1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 bool full_inums;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)127 static unsigned long shmem_default_max_blocks(void)
128 {
129 return totalram_pages() / 2;
130 }
131
shmem_default_max_inodes(void)132 static unsigned long shmem_default_max_inodes(void)
133 {
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp,
149 gfp_t gfp, struct vm_area_struct *vma,
150 struct vm_fault *vmf, vm_fault_t *fault_type);
151
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 struct page **pagep, enum sgp_type sgp)
154 {
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
SHMEM_SB(struct super_block * sb)159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 return sb->s_fs_info;
162 }
163
164 /*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
shmem_acct_size(unsigned long flags,loff_t size)170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 return (flags & VM_NORESERVE) ?
173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
shmem_unacct_size(unsigned long flags,loff_t size)176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 if (!(flags & VM_NORESERVE))
179 vm_unacct_memory(VM_ACCT(size));
180 }
181
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)182 static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184 {
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193 }
194
195 /*
196 * ... whereas tmpfs objects are accounted incrementally as
197 * pages are allocated, in order to allow large sparse files.
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
shmem_acct_block(unsigned long flags,long pages)201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
208 }
209
shmem_unacct_blocks(unsigned long flags,long pages)210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
shmem_inode_acct_block(struct inode * inode,long pages)216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233 unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236 }
237
shmem_inode_unacct_blocks(struct inode * inode,long pages)238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
vma_is_shmem(struct vm_area_struct * vma)257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
281 spin_lock(&sbinfo->stat_lock);
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
288 }
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
304 }
305 *inop = ino;
306 }
307 spin_unlock(&sbinfo->stat_lock);
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
335 }
336
337 return 0;
338 }
339
shmem_free_inode(struct super_block * sb)340 static void shmem_free_inode(struct super_block *sb)
341 {
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348 }
349
350 /**
351 * shmem_recalc_inode - recalculate the block usage of an inode
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
shmem_recalc_inode(struct inode * inode)362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 shmem_inode_unacct_blocks(inode, freed);
372 }
373 }
374
shmem_charge(struct inode * inode,long pages)375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 struct shmem_inode_info *info = SHMEM_I(inode);
378 unsigned long flags;
379
380 if (!shmem_inode_acct_block(inode, pages))
381 return false;
382
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
386 spin_lock_irqsave(&info->lock, flags);
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
390 spin_unlock_irqrestore(&info->lock, flags);
391
392 return true;
393 }
394
shmem_uncharge(struct inode * inode,long pages)395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 struct shmem_inode_info *info = SHMEM_I(inode);
398 unsigned long flags;
399
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402 spin_lock_irqsave(&info->lock, flags);
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
406 spin_unlock_irqrestore(&info->lock, flags);
407
408 shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412 * Replace item expected in xarray by a new item, while holding xa_lock.
413 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)414 static int shmem_replace_entry(struct address_space *mapping,
415 pgoff_t index, void *expected, void *replacement)
416 {
417 XA_STATE(xas, &mapping->i_pages, index);
418 void *item;
419
420 VM_BUG_ON(!expected);
421 VM_BUG_ON(!replacement);
422 item = xas_load(&xas);
423 if (item != expected)
424 return -ENOENT;
425 xas_store(&xas, replacement);
426 return 0;
427 }
428
429 /*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)436 static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438 {
439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456 #define SHMEM_HUGE_NEVER 0
457 #define SHMEM_HUGE_ALWAYS 1
458 #define SHMEM_HUGE_WITHIN_SIZE 2
459 #define SHMEM_HUGE_ADVISE 3
460
461 /*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471 #define SHMEM_HUGE_DENY (-1)
472 #define SHMEM_HUGE_FORCE (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)480 static int shmem_parse_huge(const char *str)
481 {
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)499 static const char *shmem_format_huge(int huge)
500 {
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518 }
519 #endif
520
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 LIST_HEAD(list), *pos, *next;
525 LIST_HEAD(to_remove);
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 removed++;
546 goto next;
547 }
548
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 list_move(&info->shrinklist, &to_remove);
553 removed++;
554 goto next;
555 }
556
557 list_move(&info->shrinklist, &list);
558 next:
559 if (!--batch)
560 break;
561 }
562 spin_unlock(&sbinfo->shrinklist_lock);
563
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
568 iput(inode);
569 }
570
571 list_for_each_safe(pos, next, &list) {
572 int ret;
573
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
576
577 if (nr_to_split && split >= nr_to_split)
578 goto leave;
579
580 page = find_get_page(inode->i_mapping,
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 if (!page)
583 goto drop;
584
585 /* No huge page at the end of the file: nothing to split */
586 if (!PageTransHuge(page)) {
587 put_page(page);
588 goto drop;
589 }
590
591 /*
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
594 *
595 * Waiting for the lock may lead to deadlock in the
596 * reclaim path.
597 */
598 if (!trylock_page(page)) {
599 put_page(page);
600 goto leave;
601 }
602
603 ret = split_huge_page(page);
604 unlock_page(page);
605 put_page(page);
606
607 /* If split failed leave the inode on the list */
608 if (ret)
609 goto leave;
610
611 split++;
612 drop:
613 list_del_init(&info->shrinklist);
614 removed++;
615 leave:
616 iput(inode);
617 }
618
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
623
624 return split;
625 }
626
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)627 static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
629 {
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632 if (!READ_ONCE(sbinfo->shrinklist_len))
633 return SHRINK_STOP;
634
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)638 static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
640 {
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
is_huge_enabled(struct shmem_sb_info * sbinfo)655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
660 return true;
661 return false;
662 }
663
664 /*
665 * Like add_to_page_cache_locked, but error if expected item has gone.
666 */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)667 static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
671 {
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 unsigned long i = 0;
674 unsigned long nr = compound_nr(page);
675 int error;
676
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 VM_BUG_ON(expected && PageTransHuge(page));
682
683 page_ref_add(page, nr);
684 page->mapping = mapping;
685 page->index = index;
686
687 if (!PageSwapCache(page)) {
688 error = mem_cgroup_charge(page, charge_mm, gfp);
689 if (error) {
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 }
694 goto error;
695 }
696 }
697 cgroup_throttle_swaprate(page, gfp);
698
699 do {
700 void *entry;
701 xas_lock_irq(&xas);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
706 if (xas_error(&xas))
707 goto unlock;
708 next:
709 xas_store(&xas, page);
710 if (++i < nr) {
711 xas_next(&xas);
712 goto next;
713 }
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_ALLOC);
716 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717 }
718 mapping->nrpages += nr;
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
724
725 if (xas_error(&xas)) {
726 error = xas_error(&xas);
727 goto error;
728 }
729
730 return 0;
731 error:
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
734 return error;
735 }
736
737 /*
738 * Like delete_from_page_cache, but substitutes swap for page.
739 */
shmem_delete_from_page_cache(struct page * page,void * radswap)740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 struct address_space *mapping = page->mapping;
743 int error;
744
745 VM_BUG_ON_PAGE(PageCompound(page), page);
746
747 xa_lock_irq(&mapping->i_pages);
748 error = shmem_replace_entry(mapping, page->index, page, radswap);
749 page->mapping = NULL;
750 mapping->nrpages--;
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
753 xa_unlock_irq(&mapping->i_pages);
754 put_page(page);
755 BUG_ON(error);
756 }
757
758 /*
759 * Remove swap entry from page cache, free the swap and its page cache.
760 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)761 static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
763 {
764 void *old;
765
766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 if (old != radswap)
768 return -ENOENT;
769 free_swap_and_cache(radix_to_swp_entry(radswap));
770 return 0;
771 }
772
773 /*
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
775 * given offsets are swapped out.
776 *
777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778 * as long as the inode doesn't go away and racy results are not a problem.
779 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
782 {
783 XA_STATE(xas, &mapping->i_pages, start);
784 struct page *page;
785 unsigned long swapped = 0;
786
787 rcu_read_lock();
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
790 continue;
791 if (xa_is_value(page))
792 swapped++;
793
794 if (need_resched()) {
795 xas_pause(&xas);
796 cond_resched_rcu();
797 }
798 }
799
800 rcu_read_unlock();
801
802 return swapped << PAGE_SHIFT;
803 }
804
805 /*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
808 *
809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
shmem_swap_usage(struct vm_area_struct * vma)812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
818
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
821
822 /*
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
825 * already track.
826 */
827 if (!swapped)
828 return 0;
829
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
832
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841 */
shmem_unlock_mapping(struct address_space * mapping)842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 struct pagevec pvec;
845 pgoff_t index = 0;
846
847 pagevec_init(&pvec);
848 /*
849 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 */
851 while (!mapping_unevictable(mapping)) {
852 if (!pagevec_lookup(&pvec, mapping, &index))
853 break;
854 check_move_unevictable_pages(&pvec);
855 pagevec_release(&pvec);
856 cond_resched();
857 }
858 }
859
860 /*
861 * Check whether a hole-punch or truncation needs to split a huge page,
862 * returning true if no split was required, or the split has been successful.
863 *
864 * Eviction (or truncation to 0 size) should never need to split a huge page;
865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866 * head, and then succeeded to trylock on tail.
867 *
868 * A split can only succeed when there are no additional references on the
869 * huge page: so the split below relies upon find_get_entries() having stopped
870 * when it found a subpage of the huge page, without getting further references.
871 */
shmem_punch_compound(struct page * page,pgoff_t start,pgoff_t end)872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874 if (!PageTransCompound(page))
875 return true;
876
877 /* Just proceed to delete a huge page wholly within the range punched */
878 if (PageHead(page) &&
879 page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 return true;
881
882 /* Try to split huge page, so we can truly punch the hole or truncate */
883 return split_huge_page(page) >= 0;
884 }
885
886 /*
887 * Remove range of pages and swap entries from page cache, and free them.
888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 bool unfalloc)
892 {
893 struct address_space *mapping = inode->i_mapping;
894 struct shmem_inode_info *info = SHMEM_I(inode);
895 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899 struct pagevec pvec;
900 pgoff_t indices[PAGEVEC_SIZE];
901 long nr_swaps_freed = 0;
902 pgoff_t index;
903 int i;
904
905 if (lend == -1)
906 end = -1; /* unsigned, so actually very big */
907
908 pagevec_init(&pvec);
909 index = start;
910 while (index < end && find_lock_entries(mapping, index, end - 1,
911 &pvec, indices)) {
912 for (i = 0; i < pagevec_count(&pvec); i++) {
913 struct page *page = pvec.pages[i];
914
915 index = indices[i];
916
917 if (xa_is_value(page)) {
918 if (unfalloc)
919 continue;
920 nr_swaps_freed += !shmem_free_swap(mapping,
921 index, page);
922 continue;
923 }
924 index += thp_nr_pages(page) - 1;
925
926 if (!unfalloc || !PageUptodate(page))
927 truncate_inode_page(mapping, page);
928 unlock_page(page);
929 }
930 pagevec_remove_exceptionals(&pvec);
931 pagevec_release(&pvec);
932 cond_resched();
933 index++;
934 }
935
936 if (partial_start) {
937 struct page *page = NULL;
938 shmem_getpage(inode, start - 1, &page, SGP_READ);
939 if (page) {
940 unsigned int top = PAGE_SIZE;
941 if (start > end) {
942 top = partial_end;
943 partial_end = 0;
944 }
945 zero_user_segment(page, partial_start, top);
946 set_page_dirty(page);
947 unlock_page(page);
948 put_page(page);
949 }
950 }
951 if (partial_end) {
952 struct page *page = NULL;
953 shmem_getpage(inode, end, &page, SGP_READ);
954 if (page) {
955 zero_user_segment(page, 0, partial_end);
956 set_page_dirty(page);
957 unlock_page(page);
958 put_page(page);
959 }
960 }
961 if (start >= end)
962 return;
963
964 index = start;
965 while (index < end) {
966 cond_resched();
967
968 if (!find_get_entries(mapping, index, end - 1, &pvec,
969 indices)) {
970 /* If all gone or hole-punch or unfalloc, we're done */
971 if (index == start || end != -1)
972 break;
973 /* But if truncating, restart to make sure all gone */
974 index = start;
975 continue;
976 }
977 for (i = 0; i < pagevec_count(&pvec); i++) {
978 struct page *page = pvec.pages[i];
979
980 index = indices[i];
981 if (xa_is_value(page)) {
982 if (unfalloc)
983 continue;
984 if (shmem_free_swap(mapping, index, page)) {
985 /* Swap was replaced by page: retry */
986 index--;
987 break;
988 }
989 nr_swaps_freed++;
990 continue;
991 }
992
993 lock_page(page);
994
995 if (!unfalloc || !PageUptodate(page)) {
996 if (page_mapping(page) != mapping) {
997 /* Page was replaced by swap: retry */
998 unlock_page(page);
999 index--;
1000 break;
1001 }
1002 VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 if (shmem_punch_compound(page, start, end))
1004 truncate_inode_page(mapping, page);
1005 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006 /* Wipe the page and don't get stuck */
1007 clear_highpage(page);
1008 flush_dcache_page(page);
1009 set_page_dirty(page);
1010 if (index <
1011 round_up(start, HPAGE_PMD_NR))
1012 start = index + 1;
1013 }
1014 }
1015 unlock_page(page);
1016 }
1017 pagevec_remove_exceptionals(&pvec);
1018 pagevec_release(&pvec);
1019 index++;
1020 }
1021
1022 spin_lock_irq(&info->lock);
1023 info->swapped -= nr_swaps_freed;
1024 shmem_recalc_inode(inode);
1025 spin_unlock_irq(&info->lock);
1026 }
1027
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1028 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029 {
1030 shmem_undo_range(inode, lstart, lend, false);
1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034
shmem_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1035 static int shmem_getattr(struct user_namespace *mnt_userns,
1036 const struct path *path, struct kstat *stat,
1037 u32 request_mask, unsigned int query_flags)
1038 {
1039 struct inode *inode = path->dentry->d_inode;
1040 struct shmem_inode_info *info = SHMEM_I(inode);
1041 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042
1043 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044 spin_lock_irq(&info->lock);
1045 shmem_recalc_inode(inode);
1046 spin_unlock_irq(&info->lock);
1047 }
1048 generic_fillattr(&init_user_ns, inode, stat);
1049
1050 if (is_huge_enabled(sb_info))
1051 stat->blksize = HPAGE_PMD_SIZE;
1052
1053 return 0;
1054 }
1055
shmem_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)1056 static int shmem_setattr(struct user_namespace *mnt_userns,
1057 struct dentry *dentry, struct iattr *attr)
1058 {
1059 struct inode *inode = d_inode(dentry);
1060 struct shmem_inode_info *info = SHMEM_I(inode);
1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062 int error;
1063
1064 error = setattr_prepare(&init_user_ns, dentry, attr);
1065 if (error)
1066 return error;
1067
1068 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 loff_t oldsize = inode->i_size;
1070 loff_t newsize = attr->ia_size;
1071
1072 /* protected by i_mutex */
1073 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 return -EPERM;
1076
1077 if (newsize != oldsize) {
1078 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 oldsize, newsize);
1080 if (error)
1081 return error;
1082 i_size_write(inode, newsize);
1083 inode->i_ctime = inode->i_mtime = current_time(inode);
1084 }
1085 if (newsize <= oldsize) {
1086 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087 if (oldsize > holebegin)
1088 unmap_mapping_range(inode->i_mapping,
1089 holebegin, 0, 1);
1090 if (info->alloced)
1091 shmem_truncate_range(inode,
1092 newsize, (loff_t)-1);
1093 /* unmap again to remove racily COWed private pages */
1094 if (oldsize > holebegin)
1095 unmap_mapping_range(inode->i_mapping,
1096 holebegin, 0, 1);
1097
1098 /*
1099 * Part of the huge page can be beyond i_size: subject
1100 * to shrink under memory pressure.
1101 */
1102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103 spin_lock(&sbinfo->shrinklist_lock);
1104 /*
1105 * _careful to defend against unlocked access to
1106 * ->shrink_list in shmem_unused_huge_shrink()
1107 */
1108 if (list_empty_careful(&info->shrinklist)) {
1109 list_add_tail(&info->shrinklist,
1110 &sbinfo->shrinklist);
1111 sbinfo->shrinklist_len++;
1112 }
1113 spin_unlock(&sbinfo->shrinklist_lock);
1114 }
1115 }
1116 }
1117
1118 setattr_copy(&init_user_ns, inode, attr);
1119 if (attr->ia_valid & ATTR_MODE)
1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 return error;
1122 }
1123
shmem_evict_inode(struct inode * inode)1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 struct shmem_inode_info *info = SHMEM_I(inode);
1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129 if (shmem_mapping(inode->i_mapping)) {
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
1132 shmem_truncate_range(inode, 0, (loff_t)-1);
1133 if (!list_empty(&info->shrinklist)) {
1134 spin_lock(&sbinfo->shrinklist_lock);
1135 if (!list_empty(&info->shrinklist)) {
1136 list_del_init(&info->shrinklist);
1137 sbinfo->shrinklist_len--;
1138 }
1139 spin_unlock(&sbinfo->shrinklist_lock);
1140 }
1141 while (!list_empty(&info->swaplist)) {
1142 /* Wait while shmem_unuse() is scanning this inode... */
1143 wait_var_event(&info->stop_eviction,
1144 !atomic_read(&info->stop_eviction));
1145 mutex_lock(&shmem_swaplist_mutex);
1146 /* ...but beware of the race if we peeked too early */
1147 if (!atomic_read(&info->stop_eviction))
1148 list_del_init(&info->swaplist);
1149 mutex_unlock(&shmem_swaplist_mutex);
1150 }
1151 }
1152
1153 simple_xattrs_free(&info->xattrs);
1154 WARN_ON(inode->i_blocks);
1155 shmem_free_inode(inode->i_sb);
1156 clear_inode(inode);
1157 }
1158
1159 extern struct swap_info_struct *swap_info[];
1160
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices,unsigned int type,bool frontswap)1161 static int shmem_find_swap_entries(struct address_space *mapping,
1162 pgoff_t start, unsigned int nr_entries,
1163 struct page **entries, pgoff_t *indices,
1164 unsigned int type, bool frontswap)
1165 {
1166 XA_STATE(xas, &mapping->i_pages, start);
1167 struct page *page;
1168 swp_entry_t entry;
1169 unsigned int ret = 0;
1170
1171 if (!nr_entries)
1172 return 0;
1173
1174 rcu_read_lock();
1175 xas_for_each(&xas, page, ULONG_MAX) {
1176 if (xas_retry(&xas, page))
1177 continue;
1178
1179 if (!xa_is_value(page))
1180 continue;
1181
1182 entry = radix_to_swp_entry(page);
1183 if (swp_type(entry) != type)
1184 continue;
1185 if (frontswap &&
1186 !frontswap_test(swap_info[type], swp_offset(entry)))
1187 continue;
1188
1189 indices[ret] = xas.xa_index;
1190 entries[ret] = page;
1191
1192 if (need_resched()) {
1193 xas_pause(&xas);
1194 cond_resched_rcu();
1195 }
1196 if (++ret == nr_entries)
1197 break;
1198 }
1199 rcu_read_unlock();
1200
1201 return ret;
1202 }
1203
1204 /*
1205 * Move the swapped pages for an inode to page cache. Returns the count
1206 * of pages swapped in, or the error in case of failure.
1207 */
shmem_unuse_swap_entries(struct inode * inode,struct pagevec pvec,pgoff_t * indices)1208 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 pgoff_t *indices)
1210 {
1211 int i = 0;
1212 int ret = 0;
1213 int error = 0;
1214 struct address_space *mapping = inode->i_mapping;
1215
1216 for (i = 0; i < pvec.nr; i++) {
1217 struct page *page = pvec.pages[i];
1218
1219 if (!xa_is_value(page))
1220 continue;
1221 error = shmem_swapin_page(inode, indices[i],
1222 &page, SGP_CACHE,
1223 mapping_gfp_mask(mapping),
1224 NULL, NULL);
1225 if (error == 0) {
1226 unlock_page(page);
1227 put_page(page);
1228 ret++;
1229 }
1230 if (error == -ENOMEM)
1231 break;
1232 error = 0;
1233 }
1234 return error ? error : ret;
1235 }
1236
1237 /*
1238 * If swap found in inode, free it and move page from swapcache to filecache.
1239 */
shmem_unuse_inode(struct inode * inode,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1240 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 bool frontswap, unsigned long *fs_pages_to_unuse)
1242 {
1243 struct address_space *mapping = inode->i_mapping;
1244 pgoff_t start = 0;
1245 struct pagevec pvec;
1246 pgoff_t indices[PAGEVEC_SIZE];
1247 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 int ret = 0;
1249
1250 pagevec_init(&pvec);
1251 do {
1252 unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 nr_entries = *fs_pages_to_unuse;
1256
1257 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 pvec.pages, indices,
1259 type, frontswap);
1260 if (pvec.nr == 0) {
1261 ret = 0;
1262 break;
1263 }
1264
1265 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 if (ret < 0)
1267 break;
1268
1269 if (frontswap_partial) {
1270 *fs_pages_to_unuse -= ret;
1271 if (*fs_pages_to_unuse == 0) {
1272 ret = FRONTSWAP_PAGES_UNUSED;
1273 break;
1274 }
1275 }
1276
1277 start = indices[pvec.nr - 1];
1278 } while (true);
1279
1280 return ret;
1281 }
1282
1283 /*
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1287 */
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1288 int shmem_unuse(unsigned int type, bool frontswap,
1289 unsigned long *fs_pages_to_unuse)
1290 {
1291 struct shmem_inode_info *info, *next;
1292 int error = 0;
1293
1294 if (list_empty(&shmem_swaplist))
1295 return 0;
1296
1297 mutex_lock(&shmem_swaplist_mutex);
1298 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 if (!info->swapped) {
1300 list_del_init(&info->swaplist);
1301 continue;
1302 }
1303 /*
1304 * Drop the swaplist mutex while searching the inode for swap;
1305 * but before doing so, make sure shmem_evict_inode() will not
1306 * remove placeholder inode from swaplist, nor let it be freed
1307 * (igrab() would protect from unlink, but not from unmount).
1308 */
1309 atomic_inc(&info->stop_eviction);
1310 mutex_unlock(&shmem_swaplist_mutex);
1311
1312 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313 fs_pages_to_unuse);
1314 cond_resched();
1315
1316 mutex_lock(&shmem_swaplist_mutex);
1317 next = list_next_entry(info, swaplist);
1318 if (!info->swapped)
1319 list_del_init(&info->swaplist);
1320 if (atomic_dec_and_test(&info->stop_eviction))
1321 wake_up_var(&info->stop_eviction);
1322 if (error)
1323 break;
1324 }
1325 mutex_unlock(&shmem_swaplist_mutex);
1326
1327 return error;
1328 }
1329
1330 /*
1331 * Move the page from the page cache to the swap cache.
1332 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1333 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334 {
1335 struct shmem_inode_info *info;
1336 struct address_space *mapping;
1337 struct inode *inode;
1338 swp_entry_t swap;
1339 pgoff_t index;
1340
1341 VM_BUG_ON_PAGE(PageCompound(page), page);
1342 BUG_ON(!PageLocked(page));
1343 mapping = page->mapping;
1344 index = page->index;
1345 inode = mapping->host;
1346 info = SHMEM_I(inode);
1347 if (info->flags & VM_LOCKED)
1348 goto redirty;
1349 if (!total_swap_pages)
1350 goto redirty;
1351
1352 /*
1353 * Our capabilities prevent regular writeback or sync from ever calling
1354 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 * its underlying filesystem, in which case tmpfs should write out to
1356 * swap only in response to memory pressure, and not for the writeback
1357 * threads or sync.
1358 */
1359 if (!wbc->for_reclaim) {
1360 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1361 goto redirty;
1362 }
1363
1364 /*
1365 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 * value into swapfile.c, the only way we can correctly account for a
1367 * fallocated page arriving here is now to initialize it and write it.
1368 *
1369 * That's okay for a page already fallocated earlier, but if we have
1370 * not yet completed the fallocation, then (a) we want to keep track
1371 * of this page in case we have to undo it, and (b) it may not be a
1372 * good idea to continue anyway, once we're pushing into swap. So
1373 * reactivate the page, and let shmem_fallocate() quit when too many.
1374 */
1375 if (!PageUptodate(page)) {
1376 if (inode->i_private) {
1377 struct shmem_falloc *shmem_falloc;
1378 spin_lock(&inode->i_lock);
1379 shmem_falloc = inode->i_private;
1380 if (shmem_falloc &&
1381 !shmem_falloc->waitq &&
1382 index >= shmem_falloc->start &&
1383 index < shmem_falloc->next)
1384 shmem_falloc->nr_unswapped++;
1385 else
1386 shmem_falloc = NULL;
1387 spin_unlock(&inode->i_lock);
1388 if (shmem_falloc)
1389 goto redirty;
1390 }
1391 clear_highpage(page);
1392 flush_dcache_page(page);
1393 SetPageUptodate(page);
1394 }
1395
1396 swap = get_swap_page(page);
1397 if (!swap.val)
1398 goto redirty;
1399
1400 /*
1401 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402 * if it's not already there. Do it now before the page is
1403 * moved to swap cache, when its pagelock no longer protects
1404 * the inode from eviction. But don't unlock the mutex until
1405 * we've incremented swapped, because shmem_unuse_inode() will
1406 * prune a !swapped inode from the swaplist under this mutex.
1407 */
1408 mutex_lock(&shmem_swaplist_mutex);
1409 if (list_empty(&info->swaplist))
1410 list_add(&info->swaplist, &shmem_swaplist);
1411
1412 if (add_to_swap_cache(page, swap,
1413 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 NULL) == 0) {
1415 spin_lock_irq(&info->lock);
1416 shmem_recalc_inode(inode);
1417 info->swapped++;
1418 spin_unlock_irq(&info->lock);
1419
1420 swap_shmem_alloc(swap);
1421 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
1423 mutex_unlock(&shmem_swaplist_mutex);
1424 BUG_ON(page_mapped(page));
1425 swap_writepage(page, wbc);
1426 return 0;
1427 }
1428
1429 mutex_unlock(&shmem_swaplist_mutex);
1430 put_swap_page(page, swap);
1431 redirty:
1432 set_page_dirty(page);
1433 if (wbc->for_reclaim)
1434 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1435 unlock_page(page);
1436 return 0;
1437 }
1438
1439 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1440 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441 {
1442 char buffer[64];
1443
1444 if (!mpol || mpol->mode == MPOL_DEFAULT)
1445 return; /* show nothing */
1446
1447 mpol_to_str(buffer, sizeof(buffer), mpol);
1448
1449 seq_printf(seq, ",mpol=%s", buffer);
1450 }
1451
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1452 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453 {
1454 struct mempolicy *mpol = NULL;
1455 if (sbinfo->mpol) {
1456 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1457 mpol = sbinfo->mpol;
1458 mpol_get(mpol);
1459 spin_unlock(&sbinfo->stat_lock);
1460 }
1461 return mpol;
1462 }
1463 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1464 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1467 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468 {
1469 return NULL;
1470 }
1471 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472 #ifndef CONFIG_NUMA
1473 #define vm_policy vm_private_data
1474 #endif
1475
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1476 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 /* Create a pseudo vma that just contains the policy */
1480 vma_init(vma, NULL);
1481 /* Bias interleave by inode number to distribute better across nodes */
1482 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484 }
1485
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1486 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487 {
1488 /* Drop reference taken by mpol_shared_policy_lookup() */
1489 mpol_cond_put(vma->vm_policy);
1490 }
1491
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1492 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 struct vm_area_struct pvma;
1496 struct page *page;
1497 struct vm_fault vmf = {
1498 .vma = &pvma,
1499 };
1500
1501 shmem_pseudo_vma_init(&pvma, info, index);
1502 page = swap_cluster_readahead(swap, gfp, &vmf);
1503 shmem_pseudo_vma_destroy(&pvma);
1504
1505 return page;
1506 }
1507
1508 /*
1509 * Make sure huge_gfp is always more limited than limit_gfp.
1510 * Some of the flags set permissions, while others set limitations.
1511 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513 {
1514 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519 /* Allow allocations only from the originally specified zones. */
1520 result |= zoneflags;
1521
1522 /*
1523 * Minimize the result gfp by taking the union with the deny flags,
1524 * and the intersection of the allow flags.
1525 */
1526 result |= (limit_gfp & denyflags);
1527 result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529 return result;
1530 }
1531
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 struct shmem_inode_info *info, pgoff_t index)
1534 {
1535 struct vm_area_struct pvma;
1536 struct address_space *mapping = info->vfs_inode.i_mapping;
1537 pgoff_t hindex;
1538 struct page *page;
1539
1540 hindex = round_down(index, HPAGE_PMD_NR);
1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 XA_PRESENT))
1543 return NULL;
1544
1545 shmem_pseudo_vma_init(&pvma, info, hindex);
1546 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 true);
1548 shmem_pseudo_vma_destroy(&pvma);
1549 if (page)
1550 prep_transhuge_page(page);
1551 else
1552 count_vm_event(THP_FILE_FALLBACK);
1553 return page;
1554 }
1555
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557 struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 struct vm_area_struct pvma;
1560 struct page *page;
1561
1562 shmem_pseudo_vma_init(&pvma, info, index);
1563 page = alloc_page_vma(gfp, &pvma, 0);
1564 shmem_pseudo_vma_destroy(&pvma);
1565
1566 return page;
1567 }
1568
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570 struct inode *inode,
1571 pgoff_t index, bool huge)
1572 {
1573 struct shmem_inode_info *info = SHMEM_I(inode);
1574 struct page *page;
1575 int nr;
1576 int err = -ENOSPC;
1577
1578 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 huge = false;
1580 nr = huge ? HPAGE_PMD_NR : 1;
1581
1582 if (!shmem_inode_acct_block(inode, nr))
1583 goto failed;
1584
1585 if (huge)
1586 page = shmem_alloc_hugepage(gfp, info, index);
1587 else
1588 page = shmem_alloc_page(gfp, info, index);
1589 if (page) {
1590 __SetPageLocked(page);
1591 __SetPageSwapBacked(page);
1592 return page;
1593 }
1594
1595 err = -ENOMEM;
1596 shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 return ERR_PTR(err);
1599 }
1600
1601 /*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to. If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
shmem_should_replace_page(struct page * page,gfp_t gfp)1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615 return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 struct page *oldpage, *newpage;
1622 struct address_space *swap_mapping;
1623 swp_entry_t entry;
1624 pgoff_t swap_index;
1625 int error;
1626
1627 oldpage = *pagep;
1628 entry.val = page_private(oldpage);
1629 swap_index = swp_offset(entry);
1630 swap_mapping = page_mapping(oldpage);
1631
1632 /*
1633 * We have arrived here because our zones are constrained, so don't
1634 * limit chance of success by further cpuset and node constraints.
1635 */
1636 gfp &= ~GFP_CONSTRAINT_MASK;
1637 newpage = shmem_alloc_page(gfp, info, index);
1638 if (!newpage)
1639 return -ENOMEM;
1640
1641 get_page(newpage);
1642 copy_highpage(newpage, oldpage);
1643 flush_dcache_page(newpage);
1644
1645 __SetPageLocked(newpage);
1646 __SetPageSwapBacked(newpage);
1647 SetPageUptodate(newpage);
1648 set_page_private(newpage, entry.val);
1649 SetPageSwapCache(newpage);
1650
1651 /*
1652 * Our caller will very soon move newpage out of swapcache, but it's
1653 * a nice clean interface for us to replace oldpage by newpage there.
1654 */
1655 xa_lock_irq(&swap_mapping->i_pages);
1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 if (!error) {
1658 mem_cgroup_migrate(oldpage, newpage);
1659 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661 }
1662 xa_unlock_irq(&swap_mapping->i_pages);
1663
1664 if (unlikely(error)) {
1665 /*
1666 * Is this possible? I think not, now that our callers check
1667 * both PageSwapCache and page_private after getting page lock;
1668 * but be defensive. Reverse old to newpage for clear and free.
1669 */
1670 oldpage = newpage;
1671 } else {
1672 lru_cache_add(newpage);
1673 *pagep = newpage;
1674 }
1675
1676 ClearPageSwapCache(oldpage);
1677 set_page_private(oldpage, 0);
1678
1679 unlock_page(oldpage);
1680 put_page(oldpage);
1681 put_page(oldpage);
1682 return error;
1683 }
1684
1685 /*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
1689 * error code and NULL in *pagep.
1690 */
shmem_swapin_page(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 struct page **pagep, enum sgp_type sgp,
1693 gfp_t gfp, struct vm_area_struct *vma,
1694 vm_fault_t *fault_type)
1695 {
1696 struct address_space *mapping = inode->i_mapping;
1697 struct shmem_inode_info *info = SHMEM_I(inode);
1698 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1699 struct page *page;
1700 swp_entry_t swap;
1701 int error;
1702
1703 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1704 swap = radix_to_swp_entry(*pagep);
1705 *pagep = NULL;
1706
1707 /* Look it up and read it in.. */
1708 page = lookup_swap_cache(swap, NULL, 0);
1709 if (!page) {
1710 /* Or update major stats only when swapin succeeds?? */
1711 if (fault_type) {
1712 *fault_type |= VM_FAULT_MAJOR;
1713 count_vm_event(PGMAJFAULT);
1714 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1715 }
1716 /* Here we actually start the io */
1717 page = shmem_swapin(swap, gfp, info, index);
1718 if (!page) {
1719 error = -ENOMEM;
1720 goto failed;
1721 }
1722 }
1723
1724 /* We have to do this with page locked to prevent races */
1725 lock_page(page);
1726 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1727 !shmem_confirm_swap(mapping, index, swap)) {
1728 error = -EEXIST;
1729 goto unlock;
1730 }
1731 if (!PageUptodate(page)) {
1732 error = -EIO;
1733 goto failed;
1734 }
1735 wait_on_page_writeback(page);
1736
1737 /*
1738 * Some architectures may have to restore extra metadata to the
1739 * physical page after reading from swap.
1740 */
1741 arch_swap_restore(swap, page);
1742
1743 if (shmem_should_replace_page(page, gfp)) {
1744 error = shmem_replace_page(&page, gfp, info, index);
1745 if (error)
1746 goto failed;
1747 }
1748
1749 error = shmem_add_to_page_cache(page, mapping, index,
1750 swp_to_radix_entry(swap), gfp,
1751 charge_mm);
1752 if (error)
1753 goto failed;
1754
1755 spin_lock_irq(&info->lock);
1756 info->swapped--;
1757 shmem_recalc_inode(inode);
1758 spin_unlock_irq(&info->lock);
1759
1760 if (sgp == SGP_WRITE)
1761 mark_page_accessed(page);
1762
1763 delete_from_swap_cache(page);
1764 set_page_dirty(page);
1765 swap_free(swap);
1766
1767 *pagep = page;
1768 return 0;
1769 failed:
1770 if (!shmem_confirm_swap(mapping, index, swap))
1771 error = -EEXIST;
1772 unlock:
1773 if (page) {
1774 unlock_page(page);
1775 put_page(page);
1776 }
1777
1778 return error;
1779 }
1780
1781 /*
1782 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1783 *
1784 * If we allocate a new one we do not mark it dirty. That's up to the
1785 * vm. If we swap it in we mark it dirty since we also free the swap
1786 * entry since a page cannot live in both the swap and page cache.
1787 *
1788 * vmf and fault_type are only supplied by shmem_fault:
1789 * otherwise they are NULL.
1790 */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1791 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1792 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1793 struct vm_area_struct *vma, struct vm_fault *vmf,
1794 vm_fault_t *fault_type)
1795 {
1796 struct address_space *mapping = inode->i_mapping;
1797 struct shmem_inode_info *info = SHMEM_I(inode);
1798 struct shmem_sb_info *sbinfo;
1799 struct mm_struct *charge_mm;
1800 struct page *page;
1801 enum sgp_type sgp_huge = sgp;
1802 pgoff_t hindex = index;
1803 gfp_t huge_gfp;
1804 int error;
1805 int once = 0;
1806 int alloced = 0;
1807
1808 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1809 return -EFBIG;
1810 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1811 sgp = SGP_CACHE;
1812 repeat:
1813 if (sgp <= SGP_CACHE &&
1814 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1815 return -EINVAL;
1816 }
1817
1818 sbinfo = SHMEM_SB(inode->i_sb);
1819 charge_mm = vma ? vma->vm_mm : current->mm;
1820
1821 page = pagecache_get_page(mapping, index,
1822 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1823 if (xa_is_value(page)) {
1824 error = shmem_swapin_page(inode, index, &page,
1825 sgp, gfp, vma, fault_type);
1826 if (error == -EEXIST)
1827 goto repeat;
1828
1829 *pagep = page;
1830 return error;
1831 }
1832
1833 if (page)
1834 hindex = page->index;
1835 if (page && sgp == SGP_WRITE)
1836 mark_page_accessed(page);
1837
1838 /* fallocated page? */
1839 if (page && !PageUptodate(page)) {
1840 if (sgp != SGP_READ)
1841 goto clear;
1842 unlock_page(page);
1843 put_page(page);
1844 page = NULL;
1845 hindex = index;
1846 }
1847 if (page || sgp == SGP_READ)
1848 goto out;
1849
1850 /*
1851 * Fast cache lookup did not find it:
1852 * bring it back from swap or allocate.
1853 */
1854
1855 if (vma && userfaultfd_missing(vma)) {
1856 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1857 return 0;
1858 }
1859
1860 /* shmem_symlink() */
1861 if (!shmem_mapping(mapping))
1862 goto alloc_nohuge;
1863 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1864 goto alloc_nohuge;
1865 if (shmem_huge == SHMEM_HUGE_FORCE)
1866 goto alloc_huge;
1867 switch (sbinfo->huge) {
1868 case SHMEM_HUGE_NEVER:
1869 goto alloc_nohuge;
1870 case SHMEM_HUGE_WITHIN_SIZE: {
1871 loff_t i_size;
1872 pgoff_t off;
1873
1874 off = round_up(index, HPAGE_PMD_NR);
1875 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1876 if (i_size >= HPAGE_PMD_SIZE &&
1877 i_size >> PAGE_SHIFT >= off)
1878 goto alloc_huge;
1879
1880 fallthrough;
1881 }
1882 case SHMEM_HUGE_ADVISE:
1883 if (sgp_huge == SGP_HUGE)
1884 goto alloc_huge;
1885 /* TODO: implement fadvise() hints */
1886 goto alloc_nohuge;
1887 }
1888
1889 alloc_huge:
1890 huge_gfp = vma_thp_gfp_mask(vma);
1891 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1892 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1893 if (IS_ERR(page)) {
1894 alloc_nohuge:
1895 page = shmem_alloc_and_acct_page(gfp, inode,
1896 index, false);
1897 }
1898 if (IS_ERR(page)) {
1899 int retry = 5;
1900
1901 error = PTR_ERR(page);
1902 page = NULL;
1903 if (error != -ENOSPC)
1904 goto unlock;
1905 /*
1906 * Try to reclaim some space by splitting a huge page
1907 * beyond i_size on the filesystem.
1908 */
1909 while (retry--) {
1910 int ret;
1911
1912 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1913 if (ret == SHRINK_STOP)
1914 break;
1915 if (ret)
1916 goto alloc_nohuge;
1917 }
1918 goto unlock;
1919 }
1920
1921 if (PageTransHuge(page))
1922 hindex = round_down(index, HPAGE_PMD_NR);
1923 else
1924 hindex = index;
1925
1926 if (sgp == SGP_WRITE)
1927 __SetPageReferenced(page);
1928
1929 error = shmem_add_to_page_cache(page, mapping, hindex,
1930 NULL, gfp & GFP_RECLAIM_MASK,
1931 charge_mm);
1932 if (error)
1933 goto unacct;
1934 lru_cache_add(page);
1935
1936 spin_lock_irq(&info->lock);
1937 info->alloced += compound_nr(page);
1938 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1939 shmem_recalc_inode(inode);
1940 spin_unlock_irq(&info->lock);
1941 alloced = true;
1942
1943 if (PageTransHuge(page) &&
1944 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1945 hindex + HPAGE_PMD_NR - 1) {
1946 /*
1947 * Part of the huge page is beyond i_size: subject
1948 * to shrink under memory pressure.
1949 */
1950 spin_lock(&sbinfo->shrinklist_lock);
1951 /*
1952 * _careful to defend against unlocked access to
1953 * ->shrink_list in shmem_unused_huge_shrink()
1954 */
1955 if (list_empty_careful(&info->shrinklist)) {
1956 list_add_tail(&info->shrinklist,
1957 &sbinfo->shrinklist);
1958 sbinfo->shrinklist_len++;
1959 }
1960 spin_unlock(&sbinfo->shrinklist_lock);
1961 }
1962
1963 /*
1964 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1965 */
1966 if (sgp == SGP_FALLOC)
1967 sgp = SGP_WRITE;
1968 clear:
1969 /*
1970 * Let SGP_WRITE caller clear ends if write does not fill page;
1971 * but SGP_FALLOC on a page fallocated earlier must initialize
1972 * it now, lest undo on failure cancel our earlier guarantee.
1973 */
1974 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1975 int i;
1976
1977 for (i = 0; i < compound_nr(page); i++) {
1978 clear_highpage(page + i);
1979 flush_dcache_page(page + i);
1980 }
1981 SetPageUptodate(page);
1982 }
1983
1984 /* Perhaps the file has been truncated since we checked */
1985 if (sgp <= SGP_CACHE &&
1986 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1987 if (alloced) {
1988 ClearPageDirty(page);
1989 delete_from_page_cache(page);
1990 spin_lock_irq(&info->lock);
1991 shmem_recalc_inode(inode);
1992 spin_unlock_irq(&info->lock);
1993 }
1994 error = -EINVAL;
1995 goto unlock;
1996 }
1997 out:
1998 *pagep = page + index - hindex;
1999 return 0;
2000
2001 /*
2002 * Error recovery.
2003 */
2004 unacct:
2005 shmem_inode_unacct_blocks(inode, compound_nr(page));
2006
2007 if (PageTransHuge(page)) {
2008 unlock_page(page);
2009 put_page(page);
2010 goto alloc_nohuge;
2011 }
2012 unlock:
2013 if (page) {
2014 unlock_page(page);
2015 put_page(page);
2016 }
2017 if (error == -ENOSPC && !once++) {
2018 spin_lock_irq(&info->lock);
2019 shmem_recalc_inode(inode);
2020 spin_unlock_irq(&info->lock);
2021 goto repeat;
2022 }
2023 if (error == -EEXIST)
2024 goto repeat;
2025 return error;
2026 }
2027
2028 /*
2029 * This is like autoremove_wake_function, but it removes the wait queue
2030 * entry unconditionally - even if something else had already woken the
2031 * target.
2032 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2033 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2034 {
2035 int ret = default_wake_function(wait, mode, sync, key);
2036 list_del_init(&wait->entry);
2037 return ret;
2038 }
2039
shmem_fault(struct vm_fault * vmf)2040 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2041 {
2042 struct vm_area_struct *vma = vmf->vma;
2043 struct inode *inode = file_inode(vma->vm_file);
2044 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2045 enum sgp_type sgp;
2046 int err;
2047 vm_fault_t ret = VM_FAULT_LOCKED;
2048
2049 /*
2050 * Trinity finds that probing a hole which tmpfs is punching can
2051 * prevent the hole-punch from ever completing: which in turn
2052 * locks writers out with its hold on i_mutex. So refrain from
2053 * faulting pages into the hole while it's being punched. Although
2054 * shmem_undo_range() does remove the additions, it may be unable to
2055 * keep up, as each new page needs its own unmap_mapping_range() call,
2056 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2057 *
2058 * It does not matter if we sometimes reach this check just before the
2059 * hole-punch begins, so that one fault then races with the punch:
2060 * we just need to make racing faults a rare case.
2061 *
2062 * The implementation below would be much simpler if we just used a
2063 * standard mutex or completion: but we cannot take i_mutex in fault,
2064 * and bloating every shmem inode for this unlikely case would be sad.
2065 */
2066 if (unlikely(inode->i_private)) {
2067 struct shmem_falloc *shmem_falloc;
2068
2069 spin_lock(&inode->i_lock);
2070 shmem_falloc = inode->i_private;
2071 if (shmem_falloc &&
2072 shmem_falloc->waitq &&
2073 vmf->pgoff >= shmem_falloc->start &&
2074 vmf->pgoff < shmem_falloc->next) {
2075 struct file *fpin;
2076 wait_queue_head_t *shmem_falloc_waitq;
2077 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2078
2079 ret = VM_FAULT_NOPAGE;
2080 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2081 if (fpin)
2082 ret = VM_FAULT_RETRY;
2083
2084 shmem_falloc_waitq = shmem_falloc->waitq;
2085 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2086 TASK_UNINTERRUPTIBLE);
2087 spin_unlock(&inode->i_lock);
2088 schedule();
2089
2090 /*
2091 * shmem_falloc_waitq points into the shmem_fallocate()
2092 * stack of the hole-punching task: shmem_falloc_waitq
2093 * is usually invalid by the time we reach here, but
2094 * finish_wait() does not dereference it in that case;
2095 * though i_lock needed lest racing with wake_up_all().
2096 */
2097 spin_lock(&inode->i_lock);
2098 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2099 spin_unlock(&inode->i_lock);
2100
2101 if (fpin)
2102 fput(fpin);
2103 return ret;
2104 }
2105 spin_unlock(&inode->i_lock);
2106 }
2107
2108 sgp = SGP_CACHE;
2109
2110 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2111 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2112 sgp = SGP_NOHUGE;
2113 else if (vma->vm_flags & VM_HUGEPAGE)
2114 sgp = SGP_HUGE;
2115
2116 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2117 gfp, vma, vmf, &ret);
2118 if (err)
2119 return vmf_error(err);
2120 return ret;
2121 }
2122
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2123 unsigned long shmem_get_unmapped_area(struct file *file,
2124 unsigned long uaddr, unsigned long len,
2125 unsigned long pgoff, unsigned long flags)
2126 {
2127 unsigned long (*get_area)(struct file *,
2128 unsigned long, unsigned long, unsigned long, unsigned long);
2129 unsigned long addr;
2130 unsigned long offset;
2131 unsigned long inflated_len;
2132 unsigned long inflated_addr;
2133 unsigned long inflated_offset;
2134
2135 if (len > TASK_SIZE)
2136 return -ENOMEM;
2137
2138 get_area = current->mm->get_unmapped_area;
2139 addr = get_area(file, uaddr, len, pgoff, flags);
2140
2141 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2142 return addr;
2143 if (IS_ERR_VALUE(addr))
2144 return addr;
2145 if (addr & ~PAGE_MASK)
2146 return addr;
2147 if (addr > TASK_SIZE - len)
2148 return addr;
2149
2150 if (shmem_huge == SHMEM_HUGE_DENY)
2151 return addr;
2152 if (len < HPAGE_PMD_SIZE)
2153 return addr;
2154 if (flags & MAP_FIXED)
2155 return addr;
2156 /*
2157 * Our priority is to support MAP_SHARED mapped hugely;
2158 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2159 * But if caller specified an address hint and we allocated area there
2160 * successfully, respect that as before.
2161 */
2162 if (uaddr == addr)
2163 return addr;
2164
2165 if (shmem_huge != SHMEM_HUGE_FORCE) {
2166 struct super_block *sb;
2167
2168 if (file) {
2169 VM_BUG_ON(file->f_op != &shmem_file_operations);
2170 sb = file_inode(file)->i_sb;
2171 } else {
2172 /*
2173 * Called directly from mm/mmap.c, or drivers/char/mem.c
2174 * for "/dev/zero", to create a shared anonymous object.
2175 */
2176 if (IS_ERR(shm_mnt))
2177 return addr;
2178 sb = shm_mnt->mnt_sb;
2179 }
2180 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2181 return addr;
2182 }
2183
2184 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2185 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2186 return addr;
2187 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2188 return addr;
2189
2190 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2191 if (inflated_len > TASK_SIZE)
2192 return addr;
2193 if (inflated_len < len)
2194 return addr;
2195
2196 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2197 if (IS_ERR_VALUE(inflated_addr))
2198 return addr;
2199 if (inflated_addr & ~PAGE_MASK)
2200 return addr;
2201
2202 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2203 inflated_addr += offset - inflated_offset;
2204 if (inflated_offset > offset)
2205 inflated_addr += HPAGE_PMD_SIZE;
2206
2207 if (inflated_addr > TASK_SIZE - len)
2208 return addr;
2209 return inflated_addr;
2210 }
2211
2212 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2213 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2214 {
2215 struct inode *inode = file_inode(vma->vm_file);
2216 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2217 }
2218
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2219 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2220 unsigned long addr)
2221 {
2222 struct inode *inode = file_inode(vma->vm_file);
2223 pgoff_t index;
2224
2225 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2226 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2227 }
2228 #endif
2229
shmem_lock(struct file * file,int lock,struct user_struct * user)2230 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2231 {
2232 struct inode *inode = file_inode(file);
2233 struct shmem_inode_info *info = SHMEM_I(inode);
2234 int retval = -ENOMEM;
2235
2236 /*
2237 * What serializes the accesses to info->flags?
2238 * ipc_lock_object() when called from shmctl_do_lock(),
2239 * no serialization needed when called from shm_destroy().
2240 */
2241 if (lock && !(info->flags & VM_LOCKED)) {
2242 if (!user_shm_lock(inode->i_size, user))
2243 goto out_nomem;
2244 info->flags |= VM_LOCKED;
2245 mapping_set_unevictable(file->f_mapping);
2246 }
2247 if (!lock && (info->flags & VM_LOCKED) && user) {
2248 user_shm_unlock(inode->i_size, user);
2249 info->flags &= ~VM_LOCKED;
2250 mapping_clear_unevictable(file->f_mapping);
2251 }
2252 retval = 0;
2253
2254 out_nomem:
2255 return retval;
2256 }
2257
shmem_mmap(struct file * file,struct vm_area_struct * vma)2258 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2259 {
2260 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2261 int ret;
2262
2263 ret = seal_check_future_write(info->seals, vma);
2264 if (ret)
2265 return ret;
2266
2267 /* arm64 - allow memory tagging on RAM-based files */
2268 vma->vm_flags |= VM_MTE_ALLOWED;
2269
2270 file_accessed(file);
2271 vma->vm_ops = &shmem_vm_ops;
2272 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2273 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2274 (vma->vm_end & HPAGE_PMD_MASK)) {
2275 khugepaged_enter(vma, vma->vm_flags);
2276 }
2277 return 0;
2278 }
2279
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2280 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2281 umode_t mode, dev_t dev, unsigned long flags)
2282 {
2283 struct inode *inode;
2284 struct shmem_inode_info *info;
2285 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2286 ino_t ino;
2287
2288 if (shmem_reserve_inode(sb, &ino))
2289 return NULL;
2290
2291 inode = new_inode(sb);
2292 if (inode) {
2293 inode->i_ino = ino;
2294 inode_init_owner(&init_user_ns, inode, dir, mode);
2295 inode->i_blocks = 0;
2296 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2297 inode->i_generation = prandom_u32();
2298 info = SHMEM_I(inode);
2299 memset(info, 0, (char *)inode - (char *)info);
2300 spin_lock_init(&info->lock);
2301 atomic_set(&info->stop_eviction, 0);
2302 info->seals = F_SEAL_SEAL;
2303 info->flags = flags & VM_NORESERVE;
2304 INIT_LIST_HEAD(&info->shrinklist);
2305 INIT_LIST_HEAD(&info->swaplist);
2306 simple_xattrs_init(&info->xattrs);
2307 cache_no_acl(inode);
2308
2309 switch (mode & S_IFMT) {
2310 default:
2311 inode->i_op = &shmem_special_inode_operations;
2312 init_special_inode(inode, mode, dev);
2313 break;
2314 case S_IFREG:
2315 inode->i_mapping->a_ops = &shmem_aops;
2316 inode->i_op = &shmem_inode_operations;
2317 inode->i_fop = &shmem_file_operations;
2318 mpol_shared_policy_init(&info->policy,
2319 shmem_get_sbmpol(sbinfo));
2320 break;
2321 case S_IFDIR:
2322 inc_nlink(inode);
2323 /* Some things misbehave if size == 0 on a directory */
2324 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2325 inode->i_op = &shmem_dir_inode_operations;
2326 inode->i_fop = &simple_dir_operations;
2327 break;
2328 case S_IFLNK:
2329 /*
2330 * Must not load anything in the rbtree,
2331 * mpol_free_shared_policy will not be called.
2332 */
2333 mpol_shared_policy_init(&info->policy, NULL);
2334 break;
2335 }
2336
2337 lockdep_annotate_inode_mutex_key(inode);
2338 } else
2339 shmem_free_inode(sb);
2340 return inode;
2341 }
2342
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2343 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344 pmd_t *dst_pmd,
2345 struct vm_area_struct *dst_vma,
2346 unsigned long dst_addr,
2347 unsigned long src_addr,
2348 bool zeropage,
2349 struct page **pagep)
2350 {
2351 struct inode *inode = file_inode(dst_vma->vm_file);
2352 struct shmem_inode_info *info = SHMEM_I(inode);
2353 struct address_space *mapping = inode->i_mapping;
2354 gfp_t gfp = mapping_gfp_mask(mapping);
2355 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2356 spinlock_t *ptl;
2357 void *page_kaddr;
2358 struct page *page;
2359 pte_t _dst_pte, *dst_pte;
2360 int ret;
2361 pgoff_t offset, max_off;
2362
2363 ret = -ENOMEM;
2364 if (!shmem_inode_acct_block(inode, 1)) {
2365 /*
2366 * We may have got a page, returned -ENOENT triggering a retry,
2367 * and now we find ourselves with -ENOMEM. Release the page, to
2368 * avoid a BUG_ON in our caller.
2369 */
2370 if (unlikely(*pagep)) {
2371 put_page(*pagep);
2372 *pagep = NULL;
2373 }
2374 goto out;
2375 }
2376
2377 if (!*pagep) {
2378 page = shmem_alloc_page(gfp, info, pgoff);
2379 if (!page)
2380 goto out_unacct_blocks;
2381
2382 if (!zeropage) { /* mcopy_atomic */
2383 page_kaddr = kmap_atomic(page);
2384 ret = copy_from_user(page_kaddr,
2385 (const void __user *)src_addr,
2386 PAGE_SIZE);
2387 kunmap_atomic(page_kaddr);
2388
2389 /* fallback to copy_from_user outside mmap_lock */
2390 if (unlikely(ret)) {
2391 *pagep = page;
2392 shmem_inode_unacct_blocks(inode, 1);
2393 /* don't free the page */
2394 return -ENOENT;
2395 }
2396 } else { /* mfill_zeropage_atomic */
2397 clear_highpage(page);
2398 }
2399 } else {
2400 page = *pagep;
2401 *pagep = NULL;
2402 }
2403
2404 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2405 __SetPageLocked(page);
2406 __SetPageSwapBacked(page);
2407 __SetPageUptodate(page);
2408
2409 ret = -EFAULT;
2410 offset = linear_page_index(dst_vma, dst_addr);
2411 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2412 if (unlikely(offset >= max_off))
2413 goto out_release;
2414
2415 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2416 gfp & GFP_RECLAIM_MASK, dst_mm);
2417 if (ret)
2418 goto out_release;
2419
2420 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2421 if (dst_vma->vm_flags & VM_WRITE)
2422 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2423 else {
2424 /*
2425 * We don't set the pte dirty if the vma has no
2426 * VM_WRITE permission, so mark the page dirty or it
2427 * could be freed from under us. We could do it
2428 * unconditionally before unlock_page(), but doing it
2429 * only if VM_WRITE is not set is faster.
2430 */
2431 set_page_dirty(page);
2432 }
2433
2434 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2435
2436 ret = -EFAULT;
2437 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2438 if (unlikely(offset >= max_off))
2439 goto out_release_unlock;
2440
2441 ret = -EEXIST;
2442 if (!pte_none(*dst_pte))
2443 goto out_release_unlock;
2444
2445 lru_cache_add(page);
2446
2447 spin_lock_irq(&info->lock);
2448 info->alloced++;
2449 inode->i_blocks += BLOCKS_PER_PAGE;
2450 shmem_recalc_inode(inode);
2451 spin_unlock_irq(&info->lock);
2452
2453 inc_mm_counter(dst_mm, mm_counter_file(page));
2454 page_add_file_rmap(page, false);
2455 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2456
2457 /* No need to invalidate - it was non-present before */
2458 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2459 pte_unmap_unlock(dst_pte, ptl);
2460 unlock_page(page);
2461 ret = 0;
2462 out:
2463 return ret;
2464 out_release_unlock:
2465 pte_unmap_unlock(dst_pte, ptl);
2466 ClearPageDirty(page);
2467 delete_from_page_cache(page);
2468 out_release:
2469 unlock_page(page);
2470 put_page(page);
2471 out_unacct_blocks:
2472 shmem_inode_unacct_blocks(inode, 1);
2473 goto out;
2474 }
2475
shmem_mcopy_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)2476 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2477 pmd_t *dst_pmd,
2478 struct vm_area_struct *dst_vma,
2479 unsigned long dst_addr,
2480 unsigned long src_addr,
2481 struct page **pagep)
2482 {
2483 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2484 dst_addr, src_addr, false, pagep);
2485 }
2486
shmem_mfill_zeropage_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)2487 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2488 pmd_t *dst_pmd,
2489 struct vm_area_struct *dst_vma,
2490 unsigned long dst_addr)
2491 {
2492 struct page *page = NULL;
2493
2494 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2495 dst_addr, 0, true, &page);
2496 }
2497
2498 #ifdef CONFIG_TMPFS
2499 static const struct inode_operations shmem_symlink_inode_operations;
2500 static const struct inode_operations shmem_short_symlink_operations;
2501
2502 #ifdef CONFIG_TMPFS_XATTR
2503 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2504 #else
2505 #define shmem_initxattrs NULL
2506 #endif
2507
2508 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2509 shmem_write_begin(struct file *file, struct address_space *mapping,
2510 loff_t pos, unsigned len, unsigned flags,
2511 struct page **pagep, void **fsdata)
2512 {
2513 struct inode *inode = mapping->host;
2514 struct shmem_inode_info *info = SHMEM_I(inode);
2515 pgoff_t index = pos >> PAGE_SHIFT;
2516
2517 /* i_mutex is held by caller */
2518 if (unlikely(info->seals & (F_SEAL_GROW |
2519 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2520 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2521 return -EPERM;
2522 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2523 return -EPERM;
2524 }
2525
2526 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2527 }
2528
2529 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2530 shmem_write_end(struct file *file, struct address_space *mapping,
2531 loff_t pos, unsigned len, unsigned copied,
2532 struct page *page, void *fsdata)
2533 {
2534 struct inode *inode = mapping->host;
2535
2536 if (pos + copied > inode->i_size)
2537 i_size_write(inode, pos + copied);
2538
2539 if (!PageUptodate(page)) {
2540 struct page *head = compound_head(page);
2541 if (PageTransCompound(page)) {
2542 int i;
2543
2544 for (i = 0; i < HPAGE_PMD_NR; i++) {
2545 if (head + i == page)
2546 continue;
2547 clear_highpage(head + i);
2548 flush_dcache_page(head + i);
2549 }
2550 }
2551 if (copied < PAGE_SIZE) {
2552 unsigned from = pos & (PAGE_SIZE - 1);
2553 zero_user_segments(page, 0, from,
2554 from + copied, PAGE_SIZE);
2555 }
2556 SetPageUptodate(head);
2557 }
2558 set_page_dirty(page);
2559 unlock_page(page);
2560 put_page(page);
2561
2562 return copied;
2563 }
2564
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2565 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2566 {
2567 struct file *file = iocb->ki_filp;
2568 struct inode *inode = file_inode(file);
2569 struct address_space *mapping = inode->i_mapping;
2570 pgoff_t index;
2571 unsigned long offset;
2572 enum sgp_type sgp = SGP_READ;
2573 int error = 0;
2574 ssize_t retval = 0;
2575 loff_t *ppos = &iocb->ki_pos;
2576
2577 /*
2578 * Might this read be for a stacking filesystem? Then when reading
2579 * holes of a sparse file, we actually need to allocate those pages,
2580 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2581 */
2582 if (!iter_is_iovec(to))
2583 sgp = SGP_CACHE;
2584
2585 index = *ppos >> PAGE_SHIFT;
2586 offset = *ppos & ~PAGE_MASK;
2587
2588 for (;;) {
2589 struct page *page = NULL;
2590 pgoff_t end_index;
2591 unsigned long nr, ret;
2592 loff_t i_size = i_size_read(inode);
2593
2594 end_index = i_size >> PAGE_SHIFT;
2595 if (index > end_index)
2596 break;
2597 if (index == end_index) {
2598 nr = i_size & ~PAGE_MASK;
2599 if (nr <= offset)
2600 break;
2601 }
2602
2603 error = shmem_getpage(inode, index, &page, sgp);
2604 if (error) {
2605 if (error == -EINVAL)
2606 error = 0;
2607 break;
2608 }
2609 if (page) {
2610 if (sgp == SGP_CACHE)
2611 set_page_dirty(page);
2612 unlock_page(page);
2613 }
2614
2615 /*
2616 * We must evaluate after, since reads (unlike writes)
2617 * are called without i_mutex protection against truncate
2618 */
2619 nr = PAGE_SIZE;
2620 i_size = i_size_read(inode);
2621 end_index = i_size >> PAGE_SHIFT;
2622 if (index == end_index) {
2623 nr = i_size & ~PAGE_MASK;
2624 if (nr <= offset) {
2625 if (page)
2626 put_page(page);
2627 break;
2628 }
2629 }
2630 nr -= offset;
2631
2632 if (page) {
2633 /*
2634 * If users can be writing to this page using arbitrary
2635 * virtual addresses, take care about potential aliasing
2636 * before reading the page on the kernel side.
2637 */
2638 if (mapping_writably_mapped(mapping))
2639 flush_dcache_page(page);
2640 /*
2641 * Mark the page accessed if we read the beginning.
2642 */
2643 if (!offset)
2644 mark_page_accessed(page);
2645 } else {
2646 page = ZERO_PAGE(0);
2647 get_page(page);
2648 }
2649
2650 /*
2651 * Ok, we have the page, and it's up-to-date, so
2652 * now we can copy it to user space...
2653 */
2654 ret = copy_page_to_iter(page, offset, nr, to);
2655 retval += ret;
2656 offset += ret;
2657 index += offset >> PAGE_SHIFT;
2658 offset &= ~PAGE_MASK;
2659
2660 put_page(page);
2661 if (!iov_iter_count(to))
2662 break;
2663 if (ret < nr) {
2664 error = -EFAULT;
2665 break;
2666 }
2667 cond_resched();
2668 }
2669
2670 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2671 file_accessed(file);
2672 return retval ? retval : error;
2673 }
2674
shmem_file_llseek(struct file * file,loff_t offset,int whence)2675 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2676 {
2677 struct address_space *mapping = file->f_mapping;
2678 struct inode *inode = mapping->host;
2679
2680 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2681 return generic_file_llseek_size(file, offset, whence,
2682 MAX_LFS_FILESIZE, i_size_read(inode));
2683 if (offset < 0)
2684 return -ENXIO;
2685
2686 inode_lock(inode);
2687 /* We're holding i_mutex so we can access i_size directly */
2688 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2689 if (offset >= 0)
2690 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2691 inode_unlock(inode);
2692 return offset;
2693 }
2694
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2695 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2696 loff_t len)
2697 {
2698 struct inode *inode = file_inode(file);
2699 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2700 struct shmem_inode_info *info = SHMEM_I(inode);
2701 struct shmem_falloc shmem_falloc;
2702 pgoff_t start, index, end;
2703 int error;
2704
2705 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2706 return -EOPNOTSUPP;
2707
2708 inode_lock(inode);
2709
2710 if (mode & FALLOC_FL_PUNCH_HOLE) {
2711 struct address_space *mapping = file->f_mapping;
2712 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2713 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2714 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2715
2716 /* protected by i_mutex */
2717 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2718 error = -EPERM;
2719 goto out;
2720 }
2721
2722 shmem_falloc.waitq = &shmem_falloc_waitq;
2723 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2724 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2725 spin_lock(&inode->i_lock);
2726 inode->i_private = &shmem_falloc;
2727 spin_unlock(&inode->i_lock);
2728
2729 if ((u64)unmap_end > (u64)unmap_start)
2730 unmap_mapping_range(mapping, unmap_start,
2731 1 + unmap_end - unmap_start, 0);
2732 shmem_truncate_range(inode, offset, offset + len - 1);
2733 /* No need to unmap again: hole-punching leaves COWed pages */
2734
2735 spin_lock(&inode->i_lock);
2736 inode->i_private = NULL;
2737 wake_up_all(&shmem_falloc_waitq);
2738 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2739 spin_unlock(&inode->i_lock);
2740 error = 0;
2741 goto out;
2742 }
2743
2744 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2745 error = inode_newsize_ok(inode, offset + len);
2746 if (error)
2747 goto out;
2748
2749 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2750 error = -EPERM;
2751 goto out;
2752 }
2753
2754 start = offset >> PAGE_SHIFT;
2755 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2756 /* Try to avoid a swapstorm if len is impossible to satisfy */
2757 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2758 error = -ENOSPC;
2759 goto out;
2760 }
2761
2762 shmem_falloc.waitq = NULL;
2763 shmem_falloc.start = start;
2764 shmem_falloc.next = start;
2765 shmem_falloc.nr_falloced = 0;
2766 shmem_falloc.nr_unswapped = 0;
2767 spin_lock(&inode->i_lock);
2768 inode->i_private = &shmem_falloc;
2769 spin_unlock(&inode->i_lock);
2770
2771 for (index = start; index < end; index++) {
2772 struct page *page;
2773
2774 /*
2775 * Good, the fallocate(2) manpage permits EINTR: we may have
2776 * been interrupted because we are using up too much memory.
2777 */
2778 if (signal_pending(current))
2779 error = -EINTR;
2780 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2781 error = -ENOMEM;
2782 else
2783 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2784 if (error) {
2785 /* Remove the !PageUptodate pages we added */
2786 if (index > start) {
2787 shmem_undo_range(inode,
2788 (loff_t)start << PAGE_SHIFT,
2789 ((loff_t)index << PAGE_SHIFT) - 1, true);
2790 }
2791 goto undone;
2792 }
2793
2794 /*
2795 * Inform shmem_writepage() how far we have reached.
2796 * No need for lock or barrier: we have the page lock.
2797 */
2798 shmem_falloc.next++;
2799 if (!PageUptodate(page))
2800 shmem_falloc.nr_falloced++;
2801
2802 /*
2803 * If !PageUptodate, leave it that way so that freeable pages
2804 * can be recognized if we need to rollback on error later.
2805 * But set_page_dirty so that memory pressure will swap rather
2806 * than free the pages we are allocating (and SGP_CACHE pages
2807 * might still be clean: we now need to mark those dirty too).
2808 */
2809 set_page_dirty(page);
2810 unlock_page(page);
2811 put_page(page);
2812 cond_resched();
2813 }
2814
2815 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2816 i_size_write(inode, offset + len);
2817 inode->i_ctime = current_time(inode);
2818 undone:
2819 spin_lock(&inode->i_lock);
2820 inode->i_private = NULL;
2821 spin_unlock(&inode->i_lock);
2822 out:
2823 inode_unlock(inode);
2824 return error;
2825 }
2826
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2827 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2828 {
2829 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2830
2831 buf->f_type = TMPFS_MAGIC;
2832 buf->f_bsize = PAGE_SIZE;
2833 buf->f_namelen = NAME_MAX;
2834 if (sbinfo->max_blocks) {
2835 buf->f_blocks = sbinfo->max_blocks;
2836 buf->f_bavail =
2837 buf->f_bfree = sbinfo->max_blocks -
2838 percpu_counter_sum(&sbinfo->used_blocks);
2839 }
2840 if (sbinfo->max_inodes) {
2841 buf->f_files = sbinfo->max_inodes;
2842 buf->f_ffree = sbinfo->free_inodes;
2843 }
2844 /* else leave those fields 0 like simple_statfs */
2845
2846 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2847
2848 return 0;
2849 }
2850
2851 /*
2852 * File creation. Allocate an inode, and we're done..
2853 */
2854 static int
shmem_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2855 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2856 struct dentry *dentry, umode_t mode, dev_t dev)
2857 {
2858 struct inode *inode;
2859 int error = -ENOSPC;
2860
2861 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2862 if (inode) {
2863 error = simple_acl_create(dir, inode);
2864 if (error)
2865 goto out_iput;
2866 error = security_inode_init_security(inode, dir,
2867 &dentry->d_name,
2868 shmem_initxattrs, NULL);
2869 if (error && error != -EOPNOTSUPP)
2870 goto out_iput;
2871
2872 error = 0;
2873 dir->i_size += BOGO_DIRENT_SIZE;
2874 dir->i_ctime = dir->i_mtime = current_time(dir);
2875 d_instantiate(dentry, inode);
2876 dget(dentry); /* Extra count - pin the dentry in core */
2877 }
2878 return error;
2879 out_iput:
2880 iput(inode);
2881 return error;
2882 }
2883
2884 static int
shmem_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2885 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2886 struct dentry *dentry, umode_t mode)
2887 {
2888 struct inode *inode;
2889 int error = -ENOSPC;
2890
2891 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2892 if (inode) {
2893 error = security_inode_init_security(inode, dir,
2894 NULL,
2895 shmem_initxattrs, NULL);
2896 if (error && error != -EOPNOTSUPP)
2897 goto out_iput;
2898 error = simple_acl_create(dir, inode);
2899 if (error)
2900 goto out_iput;
2901 d_tmpfile(dentry, inode);
2902 }
2903 return error;
2904 out_iput:
2905 iput(inode);
2906 return error;
2907 }
2908
shmem_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2909 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2910 struct dentry *dentry, umode_t mode)
2911 {
2912 int error;
2913
2914 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2915 mode | S_IFDIR, 0)))
2916 return error;
2917 inc_nlink(dir);
2918 return 0;
2919 }
2920
shmem_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2921 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2922 struct dentry *dentry, umode_t mode, bool excl)
2923 {
2924 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2925 }
2926
2927 /*
2928 * Link a file..
2929 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2930 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2931 {
2932 struct inode *inode = d_inode(old_dentry);
2933 int ret = 0;
2934
2935 /*
2936 * No ordinary (disk based) filesystem counts links as inodes;
2937 * but each new link needs a new dentry, pinning lowmem, and
2938 * tmpfs dentries cannot be pruned until they are unlinked.
2939 * But if an O_TMPFILE file is linked into the tmpfs, the
2940 * first link must skip that, to get the accounting right.
2941 */
2942 if (inode->i_nlink) {
2943 ret = shmem_reserve_inode(inode->i_sb, NULL);
2944 if (ret)
2945 goto out;
2946 }
2947
2948 dir->i_size += BOGO_DIRENT_SIZE;
2949 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2950 inc_nlink(inode);
2951 ihold(inode); /* New dentry reference */
2952 dget(dentry); /* Extra pinning count for the created dentry */
2953 d_instantiate(dentry, inode);
2954 out:
2955 return ret;
2956 }
2957
shmem_unlink(struct inode * dir,struct dentry * dentry)2958 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2959 {
2960 struct inode *inode = d_inode(dentry);
2961
2962 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2963 shmem_free_inode(inode->i_sb);
2964
2965 dir->i_size -= BOGO_DIRENT_SIZE;
2966 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2967 drop_nlink(inode);
2968 dput(dentry); /* Undo the count from "create" - this does all the work */
2969 return 0;
2970 }
2971
shmem_rmdir(struct inode * dir,struct dentry * dentry)2972 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2973 {
2974 if (!simple_empty(dentry))
2975 return -ENOTEMPTY;
2976
2977 drop_nlink(d_inode(dentry));
2978 drop_nlink(dir);
2979 return shmem_unlink(dir, dentry);
2980 }
2981
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2982 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2983 {
2984 bool old_is_dir = d_is_dir(old_dentry);
2985 bool new_is_dir = d_is_dir(new_dentry);
2986
2987 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2988 if (old_is_dir) {
2989 drop_nlink(old_dir);
2990 inc_nlink(new_dir);
2991 } else {
2992 drop_nlink(new_dir);
2993 inc_nlink(old_dir);
2994 }
2995 }
2996 old_dir->i_ctime = old_dir->i_mtime =
2997 new_dir->i_ctime = new_dir->i_mtime =
2998 d_inode(old_dentry)->i_ctime =
2999 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3000
3001 return 0;
3002 }
3003
shmem_whiteout(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry)3004 static int shmem_whiteout(struct user_namespace *mnt_userns,
3005 struct inode *old_dir, struct dentry *old_dentry)
3006 {
3007 struct dentry *whiteout;
3008 int error;
3009
3010 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3011 if (!whiteout)
3012 return -ENOMEM;
3013
3014 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3015 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3016 dput(whiteout);
3017 if (error)
3018 return error;
3019
3020 /*
3021 * Cheat and hash the whiteout while the old dentry is still in
3022 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3023 *
3024 * d_lookup() will consistently find one of them at this point,
3025 * not sure which one, but that isn't even important.
3026 */
3027 d_rehash(whiteout);
3028 return 0;
3029 }
3030
3031 /*
3032 * The VFS layer already does all the dentry stuff for rename,
3033 * we just have to decrement the usage count for the target if
3034 * it exists so that the VFS layer correctly free's it when it
3035 * gets overwritten.
3036 */
shmem_rename2(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3037 static int shmem_rename2(struct user_namespace *mnt_userns,
3038 struct inode *old_dir, struct dentry *old_dentry,
3039 struct inode *new_dir, struct dentry *new_dentry,
3040 unsigned int flags)
3041 {
3042 struct inode *inode = d_inode(old_dentry);
3043 int they_are_dirs = S_ISDIR(inode->i_mode);
3044
3045 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3046 return -EINVAL;
3047
3048 if (flags & RENAME_EXCHANGE)
3049 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3050
3051 if (!simple_empty(new_dentry))
3052 return -ENOTEMPTY;
3053
3054 if (flags & RENAME_WHITEOUT) {
3055 int error;
3056
3057 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3058 if (error)
3059 return error;
3060 }
3061
3062 if (d_really_is_positive(new_dentry)) {
3063 (void) shmem_unlink(new_dir, new_dentry);
3064 if (they_are_dirs) {
3065 drop_nlink(d_inode(new_dentry));
3066 drop_nlink(old_dir);
3067 }
3068 } else if (they_are_dirs) {
3069 drop_nlink(old_dir);
3070 inc_nlink(new_dir);
3071 }
3072
3073 old_dir->i_size -= BOGO_DIRENT_SIZE;
3074 new_dir->i_size += BOGO_DIRENT_SIZE;
3075 old_dir->i_ctime = old_dir->i_mtime =
3076 new_dir->i_ctime = new_dir->i_mtime =
3077 inode->i_ctime = current_time(old_dir);
3078 return 0;
3079 }
3080
shmem_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)3081 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3082 struct dentry *dentry, const char *symname)
3083 {
3084 int error;
3085 int len;
3086 struct inode *inode;
3087 struct page *page;
3088
3089 len = strlen(symname) + 1;
3090 if (len > PAGE_SIZE)
3091 return -ENAMETOOLONG;
3092
3093 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3094 VM_NORESERVE);
3095 if (!inode)
3096 return -ENOSPC;
3097
3098 error = security_inode_init_security(inode, dir, &dentry->d_name,
3099 shmem_initxattrs, NULL);
3100 if (error && error != -EOPNOTSUPP) {
3101 iput(inode);
3102 return error;
3103 }
3104
3105 inode->i_size = len-1;
3106 if (len <= SHORT_SYMLINK_LEN) {
3107 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3108 if (!inode->i_link) {
3109 iput(inode);
3110 return -ENOMEM;
3111 }
3112 inode->i_op = &shmem_short_symlink_operations;
3113 } else {
3114 inode_nohighmem(inode);
3115 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3116 if (error) {
3117 iput(inode);
3118 return error;
3119 }
3120 inode->i_mapping->a_ops = &shmem_aops;
3121 inode->i_op = &shmem_symlink_inode_operations;
3122 memcpy(page_address(page), symname, len);
3123 SetPageUptodate(page);
3124 set_page_dirty(page);
3125 unlock_page(page);
3126 put_page(page);
3127 }
3128 dir->i_size += BOGO_DIRENT_SIZE;
3129 dir->i_ctime = dir->i_mtime = current_time(dir);
3130 d_instantiate(dentry, inode);
3131 dget(dentry);
3132 return 0;
3133 }
3134
shmem_put_link(void * arg)3135 static void shmem_put_link(void *arg)
3136 {
3137 mark_page_accessed(arg);
3138 put_page(arg);
3139 }
3140
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3141 static const char *shmem_get_link(struct dentry *dentry,
3142 struct inode *inode,
3143 struct delayed_call *done)
3144 {
3145 struct page *page = NULL;
3146 int error;
3147 if (!dentry) {
3148 page = find_get_page(inode->i_mapping, 0);
3149 if (!page)
3150 return ERR_PTR(-ECHILD);
3151 if (!PageUptodate(page)) {
3152 put_page(page);
3153 return ERR_PTR(-ECHILD);
3154 }
3155 } else {
3156 error = shmem_getpage(inode, 0, &page, SGP_READ);
3157 if (error)
3158 return ERR_PTR(error);
3159 unlock_page(page);
3160 }
3161 set_delayed_call(done, shmem_put_link, page);
3162 return page_address(page);
3163 }
3164
3165 #ifdef CONFIG_TMPFS_XATTR
3166 /*
3167 * Superblocks without xattr inode operations may get some security.* xattr
3168 * support from the LSM "for free". As soon as we have any other xattrs
3169 * like ACLs, we also need to implement the security.* handlers at
3170 * filesystem level, though.
3171 */
3172
3173 /*
3174 * Callback for security_inode_init_security() for acquiring xattrs.
3175 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3176 static int shmem_initxattrs(struct inode *inode,
3177 const struct xattr *xattr_array,
3178 void *fs_info)
3179 {
3180 struct shmem_inode_info *info = SHMEM_I(inode);
3181 const struct xattr *xattr;
3182 struct simple_xattr *new_xattr;
3183 size_t len;
3184
3185 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3186 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3187 if (!new_xattr)
3188 return -ENOMEM;
3189
3190 len = strlen(xattr->name) + 1;
3191 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3192 GFP_KERNEL);
3193 if (!new_xattr->name) {
3194 kvfree(new_xattr);
3195 return -ENOMEM;
3196 }
3197
3198 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3199 XATTR_SECURITY_PREFIX_LEN);
3200 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3201 xattr->name, len);
3202
3203 simple_xattr_list_add(&info->xattrs, new_xattr);
3204 }
3205
3206 return 0;
3207 }
3208
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3209 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3210 struct dentry *unused, struct inode *inode,
3211 const char *name, void *buffer, size_t size)
3212 {
3213 struct shmem_inode_info *info = SHMEM_I(inode);
3214
3215 name = xattr_full_name(handler, name);
3216 return simple_xattr_get(&info->xattrs, name, buffer, size);
3217 }
3218
shmem_xattr_handler_set(const struct xattr_handler * handler,struct user_namespace * mnt_userns,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3219 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3220 struct user_namespace *mnt_userns,
3221 struct dentry *unused, struct inode *inode,
3222 const char *name, const void *value,
3223 size_t size, int flags)
3224 {
3225 struct shmem_inode_info *info = SHMEM_I(inode);
3226
3227 name = xattr_full_name(handler, name);
3228 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3229 }
3230
3231 static const struct xattr_handler shmem_security_xattr_handler = {
3232 .prefix = XATTR_SECURITY_PREFIX,
3233 .get = shmem_xattr_handler_get,
3234 .set = shmem_xattr_handler_set,
3235 };
3236
3237 static const struct xattr_handler shmem_trusted_xattr_handler = {
3238 .prefix = XATTR_TRUSTED_PREFIX,
3239 .get = shmem_xattr_handler_get,
3240 .set = shmem_xattr_handler_set,
3241 };
3242
3243 static const struct xattr_handler *shmem_xattr_handlers[] = {
3244 #ifdef CONFIG_TMPFS_POSIX_ACL
3245 &posix_acl_access_xattr_handler,
3246 &posix_acl_default_xattr_handler,
3247 #endif
3248 &shmem_security_xattr_handler,
3249 &shmem_trusted_xattr_handler,
3250 NULL
3251 };
3252
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3253 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3254 {
3255 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3256 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3257 }
3258 #endif /* CONFIG_TMPFS_XATTR */
3259
3260 static const struct inode_operations shmem_short_symlink_operations = {
3261 .get_link = simple_get_link,
3262 #ifdef CONFIG_TMPFS_XATTR
3263 .listxattr = shmem_listxattr,
3264 #endif
3265 };
3266
3267 static const struct inode_operations shmem_symlink_inode_operations = {
3268 .get_link = shmem_get_link,
3269 #ifdef CONFIG_TMPFS_XATTR
3270 .listxattr = shmem_listxattr,
3271 #endif
3272 };
3273
shmem_get_parent(struct dentry * child)3274 static struct dentry *shmem_get_parent(struct dentry *child)
3275 {
3276 return ERR_PTR(-ESTALE);
3277 }
3278
shmem_match(struct inode * ino,void * vfh)3279 static int shmem_match(struct inode *ino, void *vfh)
3280 {
3281 __u32 *fh = vfh;
3282 __u64 inum = fh[2];
3283 inum = (inum << 32) | fh[1];
3284 return ino->i_ino == inum && fh[0] == ino->i_generation;
3285 }
3286
3287 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3288 static struct dentry *shmem_find_alias(struct inode *inode)
3289 {
3290 struct dentry *alias = d_find_alias(inode);
3291
3292 return alias ?: d_find_any_alias(inode);
3293 }
3294
3295
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3296 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3297 struct fid *fid, int fh_len, int fh_type)
3298 {
3299 struct inode *inode;
3300 struct dentry *dentry = NULL;
3301 u64 inum;
3302
3303 if (fh_len < 3)
3304 return NULL;
3305
3306 inum = fid->raw[2];
3307 inum = (inum << 32) | fid->raw[1];
3308
3309 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3310 shmem_match, fid->raw);
3311 if (inode) {
3312 dentry = shmem_find_alias(inode);
3313 iput(inode);
3314 }
3315
3316 return dentry;
3317 }
3318
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3319 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3320 struct inode *parent)
3321 {
3322 if (*len < 3) {
3323 *len = 3;
3324 return FILEID_INVALID;
3325 }
3326
3327 if (inode_unhashed(inode)) {
3328 /* Unfortunately insert_inode_hash is not idempotent,
3329 * so as we hash inodes here rather than at creation
3330 * time, we need a lock to ensure we only try
3331 * to do it once
3332 */
3333 static DEFINE_SPINLOCK(lock);
3334 spin_lock(&lock);
3335 if (inode_unhashed(inode))
3336 __insert_inode_hash(inode,
3337 inode->i_ino + inode->i_generation);
3338 spin_unlock(&lock);
3339 }
3340
3341 fh[0] = inode->i_generation;
3342 fh[1] = inode->i_ino;
3343 fh[2] = ((__u64)inode->i_ino) >> 32;
3344
3345 *len = 3;
3346 return 1;
3347 }
3348
3349 static const struct export_operations shmem_export_ops = {
3350 .get_parent = shmem_get_parent,
3351 .encode_fh = shmem_encode_fh,
3352 .fh_to_dentry = shmem_fh_to_dentry,
3353 };
3354
3355 enum shmem_param {
3356 Opt_gid,
3357 Opt_huge,
3358 Opt_mode,
3359 Opt_mpol,
3360 Opt_nr_blocks,
3361 Opt_nr_inodes,
3362 Opt_size,
3363 Opt_uid,
3364 Opt_inode32,
3365 Opt_inode64,
3366 };
3367
3368 static const struct constant_table shmem_param_enums_huge[] = {
3369 {"never", SHMEM_HUGE_NEVER },
3370 {"always", SHMEM_HUGE_ALWAYS },
3371 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3372 {"advise", SHMEM_HUGE_ADVISE },
3373 {}
3374 };
3375
3376 const struct fs_parameter_spec shmem_fs_parameters[] = {
3377 fsparam_u32 ("gid", Opt_gid),
3378 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3379 fsparam_u32oct("mode", Opt_mode),
3380 fsparam_string("mpol", Opt_mpol),
3381 fsparam_string("nr_blocks", Opt_nr_blocks),
3382 fsparam_string("nr_inodes", Opt_nr_inodes),
3383 fsparam_string("size", Opt_size),
3384 fsparam_u32 ("uid", Opt_uid),
3385 fsparam_flag ("inode32", Opt_inode32),
3386 fsparam_flag ("inode64", Opt_inode64),
3387 {}
3388 };
3389
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3390 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3391 {
3392 struct shmem_options *ctx = fc->fs_private;
3393 struct fs_parse_result result;
3394 unsigned long long size;
3395 char *rest;
3396 int opt;
3397
3398 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3399 if (opt < 0)
3400 return opt;
3401
3402 switch (opt) {
3403 case Opt_size:
3404 size = memparse(param->string, &rest);
3405 if (*rest == '%') {
3406 size <<= PAGE_SHIFT;
3407 size *= totalram_pages();
3408 do_div(size, 100);
3409 rest++;
3410 }
3411 if (*rest)
3412 goto bad_value;
3413 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3414 ctx->seen |= SHMEM_SEEN_BLOCKS;
3415 break;
3416 case Opt_nr_blocks:
3417 ctx->blocks = memparse(param->string, &rest);
3418 if (*rest)
3419 goto bad_value;
3420 ctx->seen |= SHMEM_SEEN_BLOCKS;
3421 break;
3422 case Opt_nr_inodes:
3423 ctx->inodes = memparse(param->string, &rest);
3424 if (*rest)
3425 goto bad_value;
3426 ctx->seen |= SHMEM_SEEN_INODES;
3427 break;
3428 case Opt_mode:
3429 ctx->mode = result.uint_32 & 07777;
3430 break;
3431 case Opt_uid:
3432 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3433 if (!uid_valid(ctx->uid))
3434 goto bad_value;
3435 break;
3436 case Opt_gid:
3437 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3438 if (!gid_valid(ctx->gid))
3439 goto bad_value;
3440 break;
3441 case Opt_huge:
3442 ctx->huge = result.uint_32;
3443 if (ctx->huge != SHMEM_HUGE_NEVER &&
3444 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3445 has_transparent_hugepage()))
3446 goto unsupported_parameter;
3447 ctx->seen |= SHMEM_SEEN_HUGE;
3448 break;
3449 case Opt_mpol:
3450 if (IS_ENABLED(CONFIG_NUMA)) {
3451 mpol_put(ctx->mpol);
3452 ctx->mpol = NULL;
3453 if (mpol_parse_str(param->string, &ctx->mpol))
3454 goto bad_value;
3455 break;
3456 }
3457 goto unsupported_parameter;
3458 case Opt_inode32:
3459 ctx->full_inums = false;
3460 ctx->seen |= SHMEM_SEEN_INUMS;
3461 break;
3462 case Opt_inode64:
3463 if (sizeof(ino_t) < 8) {
3464 return invalfc(fc,
3465 "Cannot use inode64 with <64bit inums in kernel\n");
3466 }
3467 ctx->full_inums = true;
3468 ctx->seen |= SHMEM_SEEN_INUMS;
3469 break;
3470 }
3471 return 0;
3472
3473 unsupported_parameter:
3474 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3475 bad_value:
3476 return invalfc(fc, "Bad value for '%s'", param->key);
3477 }
3478
shmem_parse_options(struct fs_context * fc,void * data)3479 static int shmem_parse_options(struct fs_context *fc, void *data)
3480 {
3481 char *options = data;
3482
3483 if (options) {
3484 int err = security_sb_eat_lsm_opts(options, &fc->security);
3485 if (err)
3486 return err;
3487 }
3488
3489 while (options != NULL) {
3490 char *this_char = options;
3491 for (;;) {
3492 /*
3493 * NUL-terminate this option: unfortunately,
3494 * mount options form a comma-separated list,
3495 * but mpol's nodelist may also contain commas.
3496 */
3497 options = strchr(options, ',');
3498 if (options == NULL)
3499 break;
3500 options++;
3501 if (!isdigit(*options)) {
3502 options[-1] = '\0';
3503 break;
3504 }
3505 }
3506 if (*this_char) {
3507 char *value = strchr(this_char, '=');
3508 size_t len = 0;
3509 int err;
3510
3511 if (value) {
3512 *value++ = '\0';
3513 len = strlen(value);
3514 }
3515 err = vfs_parse_fs_string(fc, this_char, value, len);
3516 if (err < 0)
3517 return err;
3518 }
3519 }
3520 return 0;
3521 }
3522
3523 /*
3524 * Reconfigure a shmem filesystem.
3525 *
3526 * Note that we disallow change from limited->unlimited blocks/inodes while any
3527 * are in use; but we must separately disallow unlimited->limited, because in
3528 * that case we have no record of how much is already in use.
3529 */
shmem_reconfigure(struct fs_context * fc)3530 static int shmem_reconfigure(struct fs_context *fc)
3531 {
3532 struct shmem_options *ctx = fc->fs_private;
3533 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3534 unsigned long inodes;
3535 const char *err;
3536
3537 spin_lock(&sbinfo->stat_lock);
3538 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3539 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3540 if (!sbinfo->max_blocks) {
3541 err = "Cannot retroactively limit size";
3542 goto out;
3543 }
3544 if (percpu_counter_compare(&sbinfo->used_blocks,
3545 ctx->blocks) > 0) {
3546 err = "Too small a size for current use";
3547 goto out;
3548 }
3549 }
3550 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3551 if (!sbinfo->max_inodes) {
3552 err = "Cannot retroactively limit inodes";
3553 goto out;
3554 }
3555 if (ctx->inodes < inodes) {
3556 err = "Too few inodes for current use";
3557 goto out;
3558 }
3559 }
3560
3561 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3562 sbinfo->next_ino > UINT_MAX) {
3563 err = "Current inum too high to switch to 32-bit inums";
3564 goto out;
3565 }
3566
3567 if (ctx->seen & SHMEM_SEEN_HUGE)
3568 sbinfo->huge = ctx->huge;
3569 if (ctx->seen & SHMEM_SEEN_INUMS)
3570 sbinfo->full_inums = ctx->full_inums;
3571 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3572 sbinfo->max_blocks = ctx->blocks;
3573 if (ctx->seen & SHMEM_SEEN_INODES) {
3574 sbinfo->max_inodes = ctx->inodes;
3575 sbinfo->free_inodes = ctx->inodes - inodes;
3576 }
3577
3578 /*
3579 * Preserve previous mempolicy unless mpol remount option was specified.
3580 */
3581 if (ctx->mpol) {
3582 mpol_put(sbinfo->mpol);
3583 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3584 ctx->mpol = NULL;
3585 }
3586 spin_unlock(&sbinfo->stat_lock);
3587 return 0;
3588 out:
3589 spin_unlock(&sbinfo->stat_lock);
3590 return invalfc(fc, "%s", err);
3591 }
3592
shmem_show_options(struct seq_file * seq,struct dentry * root)3593 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3594 {
3595 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3596
3597 if (sbinfo->max_blocks != shmem_default_max_blocks())
3598 seq_printf(seq, ",size=%luk",
3599 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3600 if (sbinfo->max_inodes != shmem_default_max_inodes())
3601 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3602 if (sbinfo->mode != (0777 | S_ISVTX))
3603 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3604 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3605 seq_printf(seq, ",uid=%u",
3606 from_kuid_munged(&init_user_ns, sbinfo->uid));
3607 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3608 seq_printf(seq, ",gid=%u",
3609 from_kgid_munged(&init_user_ns, sbinfo->gid));
3610
3611 /*
3612 * Showing inode{64,32} might be useful even if it's the system default,
3613 * since then people don't have to resort to checking both here and
3614 * /proc/config.gz to confirm 64-bit inums were successfully applied
3615 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3616 *
3617 * We hide it when inode64 isn't the default and we are using 32-bit
3618 * inodes, since that probably just means the feature isn't even under
3619 * consideration.
3620 *
3621 * As such:
3622 *
3623 * +-----------------+-----------------+
3624 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3625 * +------------------+-----------------+-----------------+
3626 * | full_inums=true | show | show |
3627 * | full_inums=false | show | hide |
3628 * +------------------+-----------------+-----------------+
3629 *
3630 */
3631 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3632 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3634 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3635 if (sbinfo->huge)
3636 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3637 #endif
3638 shmem_show_mpol(seq, sbinfo->mpol);
3639 return 0;
3640 }
3641
3642 #endif /* CONFIG_TMPFS */
3643
shmem_put_super(struct super_block * sb)3644 static void shmem_put_super(struct super_block *sb)
3645 {
3646 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3647
3648 free_percpu(sbinfo->ino_batch);
3649 percpu_counter_destroy(&sbinfo->used_blocks);
3650 mpol_put(sbinfo->mpol);
3651 kfree(sbinfo);
3652 sb->s_fs_info = NULL;
3653 }
3654
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3655 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3656 {
3657 struct shmem_options *ctx = fc->fs_private;
3658 struct inode *inode;
3659 struct shmem_sb_info *sbinfo;
3660 int err = -ENOMEM;
3661
3662 /* Round up to L1_CACHE_BYTES to resist false sharing */
3663 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3664 L1_CACHE_BYTES), GFP_KERNEL);
3665 if (!sbinfo)
3666 return -ENOMEM;
3667
3668 sb->s_fs_info = sbinfo;
3669
3670 #ifdef CONFIG_TMPFS
3671 /*
3672 * Per default we only allow half of the physical ram per
3673 * tmpfs instance, limiting inodes to one per page of lowmem;
3674 * but the internal instance is left unlimited.
3675 */
3676 if (!(sb->s_flags & SB_KERNMOUNT)) {
3677 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3678 ctx->blocks = shmem_default_max_blocks();
3679 if (!(ctx->seen & SHMEM_SEEN_INODES))
3680 ctx->inodes = shmem_default_max_inodes();
3681 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3682 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3683 } else {
3684 sb->s_flags |= SB_NOUSER;
3685 }
3686 sb->s_export_op = &shmem_export_ops;
3687 sb->s_flags |= SB_NOSEC;
3688 #else
3689 sb->s_flags |= SB_NOUSER;
3690 #endif
3691 sbinfo->max_blocks = ctx->blocks;
3692 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3693 if (sb->s_flags & SB_KERNMOUNT) {
3694 sbinfo->ino_batch = alloc_percpu(ino_t);
3695 if (!sbinfo->ino_batch)
3696 goto failed;
3697 }
3698 sbinfo->uid = ctx->uid;
3699 sbinfo->gid = ctx->gid;
3700 sbinfo->full_inums = ctx->full_inums;
3701 sbinfo->mode = ctx->mode;
3702 sbinfo->huge = ctx->huge;
3703 sbinfo->mpol = ctx->mpol;
3704 ctx->mpol = NULL;
3705
3706 spin_lock_init(&sbinfo->stat_lock);
3707 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3708 goto failed;
3709 spin_lock_init(&sbinfo->shrinklist_lock);
3710 INIT_LIST_HEAD(&sbinfo->shrinklist);
3711
3712 sb->s_maxbytes = MAX_LFS_FILESIZE;
3713 sb->s_blocksize = PAGE_SIZE;
3714 sb->s_blocksize_bits = PAGE_SHIFT;
3715 sb->s_magic = TMPFS_MAGIC;
3716 sb->s_op = &shmem_ops;
3717 sb->s_time_gran = 1;
3718 #ifdef CONFIG_TMPFS_XATTR
3719 sb->s_xattr = shmem_xattr_handlers;
3720 #endif
3721 #ifdef CONFIG_TMPFS_POSIX_ACL
3722 sb->s_flags |= SB_POSIXACL;
3723 #endif
3724 uuid_gen(&sb->s_uuid);
3725
3726 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3727 if (!inode)
3728 goto failed;
3729 inode->i_uid = sbinfo->uid;
3730 inode->i_gid = sbinfo->gid;
3731 sb->s_root = d_make_root(inode);
3732 if (!sb->s_root)
3733 goto failed;
3734 return 0;
3735
3736 failed:
3737 shmem_put_super(sb);
3738 return err;
3739 }
3740
shmem_get_tree(struct fs_context * fc)3741 static int shmem_get_tree(struct fs_context *fc)
3742 {
3743 return get_tree_nodev(fc, shmem_fill_super);
3744 }
3745
shmem_free_fc(struct fs_context * fc)3746 static void shmem_free_fc(struct fs_context *fc)
3747 {
3748 struct shmem_options *ctx = fc->fs_private;
3749
3750 if (ctx) {
3751 mpol_put(ctx->mpol);
3752 kfree(ctx);
3753 }
3754 }
3755
3756 static const struct fs_context_operations shmem_fs_context_ops = {
3757 .free = shmem_free_fc,
3758 .get_tree = shmem_get_tree,
3759 #ifdef CONFIG_TMPFS
3760 .parse_monolithic = shmem_parse_options,
3761 .parse_param = shmem_parse_one,
3762 .reconfigure = shmem_reconfigure,
3763 #endif
3764 };
3765
3766 static struct kmem_cache *shmem_inode_cachep;
3767
shmem_alloc_inode(struct super_block * sb)3768 static struct inode *shmem_alloc_inode(struct super_block *sb)
3769 {
3770 struct shmem_inode_info *info;
3771 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3772 if (!info)
3773 return NULL;
3774 return &info->vfs_inode;
3775 }
3776
shmem_free_in_core_inode(struct inode * inode)3777 static void shmem_free_in_core_inode(struct inode *inode)
3778 {
3779 if (S_ISLNK(inode->i_mode))
3780 kfree(inode->i_link);
3781 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3782 }
3783
shmem_destroy_inode(struct inode * inode)3784 static void shmem_destroy_inode(struct inode *inode)
3785 {
3786 if (S_ISREG(inode->i_mode))
3787 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3788 }
3789
shmem_init_inode(void * foo)3790 static void shmem_init_inode(void *foo)
3791 {
3792 struct shmem_inode_info *info = foo;
3793 inode_init_once(&info->vfs_inode);
3794 }
3795
shmem_init_inodecache(void)3796 static void shmem_init_inodecache(void)
3797 {
3798 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3799 sizeof(struct shmem_inode_info),
3800 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3801 }
3802
shmem_destroy_inodecache(void)3803 static void shmem_destroy_inodecache(void)
3804 {
3805 kmem_cache_destroy(shmem_inode_cachep);
3806 }
3807
3808 const struct address_space_operations shmem_aops = {
3809 .writepage = shmem_writepage,
3810 .set_page_dirty = __set_page_dirty_no_writeback,
3811 #ifdef CONFIG_TMPFS
3812 .write_begin = shmem_write_begin,
3813 .write_end = shmem_write_end,
3814 #endif
3815 #ifdef CONFIG_MIGRATION
3816 .migratepage = migrate_page,
3817 #endif
3818 .error_remove_page = generic_error_remove_page,
3819 };
3820 EXPORT_SYMBOL(shmem_aops);
3821
3822 static const struct file_operations shmem_file_operations = {
3823 .mmap = shmem_mmap,
3824 .get_unmapped_area = shmem_get_unmapped_area,
3825 #ifdef CONFIG_TMPFS
3826 .llseek = shmem_file_llseek,
3827 .read_iter = shmem_file_read_iter,
3828 .write_iter = generic_file_write_iter,
3829 .fsync = noop_fsync,
3830 .splice_read = generic_file_splice_read,
3831 .splice_write = iter_file_splice_write,
3832 .fallocate = shmem_fallocate,
3833 #endif
3834 };
3835
3836 static const struct inode_operations shmem_inode_operations = {
3837 .getattr = shmem_getattr,
3838 .setattr = shmem_setattr,
3839 #ifdef CONFIG_TMPFS_XATTR
3840 .listxattr = shmem_listxattr,
3841 .set_acl = simple_set_acl,
3842 #endif
3843 };
3844
3845 static const struct inode_operations shmem_dir_inode_operations = {
3846 #ifdef CONFIG_TMPFS
3847 .create = shmem_create,
3848 .lookup = simple_lookup,
3849 .link = shmem_link,
3850 .unlink = shmem_unlink,
3851 .symlink = shmem_symlink,
3852 .mkdir = shmem_mkdir,
3853 .rmdir = shmem_rmdir,
3854 .mknod = shmem_mknod,
3855 .rename = shmem_rename2,
3856 .tmpfile = shmem_tmpfile,
3857 #endif
3858 #ifdef CONFIG_TMPFS_XATTR
3859 .listxattr = shmem_listxattr,
3860 #endif
3861 #ifdef CONFIG_TMPFS_POSIX_ACL
3862 .setattr = shmem_setattr,
3863 .set_acl = simple_set_acl,
3864 #endif
3865 };
3866
3867 static const struct inode_operations shmem_special_inode_operations = {
3868 #ifdef CONFIG_TMPFS_XATTR
3869 .listxattr = shmem_listxattr,
3870 #endif
3871 #ifdef CONFIG_TMPFS_POSIX_ACL
3872 .setattr = shmem_setattr,
3873 .set_acl = simple_set_acl,
3874 #endif
3875 };
3876
3877 static const struct super_operations shmem_ops = {
3878 .alloc_inode = shmem_alloc_inode,
3879 .free_inode = shmem_free_in_core_inode,
3880 .destroy_inode = shmem_destroy_inode,
3881 #ifdef CONFIG_TMPFS
3882 .statfs = shmem_statfs,
3883 .show_options = shmem_show_options,
3884 #endif
3885 .evict_inode = shmem_evict_inode,
3886 .drop_inode = generic_delete_inode,
3887 .put_super = shmem_put_super,
3888 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3889 .nr_cached_objects = shmem_unused_huge_count,
3890 .free_cached_objects = shmem_unused_huge_scan,
3891 #endif
3892 };
3893
3894 static const struct vm_operations_struct shmem_vm_ops = {
3895 .fault = shmem_fault,
3896 .map_pages = filemap_map_pages,
3897 #ifdef CONFIG_NUMA
3898 .set_policy = shmem_set_policy,
3899 .get_policy = shmem_get_policy,
3900 #endif
3901 };
3902
shmem_init_fs_context(struct fs_context * fc)3903 int shmem_init_fs_context(struct fs_context *fc)
3904 {
3905 struct shmem_options *ctx;
3906
3907 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3908 if (!ctx)
3909 return -ENOMEM;
3910
3911 ctx->mode = 0777 | S_ISVTX;
3912 ctx->uid = current_fsuid();
3913 ctx->gid = current_fsgid();
3914
3915 fc->fs_private = ctx;
3916 fc->ops = &shmem_fs_context_ops;
3917 return 0;
3918 }
3919
3920 static struct file_system_type shmem_fs_type = {
3921 .owner = THIS_MODULE,
3922 .name = "tmpfs",
3923 .init_fs_context = shmem_init_fs_context,
3924 #ifdef CONFIG_TMPFS
3925 .parameters = shmem_fs_parameters,
3926 #endif
3927 .kill_sb = kill_litter_super,
3928 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3929 };
3930
shmem_init(void)3931 int __init shmem_init(void)
3932 {
3933 int error;
3934
3935 shmem_init_inodecache();
3936
3937 error = register_filesystem(&shmem_fs_type);
3938 if (error) {
3939 pr_err("Could not register tmpfs\n");
3940 goto out2;
3941 }
3942
3943 shm_mnt = kern_mount(&shmem_fs_type);
3944 if (IS_ERR(shm_mnt)) {
3945 error = PTR_ERR(shm_mnt);
3946 pr_err("Could not kern_mount tmpfs\n");
3947 goto out1;
3948 }
3949
3950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3951 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3952 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3953 else
3954 shmem_huge = 0; /* just in case it was patched */
3955 #endif
3956 return 0;
3957
3958 out1:
3959 unregister_filesystem(&shmem_fs_type);
3960 out2:
3961 shmem_destroy_inodecache();
3962 shm_mnt = ERR_PTR(error);
3963 return error;
3964 }
3965
3966 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3967 static ssize_t shmem_enabled_show(struct kobject *kobj,
3968 struct kobj_attribute *attr, char *buf)
3969 {
3970 static const int values[] = {
3971 SHMEM_HUGE_ALWAYS,
3972 SHMEM_HUGE_WITHIN_SIZE,
3973 SHMEM_HUGE_ADVISE,
3974 SHMEM_HUGE_NEVER,
3975 SHMEM_HUGE_DENY,
3976 SHMEM_HUGE_FORCE,
3977 };
3978 int len = 0;
3979 int i;
3980
3981 for (i = 0; i < ARRAY_SIZE(values); i++) {
3982 len += sysfs_emit_at(buf, len,
3983 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3984 i ? " " : "",
3985 shmem_format_huge(values[i]));
3986 }
3987
3988 len += sysfs_emit_at(buf, len, "\n");
3989
3990 return len;
3991 }
3992
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3993 static ssize_t shmem_enabled_store(struct kobject *kobj,
3994 struct kobj_attribute *attr, const char *buf, size_t count)
3995 {
3996 char tmp[16];
3997 int huge;
3998
3999 if (count + 1 > sizeof(tmp))
4000 return -EINVAL;
4001 memcpy(tmp, buf, count);
4002 tmp[count] = '\0';
4003 if (count && tmp[count - 1] == '\n')
4004 tmp[count - 1] = '\0';
4005
4006 huge = shmem_parse_huge(tmp);
4007 if (huge == -EINVAL)
4008 return -EINVAL;
4009 if (!has_transparent_hugepage() &&
4010 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4011 return -EINVAL;
4012
4013 shmem_huge = huge;
4014 if (shmem_huge > SHMEM_HUGE_DENY)
4015 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4016 return count;
4017 }
4018
4019 struct kobj_attribute shmem_enabled_attr =
4020 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4021 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4022
4023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_huge_enabled(struct vm_area_struct * vma)4024 bool shmem_huge_enabled(struct vm_area_struct *vma)
4025 {
4026 struct inode *inode = file_inode(vma->vm_file);
4027 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4028 loff_t i_size;
4029 pgoff_t off;
4030
4031 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4032 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4033 return false;
4034 if (shmem_huge == SHMEM_HUGE_FORCE)
4035 return true;
4036 if (shmem_huge == SHMEM_HUGE_DENY)
4037 return false;
4038 switch (sbinfo->huge) {
4039 case SHMEM_HUGE_NEVER:
4040 return false;
4041 case SHMEM_HUGE_ALWAYS:
4042 return true;
4043 case SHMEM_HUGE_WITHIN_SIZE:
4044 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4045 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4046 if (i_size >= HPAGE_PMD_SIZE &&
4047 i_size >> PAGE_SHIFT >= off)
4048 return true;
4049 fallthrough;
4050 case SHMEM_HUGE_ADVISE:
4051 /* TODO: implement fadvise() hints */
4052 return (vma->vm_flags & VM_HUGEPAGE);
4053 default:
4054 VM_BUG_ON(1);
4055 return false;
4056 }
4057 }
4058 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4059
4060 #else /* !CONFIG_SHMEM */
4061
4062 /*
4063 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4064 *
4065 * This is intended for small system where the benefits of the full
4066 * shmem code (swap-backed and resource-limited) are outweighed by
4067 * their complexity. On systems without swap this code should be
4068 * effectively equivalent, but much lighter weight.
4069 */
4070
4071 static struct file_system_type shmem_fs_type = {
4072 .name = "tmpfs",
4073 .init_fs_context = ramfs_init_fs_context,
4074 .parameters = ramfs_fs_parameters,
4075 .kill_sb = kill_litter_super,
4076 .fs_flags = FS_USERNS_MOUNT,
4077 };
4078
shmem_init(void)4079 int __init shmem_init(void)
4080 {
4081 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4082
4083 shm_mnt = kern_mount(&shmem_fs_type);
4084 BUG_ON(IS_ERR(shm_mnt));
4085
4086 return 0;
4087 }
4088
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)4089 int shmem_unuse(unsigned int type, bool frontswap,
4090 unsigned long *fs_pages_to_unuse)
4091 {
4092 return 0;
4093 }
4094
shmem_lock(struct file * file,int lock,struct user_struct * user)4095 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4096 {
4097 return 0;
4098 }
4099
shmem_unlock_mapping(struct address_space * mapping)4100 void shmem_unlock_mapping(struct address_space *mapping)
4101 {
4102 }
4103
4104 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4105 unsigned long shmem_get_unmapped_area(struct file *file,
4106 unsigned long addr, unsigned long len,
4107 unsigned long pgoff, unsigned long flags)
4108 {
4109 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4110 }
4111 #endif
4112
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4113 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4114 {
4115 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4116 }
4117 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4118
4119 #define shmem_vm_ops generic_file_vm_ops
4120 #define shmem_file_operations ramfs_file_operations
4121 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4122 #define shmem_acct_size(flags, size) 0
4123 #define shmem_unacct_size(flags, size) do {} while (0)
4124
4125 #endif /* CONFIG_SHMEM */
4126
4127 /* common code */
4128
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4129 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4130 unsigned long flags, unsigned int i_flags)
4131 {
4132 struct inode *inode;
4133 struct file *res;
4134
4135 if (IS_ERR(mnt))
4136 return ERR_CAST(mnt);
4137
4138 if (size < 0 || size > MAX_LFS_FILESIZE)
4139 return ERR_PTR(-EINVAL);
4140
4141 if (shmem_acct_size(flags, size))
4142 return ERR_PTR(-ENOMEM);
4143
4144 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4145 flags);
4146 if (unlikely(!inode)) {
4147 shmem_unacct_size(flags, size);
4148 return ERR_PTR(-ENOSPC);
4149 }
4150 inode->i_flags |= i_flags;
4151 inode->i_size = size;
4152 clear_nlink(inode); /* It is unlinked */
4153 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4154 if (!IS_ERR(res))
4155 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4156 &shmem_file_operations);
4157 if (IS_ERR(res))
4158 iput(inode);
4159 return res;
4160 }
4161
4162 /**
4163 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4164 * kernel internal. There will be NO LSM permission checks against the
4165 * underlying inode. So users of this interface must do LSM checks at a
4166 * higher layer. The users are the big_key and shm implementations. LSM
4167 * checks are provided at the key or shm level rather than the inode.
4168 * @name: name for dentry (to be seen in /proc/<pid>/maps
4169 * @size: size to be set for the file
4170 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4171 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4172 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4173 {
4174 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4175 }
4176
4177 /**
4178 * shmem_file_setup - get an unlinked file living in tmpfs
4179 * @name: name for dentry (to be seen in /proc/<pid>/maps
4180 * @size: size to be set for the file
4181 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4182 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4183 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4184 {
4185 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4186 }
4187 EXPORT_SYMBOL_GPL(shmem_file_setup);
4188
4189 /**
4190 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4191 * @mnt: the tmpfs mount where the file will be created
4192 * @name: name for dentry (to be seen in /proc/<pid>/maps
4193 * @size: size to be set for the file
4194 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4195 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4196 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4197 loff_t size, unsigned long flags)
4198 {
4199 return __shmem_file_setup(mnt, name, size, flags, 0);
4200 }
4201 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4202
4203 /**
4204 * shmem_zero_setup - setup a shared anonymous mapping
4205 * @vma: the vma to be mmapped is prepared by do_mmap
4206 */
shmem_zero_setup(struct vm_area_struct * vma)4207 int shmem_zero_setup(struct vm_area_struct *vma)
4208 {
4209 struct file *file;
4210 loff_t size = vma->vm_end - vma->vm_start;
4211
4212 /*
4213 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4214 * between XFS directory reading and selinux: since this file is only
4215 * accessible to the user through its mapping, use S_PRIVATE flag to
4216 * bypass file security, in the same way as shmem_kernel_file_setup().
4217 */
4218 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4219 if (IS_ERR(file))
4220 return PTR_ERR(file);
4221
4222 if (vma->vm_file)
4223 fput(vma->vm_file);
4224 vma->vm_file = file;
4225 vma->vm_ops = &shmem_vm_ops;
4226
4227 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4228 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4229 (vma->vm_end & HPAGE_PMD_MASK)) {
4230 khugepaged_enter(vma, vma->vm_flags);
4231 }
4232
4233 return 0;
4234 }
4235
4236 /**
4237 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4238 * @mapping: the page's address_space
4239 * @index: the page index
4240 * @gfp: the page allocator flags to use if allocating
4241 *
4242 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4243 * with any new page allocations done using the specified allocation flags.
4244 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4245 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4246 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4247 *
4248 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4249 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4250 */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4251 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4252 pgoff_t index, gfp_t gfp)
4253 {
4254 #ifdef CONFIG_SHMEM
4255 struct inode *inode = mapping->host;
4256 struct page *page;
4257 int error;
4258
4259 BUG_ON(!shmem_mapping(mapping));
4260 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4261 gfp, NULL, NULL, NULL);
4262 if (error)
4263 page = ERR_PTR(error);
4264 else
4265 unlock_page(page);
4266 return page;
4267 #else
4268 /*
4269 * The tiny !SHMEM case uses ramfs without swap
4270 */
4271 return read_cache_page_gfp(mapping, index, gfp);
4272 #endif
4273 }
4274 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4275