1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
5  *
6  * User extended attribute client side cache functions.
7  *
8  * Author: Frank van der Linden <fllinden@amazon.com>
9  */
10 #include <linux/errno.h>
11 #include <linux/nfs_fs.h>
12 #include <linux/hashtable.h>
13 #include <linux/refcount.h>
14 #include <uapi/linux/xattr.h>
15 
16 #include "nfs4_fs.h"
17 #include "internal.h"
18 
19 /*
20  * User extended attributes client side caching is implemented by having
21  * a cache structure attached to NFS inodes. This structure is allocated
22  * when needed, and freed when the cache is zapped.
23  *
24  * The cache structure contains as hash table of entries, and a pointer
25  * to a special-cased entry for the listxattr cache.
26  *
27  * Accessing and allocating / freeing the caches is done via reference
28  * counting. The cache entries use a similar refcounting scheme.
29  *
30  * This makes freeing a cache, both from the shrinker and from the
31  * zap cache path, easy. It also means that, in current use cases,
32  * the large majority of inodes will not waste any memory, as they
33  * will never have any user extended attributes assigned to them.
34  *
35  * Attribute entries are hashed in to a simple hash table. They are
36  * also part of an LRU.
37  *
38  * There are three shrinkers.
39  *
40  * Two shrinkers deal with the cache entries themselves: one for
41  * large entries (> PAGE_SIZE), and one for smaller entries. The
42  * shrinker for the larger entries works more aggressively than
43  * those for the smaller entries.
44  *
45  * The other shrinker frees the cache structures themselves.
46  */
47 
48 /*
49  * 64 buckets is a good default. There is likely no reasonable
50  * workload that uses more than even 64 user extended attributes.
51  * You can certainly add a lot more - but you get what you ask for
52  * in those circumstances.
53  */
54 #define NFS4_XATTR_HASH_SIZE	64
55 
56 #define NFSDBG_FACILITY	NFSDBG_XATTRCACHE
57 
58 struct nfs4_xattr_cache;
59 struct nfs4_xattr_entry;
60 
61 struct nfs4_xattr_bucket {
62 	spinlock_t lock;
63 	struct hlist_head hlist;
64 	struct nfs4_xattr_cache *cache;
65 	bool draining;
66 };
67 
68 struct nfs4_xattr_cache {
69 	struct kref ref;
70 	struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE];
71 	struct list_head lru;
72 	struct list_head dispose;
73 	atomic_long_t nent;
74 	spinlock_t listxattr_lock;
75 	struct inode *inode;
76 	struct nfs4_xattr_entry *listxattr;
77 };
78 
79 struct nfs4_xattr_entry {
80 	struct kref ref;
81 	struct hlist_node hnode;
82 	struct list_head lru;
83 	struct list_head dispose;
84 	char *xattr_name;
85 	void *xattr_value;
86 	size_t xattr_size;
87 	struct nfs4_xattr_bucket *bucket;
88 	uint32_t flags;
89 };
90 
91 #define	NFS4_XATTR_ENTRY_EXTVAL	0x0001
92 
93 /*
94  * LRU list of NFS inodes that have xattr caches.
95  */
96 static struct list_lru nfs4_xattr_cache_lru;
97 static struct list_lru nfs4_xattr_entry_lru;
98 static struct list_lru nfs4_xattr_large_entry_lru;
99 
100 static struct kmem_cache *nfs4_xattr_cache_cachep;
101 
102 /*
103  * Hashing helper functions.
104  */
105 static void
nfs4_xattr_hash_init(struct nfs4_xattr_cache * cache)106 nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
107 {
108 	unsigned int i;
109 
110 	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
111 		INIT_HLIST_HEAD(&cache->buckets[i].hlist);
112 		spin_lock_init(&cache->buckets[i].lock);
113 		cache->buckets[i].cache = cache;
114 		cache->buckets[i].draining = false;
115 	}
116 }
117 
118 /*
119  * Locking order:
120  * 1. inode i_lock or bucket lock
121  * 2. list_lru lock (taken by list_lru_* functions)
122  */
123 
124 /*
125  * Wrapper functions to add a cache entry to the right LRU.
126  */
127 static bool
nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry * entry)128 nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
129 {
130 	struct list_lru *lru;
131 
132 	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
133 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
134 
135 	return list_lru_add(lru, &entry->lru);
136 }
137 
138 static bool
nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry * entry)139 nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
140 {
141 	struct list_lru *lru;
142 
143 	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
144 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
145 
146 	return list_lru_del(lru, &entry->lru);
147 }
148 
149 /*
150  * This function allocates cache entries. They are the normal
151  * extended attribute name/value pairs, but may also be a listxattr
152  * cache. Those allocations use the same entry so that they can be
153  * treated as one by the memory shrinker.
154  *
155  * xattr cache entries are allocated together with names. If the
156  * value fits in to one page with the entry structure and the name,
157  * it will also be part of the same allocation (kmalloc). This is
158  * expected to be the vast majority of cases. Larger allocations
159  * have a value pointer that is allocated separately by kvmalloc.
160  *
161  * Parameters:
162  *
163  * @name:  Name of the extended attribute. NULL for listxattr cache
164  *         entry.
165  * @value: Value of attribute, or listxattr cache. NULL if the
166  *         value is to be copied from pages instead.
167  * @pages: Pages to copy the value from, if not NULL. Passed in to
168  *	   make it easier to copy the value after an RPC, even if
169  *	   the value will not be passed up to application (e.g.
170  *	   for a 'query' getxattr with NULL buffer).
171  * @len:   Length of the value. Can be 0 for zero-length attributes.
172  *         @value and @pages will be NULL if @len is 0.
173  */
174 static struct nfs4_xattr_entry *
nfs4_xattr_alloc_entry(const char * name,const void * value,struct page ** pages,size_t len)175 nfs4_xattr_alloc_entry(const char *name, const void *value,
176 		       struct page **pages, size_t len)
177 {
178 	struct nfs4_xattr_entry *entry;
179 	void *valp;
180 	char *namep;
181 	size_t alloclen, slen;
182 	char *buf;
183 	uint32_t flags;
184 
185 	BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) +
186 	    XATTR_NAME_MAX + 1 > PAGE_SIZE);
187 
188 	alloclen = sizeof(struct nfs4_xattr_entry);
189 	if (name != NULL) {
190 		slen = strlen(name) + 1;
191 		alloclen += slen;
192 	} else
193 		slen = 0;
194 
195 	if (alloclen + len <= PAGE_SIZE) {
196 		alloclen += len;
197 		flags = 0;
198 	} else {
199 		flags = NFS4_XATTR_ENTRY_EXTVAL;
200 	}
201 
202 	buf = kmalloc(alloclen, GFP_KERNEL_ACCOUNT | GFP_NOFS);
203 	if (buf == NULL)
204 		return NULL;
205 	entry = (struct nfs4_xattr_entry *)buf;
206 
207 	if (name != NULL) {
208 		namep = buf + sizeof(struct nfs4_xattr_entry);
209 		memcpy(namep, name, slen);
210 	} else {
211 		namep = NULL;
212 	}
213 
214 
215 	if (flags & NFS4_XATTR_ENTRY_EXTVAL) {
216 		valp = kvmalloc(len, GFP_KERNEL_ACCOUNT | GFP_NOFS);
217 		if (valp == NULL) {
218 			kfree(buf);
219 			return NULL;
220 		}
221 	} else if (len != 0) {
222 		valp = buf + sizeof(struct nfs4_xattr_entry) + slen;
223 	} else
224 		valp = NULL;
225 
226 	if (valp != NULL) {
227 		if (value != NULL)
228 			memcpy(valp, value, len);
229 		else
230 			_copy_from_pages(valp, pages, 0, len);
231 	}
232 
233 	entry->flags = flags;
234 	entry->xattr_value = valp;
235 	kref_init(&entry->ref);
236 	entry->xattr_name = namep;
237 	entry->xattr_size = len;
238 	entry->bucket = NULL;
239 	INIT_LIST_HEAD(&entry->lru);
240 	INIT_LIST_HEAD(&entry->dispose);
241 	INIT_HLIST_NODE(&entry->hnode);
242 
243 	return entry;
244 }
245 
246 static void
nfs4_xattr_free_entry(struct nfs4_xattr_entry * entry)247 nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
248 {
249 	if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL)
250 		kvfree(entry->xattr_value);
251 	kfree(entry);
252 }
253 
254 static void
nfs4_xattr_free_entry_cb(struct kref * kref)255 nfs4_xattr_free_entry_cb(struct kref *kref)
256 {
257 	struct nfs4_xattr_entry *entry;
258 
259 	entry = container_of(kref, struct nfs4_xattr_entry, ref);
260 
261 	if (WARN_ON(!list_empty(&entry->lru)))
262 		return;
263 
264 	nfs4_xattr_free_entry(entry);
265 }
266 
267 static void
nfs4_xattr_free_cache_cb(struct kref * kref)268 nfs4_xattr_free_cache_cb(struct kref *kref)
269 {
270 	struct nfs4_xattr_cache *cache;
271 	int i;
272 
273 	cache = container_of(kref, struct nfs4_xattr_cache, ref);
274 
275 	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
276 		if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist)))
277 			return;
278 		cache->buckets[i].draining = false;
279 	}
280 
281 	cache->listxattr = NULL;
282 
283 	kmem_cache_free(nfs4_xattr_cache_cachep, cache);
284 
285 }
286 
287 static struct nfs4_xattr_cache *
nfs4_xattr_alloc_cache(void)288 nfs4_xattr_alloc_cache(void)
289 {
290 	struct nfs4_xattr_cache *cache;
291 
292 	cache = kmem_cache_alloc(nfs4_xattr_cache_cachep,
293 	    GFP_KERNEL_ACCOUNT | GFP_NOFS);
294 	if (cache == NULL)
295 		return NULL;
296 
297 	kref_init(&cache->ref);
298 	atomic_long_set(&cache->nent, 0);
299 
300 	return cache;
301 }
302 
303 /*
304  * Set the listxattr cache, which is a special-cased cache entry.
305  * The special value ERR_PTR(-ESTALE) is used to indicate that
306  * the cache is being drained - this prevents a new listxattr
307  * cache from being added to what is now a stale cache.
308  */
309 static int
nfs4_xattr_set_listcache(struct nfs4_xattr_cache * cache,struct nfs4_xattr_entry * new)310 nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
311 			 struct nfs4_xattr_entry *new)
312 {
313 	struct nfs4_xattr_entry *old;
314 	int ret = 1;
315 
316 	spin_lock(&cache->listxattr_lock);
317 
318 	old = cache->listxattr;
319 
320 	if (old == ERR_PTR(-ESTALE)) {
321 		ret = 0;
322 		goto out;
323 	}
324 
325 	cache->listxattr = new;
326 	if (new != NULL && new != ERR_PTR(-ESTALE))
327 		nfs4_xattr_entry_lru_add(new);
328 
329 	if (old != NULL) {
330 		nfs4_xattr_entry_lru_del(old);
331 		kref_put(&old->ref, nfs4_xattr_free_entry_cb);
332 	}
333 out:
334 	spin_unlock(&cache->listxattr_lock);
335 
336 	return ret;
337 }
338 
339 /*
340  * Unlink a cache from its parent inode, clearing out an invalid
341  * cache. Must be called with i_lock held.
342  */
343 static struct nfs4_xattr_cache *
nfs4_xattr_cache_unlink(struct inode * inode)344 nfs4_xattr_cache_unlink(struct inode *inode)
345 {
346 	struct nfs_inode *nfsi;
347 	struct nfs4_xattr_cache *oldcache;
348 
349 	nfsi = NFS_I(inode);
350 
351 	oldcache = nfsi->xattr_cache;
352 	if (oldcache != NULL) {
353 		list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru);
354 		oldcache->inode = NULL;
355 	}
356 	nfsi->xattr_cache = NULL;
357 	nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR;
358 
359 	return oldcache;
360 
361 }
362 
363 /*
364  * Discard a cache. Called by get_cache() if there was an old,
365  * invalid cache. Can also be called from a shrinker callback.
366  *
367  * The cache is dead, it has already been unlinked from its inode,
368  * and no longer appears on the cache LRU list.
369  *
370  * Mark all buckets as draining, so that no new entries are added. This
371  * could still happen in the unlikely, but possible case that another
372  * thread had grabbed a reference before it was unlinked from the inode,
373  * and is still holding it for an add operation.
374  *
375  * Remove all entries from the LRU lists, so that there is no longer
376  * any way to 'find' this cache. Then, remove the entries from the hash
377  * table.
378  *
379  * At that point, the cache will remain empty and can be freed when the final
380  * reference drops, which is very likely the kref_put at the end of
381  * this function, or the one called immediately afterwards in the
382  * shrinker callback.
383  */
384 static void
nfs4_xattr_discard_cache(struct nfs4_xattr_cache * cache)385 nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
386 {
387 	unsigned int i;
388 	struct nfs4_xattr_entry *entry;
389 	struct nfs4_xattr_bucket *bucket;
390 	struct hlist_node *n;
391 
392 	nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE));
393 
394 	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
395 		bucket = &cache->buckets[i];
396 
397 		spin_lock(&bucket->lock);
398 		bucket->draining = true;
399 		hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) {
400 			nfs4_xattr_entry_lru_del(entry);
401 			hlist_del_init(&entry->hnode);
402 			kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
403 		}
404 		spin_unlock(&bucket->lock);
405 	}
406 
407 	atomic_long_set(&cache->nent, 0);
408 
409 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
410 }
411 
412 /*
413  * Get a referenced copy of the cache structure. Avoid doing allocs
414  * while holding i_lock. Which means that we do some optimistic allocation,
415  * and might have to free the result in rare cases.
416  *
417  * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
418  * and acts accordingly, replacing the cache when needed. For the read case
419  * (!add), this means that the caller must make sure that the cache
420  * is valid before caling this function. getxattr and listxattr call
421  * revalidate_inode to do this. The attribute cache timeout (for the
422  * non-delegated case) is expected to be dealt with in the revalidate
423  * call.
424  */
425 
426 static struct nfs4_xattr_cache *
nfs4_xattr_get_cache(struct inode * inode,int add)427 nfs4_xattr_get_cache(struct inode *inode, int add)
428 {
429 	struct nfs_inode *nfsi;
430 	struct nfs4_xattr_cache *cache, *oldcache, *newcache;
431 
432 	nfsi = NFS_I(inode);
433 
434 	cache = oldcache = NULL;
435 
436 	spin_lock(&inode->i_lock);
437 
438 	if (nfsi->cache_validity & NFS_INO_INVALID_XATTR)
439 		oldcache = nfs4_xattr_cache_unlink(inode);
440 	else
441 		cache = nfsi->xattr_cache;
442 
443 	if (cache != NULL)
444 		kref_get(&cache->ref);
445 
446 	spin_unlock(&inode->i_lock);
447 
448 	if (add && cache == NULL) {
449 		newcache = NULL;
450 
451 		cache = nfs4_xattr_alloc_cache();
452 		if (cache == NULL)
453 			goto out;
454 
455 		spin_lock(&inode->i_lock);
456 		if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) {
457 			/*
458 			 * The cache was invalidated again. Give up,
459 			 * since what we want to enter is now likely
460 			 * outdated anyway.
461 			 */
462 			spin_unlock(&inode->i_lock);
463 			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
464 			cache = NULL;
465 			goto out;
466 		}
467 
468 		/*
469 		 * Check if someone beat us to it.
470 		 */
471 		if (nfsi->xattr_cache != NULL) {
472 			newcache = nfsi->xattr_cache;
473 			kref_get(&newcache->ref);
474 		} else {
475 			kref_get(&cache->ref);
476 			nfsi->xattr_cache = cache;
477 			cache->inode = inode;
478 			list_lru_add(&nfs4_xattr_cache_lru, &cache->lru);
479 		}
480 
481 		spin_unlock(&inode->i_lock);
482 
483 		/*
484 		 * If there was a race, throw away the cache we just
485 		 * allocated, and use the new one allocated by someone
486 		 * else.
487 		 */
488 		if (newcache != NULL) {
489 			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
490 			cache = newcache;
491 		}
492 	}
493 
494 out:
495 	/*
496 	 * Discard the now orphaned old cache.
497 	 */
498 	if (oldcache != NULL)
499 		nfs4_xattr_discard_cache(oldcache);
500 
501 	return cache;
502 }
503 
504 static inline struct nfs4_xattr_bucket *
nfs4_xattr_hash_bucket(struct nfs4_xattr_cache * cache,const char * name)505 nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
506 {
507 	return &cache->buckets[jhash(name, strlen(name), 0) &
508 	    (ARRAY_SIZE(cache->buckets) - 1)];
509 }
510 
511 static struct nfs4_xattr_entry *
nfs4_xattr_get_entry(struct nfs4_xattr_bucket * bucket,const char * name)512 nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
513 {
514 	struct nfs4_xattr_entry *entry;
515 
516 	entry = NULL;
517 
518 	hlist_for_each_entry(entry, &bucket->hlist, hnode) {
519 		if (!strcmp(entry->xattr_name, name))
520 			break;
521 	}
522 
523 	return entry;
524 }
525 
526 static int
nfs4_xattr_hash_add(struct nfs4_xattr_cache * cache,struct nfs4_xattr_entry * entry)527 nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
528 		    struct nfs4_xattr_entry *entry)
529 {
530 	struct nfs4_xattr_bucket *bucket;
531 	struct nfs4_xattr_entry *oldentry = NULL;
532 	int ret = 1;
533 
534 	bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name);
535 	entry->bucket = bucket;
536 
537 	spin_lock(&bucket->lock);
538 
539 	if (bucket->draining) {
540 		ret = 0;
541 		goto out;
542 	}
543 
544 	oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name);
545 	if (oldentry != NULL) {
546 		hlist_del_init(&oldentry->hnode);
547 		nfs4_xattr_entry_lru_del(oldentry);
548 	} else {
549 		atomic_long_inc(&cache->nent);
550 	}
551 
552 	hlist_add_head(&entry->hnode, &bucket->hlist);
553 	nfs4_xattr_entry_lru_add(entry);
554 
555 out:
556 	spin_unlock(&bucket->lock);
557 
558 	if (oldentry != NULL)
559 		kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb);
560 
561 	return ret;
562 }
563 
564 static void
nfs4_xattr_hash_remove(struct nfs4_xattr_cache * cache,const char * name)565 nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
566 {
567 	struct nfs4_xattr_bucket *bucket;
568 	struct nfs4_xattr_entry *entry;
569 
570 	bucket = nfs4_xattr_hash_bucket(cache, name);
571 
572 	spin_lock(&bucket->lock);
573 
574 	entry = nfs4_xattr_get_entry(bucket, name);
575 	if (entry != NULL) {
576 		hlist_del_init(&entry->hnode);
577 		nfs4_xattr_entry_lru_del(entry);
578 		atomic_long_dec(&cache->nent);
579 	}
580 
581 	spin_unlock(&bucket->lock);
582 
583 	if (entry != NULL)
584 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
585 }
586 
587 static struct nfs4_xattr_entry *
nfs4_xattr_hash_find(struct nfs4_xattr_cache * cache,const char * name)588 nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
589 {
590 	struct nfs4_xattr_bucket *bucket;
591 	struct nfs4_xattr_entry *entry;
592 
593 	bucket = nfs4_xattr_hash_bucket(cache, name);
594 
595 	spin_lock(&bucket->lock);
596 
597 	entry = nfs4_xattr_get_entry(bucket, name);
598 	if (entry != NULL)
599 		kref_get(&entry->ref);
600 
601 	spin_unlock(&bucket->lock);
602 
603 	return entry;
604 }
605 
606 /*
607  * Entry point to retrieve an entry from the cache.
608  */
nfs4_xattr_cache_get(struct inode * inode,const char * name,char * buf,ssize_t buflen)609 ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
610 			 ssize_t buflen)
611 {
612 	struct nfs4_xattr_cache *cache;
613 	struct nfs4_xattr_entry *entry;
614 	ssize_t ret;
615 
616 	cache = nfs4_xattr_get_cache(inode, 0);
617 	if (cache == NULL)
618 		return -ENOENT;
619 
620 	ret = 0;
621 	entry = nfs4_xattr_hash_find(cache, name);
622 
623 	if (entry != NULL) {
624 		dprintk("%s: cache hit '%s', len %lu\n", __func__,
625 		    entry->xattr_name, (unsigned long)entry->xattr_size);
626 		if (buflen == 0) {
627 			/* Length probe only */
628 			ret = entry->xattr_size;
629 		} else if (buflen < entry->xattr_size)
630 			ret = -ERANGE;
631 		else {
632 			memcpy(buf, entry->xattr_value, entry->xattr_size);
633 			ret = entry->xattr_size;
634 		}
635 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
636 	} else {
637 		dprintk("%s: cache miss '%s'\n", __func__, name);
638 		ret = -ENOENT;
639 	}
640 
641 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
642 
643 	return ret;
644 }
645 
646 /*
647  * Retrieve a cached list of xattrs from the cache.
648  */
nfs4_xattr_cache_list(struct inode * inode,char * buf,ssize_t buflen)649 ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
650 {
651 	struct nfs4_xattr_cache *cache;
652 	struct nfs4_xattr_entry *entry;
653 	ssize_t ret;
654 
655 	cache = nfs4_xattr_get_cache(inode, 0);
656 	if (cache == NULL)
657 		return -ENOENT;
658 
659 	spin_lock(&cache->listxattr_lock);
660 
661 	entry = cache->listxattr;
662 
663 	if (entry != NULL && entry != ERR_PTR(-ESTALE)) {
664 		if (buflen == 0) {
665 			/* Length probe only */
666 			ret = entry->xattr_size;
667 		} else if (entry->xattr_size > buflen)
668 			ret = -ERANGE;
669 		else {
670 			memcpy(buf, entry->xattr_value, entry->xattr_size);
671 			ret = entry->xattr_size;
672 		}
673 	} else {
674 		ret = -ENOENT;
675 	}
676 
677 	spin_unlock(&cache->listxattr_lock);
678 
679 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
680 
681 	return ret;
682 }
683 
684 /*
685  * Add an xattr to the cache.
686  *
687  * This also invalidates the xattr list cache.
688  */
nfs4_xattr_cache_add(struct inode * inode,const char * name,const char * buf,struct page ** pages,ssize_t buflen)689 void nfs4_xattr_cache_add(struct inode *inode, const char *name,
690 			  const char *buf, struct page **pages, ssize_t buflen)
691 {
692 	struct nfs4_xattr_cache *cache;
693 	struct nfs4_xattr_entry *entry;
694 
695 	dprintk("%s: add '%s' len %lu\n", __func__,
696 	    name, (unsigned long)buflen);
697 
698 	cache = nfs4_xattr_get_cache(inode, 1);
699 	if (cache == NULL)
700 		return;
701 
702 	entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen);
703 	if (entry == NULL)
704 		goto out;
705 
706 	(void)nfs4_xattr_set_listcache(cache, NULL);
707 
708 	if (!nfs4_xattr_hash_add(cache, entry))
709 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
710 
711 out:
712 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
713 }
714 
715 
716 /*
717  * Remove an xattr from the cache.
718  *
719  * This also invalidates the xattr list cache.
720  */
nfs4_xattr_cache_remove(struct inode * inode,const char * name)721 void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
722 {
723 	struct nfs4_xattr_cache *cache;
724 
725 	dprintk("%s: remove '%s'\n", __func__, name);
726 
727 	cache = nfs4_xattr_get_cache(inode, 0);
728 	if (cache == NULL)
729 		return;
730 
731 	(void)nfs4_xattr_set_listcache(cache, NULL);
732 	nfs4_xattr_hash_remove(cache, name);
733 
734 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
735 }
736 
737 /*
738  * Cache listxattr output, replacing any possible old one.
739  */
nfs4_xattr_cache_set_list(struct inode * inode,const char * buf,ssize_t buflen)740 void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
741 			       ssize_t buflen)
742 {
743 	struct nfs4_xattr_cache *cache;
744 	struct nfs4_xattr_entry *entry;
745 
746 	cache = nfs4_xattr_get_cache(inode, 1);
747 	if (cache == NULL)
748 		return;
749 
750 	entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen);
751 	if (entry == NULL)
752 		goto out;
753 
754 	/*
755 	 * This is just there to be able to get to bucket->cache,
756 	 * which is obviously the same for all buckets, so just
757 	 * use bucket 0.
758 	 */
759 	entry->bucket = &cache->buckets[0];
760 
761 	if (!nfs4_xattr_set_listcache(cache, entry))
762 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
763 
764 out:
765 	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
766 }
767 
768 /*
769  * Zap the entire cache. Called when an inode is evicted.
770  */
nfs4_xattr_cache_zap(struct inode * inode)771 void nfs4_xattr_cache_zap(struct inode *inode)
772 {
773 	struct nfs4_xattr_cache *oldcache;
774 
775 	spin_lock(&inode->i_lock);
776 	oldcache = nfs4_xattr_cache_unlink(inode);
777 	spin_unlock(&inode->i_lock);
778 
779 	if (oldcache)
780 		nfs4_xattr_discard_cache(oldcache);
781 }
782 
783 /*
784  * The entry LRU is shrunk more aggressively than the cache LRU,
785  * by settings @seeks to 1.
786  *
787  * Cache structures are freed only when they've become empty, after
788  * pruning all but one entry.
789  */
790 
791 static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
792 					    struct shrink_control *sc);
793 static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
794 					    struct shrink_control *sc);
795 static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
796 					   struct shrink_control *sc);
797 static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
798 					   struct shrink_control *sc);
799 
800 static struct shrinker nfs4_xattr_cache_shrinker = {
801 	.count_objects	= nfs4_xattr_cache_count,
802 	.scan_objects	= nfs4_xattr_cache_scan,
803 	.seeks		= DEFAULT_SEEKS,
804 	.flags		= SHRINKER_MEMCG_AWARE,
805 };
806 
807 static struct shrinker nfs4_xattr_entry_shrinker = {
808 	.count_objects	= nfs4_xattr_entry_count,
809 	.scan_objects	= nfs4_xattr_entry_scan,
810 	.seeks		= DEFAULT_SEEKS,
811 	.batch		= 512,
812 	.flags		= SHRINKER_MEMCG_AWARE,
813 };
814 
815 static struct shrinker nfs4_xattr_large_entry_shrinker = {
816 	.count_objects	= nfs4_xattr_entry_count,
817 	.scan_objects	= nfs4_xattr_entry_scan,
818 	.seeks		= 1,
819 	.batch		= 512,
820 	.flags		= SHRINKER_MEMCG_AWARE,
821 };
822 
823 static enum lru_status
cache_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)824 cache_lru_isolate(struct list_head *item,
825 	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
826 {
827 	struct list_head *dispose = arg;
828 	struct inode *inode;
829 	struct nfs4_xattr_cache *cache = container_of(item,
830 	    struct nfs4_xattr_cache, lru);
831 
832 	if (atomic_long_read(&cache->nent) > 1)
833 		return LRU_SKIP;
834 
835 	/*
836 	 * If a cache structure is on the LRU list, we know that
837 	 * its inode is valid. Try to lock it to break the link.
838 	 * Since we're inverting the lock order here, only try.
839 	 */
840 	inode = cache->inode;
841 
842 	if (!spin_trylock(&inode->i_lock))
843 		return LRU_SKIP;
844 
845 	kref_get(&cache->ref);
846 
847 	cache->inode = NULL;
848 	NFS_I(inode)->xattr_cache = NULL;
849 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR;
850 	list_lru_isolate(lru, &cache->lru);
851 
852 	spin_unlock(&inode->i_lock);
853 
854 	list_add_tail(&cache->dispose, dispose);
855 	return LRU_REMOVED;
856 }
857 
858 static unsigned long
nfs4_xattr_cache_scan(struct shrinker * shrink,struct shrink_control * sc)859 nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
860 {
861 	LIST_HEAD(dispose);
862 	unsigned long freed;
863 	struct nfs4_xattr_cache *cache;
864 
865 	freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc,
866 	    cache_lru_isolate, &dispose);
867 	while (!list_empty(&dispose)) {
868 		cache = list_first_entry(&dispose, struct nfs4_xattr_cache,
869 		    dispose);
870 		list_del_init(&cache->dispose);
871 		nfs4_xattr_discard_cache(cache);
872 		kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
873 	}
874 
875 	return freed;
876 }
877 
878 
879 static unsigned long
nfs4_xattr_cache_count(struct shrinker * shrink,struct shrink_control * sc)880 nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
881 {
882 	unsigned long count;
883 
884 	count = list_lru_shrink_count(&nfs4_xattr_cache_lru, sc);
885 	return vfs_pressure_ratio(count);
886 }
887 
888 static enum lru_status
entry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)889 entry_lru_isolate(struct list_head *item,
890 	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
891 {
892 	struct list_head *dispose = arg;
893 	struct nfs4_xattr_bucket *bucket;
894 	struct nfs4_xattr_cache *cache;
895 	struct nfs4_xattr_entry *entry = container_of(item,
896 	    struct nfs4_xattr_entry, lru);
897 
898 	bucket = entry->bucket;
899 	cache = bucket->cache;
900 
901 	/*
902 	 * Unhook the entry from its parent (either a cache bucket
903 	 * or a cache structure if it's a listxattr buf), so that
904 	 * it's no longer found. Then add it to the isolate list,
905 	 * to be freed later.
906 	 *
907 	 * In both cases, we're reverting lock order, so use
908 	 * trylock and skip the entry if we can't get the lock.
909 	 */
910 	if (entry->xattr_name != NULL) {
911 		/* Regular cache entry */
912 		if (!spin_trylock(&bucket->lock))
913 			return LRU_SKIP;
914 
915 		kref_get(&entry->ref);
916 
917 		hlist_del_init(&entry->hnode);
918 		atomic_long_dec(&cache->nent);
919 		list_lru_isolate(lru, &entry->lru);
920 
921 		spin_unlock(&bucket->lock);
922 	} else {
923 		/* Listxattr cache entry */
924 		if (!spin_trylock(&cache->listxattr_lock))
925 			return LRU_SKIP;
926 
927 		kref_get(&entry->ref);
928 
929 		cache->listxattr = NULL;
930 		list_lru_isolate(lru, &entry->lru);
931 
932 		spin_unlock(&cache->listxattr_lock);
933 	}
934 
935 	list_add_tail(&entry->dispose, dispose);
936 	return LRU_REMOVED;
937 }
938 
939 static unsigned long
nfs4_xattr_entry_scan(struct shrinker * shrink,struct shrink_control * sc)940 nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
941 {
942 	LIST_HEAD(dispose);
943 	unsigned long freed;
944 	struct nfs4_xattr_entry *entry;
945 	struct list_lru *lru;
946 
947 	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
948 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
949 
950 	freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose);
951 
952 	while (!list_empty(&dispose)) {
953 		entry = list_first_entry(&dispose, struct nfs4_xattr_entry,
954 		    dispose);
955 		list_del_init(&entry->dispose);
956 
957 		/*
958 		 * Drop two references: the one that we just grabbed
959 		 * in entry_lru_isolate, and the one that was set
960 		 * when the entry was first allocated.
961 		 */
962 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
963 		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
964 	}
965 
966 	return freed;
967 }
968 
969 static unsigned long
nfs4_xattr_entry_count(struct shrinker * shrink,struct shrink_control * sc)970 nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
971 {
972 	unsigned long count;
973 	struct list_lru *lru;
974 
975 	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
976 	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
977 
978 	count = list_lru_shrink_count(lru, sc);
979 	return vfs_pressure_ratio(count);
980 }
981 
982 
nfs4_xattr_cache_init_once(void * p)983 static void nfs4_xattr_cache_init_once(void *p)
984 {
985 	struct nfs4_xattr_cache *cache = (struct nfs4_xattr_cache *)p;
986 
987 	spin_lock_init(&cache->listxattr_lock);
988 	atomic_long_set(&cache->nent, 0);
989 	nfs4_xattr_hash_init(cache);
990 	cache->listxattr = NULL;
991 	INIT_LIST_HEAD(&cache->lru);
992 	INIT_LIST_HEAD(&cache->dispose);
993 }
994 
nfs4_xattr_cache_init(void)995 int __init nfs4_xattr_cache_init(void)
996 {
997 	int ret = 0;
998 
999 	nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache",
1000 	    sizeof(struct nfs4_xattr_cache), 0,
1001 	    (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1002 	    nfs4_xattr_cache_init_once);
1003 	if (nfs4_xattr_cache_cachep == NULL)
1004 		return -ENOMEM;
1005 
1006 	ret = list_lru_init_memcg(&nfs4_xattr_large_entry_lru,
1007 	    &nfs4_xattr_large_entry_shrinker);
1008 	if (ret)
1009 		goto out4;
1010 
1011 	ret = list_lru_init_memcg(&nfs4_xattr_entry_lru,
1012 	    &nfs4_xattr_entry_shrinker);
1013 	if (ret)
1014 		goto out3;
1015 
1016 	ret = list_lru_init_memcg(&nfs4_xattr_cache_lru,
1017 	    &nfs4_xattr_cache_shrinker);
1018 	if (ret)
1019 		goto out2;
1020 
1021 	ret = register_shrinker(&nfs4_xattr_cache_shrinker);
1022 	if (ret)
1023 		goto out1;
1024 
1025 	ret = register_shrinker(&nfs4_xattr_entry_shrinker);
1026 	if (ret)
1027 		goto out;
1028 
1029 	ret = register_shrinker(&nfs4_xattr_large_entry_shrinker);
1030 	if (!ret)
1031 		return 0;
1032 
1033 	unregister_shrinker(&nfs4_xattr_entry_shrinker);
1034 out:
1035 	unregister_shrinker(&nfs4_xattr_cache_shrinker);
1036 out1:
1037 	list_lru_destroy(&nfs4_xattr_cache_lru);
1038 out2:
1039 	list_lru_destroy(&nfs4_xattr_entry_lru);
1040 out3:
1041 	list_lru_destroy(&nfs4_xattr_large_entry_lru);
1042 out4:
1043 	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1044 
1045 	return ret;
1046 }
1047 
nfs4_xattr_cache_exit(void)1048 void nfs4_xattr_cache_exit(void)
1049 {
1050 	unregister_shrinker(&nfs4_xattr_large_entry_shrinker);
1051 	unregister_shrinker(&nfs4_xattr_entry_shrinker);
1052 	unregister_shrinker(&nfs4_xattr_cache_shrinker);
1053 	list_lru_destroy(&nfs4_xattr_large_entry_lru);
1054 	list_lru_destroy(&nfs4_xattr_entry_lru);
1055 	list_lru_destroy(&nfs4_xattr_cache_lru);
1056 	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1057 }
1058