
646 	}
647 
648 	clear_nlink(inode);
649 
650 	/* truncate all the data during iput */
651 	iput(inode);
652 
653 	err = f2fs_get_node_info(sbi, ino, &ni);
654 	if (err)
655 		goto err_out;
656 
657 	/* ENOMEM was fully retried in f2fs_evict_inode. */
658 	if (ni.blk_addr != NULL_ADDR) {
659 		err = -EIO;
660 		goto err_out;
661 	}
662 	return 0;
663 
664 err_out:
665 	set_sbi_flag(sbi, SBI_NEED_FSCK);
666 	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
667 		  __func__, ino);
668 	return err;
669 }
670 
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)671 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
672 {
673 	block_t start_blk, orphan_blocks, i, j;
674 	unsigned int s_flags = sbi->sb->s_flags;
675 	int err = 0;
676 #ifdef CONFIG_QUOTA
677 	int quota_enabled;
678 #endif
679 
680 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
681 		return 0;
682 
683 	if (bdev_read_only(sbi->sb->s_bdev)) {
684 		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
685 		return 0;
686 	}
687 
688 	if (s_flags & SB_RDONLY) {
689 		f2fs_info(sbi, "orphan cleanup on readonly fs");
690 		sbi->sb->s_flags &= ~SB_RDONLY;
691 	}
692 
693 #ifdef CONFIG_QUOTA
694 	/* Needed for iput() to work correctly and not trash data */
695 	sbi->sb->s_flags |= SB_ACTIVE;
696 
697 	/*
698 	 * Turn on quotas which were not enabled for read-only mounts if
699 	 * filesystem has quota feature, so that they are updated correctly.
700 	 */
701 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
702 #endif
703 
704 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
705 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
706 
707 	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
708 
709 	for (i = 0; i < orphan_blocks; i++) {
710 		struct page *page;
711 		struct f2fs_orphan_block *orphan_blk;
712 
713 		page = f2fs_get_meta_page(sbi, start_blk + i);
714 		if (IS_ERR(page)) {
715 			err = PTR_ERR(page);
716 			goto out;
717 		}
718 
719 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
720 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
721 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
722 
723 			err = recover_orphan_inode(sbi, ino);
724 			if (err) {
725 				f2fs_put_page(page, 1);
726 				goto out;
727 			}
728 		}
729 		f2fs_put_page(page, 1);
730 	}
731 	/* clear Orphan Flag */
732 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
733 out:
734 	set_sbi_flag(sbi, SBI_IS_RECOVERED);
735 
736 #ifdef CONFIG_QUOTA
737 	/* Turn quotas off */
738 	if (quota_enabled)
739 		f2fs_quota_off_umount(sbi->sb);
740 #endif
741 	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
742 
743 	return err;
744 }
745 
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)746 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
747 {
748 	struct list_head *head;
749 	struct f2fs_orphan_block *orphan_blk = NULL;
750 	unsigned int nentries = 0;
751 	unsigned short index = 1;
752 	unsigned short orphan_blocks;
753 	struct page *page = NULL;
754 	struct ino_entry *orphan = NULL;
755 	struct inode_management *im = &sbi->im[ORPHAN_INO];
756 
757 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
758 
759 	/*
760 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
761 	 * orphan inode operations are covered under f2fs_lock_op().
762 	 * And, spin_lock should be avoided due to page operations below.
763 	 */
764 	head = &im->ino_list;
765 
766 	/* loop for each orphan inode entry and write them in Jornal block */
767 	list_for_each_entry(orphan, head, list) {
768 		if (!page) {
769 			page = f2fs_grab_meta_page(sbi, start_blk++);
770 			orphan_blk =
771 				(struct f2fs_orphan_block *)page_address(page);
772 			memset(orphan_blk, 0, sizeof(*orphan_blk));
773 		}
774 
775 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
776 
777 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
778 			/*
779 			 * an orphan block is full of 1020 entries,
780 			 * then we need to flush current orphan blocks
781 			 * and bring another one in memory
782 			 */
783 			orphan_blk->blk_addr = cpu_to_le16(index);
784 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
785 			orphan_blk->entry_count = cpu_to_le32(nentries);
786 			set_page_dirty(page);
787 			f2fs_put_page(page, 1);
788 			index++;
789 			nentries = 0;
790 			page = NULL;
791 		}
792 	}
793 
794 	if (page) {
795 		orphan_blk->blk_addr = cpu_to_le16(index);
796 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
797 		orphan_blk->entry_count = cpu_to_le32(nentries);
798 		set_page_dirty(page);
799 		f2fs_put_page(page, 1);
800 	}
801 }
802 
f2fs_checkpoint_chksum(struct f2fs_sb_info * sbi,struct f2fs_checkpoint * ckpt)803 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
804 						struct f2fs_checkpoint *ckpt)
805 {
806 	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
807 	__u32 chksum;
808 
809 	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
810 	if (chksum_ofs < CP_CHKSUM_OFFSET) {
811 		chksum_ofs += sizeof(chksum);
812 		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
813 						F2FS_BLKSIZE - chksum_ofs);
814 	}
815 	return chksum;
816 }
817 
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)818 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
819 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
820 		unsigned long long *version)
821 {
822 	size_t crc_offset = 0;
823 	__u32 crc;
824 
825 	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
826 	if (IS_ERR(*cp_page))
827 		return PTR_ERR(*cp_page);
828 
829 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
830 
831 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
832 	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
833 			crc_offset > CP_CHKSUM_OFFSET) {
834 		f2fs_put_page(*cp_page, 1);
835 		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
836 		return -EINVAL;
837 	}
838 
839 	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
840 	if (crc != cur_cp_crc(*cp_block)) {
841 		f2fs_put_page(*cp_page, 1);
842 		f2fs_warn(sbi, "invalid crc value");
843 		return -EINVAL;
844 	}
845 
846 	*version = cur_cp_version(*cp_block);
847 	return 0;
848 }
849 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)850 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
851 				block_t cp_addr, unsigned long long *version)
852 {
853 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
854 	struct f2fs_checkpoint *cp_block = NULL;
855 	unsigned long long cur_version = 0, pre_version = 0;
856 	int err;
857 
858 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
859 					&cp_page_1, version);
860 	if (err)
861 		return NULL;
862 
863 	if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
864 					sbi->blocks_per_seg) {
865 		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
866 			  le32_to_cpu(cp_block->cp_pack_total_block_count));
867 		goto invalid_cp;
868 	}
869 	pre_version = *version;
870 
871 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
872 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
873 					&cp_page_2, version);
874 	if (err)
875 		goto invalid_cp;
876 	cur_version = *version;
877 
878 	if (cur_version == pre_version) {
879 		*version = cur_version;
880 		f2fs_put_page(cp_page_2, 1);
881 		return cp_page_1;
882 	}
883 	f2fs_put_page(cp_page_2, 1);
884 invalid_cp:
885 	f2fs_put_page(cp_page_1, 1);
886 	return NULL;
887 }
888 
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)889 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
890 {
891 	struct f2fs_checkpoint *cp_block;
892 	struct f2fs_super_block *fsb = sbi->raw_super;
893 	struct page *cp1, *cp2, *cur_page;
894 	unsigned long blk_size = sbi->blocksize;
895 	unsigned long long cp1_version = 0, cp2_version = 0;
896 	unsigned long long cp_start_blk_no;
897 	unsigned int cp_blks = 1 + __cp_payload(sbi);
898 	block_t cp_blk_no;
899 	int i;
900 	int err;
901 
902 	sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
903 				  GFP_KERNEL);
904 	if (!sbi->ckpt)
905 		return -ENOMEM;
906 	/*
907 	 * Finding out valid cp block involves read both
908 	 * sets( cp pack 1 and cp pack 2)
909 	 */
910 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
911 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
912 
913 	/* The second checkpoint pack should start at the next segment */
914 	cp_start_blk_no += ((unsigned long long)1) <<
915 				le32_to_cpu(fsb->log_blocks_per_seg);
916 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
917 
918 	if (cp1 && cp2) {
919 		if (ver_after(cp2_version, cp1_version))
920 			cur_page = cp2;
921 		else
922 			cur_page = cp1;
923 	} else if (cp1) {
924 		cur_page = cp1;
925 	} else if (cp2) {
926 		cur_page = cp2;
927 	} else {
928 		err = -EFSCORRUPTED;
929 		goto fail_no_cp;
930 	}
931 
932 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
933 	memcpy(sbi->ckpt, cp_block, blk_size);
934 
935 	if (cur_page == cp1)
936 		sbi->cur_cp_pack = 1;
937 	else
938 		sbi->cur_cp_pack = 2;
939 
940 	/* Sanity checking of checkpoint */
941 	if (f2fs_sanity_check_ckpt(sbi)) {
942 		err = -EFSCORRUPTED;
943 		goto free_fail_no_cp;
944 	}
945 
946 	if (cp_blks <= 1)
947 		goto done;
948 
949 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
950 	if (cur_page == cp2)
951 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
952 
953 	for (i = 1; i < cp_blks; i++) {
954 		void *sit_bitmap_ptr;
955 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
956 
957 		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
958 		if (IS_ERR(cur_page)) {
959 			err = PTR_ERR(cur_page);
960 			goto free_fail_no_cp;
961 		}
962 		sit_bitmap_ptr = page_address(cur_page);
963 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
964 		f2fs_put_page(cur_page, 1);
965 	}
966 done:
967 	f2fs_put_page(cp1, 1);
968 	f2fs_put_page(cp2, 1);
969 	return 0;
970 
971 free_fail_no_cp:
972 	f2fs_put_page(cp1, 1);
973 	f2fs_put_page(cp2, 1);
974 fail_no_cp:
975 	kvfree(sbi->ckpt);
976 	return err;
977 }
978 
__add_dirty_inode(struct inode * inode,enum inode_type type)979 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
980 {
981 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
982 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
983 
984 	if (is_inode_flag_set(inode, flag))
985 		return;
986 
987 	set_inode_flag(inode, flag);
988 	if (!f2fs_is_volatile_file(inode))
989 		list_add_tail(&F2FS_I(inode)->dirty_list,
990 						&sbi->inode_list[type]);
991 	stat_inc_dirty_inode(sbi, type);
992 }
993 
__remove_dirty_inode(struct inode * inode,enum inode_type type)994 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
995 {
996 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
997 
998 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
999 		return;
1000 
1001 	list_del_init(&F2FS_I(inode)->dirty_list);
1002 	clear_inode_flag(inode, flag);
1003 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1004 }
1005 
f2fs_update_dirty_page(struct inode * inode,struct page * page)1006 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1007 {
1008 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1009 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1010 
1011 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1012 			!S_ISLNK(inode->i_mode))
1013 		return;
1014 
1015 	spin_lock(&sbi->inode_lock[type]);
1016 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1017 		__add_dirty_inode(inode, type);
1018 	inode_inc_dirty_pages(inode);
1019 	spin_unlock(&sbi->inode_lock[type]);
1020 
1021 	f2fs_set_page_private(page, 0);
1022 }
1023 
f2fs_remove_dirty_inode(struct inode * inode)1024 void f2fs_remove_dirty_inode(struct inode *inode)
1025 {
1026 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1027 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1028 
1029 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1030 			!S_ISLNK(inode->i_mode))
1031 		return;
1032 
1033 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1034 		return;
1035 
1036 	spin_lock(&sbi->inode_lock[type]);
1037 	__remove_dirty_inode(inode, type);
1038 	spin_unlock(&sbi->inode_lock[type]);
1039 }
1040 
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type)1041 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1042 {
1043 	struct list_head *head;
1044 	struct inode *inode;
1045 	struct f2fs_inode_info *fi;
1046 	bool is_dir = (type == DIR_INODE);
1047 	unsigned long ino = 0;
1048 
1049 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1050 				get_pages(sbi, is_dir ?
1051 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1052 retry:
1053 	if (unlikely(f2fs_cp_error(sbi))) {
1054 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1055 				get_pages(sbi, is_dir ?
1056 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1057 		return -EIO;
1058 	}
1059 
1060 	spin_lock(&sbi->inode_lock[type]);
1061 
1062 	head = &sbi->inode_list[type];
1063 	if (list_empty(head)) {
1064 		spin_unlock(&sbi->inode_lock[type]);
1065 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1066 				get_pages(sbi, is_dir ?
1067 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1068 		return 0;
1069 	}
1070 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1071 	inode = igrab(&fi->vfs_inode);
1072 	spin_unlock(&sbi->inode_lock[type]);
1073 	if (inode) {
1074 		unsigned long cur_ino = inode->i_ino;
1075 
1076 		F2FS_I(inode)->cp_task = current;
1077 
1078 		filemap_fdatawrite(inode->i_mapping);
1079 
1080 		F2FS_I(inode)->cp_task = NULL;
1081 
1082 		iput(inode);
1083 		/* We need to give cpu to another writers. */
1084 		if (ino == cur_ino)
1085 			cond_resched();
1086 		else
1087 			ino = cur_ino;
1088 	} else {
1089 		/*
1090 		 * We should submit bio, since it exists several
1091 		 * wribacking dentry pages in the freeing inode.
1092 		 */
1093 		f2fs_submit_merged_write(sbi, DATA);
1094 		cond_resched();
1095 	}
1096 	goto retry;
1097 }
1098 
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1099 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1100 {
1101 	struct list_head *head = &sbi->inode_list[DIRTY_META];
1102 	struct inode *inode;
1103 	struct f2fs_inode_info *fi;
1104 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1105 
1106 	while (total--) {
1107 		if (unlikely(f2fs_cp_error(sbi)))
1108 			return -EIO;
1109 
1110 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1111 		if (list_empty(head)) {
1112 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1113 			return 0;
1114 		}
1115 		fi = list_first_entry(head, struct f2fs_inode_info,
1116 							gdirty_list);
1117 		inode = igrab(&fi->vfs_inode);
1118 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1119 		if (inode) {
1120 			sync_inode_metadata(inode, 0);
1121 
1122 			/* it's on eviction */
1123 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1124 				f2fs_update_inode_page(inode);
1125 			iput(inode);
1126 		}
1127 	}
1128 	return 0;
1129 }
1130 
__prepare_cp_block(struct f2fs_sb_info * sbi)1131 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1132 {
1133 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1134 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1135 	nid_t last_nid = nm_i->next_scan_nid;
1136 
1137 	next_free_nid(sbi, &last_nid);
1138 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1139 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1140 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1141 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1142 }
1143 
__need_flush_quota(struct f2fs_sb_info * sbi)1144 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1145 {
1146 	bool ret = false;
1147 
1148 	if (!is_journalled_quota(sbi))
1149 		return false;
1150 
1151 	down_write(&sbi->quota_sem);
1152 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1153 		ret = false;
1154 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1155 		ret = false;
1156 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1157 		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1158 		ret = true;
1159 	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1160 		ret = true;
1161 	}
1162 	up_write(&sbi->quota_sem);
1163 	return ret;
1164 }
1165 
1166 /*
1167  * Freeze all the FS-operations for checkpoint.
1168  */
block_operations(struct f2fs_sb_info * sbi)1169 static int block_operations(struct f2fs_sb_info *sbi)
1170 {
1171 	struct writeback_control wbc = {
1172 		.sync_mode = WB_SYNC_ALL,
1173 		.nr_to_write = LONG_MAX,
1174 		.for_reclaim = 0,
1175 	};
1176 	int err = 0, cnt = 0;
1177 
1178 	/*
1179 	 * Let's flush inline_data in dirty node pages.
1180 	 */
1181 	f2fs_flush_inline_data(sbi);
1182 
1183 retry_flush_quotas:
1184 	f2fs_lock_all(sbi);
1185 	if (__need_flush_quota(sbi)) {
1186 		int locked;
1187 
1188 		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1189 			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1190 			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1191 			goto retry_flush_dents;
1192 		}
1193 		f2fs_unlock_all(sbi);
1194 
1195 		/* only failed during mount/umount/freeze/quotactl */
1196 		locked = down_read_trylock(&sbi->sb->s_umount);
1197 		f2fs_quota_sync(sbi->sb, -1);
1198 		if (locked)
1199 			up_read(&sbi->sb->s_umount);
1200 		cond_resched();
1201 		goto retry_flush_quotas;
1202 	}
1203 
1204 retry_flush_dents:
1205 	/* write all the dirty dentry pages */
1206 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1207 		f2fs_unlock_all(sbi);
1208 		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1209 		if (err)
1210 			return err;
1211 		cond_resched();
1212 		goto retry_flush_quotas;
1213 	}
1214 
1215 	/*
1216 	 * POR: we should ensure that there are no dirty node pages
1217 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1218 	 */
1219 	down_write(&sbi->node_change);
1220 
1221 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1222 		up_write(&sbi->node_change);
1223 		f2fs_unlock_all(sbi);
1224 		err = f2fs_sync_inode_meta(sbi);
1225 		if (err)
1226 			return err;
1227 		cond_resched();
1228 		goto retry_flush_quotas;
1229 	}
1230 
1231 retry_flush_nodes:
1232 	down_write(&sbi->node_write);
1233 
1234 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1235 		up_write(&sbi->node_write);
1236 		atomic_inc(&sbi->wb_sync_req[NODE]);
1237 		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1238 		atomic_dec(&sbi->wb_sync_req[NODE]);
1239 		if (err) {
1240 			up_write(&sbi->node_change);
1241 			f2fs_unlock_all(sbi);
1242 			return err;
1243 		}
1244 		cond_resched();
1245 		goto retry_flush_nodes;
1246 	}
1247 
1248 	/*
1249 	 * sbi->node_change is used only for AIO write_begin path which produces
1250 	 * dirty node blocks and some checkpoint values by block allocation.
1251 	 */
1252 	__prepare_cp_block(sbi);
1253 	up_write(&sbi->node_change);
1254 	return err;
1255 }
1256 
unblock_operations(struct f2fs_sb_info * sbi)1257 static void unblock_operations(struct f2fs_sb_info *sbi)
1258 {
1259 	up_write(&sbi->node_write);
1260 	f2fs_unlock_all(sbi);
1261 }
1262 
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1263 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1264 {
1265 	DEFINE_WAIT(wait);
1266 
1267 	for (;;) {
1268 		if (!get_pages(sbi, type))
1269 			break;
1270 
1271 		if (unlikely(f2fs_cp_error(sbi)))
1272 			break;
1273 
1274 		if (type == F2FS_DIRTY_META)
1275 			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1276 							FS_CP_META_IO);
1277 		else if (type == F2FS_WB_CP_DATA)
1278 			f2fs_submit_merged_write(sbi, DATA);
1279 
1280 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1281 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1282 	}
1283 	finish_wait(&sbi->cp_wait, &wait);
1284 }
1285 
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1286 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1287 {
1288 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1289 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1290 	unsigned long flags;
1291 
1292 	spin_lock_irqsave(&sbi->cp_lock, flags);
1293 
1294 	if ((cpc->reason & CP_UMOUNT) &&
1295 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1296 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1297 		disable_nat_bits(sbi, false);
1298 
1299 	if (cpc->reason & CP_TRIMMED)
1300 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1301 	else
1302 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1303 
1304 	if (cpc->reason & CP_UMOUNT)
1305 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1306 	else
1307 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1308 
1309 	if (cpc->reason & CP_FASTBOOT)
1310 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1311 	else
1312 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1313 
1314 	if (orphan_num)
1315 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1316 	else
1317 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1318 
1319 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1320 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1321 
1322 	if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1323 		__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1324 	else
1325 		__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1326 
1327 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1328 		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1329 	else
1330 		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1331 
1332 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1333 		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1334 	else
1335 		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1336 
1337 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1338 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1339 	else
1340 		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1341 
1342 	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1343 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1344 
1345 	/* set this flag to activate crc|cp_ver for recovery */
1346 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1347 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1348 
1349 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1350 }
1351 
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1352 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1353 	void *src, block_t blk_addr)
1354 {
1355 	struct writeback_control wbc = {
1356 		.for_reclaim = 0,
1357 	};
1358 
1359 	/*
1360 	 * pagevec_lookup_tag and lock_page again will take
1361 	 * some extra time. Therefore, f2fs_update_meta_pages and
1362 	 * f2fs_sync_meta_pages are combined in this function.
1363 	 */
1364 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1365 	int err;
1366 
1367 	f2fs_wait_on_page_writeback(page, META, true, true);
1368 
1369 	memcpy(page_address(page), src, PAGE_SIZE);
1370 
1371 	set_page_dirty(page);
1372 	if (unlikely(!clear_page_dirty_for_io(page)))
1373 		f2fs_bug_on(sbi, 1);
1374 
1375 	/* writeout cp pack 2 page */
1376 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1377 	if (unlikely(err && f2fs_cp_error(sbi))) {
1378 		f2fs_put_page(page, 1);
1379 		return;
1380 	}
1381 
1382 	f2fs_bug_on(sbi, err);
1383 	f2fs_put_page(page, 0);
1384 
1385 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1386 	f2fs_submit_merged_write(sbi, META_FLUSH);
1387 }
1388 
get_sectors_written(struct block_device * bdev)1389 static inline u64 get_sectors_written(struct block_device *bdev)
1390 {
1391 	return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1392 }
1393 
f2fs_get_sectors_written(struct f2fs_sb_info * sbi)1394 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1395 {
1396 	if (f2fs_is_multi_device(sbi)) {
1397 		u64 sectors = 0;
1398 		int i;
1399 
1400 		for (i = 0; i < sbi->s_ndevs; i++)
1401 			sectors += get_sectors_written(FDEV(i).bdev);
1402 
1403 		return sectors;
1404 	}
1405 
1406 	return get_sectors_written(sbi->sb->s_bdev);
1407 }
1408 
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1409 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1410 {
1411 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1412 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1413 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1414 	block_t start_blk;
1415 	unsigned int data_sum_blocks, orphan_blocks;
1416 	__u32 crc32 = 0;
1417 	int i;
1418 	int cp_payload_blks = __cp_payload(sbi);
1419 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1420 	u64 kbytes_written;
1421 	int err;
1422 
1423 	/* Flush all the NAT/SIT pages */
1424 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1425 
1426 	/* start to update checkpoint, cp ver is already updated previously */
1427 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1428 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1429 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1430 		ckpt->cur_node_segno[i] =
1431 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1432 		ckpt->cur_node_blkoff[i] =
1433 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1434 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1435 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1436 	}
1437 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1438 		ckpt->cur_data_segno[i] =
1439 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1440 		ckpt->cur_data_blkoff[i] =
1441 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1442 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1443 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1444 	}
1445 
1446 	/* 2 cp + n data seg summary + orphan inode blocks */
1447 	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1448 	spin_lock_irqsave(&sbi->cp_lock, flags);
1449 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1450 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1451 	else
1452 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1453 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1454 
1455 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1456 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1457 			orphan_blocks);
1458 
1459 	if (__remain_node_summaries(cpc->reason))
1460 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1461 				cp_payload_blks + data_sum_blocks +
1462 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1463 	else
1464 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1465 				cp_payload_blks + data_sum_blocks +
1466 				orphan_blocks);
1467 
1468 	/* update ckpt flag for checkpoint */
1469 	update_ckpt_flags(sbi, cpc);
1470 
1471 	/* update SIT/NAT bitmap */
1472 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1473 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1474 
1475 	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1476 	*((__le32 *)((unsigned char *)ckpt +
1477 				le32_to_cpu(ckpt->checksum_offset)))
1478 				= cpu_to_le32(crc32);
1479 
1480 	start_blk = __start_cp_next_addr(sbi);
1481 
1482 	/* write nat bits */
1483 	if (enabled_nat_bits(sbi, cpc)) {
1484 		__u64 cp_ver = cur_cp_version(ckpt);
1485 		block_t blk;
1486 
1487 		cp_ver |= ((__u64)crc32 << 32);
1488 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1489 
1490 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1491 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1492 			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1493 					(i << F2FS_BLKSIZE_BITS), blk + i);
1494 	}
1495 
1496 	/* write out checkpoint buffer at block 0 */
1497 	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1498 
1499 	for (i = 1; i < 1 + cp_payload_blks; i++)
1500 		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1501 							start_blk++);
1502 
1503 	if (orphan_num) {
1504 		write_orphan_inodes(sbi, start_blk);
1505 		start_blk += orphan_blocks;
1506 	}
1507 
1508 	f2fs_write_data_summaries(sbi, start_blk);
1509 	start_blk += data_sum_blocks;
1510 
1511 	/* Record write statistics in the hot node summary */
1512 	kbytes_written = sbi->kbytes_written;
1513 	kbytes_written += (f2fs_get_sectors_written(sbi) -
1514 				sbi->sectors_written_start) >> 1;
1515 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1516 
1517 	if (__remain_node_summaries(cpc->reason)) {
1518 		f2fs_write_node_summaries(sbi, start_blk);
1519 		start_blk += NR_CURSEG_NODE_TYPE;
1520 	}
1521 
1522 	/* update user_block_counts */
1523 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1524 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1525 
1526 	/* Here, we have one bio having CP pack except cp pack 2 page */
1527 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1528 	/* Wait for all dirty meta pages to be submitted for IO */
1529 	f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1530 
1531 	/* wait for previous submitted meta pages writeback */
1532 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1533 
1534 	/* flush all device cache */
1535 	err = f2fs_flush_device_cache(sbi);
1536 	if (err)
1537 		return err;
1538 
1539 	/* barrier and flush checkpoint cp pack 2 page if it can */
1540 	commit_checkpoint(sbi, ckpt, start_blk);
1541 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1542 
1543 	/*
1544 	 * invalidate intermediate page cache borrowed from meta inode which are
1545 	 * used for migration of encrypted, verity or compressed inode's blocks.
1546 	 */
1547 	if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1548 		f2fs_sb_has_compression(sbi))
1549 		invalidate_mapping_pages(META_MAPPING(sbi),
1550 				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1551 
1552 	f2fs_release_ino_entry(sbi, false);
1553 
1554 	f2fs_reset_fsync_node_info(sbi);
1555 
1556 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1557 	clear_sbi_flag(sbi, SBI_NEED_CP);
1558 	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1559 
1560 	spin_lock(&sbi->stat_lock);
1561 	sbi->unusable_block_count = 0;
1562 	spin_unlock(&sbi->stat_lock);
1563 
1564 	__set_cp_next_pack(sbi);
1565 
1566 	/*
1567 	 * redirty superblock if metadata like node page or inode cache is
1568 	 * updated during writing checkpoint.
1569 	 */
1570 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1571 			get_pages(sbi, F2FS_DIRTY_IMETA))
1572 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1573 
1574 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1575 
1576 	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1577 }
1578 
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1579 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1580 {
1581 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1582 	unsigned long long ckpt_ver;
1583 	int err = 0;
1584 
1585 	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1586 		return -EROFS;
1587 
1588 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1589 		if (cpc->reason != CP_PAUSE)
1590 			return 0;
1591 		f2fs_warn(sbi, "Start checkpoint disabled!");
1592 	}
1593 	if (cpc->reason != CP_RESIZE)
1594 		down_write(&sbi->cp_global_sem);
1595 
1596 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1597 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1598 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1599 		goto out;
1600 	if (unlikely(f2fs_cp_error(sbi))) {
1601 		err = -EIO;
1602 		goto out;
1603 	}
1604 
1605 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1606 
1607 	err = block_operations(sbi);
1608 	if (err)
1609 		goto out;
1610 
1611 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1612 
1613 	f2fs_flush_merged_writes(sbi);
1614 
1615 	/* this is the case of multiple fstrims without any changes */
1616 	if (cpc->reason & CP_DISCARD) {
1617 		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1618 			unblock_operations(sbi);
1619 			goto out;
1620 		}
1621 
1622 		if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1623 				SIT_I(sbi)->dirty_sentries == 0 &&
1624 				prefree_segments(sbi) == 0) {
1625 			f2fs_flush_sit_entries(sbi, cpc);
1626 			f2fs_clear_prefree_segments(sbi, cpc);
1627 			unblock_operations(sbi);
1628 			goto out;
1629 		}
1630 	}
1631 
1632 	/*
1633 	 * update checkpoint pack index
1634 	 * Increase the version number so that
1635 	 * SIT entries and seg summaries are written at correct place
1636 	 */
1637 	ckpt_ver = cur_cp_version(ckpt);
1638 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1639 
1640 	/* write cached NAT/SIT entries to NAT/SIT area */
1641 	err = f2fs_flush_nat_entries(sbi, cpc);
1642 	if (err)
1643 		goto stop;
1644 
1645 	f2fs_flush_sit_entries(sbi, cpc);
1646 
1647 	/* save inmem log status */
1648 	f2fs_save_inmem_curseg(sbi);
1649 
1650 	err = do_checkpoint(sbi, cpc);
1651 	if (err)
1652 		f2fs_release_discard_addrs(sbi);
1653 	else
1654 		f2fs_clear_prefree_segments(sbi, cpc);
1655 
1656 	f2fs_restore_inmem_curseg(sbi);
1657 stop:
1658 	unblock_operations(sbi);
1659 	stat_inc_cp_count(sbi->stat_info);
1660 
1661 	if (cpc->reason & CP_RECOVERY)
1662 		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1663 
1664 	/* update CP_TIME to trigger checkpoint periodically */
1665 	f2fs_update_time(sbi, CP_TIME);
1666 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1667 out:
1668 	if (cpc->reason != CP_RESIZE)
1669 		up_write(&sbi->cp_global_sem);
1670 	return err;
1671 }
1672 
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1673 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1674 {
1675 	int i;
1676 
1677 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1678 		struct inode_management *im = &sbi->im[i];
1679 
1680 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1681 		spin_lock_init(&im->ino_lock);
1682 		INIT_LIST_HEAD(&im->ino_list);
1683 		im->ino_num = 0;
1684 	}
1685 
1686 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1687 			NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1688 				F2FS_ORPHANS_PER_BLOCK;
1689 }
1690 
f2fs_create_checkpoint_caches(void)1691 int __init f2fs_create_checkpoint_caches(void)
1692 {
1693 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1694 			sizeof(struct ino_entry));
1695 	if (!ino_entry_slab)
1696 		return -ENOMEM;
1697 	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1698 			sizeof(struct inode_entry));
1699 	if (!f2fs_inode_entry_slab) {
1700 		kmem_cache_destroy(ino_entry_slab);
1701 		return -ENOMEM;
1702 	}
1703 	return 0;
1704 }
1705 
f2fs_destroy_checkpoint_caches(void)1706 void f2fs_destroy_checkpoint_caches(void)
1707 {
1708 	kmem_cache_destroy(ino_entry_slab);
1709 	kmem_cache_destroy(f2fs_inode_entry_slab);
1710 }
1711 
__write_checkpoint_sync(struct f2fs_sb_info * sbi)1712 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1713 {
1714 	struct cp_control cpc = { .reason = CP_SYNC, };
1715 	int err;
1716 
1717 	down_write(&sbi->gc_lock);
1718 	err = f2fs_write_checkpoint(sbi, &cpc);
1719 	up_write(&sbi->gc_lock);
1720 
1721 	return err;
1722 }
1723 
__checkpoint_and_complete_reqs(struct f2fs_sb_info * sbi)1724 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1725 {
1726 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1727 	struct ckpt_req *req, *next;
1728 	struct llist_node *dispatch_list;
1729 	u64 sum_diff = 0, diff, count = 0;
1730 	int ret;
1731 
1732 	dispatch_list = llist_del_all(&cprc->issue_list);
1733 	if (!dispatch_list)
1734 		return;
1735 	dispatch_list = llist_reverse_order(dispatch_list);
1736 
1737 	ret = __write_checkpoint_sync(sbi);
1738 	atomic_inc(&cprc->issued_ckpt);
1739 
1740 	llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1741 		diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1742 		req->ret = ret;
1743 		complete(&req->wait);
1744 
1745 		sum_diff += diff;
1746 		count++;
1747 	}
1748 	atomic_sub(count, &cprc->queued_ckpt);
1749 	atomic_add(count, &cprc->total_ckpt);
1750 
1751 	spin_lock(&cprc->stat_lock);
1752 	cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1753 	if (cprc->peak_time < cprc->cur_time)
1754 		cprc->peak_time = cprc->cur_time;
1755 	spin_unlock(&cprc->stat_lock);
1756 }
1757 
issue_checkpoint_thread(void * data)1758 static int issue_checkpoint_thread(void *data)
1759 {
1760 	struct f2fs_sb_info *sbi = data;
1761 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1762 	wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1763 repeat:
1764 	if (kthread_should_stop())
1765 		return 0;
1766 
1767 	if (!llist_empty(&cprc->issue_list))
1768 		__checkpoint_and_complete_reqs(sbi);
1769 
1770 	wait_event_interruptible(*q,
1771 		kthread_should_stop() || !llist_empty(&cprc->issue_list));
1772 	goto repeat;
1773 }
1774 
flush_remained_ckpt_reqs(struct f2fs_sb_info * sbi,struct ckpt_req * wait_req)1775 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1776 		struct ckpt_req *wait_req)
1777 {
1778 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1779 
1780 	if (!llist_empty(&cprc->issue_list)) {
1781 		__checkpoint_and_complete_reqs(sbi);
1782 	} else {
1783 		/* already dispatched by issue_checkpoint_thread */
1784 		if (wait_req)
1785 			wait_for_completion(&wait_req->wait);
1786 	}
1787 }
1788 
init_ckpt_req(struct ckpt_req * req)1789 static void init_ckpt_req(struct ckpt_req *req)
1790 {
1791 	memset(req, 0, sizeof(struct ckpt_req));
1792 
1793 	init_completion(&req->wait);
1794 	req->queue_time = ktime_get();
1795 }
1796 
f2fs_issue_checkpoint(struct f2fs_sb_info * sbi)1797 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1798 {
1799 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1800 	struct ckpt_req req;
1801 	struct cp_control cpc;
1802 
1803 	cpc.reason = __get_cp_reason(sbi);
1804 	if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1805 		int ret;
1806 
1807 		down_write(&sbi->gc_lock);
1808 		ret = f2fs_write_checkpoint(sbi, &cpc);
1809 		up_write(&sbi->gc_lock);
1810 
1811 		return ret;
1812 	}
1813 
1814 	if (!cprc->f2fs_issue_ckpt)
1815 		return __write_checkpoint_sync(sbi);
1816 
1817 	init_ckpt_req(&req);
1818 
1819 	llist_add(&req.llnode, &cprc->issue_list);
1820 	atomic_inc(&cprc->queued_ckpt);
1821 
1822 	/*
1823 	 * update issue_list before we wake up issue_checkpoint thread,
1824 	 * this smp_mb() pairs with another barrier in ___wait_event(),
1825 	 * see more details in comments of waitqueue_active().
1826 	 */
1827 	smp_mb();
1828 
1829 	if (waitqueue_active(&cprc->ckpt_wait_queue))
1830 		wake_up(&cprc->ckpt_wait_queue);
1831 
1832 	if (cprc->f2fs_issue_ckpt)
1833 		wait_for_completion(&req.wait);
1834 	else
1835 		flush_remained_ckpt_reqs(sbi, &req);
1836 
1837 	return req.ret;
1838 }
1839 
f2fs_start_ckpt_thread(struct f2fs_sb_info * sbi)1840 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1841 {
1842 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1843 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1844 
1845 	if (cprc->f2fs_issue_ckpt)
1846 		return 0;
1847 
1848 	cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1849 			"f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1850 	if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1851 		cprc->f2fs_issue_ckpt = NULL;
1852 		return -ENOMEM;
1853 	}
1854 
1855 	set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1856 
1857 	return 0;
1858 }
1859 
f2fs_stop_ckpt_thread(struct f2fs_sb_info * sbi)1860 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1861 {
1862 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1863 
1864 	if (cprc->f2fs_issue_ckpt) {
1865 		struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1866 
1867 		cprc->f2fs_issue_ckpt = NULL;
1868 		kthread_stop(ckpt_task);
1869 
1870 		flush_remained_ckpt_reqs(sbi, NULL);
1871 	}
1872 }
1873 
f2fs_init_ckpt_req_control(struct f2fs_sb_info * sbi)1874 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1875 {
1876 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1877 
1878 	atomic_set(&cprc->issued_ckpt, 0);
1879 	atomic_set(&cprc->total_ckpt, 0);
1880 	atomic_set(&cprc->queued_ckpt, 0);
1881 	cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1882 	init_waitqueue_head(&cprc->ckpt_wait_queue);
1883 	init_llist_head(&cprc->issue_list);
1884 	spin_lock_init(&cprc->stat_lock);
1885 }
1886