1;
2; jchuff-sse2.asm - Huffman entropy encoding (SSE2)
3;
4; Copyright (C) 2009-2011, 2014-2017, D. R. Commander.
5; Copyright (C) 2015, Matthieu Darbois.
6;
7; Based on the x86 SIMD extension for IJG JPEG library
8; Copyright (C) 1999-2006, MIYASAKA Masaru.
9; For conditions of distribution and use, see copyright notice in jsimdext.inc
10;
11; This file should be assembled with NASM (Netwide Assembler),
12; can *not* be assembled with Microsoft's MASM or any compatible
13; assembler (including Borland's Turbo Assembler).
14; NASM is available from http://nasm.sourceforge.net/ or
15; http://sourceforge.net/project/showfiles.php?group_id=6208
16;
17; This file contains an SSE2 implementation for Huffman coding of one block.
18; The following code is based directly on jchuff.c; see jchuff.c for more
19; details.
20
21%include "jsimdext.inc"
22
23; --------------------------------------------------------------------------
24    SECTION     SEG_CONST
25
26    alignz      32
27    GLOBAL_DATA(jconst_huff_encode_one_block)
28
29EXTN(jconst_huff_encode_one_block):
30
31%include "jpeg_nbits_table.inc"
32
33    alignz      32
34
35; --------------------------------------------------------------------------
36    SECTION     SEG_TEXT
37    BITS        32
38
39; These macros perform the same task as the emit_bits() function in the
40; original libjpeg code.  In addition to reducing overhead by explicitly
41; inlining the code, additional performance is achieved by taking into
42; account the size of the bit buffer and waiting until it is almost full
43; before emptying it.  This mostly benefits 64-bit platforms, since 6
44; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
45
46%macro EMIT_BYTE 0
47    sub         put_bits, 8             ; put_bits -= 8;
48    mov         edx, put_buffer
49    mov         ecx, put_bits
50    shr         edx, cl                 ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
51    mov         byte [eax], dl          ; *buffer++ = c;
52    add         eax, 1
53    cmp         dl, 0xFF                ; need to stuff a zero byte?
54    jne         %%.EMIT_BYTE_END
55    mov         byte [eax], 0           ; *buffer++ = 0;
56    add         eax, 1
57%%.EMIT_BYTE_END:
58%endmacro
59
60%macro PUT_BITS 1
61    add         put_bits, ecx           ; put_bits += size;
62    shl         put_buffer, cl          ; put_buffer = (put_buffer << size);
63    or          put_buffer, %1
64%endmacro
65
66%macro CHECKBUF15 0
67    cmp         put_bits, 16            ; if (put_bits > 31) {
68    jl          %%.CHECKBUF15_END
69    mov         eax, POINTER [esp+buffer]
70    EMIT_BYTE
71    EMIT_BYTE
72    mov         POINTER [esp+buffer], eax
73%%.CHECKBUF15_END:
74%endmacro
75
76%macro EMIT_BITS 1
77    PUT_BITS    %1
78    CHECKBUF15
79%endmacro
80
81%macro kloop_prepare 37                 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
82    pxor        xmm4, xmm4              ; __m128i neg = _mm_setzero_si128();
83    pxor        xmm5, xmm5              ; __m128i neg = _mm_setzero_si128();
84    pxor        xmm6, xmm6              ; __m128i neg = _mm_setzero_si128();
85    pxor        xmm7, xmm7              ; __m128i neg = _mm_setzero_si128();
86    pinsrw      %34, word [esi + %2  * SIZEOF_WORD], 0  ; xmm_shadow[0] = block[jno0];
87    pinsrw      %35, word [esi + %10 * SIZEOF_WORD], 0  ; xmm_shadow[8] = block[jno8];
88    pinsrw      %36, word [esi + %18 * SIZEOF_WORD], 0  ; xmm_shadow[16] = block[jno16];
89    pinsrw      %37, word [esi + %26 * SIZEOF_WORD], 0  ; xmm_shadow[24] = block[jno24];
90    pinsrw      %34, word [esi + %3  * SIZEOF_WORD], 1  ; xmm_shadow[1] = block[jno1];
91    pinsrw      %35, word [esi + %11 * SIZEOF_WORD], 1  ; xmm_shadow[9] = block[jno9];
92    pinsrw      %36, word [esi + %19 * SIZEOF_WORD], 1  ; xmm_shadow[17] = block[jno17];
93    pinsrw      %37, word [esi + %27 * SIZEOF_WORD], 1  ; xmm_shadow[25] = block[jno25];
94    pinsrw      %34, word [esi + %4  * SIZEOF_WORD], 2  ; xmm_shadow[2] = block[jno2];
95    pinsrw      %35, word [esi + %12 * SIZEOF_WORD], 2  ; xmm_shadow[10] = block[jno10];
96    pinsrw      %36, word [esi + %20 * SIZEOF_WORD], 2  ; xmm_shadow[18] = block[jno18];
97    pinsrw      %37, word [esi + %28 * SIZEOF_WORD], 2  ; xmm_shadow[26] = block[jno26];
98    pinsrw      %34, word [esi + %5  * SIZEOF_WORD], 3  ; xmm_shadow[3] = block[jno3];
99    pinsrw      %35, word [esi + %13 * SIZEOF_WORD], 3  ; xmm_shadow[11] = block[jno11];
100    pinsrw      %36, word [esi + %21 * SIZEOF_WORD], 3  ; xmm_shadow[19] = block[jno19];
101    pinsrw      %37, word [esi + %29 * SIZEOF_WORD], 3  ; xmm_shadow[27] = block[jno27];
102    pinsrw      %34, word [esi + %6  * SIZEOF_WORD], 4  ; xmm_shadow[4] = block[jno4];
103    pinsrw      %35, word [esi + %14 * SIZEOF_WORD], 4  ; xmm_shadow[12] = block[jno12];
104    pinsrw      %36, word [esi + %22 * SIZEOF_WORD], 4  ; xmm_shadow[20] = block[jno20];
105    pinsrw      %37, word [esi + %30 * SIZEOF_WORD], 4  ; xmm_shadow[28] = block[jno28];
106    pinsrw      %34, word [esi + %7  * SIZEOF_WORD], 5  ; xmm_shadow[5] = block[jno5];
107    pinsrw      %35, word [esi + %15 * SIZEOF_WORD], 5  ; xmm_shadow[13] = block[jno13];
108    pinsrw      %36, word [esi + %23 * SIZEOF_WORD], 5  ; xmm_shadow[21] = block[jno21];
109    pinsrw      %37, word [esi + %31 * SIZEOF_WORD], 5  ; xmm_shadow[29] = block[jno29];
110    pinsrw      %34, word [esi + %8  * SIZEOF_WORD], 6  ; xmm_shadow[6] = block[jno6];
111    pinsrw      %35, word [esi + %16 * SIZEOF_WORD], 6  ; xmm_shadow[14] = block[jno14];
112    pinsrw      %36, word [esi + %24 * SIZEOF_WORD], 6  ; xmm_shadow[22] = block[jno22];
113    pinsrw      %37, word [esi + %32 * SIZEOF_WORD], 6  ; xmm_shadow[30] = block[jno30];
114    pinsrw      %34, word [esi + %9  * SIZEOF_WORD], 7  ; xmm_shadow[7] = block[jno7];
115    pinsrw      %35, word [esi + %17 * SIZEOF_WORD], 7  ; xmm_shadow[15] = block[jno15];
116    pinsrw      %36, word [esi + %25 * SIZEOF_WORD], 7  ; xmm_shadow[23] = block[jno23];
117%if %1 != 32
118    pinsrw      %37, word [esi + %33 * SIZEOF_WORD], 7  ; xmm_shadow[31] = block[jno31];
119%else
120    pinsrw      %37, ecx, 7             ; xmm_shadow[31] = block[jno31];
121%endif
122    pcmpgtw     xmm4, %34               ; neg = _mm_cmpgt_epi16(neg, x1);
123    pcmpgtw     xmm5, %35               ; neg = _mm_cmpgt_epi16(neg, x1);
124    pcmpgtw     xmm6, %36               ; neg = _mm_cmpgt_epi16(neg, x1);
125    pcmpgtw     xmm7, %37               ; neg = _mm_cmpgt_epi16(neg, x1);
126    paddw       %34, xmm4               ; x1 = _mm_add_epi16(x1, neg);
127    paddw       %35, xmm5               ; x1 = _mm_add_epi16(x1, neg);
128    paddw       %36, xmm6               ; x1 = _mm_add_epi16(x1, neg);
129    paddw       %37, xmm7               ; x1 = _mm_add_epi16(x1, neg);
130    pxor        %34, xmm4               ; x1 = _mm_xor_si128(x1, neg);
131    pxor        %35, xmm5               ; x1 = _mm_xor_si128(x1, neg);
132    pxor        %36, xmm6               ; x1 = _mm_xor_si128(x1, neg);
133    pxor        %37, xmm7               ; x1 = _mm_xor_si128(x1, neg);
134    pxor        xmm4, %34               ; neg = _mm_xor_si128(neg, x1);
135    pxor        xmm5, %35               ; neg = _mm_xor_si128(neg, x1);
136    pxor        xmm6, %36               ; neg = _mm_xor_si128(neg, x1);
137    pxor        xmm7, %37               ; neg = _mm_xor_si128(neg, x1);
138    movdqa      XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34          ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
139    movdqa      XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35    ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
140    movdqa      XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36   ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
141    movdqa      XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37   ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
142    movdqa      XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4         ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
143    movdqa      XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5   ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
144    movdqa      XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6  ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
145    movdqa      XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7  ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
146%endmacro
147
148;
149; Encode a single block's worth of coefficients.
150;
151; GLOBAL(JOCTET *)
152; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer,
153;                                  JCOEFPTR block, int last_dc_val,
154;                                  c_derived_tbl *dctbl, c_derived_tbl *actbl)
155;
156
157; eax + 8 = working_state *state
158; eax + 12 = JOCTET *buffer
159; eax + 16 = JCOEFPTR block
160; eax + 20 = int last_dc_val
161; eax + 24 = c_derived_tbl *dctbl
162; eax + 28 = c_derived_tbl *actbl
163
164%define pad         6 * SIZEOF_DWORD    ; Align to 16 bytes
165%define t1          pad
166%define t2          t1 + (DCTSIZE2 * SIZEOF_WORD)
167%define block       t2 + (DCTSIZE2 * SIZEOF_WORD)
168%define actbl       block + SIZEOF_DWORD
169%define buffer      actbl + SIZEOF_DWORD
170%define temp        buffer + SIZEOF_DWORD
171%define temp2       temp + SIZEOF_DWORD
172%define temp3       temp2 + SIZEOF_DWORD
173%define temp4       temp3 + SIZEOF_DWORD
174%define temp5       temp4 + SIZEOF_DWORD
175%define gotptr      temp5 + SIZEOF_DWORD  ; void *gotptr
176%define put_buffer  ebx
177%define put_bits    edi
178
179    align       32
180    GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2)
181
182EXTN(jsimd_huff_encode_one_block_sse2):
183    push        ebp
184    mov         eax, esp                     ; eax = original ebp
185    sub         esp, byte 4
186    and         esp, byte (-SIZEOF_XMMWORD)  ; align to 128 bits
187    mov         [esp], eax
188    mov         ebp, esp                     ; ebp = aligned ebp
189    sub         esp, temp5+9*SIZEOF_DWORD-pad
190    push        ebx
191    push        ecx
192;   push        edx                     ; need not be preserved
193    push        esi
194    push        edi
195    push        ebp
196
197    mov         esi, POINTER [eax+8]       ; (working_state *state)
198    mov         put_buffer, dword [esi+8]  ; put_buffer = state->cur.put_buffer;
199    mov         put_bits, dword [esi+12]   ; put_bits = state->cur.put_bits;
200    push        esi                        ; esi is now scratch
201
202    get_GOT     edx                        ; get GOT address
203    movpic      POINTER [esp+gotptr], edx  ; save GOT address
204
205    mov         ecx, POINTER [eax+28]
206    mov         edx, POINTER [eax+16]
207    mov         esi, POINTER [eax+12]
208    mov         POINTER [esp+actbl], ecx
209    mov         POINTER [esp+block], edx
210    mov         POINTER [esp+buffer], esi
211
212    ; Encode the DC coefficient difference per section F.1.2.1
213    mov         esi, POINTER [esp+block]  ; block
214    movsx       ecx, word [esi]           ; temp = temp2 = block[0] - last_dc_val;
215    sub         ecx, dword [eax+20]
216    mov         esi, ecx
217
218    ; This is a well-known technique for obtaining the absolute value
219    ; with out a branch.  It is derived from an assembly language technique
220    ; presented in "How to Optimize for the Pentium Processors",
221    ; Copyright (c) 1996, 1997 by Agner Fog.
222    mov         edx, ecx
223    sar         edx, 31                 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
224    xor         ecx, edx                ; temp ^= temp3;
225    sub         ecx, edx                ; temp -= temp3;
226
227    ; For a negative input, want temp2 = bitwise complement of abs(input)
228    ; This code assumes we are on a two's complement machine
229    add         esi, edx                ; temp2 += temp3;
230    mov         dword [esp+temp], esi   ; backup temp2 in temp
231
232    ; Find the number of bits needed for the magnitude of the coefficient
233    movpic      ebp, POINTER [esp+gotptr]                        ; load GOT address (ebp)
234    movzx       edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)]  ; nbits = JPEG_NBITS(temp);
235    mov         dword [esp+temp2], edx                           ; backup nbits in temp2
236
237    ; Emit the Huffman-coded symbol for the number of bits
238    mov         ebp, POINTER [eax+24]         ; After this point, arguments are not accessible anymore
239    mov         eax,  INT [ebp + edx * 4]     ; code = dctbl->ehufco[nbits];
240    movzx       ecx, byte [ebp + edx + 1024]  ; size = dctbl->ehufsi[nbits];
241    EMIT_BITS   eax                           ; EMIT_BITS(code, size)
242
243    mov         ecx, dword [esp+temp2]        ; restore nbits
244
245    ; Mask off any extra bits in code
246    mov         eax, 1
247    shl         eax, cl
248    dec         eax
249    and         eax, dword [esp+temp]   ; temp2 &= (((JLONG)1)<<nbits) - 1;
250
251    ; Emit that number of bits of the value, if positive,
252    ; or the complement of its magnitude, if negative.
253    EMIT_BITS   eax                     ; EMIT_BITS(temp2, nbits)
254
255    ; Prepare data
256    xor         ecx, ecx
257    mov         esi, POINTER [esp+block]
258    kloop_prepare  0,  1,  8,  16, 9,  2,  3,  10, 17, 24, 32, 25, \
259                   18, 11, 4,  5,  12, 19, 26, 33, 40, 48, 41, 34, \
260                   27, 20, 13, 6,  7,  14, 21, 28, 35, \
261                   xmm0, xmm1, xmm2, xmm3
262    kloop_prepare  32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
263                   30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
264                   53, 60, 61, 54, 47, 55, 62, 63, 63, \
265                   xmm0, xmm1, xmm2, xmm3
266
267    pxor        xmm7, xmm7
268    movdqa      xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD]   ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
269    movdqa      xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD]   ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
270    movdqa      xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD]  ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
271    movdqa      xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD]  ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
272    pcmpeqw     xmm0, xmm7              ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
273    pcmpeqw     xmm1, xmm7              ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
274    pcmpeqw     xmm2, xmm7              ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
275    pcmpeqw     xmm3, xmm7              ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
276    packsswb    xmm0, xmm1              ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
277    packsswb    xmm2, xmm3              ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
278    pmovmskb    edx, xmm0               ; index  = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
279    pmovmskb    ecx, xmm2               ; index  = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
280    shl         ecx, 16
281    or          edx, ecx
282    not         edx                     ; index = ~index;
283
284    lea         esi, [esp+t1]
285    mov         ebp, POINTER [esp+actbl]  ; ebp = actbl
286
287.BLOOP:
288    bsf         ecx, edx                ; r = __builtin_ctzl(index);
289    jz          near .ELOOP
290    lea         esi, [esi+ecx*2]        ; k += r;
291    shr         edx, cl                 ; index >>= r;
292    mov         dword [esp+temp3], edx
293.BRLOOP:
294    cmp         ecx, 16                       ; while (r > 15) {
295    jl          near .ERLOOP
296    sub         ecx, 16                       ; r -= 16;
297    mov         dword [esp+temp], ecx
298    mov         eax, INT [ebp + 240 * 4]      ; code_0xf0 = actbl->ehufco[0xf0];
299    movzx       ecx, byte [ebp + 1024 + 240]  ; size_0xf0 = actbl->ehufsi[0xf0];
300    EMIT_BITS   eax                           ; EMIT_BITS(code_0xf0, size_0xf0)
301    mov         ecx, dword [esp+temp]
302    jmp         .BRLOOP
303.ERLOOP:
304    movsx       eax, word [esi]                                  ; temp = t1[k];
305    movpic      edx, POINTER [esp+gotptr]                        ; load GOT address (edx)
306    movzx       eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)]  ; nbits = JPEG_NBITS(temp);
307    mov         dword [esp+temp2], eax
308    ; Emit Huffman symbol for run length / number of bits
309    shl         ecx, 4                        ; temp3 = (r << 4) + nbits;
310    add         ecx, eax
311    mov         eax,  INT [ebp + ecx * 4]     ; code = actbl->ehufco[temp3];
312    movzx       ecx, byte [ebp + ecx + 1024]  ; size = actbl->ehufsi[temp3];
313    EMIT_BITS   eax
314
315    movsx       edx, word [esi+DCTSIZE2*2]    ; temp2 = t2[k];
316    ; Mask off any extra bits in code
317    mov         ecx, dword [esp+temp2]
318    mov         eax, 1
319    shl         eax, cl
320    dec         eax
321    and         eax, edx                ; temp2 &= (((JLONG)1)<<nbits) - 1;
322    EMIT_BITS   eax                     ; PUT_BITS(temp2, nbits)
323    mov         edx, dword [esp+temp3]
324    add         esi, 2                  ; ++k;
325    shr         edx, 1                  ; index >>= 1;
326
327    jmp         .BLOOP
328.ELOOP:
329    movdqa      xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD]  ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
330    movdqa      xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD]  ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
331    movdqa      xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD]  ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
332    movdqa      xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD]  ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
333    pcmpeqw     xmm0, xmm7              ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
334    pcmpeqw     xmm1, xmm7              ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
335    pcmpeqw     xmm2, xmm7              ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
336    pcmpeqw     xmm3, xmm7              ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
337    packsswb    xmm0, xmm1              ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
338    packsswb    xmm2, xmm3              ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
339    pmovmskb    edx, xmm0               ; index  = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
340    pmovmskb    ecx, xmm2               ; index  = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
341    shl         ecx, 16
342    or          edx, ecx
343    not         edx                     ; index = ~index;
344
345    lea         eax, [esp + t1 + (DCTSIZE2/2) * 2]
346    sub         eax, esi
347    shr         eax, 1
348    bsf         ecx, edx                ; r = __builtin_ctzl(index);
349    jz          near .ELOOP2
350    shr         edx, cl                 ; index >>= r;
351    add         ecx, eax
352    lea         esi, [esi+ecx*2]        ; k += r;
353    mov         dword [esp+temp3], edx
354    jmp         .BRLOOP2
355.BLOOP2:
356    bsf         ecx, edx                ; r = __builtin_ctzl(index);
357    jz          near .ELOOP2
358    lea         esi, [esi+ecx*2]        ; k += r;
359    shr         edx, cl                 ; index >>= r;
360    mov         dword [esp+temp3], edx
361.BRLOOP2:
362    cmp         ecx, 16                       ; while (r > 15) {
363    jl          near .ERLOOP2
364    sub         ecx, 16                       ; r -= 16;
365    mov         dword [esp+temp], ecx
366    mov         eax, INT [ebp + 240 * 4]      ; code_0xf0 = actbl->ehufco[0xf0];
367    movzx       ecx, byte [ebp + 1024 + 240]  ; size_0xf0 = actbl->ehufsi[0xf0];
368    EMIT_BITS   eax                           ; EMIT_BITS(code_0xf0, size_0xf0)
369    mov         ecx, dword [esp+temp]
370    jmp         .BRLOOP2
371.ERLOOP2:
372    movsx       eax, word [esi]         ; temp = t1[k];
373    bsr         eax, eax                ; nbits = 32 - __builtin_clz(temp);
374    inc         eax
375    mov         dword [esp+temp2], eax
376    ; Emit Huffman symbol for run length / number of bits
377    shl         ecx, 4                        ; temp3 = (r << 4) + nbits;
378    add         ecx, eax
379    mov         eax,  INT [ebp + ecx * 4]     ; code = actbl->ehufco[temp3];
380    movzx       ecx, byte [ebp + ecx + 1024]  ; size = actbl->ehufsi[temp3];
381    EMIT_BITS   eax
382
383    movsx       edx, word [esi+DCTSIZE2*2]    ; temp2 = t2[k];
384    ; Mask off any extra bits in code
385    mov         ecx, dword [esp+temp2]
386    mov         eax, 1
387    shl         eax, cl
388    dec         eax
389    and         eax, edx                ; temp2 &= (((JLONG)1)<<nbits) - 1;
390    EMIT_BITS   eax                     ; PUT_BITS(temp2, nbits)
391    mov         edx, dword [esp+temp3]
392    add         esi, 2                  ; ++k;
393    shr         edx, 1                  ; index >>= 1;
394
395    jmp         .BLOOP2
396.ELOOP2:
397    ; If the last coef(s) were zero, emit an end-of-block code
398    lea         edx, [esp + t1 + (DCTSIZE2-1) * 2]  ; r = DCTSIZE2-1-k;
399    cmp         edx, esi                            ; if (r > 0) {
400    je          .EFN
401    mov         eax,  INT [ebp]                     ; code = actbl->ehufco[0];
402    movzx       ecx, byte [ebp + 1024]              ; size = actbl->ehufsi[0];
403    EMIT_BITS   eax
404.EFN:
405    mov         eax, [esp+buffer]
406    pop         esi
407    ; Save put_buffer & put_bits
408    mov         dword [esi+8], put_buffer  ; state->cur.put_buffer = put_buffer;
409    mov         dword [esi+12], put_bits   ; state->cur.put_bits = put_bits;
410
411    pop         ebp
412    pop         edi
413    pop         esi
414;   pop         edx                     ; need not be preserved
415    pop         ecx
416    pop         ebx
417    mov         esp, ebp                ; esp <- aligned ebp
418    pop         esp                     ; esp <- original ebp
419    pop         ebp
420    ret
421
422; For some reason, the OS X linker does not honor the request to align the
423; segment unless we do this.
424    align       32
425