1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Processor cache information made available to userspace via sysfs;
4  * intended to be compatible with x86 intel_cacheinfo implementation.
5  *
6  * Copyright 2008 IBM Corporation
7  * Author: Nathan Lynch
8  */
9 
10 #define pr_fmt(fmt) "cacheinfo: " fmt
11 
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/kernel.h>
15 #include <linux/kobject.h>
16 #include <linux/list.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/percpu.h>
20 #include <linux/slab.h>
21 #include <asm/prom.h>
22 #include <asm/cputhreads.h>
23 #include <asm/smp.h>
24 
25 #include "cacheinfo.h"
26 
27 /* per-cpu object for tracking:
28  * - a "cache" kobject for the top-level directory
29  * - a list of "index" objects representing the cpu's local cache hierarchy
30  */
31 struct cache_dir {
32 	struct kobject *kobj; /* bare (not embedded) kobject for cache
33 			       * directory */
34 	struct cache_index_dir *index; /* list of index objects */
35 };
36 
37 /* "index" object: each cpu's cache directory has an index
38  * subdirectory corresponding to a cache object associated with the
39  * cpu.  This object's lifetime is managed via the embedded kobject.
40  */
41 struct cache_index_dir {
42 	struct kobject kobj;
43 	struct cache_index_dir *next; /* next index in parent directory */
44 	struct cache *cache;
45 };
46 
47 /* Template for determining which OF properties to query for a given
48  * cache type */
49 struct cache_type_info {
50 	const char *name;
51 	const char *size_prop;
52 
53 	/* Allow for both [di]-cache-line-size and
54 	 * [di]-cache-block-size properties.  According to the PowerPC
55 	 * Processor binding, -line-size should be provided if it
56 	 * differs from the cache block size (that which is operated
57 	 * on by cache instructions), so we look for -line-size first.
58 	 * See cache_get_line_size(). */
59 
60 	const char *line_size_props[2];
61 	const char *nr_sets_prop;
62 };
63 
64 /* These are used to index the cache_type_info array. */
65 #define CACHE_TYPE_UNIFIED     0 /* cache-size, cache-block-size, etc. */
66 #define CACHE_TYPE_UNIFIED_D   1 /* d-cache-size, d-cache-block-size, etc */
67 #define CACHE_TYPE_INSTRUCTION 2
68 #define CACHE_TYPE_DATA        3
69 
70 static const struct cache_type_info cache_type_info[] = {
71 	{
72 		/* Embedded systems that use cache-size, cache-block-size,
73 		 * etc. for the Unified (typically L2) cache. */
74 		.name            = "Unified",
75 		.size_prop       = "cache-size",
76 		.line_size_props = { "cache-line-size",
77 				     "cache-block-size", },
78 		.nr_sets_prop    = "cache-sets",
79 	},
80 	{
81 		/* PowerPC Processor binding says the [di]-cache-*
82 		 * must be equal on unified caches, so just use
83 		 * d-cache properties. */
84 		.name            = "Unified",
85 		.size_prop       = "d-cache-size",
86 		.line_size_props = { "d-cache-line-size",
87 				     "d-cache-block-size", },
88 		.nr_sets_prop    = "d-cache-sets",
89 	},
90 	{
91 		.name            = "Instruction",
92 		.size_prop       = "i-cache-size",
93 		.line_size_props = { "i-cache-line-size",
94 				     "i-cache-block-size", },
95 		.nr_sets_prop    = "i-cache-sets",
96 	},
97 	{
98 		.name            = "Data",
99 		.size_prop       = "d-cache-size",
100 		.line_size_props = { "d-cache-line-size",
101 				     "d-cache-block-size", },
102 		.nr_sets_prop    = "d-cache-sets",
103 	},
104 };
105 
106 /* Cache object: each instance of this corresponds to a distinct cache
107  * in the system.  There are separate objects for Harvard caches: one
108  * each for instruction and data, and each refers to the same OF node.
109  * The refcount of the OF node is elevated for the lifetime of the
110  * cache object.  A cache object is released when its shared_cpu_map
111  * is cleared (see cache_cpu_clear).
112  *
113  * A cache object is on two lists: an unsorted global list
114  * (cache_list) of cache objects; and a singly-linked list
115  * representing the local cache hierarchy, which is ordered by level
116  * (e.g. L1d -> L1i -> L2 -> L3).
117  */
118 struct cache {
119 	struct device_node *ofnode;    /* OF node for this cache, may be cpu */
120 	struct cpumask shared_cpu_map; /* online CPUs using this cache */
121 	int type;                      /* split cache disambiguation */
122 	int level;                     /* level not explicit in device tree */
123 	struct list_head list;         /* global list of cache objects */
124 	struct cache *next_local;      /* next cache of >= level */
125 };
126 
127 static DEFINE_PER_CPU(struct cache_dir *, cache_dir_pcpu);
128 
129 /* traversal/modification of this list occurs only at cpu hotplug time;
130  * access is serialized by cpu hotplug locking
131  */
132 static LIST_HEAD(cache_list);
133 
kobj_to_cache_index_dir(struct kobject * k)134 static struct cache_index_dir *kobj_to_cache_index_dir(struct kobject *k)
135 {
136 	return container_of(k, struct cache_index_dir, kobj);
137 }
138 
cache_type_string(const struct cache * cache)139 static const char *cache_type_string(const struct cache *cache)
140 {
141 	return cache_type_info[cache->type].name;
142 }
143 
cache_init(struct cache * cache,int type,int level,struct device_node * ofnode)144 static void cache_init(struct cache *cache, int type, int level,
145 		       struct device_node *ofnode)
146 {
147 	cache->type = type;
148 	cache->level = level;
149 	cache->ofnode = of_node_get(ofnode);
150 	INIT_LIST_HEAD(&cache->list);
151 	list_add(&cache->list, &cache_list);
152 }
153 
new_cache(int type,int level,struct device_node * ofnode)154 static struct cache *new_cache(int type, int level, struct device_node *ofnode)
155 {
156 	struct cache *cache;
157 
158 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
159 	if (cache)
160 		cache_init(cache, type, level, ofnode);
161 
162 	return cache;
163 }
164 
release_cache_debugcheck(struct cache * cache)165 static void release_cache_debugcheck(struct cache *cache)
166 {
167 	struct cache *iter;
168 
169 	list_for_each_entry(iter, &cache_list, list)
170 		WARN_ONCE(iter->next_local == cache,
171 			  "cache for %pOFP(%s) refers to cache for %pOFP(%s)\n",
172 			  iter->ofnode,
173 			  cache_type_string(iter),
174 			  cache->ofnode,
175 			  cache_type_string(cache));
176 }
177 
release_cache(struct cache * cache)178 static void release_cache(struct cache *cache)
179 {
180 	if (!cache)
181 		return;
182 
183 	pr_debug("freeing L%d %s cache for %pOFP\n", cache->level,
184 		 cache_type_string(cache), cache->ofnode);
185 
186 	release_cache_debugcheck(cache);
187 	list_del(&cache->list);
188 	of_node_put(cache->ofnode);
189 	kfree(cache);
190 }
191 
cache_cpu_set(struct cache * cache,int cpu)192 static void cache_cpu_set(struct cache *cache, int cpu)
193 {
194 	struct cache *next = cache;
195 
196 	while (next) {
197 		WARN_ONCE(cpumask_test_cpu(cpu, &next->shared_cpu_map),
198 			  "CPU %i already accounted in %pOFP(%s)\n",
199 			  cpu, next->ofnode,
200 			  cache_type_string(next));
201 		cpumask_set_cpu(cpu, &next->shared_cpu_map);
202 		next = next->next_local;
203 	}
204 }
205 
cache_size(const struct cache * cache,unsigned int * ret)206 static int cache_size(const struct cache *cache, unsigned int *ret)
207 {
208 	const char *propname;
209 	const __be32 *cache_size;
210 
211 	propname = cache_type_info[cache->type].size_prop;
212 
213 	cache_size = of_get_property(cache->ofnode, propname, NULL);
214 	if (!cache_size)
215 		return -ENODEV;
216 
217 	*ret = of_read_number(cache_size, 1);
218 	return 0;
219 }
220 
cache_size_kb(const struct cache * cache,unsigned int * ret)221 static int cache_size_kb(const struct cache *cache, unsigned int *ret)
222 {
223 	unsigned int size;
224 
225 	if (cache_size(cache, &size))
226 		return -ENODEV;
227 
228 	*ret = size / 1024;
229 	return 0;
230 }
231 
232 /* not cache_line_size() because that's a macro in include/linux/cache.h */
cache_get_line_size(const struct cache * cache,unsigned int * ret)233 static int cache_get_line_size(const struct cache *cache, unsigned int *ret)
234 {
235 	const __be32 *line_size;
236 	int i, lim;
237 
238 	lim = ARRAY_SIZE(cache_type_info[cache->type].line_size_props);
239 
240 	for (i = 0; i < lim; i++) {
241 		const char *propname;
242 
243 		propname = cache_type_info[cache->type].line_size_props[i];
244 		line_size = of_get_property(cache->ofnode, propname, NULL);
245 		if (line_size)
246 			break;
247 	}
248 
249 	if (!line_size)
250 		return -ENODEV;
251 
252 	*ret = of_read_number(line_size, 1);
253 	return 0;
254 }
255 
cache_nr_sets(const struct cache * cache,unsigned int * ret)256 static int cache_nr_sets(const struct cache *cache, unsigned int *ret)
257 {
258 	const char *propname;
259 	const __be32 *nr_sets;
260 
261 	propname = cache_type_info[cache->type].nr_sets_prop;
262 
263 	nr_sets = of_get_property(cache->ofnode, propname, NULL);
264 	if (!nr_sets)
265 		return -ENODEV;
266 
267 	*ret = of_read_number(nr_sets, 1);
268 	return 0;
269 }
270 
cache_associativity(const struct cache * cache,unsigned int * ret)271 static int cache_associativity(const struct cache *cache, unsigned int *ret)
272 {
273 	unsigned int line_size;
274 	unsigned int nr_sets;
275 	unsigned int size;
276 
277 	if (cache_nr_sets(cache, &nr_sets))
278 		goto err;
279 
280 	/* If the cache is fully associative, there is no need to
281 	 * check the other properties.
282 	 */
283 	if (nr_sets == 1) {
284 		*ret = 0;
285 		return 0;
286 	}
287 
288 	if (cache_get_line_size(cache, &line_size))
289 		goto err;
290 	if (cache_size(cache, &size))
291 		goto err;
292 
293 	if (!(nr_sets > 0 && size > 0 && line_size > 0))
294 		goto err;
295 
296 	*ret = (size / nr_sets) / line_size;
297 	return 0;
298 err:
299 	return -ENODEV;
300 }
301 
302 /* helper for dealing with split caches */
cache_find_first_sibling(struct cache * cache)303 static struct cache *cache_find_first_sibling(struct cache *cache)
304 {
305 	struct cache *iter;
306 
307 	if (cache->type == CACHE_TYPE_UNIFIED ||
308 	    cache->type == CACHE_TYPE_UNIFIED_D)
309 		return cache;
310 
311 	list_for_each_entry(iter, &cache_list, list)
312 		if (iter->ofnode == cache->ofnode && iter->next_local == cache)
313 			return iter;
314 
315 	return cache;
316 }
317 
318 /* return the first cache on a local list matching node */
cache_lookup_by_node(const struct device_node * node)319 static struct cache *cache_lookup_by_node(const struct device_node *node)
320 {
321 	struct cache *cache = NULL;
322 	struct cache *iter;
323 
324 	list_for_each_entry(iter, &cache_list, list) {
325 		if (iter->ofnode != node)
326 			continue;
327 		cache = cache_find_first_sibling(iter);
328 		break;
329 	}
330 
331 	return cache;
332 }
333 
cache_node_is_unified(const struct device_node * np)334 static bool cache_node_is_unified(const struct device_node *np)
335 {
336 	return of_get_property(np, "cache-unified", NULL);
337 }
338 
339 /*
340  * Unified caches can have two different sets of tags.  Most embedded
341  * use cache-size, etc. for the unified cache size, but open firmware systems
342  * use d-cache-size, etc.   Check on initialization for which type we have, and
343  * return the appropriate structure type.  Assume it's embedded if it isn't
344  * open firmware.  If it's yet a 3rd type, then there will be missing entries
345  * in /sys/devices/system/cpu/cpu0/cache/index2/, and this code will need
346  * to be extended further.
347  */
cache_is_unified_d(const struct device_node * np)348 static int cache_is_unified_d(const struct device_node *np)
349 {
350 	return of_get_property(np,
351 		cache_type_info[CACHE_TYPE_UNIFIED_D].size_prop, NULL) ?
352 		CACHE_TYPE_UNIFIED_D : CACHE_TYPE_UNIFIED;
353 }
354 
cache_do_one_devnode_unified(struct device_node * node,int level)355 static struct cache *cache_do_one_devnode_unified(struct device_node *node, int level)
356 {
357 	pr_debug("creating L%d ucache for %pOFP\n", level, node);
358 
359 	return new_cache(cache_is_unified_d(node), level, node);
360 }
361 
cache_do_one_devnode_split(struct device_node * node,int level)362 static struct cache *cache_do_one_devnode_split(struct device_node *node,
363 						int level)
364 {
365 	struct cache *dcache, *icache;
366 
367 	pr_debug("creating L%d dcache and icache for %pOFP\n", level,
368 		 node);
369 
370 	dcache = new_cache(CACHE_TYPE_DATA, level, node);
371 	icache = new_cache(CACHE_TYPE_INSTRUCTION, level, node);
372 
373 	if (!dcache || !icache)
374 		goto err;
375 
376 	dcache->next_local = icache;
377 
378 	return dcache;
379 err:
380 	release_cache(dcache);
381 	release_cache(icache);
382 	return NULL;
383 }
384 
cache_do_one_devnode(struct device_node * node,int level)385 static struct cache *cache_do_one_devnode(struct device_node *node, int level)
386 {
387 	struct cache *cache;
388 
389 	if (cache_node_is_unified(node))
390 		cache = cache_do_one_devnode_unified(node, level);
391 	else
392 		cache = cache_do_one_devnode_split(node, level);
393 
394 	return cache;
395 }
396 
cache_lookup_or_instantiate(struct device_node * node,int level)397 static struct cache *cache_lookup_or_instantiate(struct device_node *node,
398 						 int level)
399 {
400 	struct cache *cache;
401 
402 	cache = cache_lookup_by_node(node);
403 
404 	WARN_ONCE(cache && cache->level != level,
405 		  "cache level mismatch on lookup (got %d, expected %d)\n",
406 		  cache->level, level);
407 
408 	if (!cache)
409 		cache = cache_do_one_devnode(node, level);
410 
411 	return cache;
412 }
413 
link_cache_lists(struct cache * smaller,struct cache * bigger)414 static void link_cache_lists(struct cache *smaller, struct cache *bigger)
415 {
416 	while (smaller->next_local) {
417 		if (smaller->next_local == bigger)
418 			return; /* already linked */
419 		smaller = smaller->next_local;
420 	}
421 
422 	smaller->next_local = bigger;
423 
424 	/*
425 	 * The cache->next_local list sorts by level ascending:
426 	 * L1d -> L1i -> L2 -> L3 ...
427 	 */
428 	WARN_ONCE((smaller->level == 1 && bigger->level > 2) ||
429 		  (smaller->level > 1 && bigger->level != smaller->level + 1),
430 		  "linking L%i cache %pOFP to L%i cache %pOFP; skipped a level?\n",
431 		  smaller->level, smaller->ofnode, bigger->level, bigger->ofnode);
432 }
433 
do_subsidiary_caches_debugcheck(struct cache * cache)434 static void do_subsidiary_caches_debugcheck(struct cache *cache)
435 {
436 	WARN_ONCE(cache->level != 1,
437 		  "instantiating cache chain from L%d %s cache for "
438 		  "%pOFP instead of an L1\n", cache->level,
439 		  cache_type_string(cache), cache->ofnode);
440 	WARN_ONCE(!of_node_is_type(cache->ofnode, "cpu"),
441 		  "instantiating cache chain from node %pOFP of type '%s' "
442 		  "instead of a cpu node\n", cache->ofnode,
443 		  of_node_get_device_type(cache->ofnode));
444 }
445 
do_subsidiary_caches(struct cache * cache)446 static void do_subsidiary_caches(struct cache *cache)
447 {
448 	struct device_node *subcache_node;
449 	int level = cache->level;
450 
451 	do_subsidiary_caches_debugcheck(cache);
452 
453 	while ((subcache_node = of_find_next_cache_node(cache->ofnode))) {
454 		struct cache *subcache;
455 
456 		level++;
457 		subcache = cache_lookup_or_instantiate(subcache_node, level);
458 		of_node_put(subcache_node);
459 		if (!subcache)
460 			break;
461 
462 		link_cache_lists(cache, subcache);
463 		cache = subcache;
464 	}
465 }
466 
cache_chain_instantiate(unsigned int cpu_id)467 static struct cache *cache_chain_instantiate(unsigned int cpu_id)
468 {
469 	struct device_node *cpu_node;
470 	struct cache *cpu_cache = NULL;
471 
472 	pr_debug("creating cache object(s) for CPU %i\n", cpu_id);
473 
474 	cpu_node = of_get_cpu_node(cpu_id, NULL);
475 	WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
476 	if (!cpu_node)
477 		goto out;
478 
479 	cpu_cache = cache_lookup_or_instantiate(cpu_node, 1);
480 	if (!cpu_cache)
481 		goto out;
482 
483 	do_subsidiary_caches(cpu_cache);
484 
485 	cache_cpu_set(cpu_cache, cpu_id);
486 out:
487 	of_node_put(cpu_node);
488 
489 	return cpu_cache;
490 }
491 
cacheinfo_create_cache_dir(unsigned int cpu_id)492 static struct cache_dir *cacheinfo_create_cache_dir(unsigned int cpu_id)
493 {
494 	struct cache_dir *cache_dir;
495 	struct device *dev;
496 	struct kobject *kobj = NULL;
497 
498 	dev = get_cpu_device(cpu_id);
499 	WARN_ONCE(!dev, "no dev for CPU %i\n", cpu_id);
500 	if (!dev)
501 		goto err;
502 
503 	kobj = kobject_create_and_add("cache", &dev->kobj);
504 	if (!kobj)
505 		goto err;
506 
507 	cache_dir = kzalloc(sizeof(*cache_dir), GFP_KERNEL);
508 	if (!cache_dir)
509 		goto err;
510 
511 	cache_dir->kobj = kobj;
512 
513 	WARN_ON_ONCE(per_cpu(cache_dir_pcpu, cpu_id) != NULL);
514 
515 	per_cpu(cache_dir_pcpu, cpu_id) = cache_dir;
516 
517 	return cache_dir;
518 err:
519 	kobject_put(kobj);
520 	return NULL;
521 }
522 
cache_index_release(struct kobject * kobj)523 static void cache_index_release(struct kobject *kobj)
524 {
525 	struct cache_index_dir *index;
526 
527 	index = kobj_to_cache_index_dir(kobj);
528 
529 	pr_debug("freeing index directory for L%d %s cache\n",
530 		 index->cache->level, cache_type_string(index->cache));
531 
532 	kfree(index);
533 }
534 
cache_index_show(struct kobject * k,struct attribute * attr,char * buf)535 static ssize_t cache_index_show(struct kobject *k, struct attribute *attr, char *buf)
536 {
537 	struct kobj_attribute *kobj_attr;
538 
539 	kobj_attr = container_of(attr, struct kobj_attribute, attr);
540 
541 	return kobj_attr->show(k, kobj_attr, buf);
542 }
543 
index_kobj_to_cache(struct kobject * k)544 static struct cache *index_kobj_to_cache(struct kobject *k)
545 {
546 	struct cache_index_dir *index;
547 
548 	index = kobj_to_cache_index_dir(k);
549 
550 	return index->cache;
551 }
552 
size_show(struct kobject * k,struct kobj_attribute * attr,char * buf)553 static ssize_t size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
554 {
555 	unsigned int size_kb;
556 	struct cache *cache;
557 
558 	cache = index_kobj_to_cache(k);
559 
560 	if (cache_size_kb(cache, &size_kb))
561 		return -ENODEV;
562 
563 	return sprintf(buf, "%uK\n", size_kb);
564 }
565 
566 static struct kobj_attribute cache_size_attr =
567 	__ATTR(size, 0444, size_show, NULL);
568 
569 
line_size_show(struct kobject * k,struct kobj_attribute * attr,char * buf)570 static ssize_t line_size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
571 {
572 	unsigned int line_size;
573 	struct cache *cache;
574 
575 	cache = index_kobj_to_cache(k);
576 
577 	if (cache_get_line_size(cache, &line_size))
578 		return -ENODEV;
579 
580 	return sprintf(buf, "%u\n", line_size);
581 }
582 
583 static struct kobj_attribute cache_line_size_attr =
584 	__ATTR(coherency_line_size, 0444, line_size_show, NULL);
585 
nr_sets_show(struct kobject * k,struct kobj_attribute * attr,char * buf)586 static ssize_t nr_sets_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
587 {
588 	unsigned int nr_sets;
589 	struct cache *cache;
590 
591 	cache = index_kobj_to_cache(k);
592 
593 	if (cache_nr_sets(cache, &nr_sets))
594 		return -ENODEV;
595 
596 	return sprintf(buf, "%u\n", nr_sets);
597 }
598 
599 static struct kobj_attribute cache_nr_sets_attr =
600 	__ATTR(number_of_sets, 0444, nr_sets_show, NULL);
601 
associativity_show(struct kobject * k,struct kobj_attribute * attr,char * buf)602 static ssize_t associativity_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
603 {
604 	unsigned int associativity;
605 	struct cache *cache;
606 
607 	cache = index_kobj_to_cache(k);
608 
609 	if (cache_associativity(cache, &associativity))
610 		return -ENODEV;
611 
612 	return sprintf(buf, "%u\n", associativity);
613 }
614 
615 static struct kobj_attribute cache_assoc_attr =
616 	__ATTR(ways_of_associativity, 0444, associativity_show, NULL);
617 
type_show(struct kobject * k,struct kobj_attribute * attr,char * buf)618 static ssize_t type_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
619 {
620 	struct cache *cache;
621 
622 	cache = index_kobj_to_cache(k);
623 
624 	return sprintf(buf, "%s\n", cache_type_string(cache));
625 }
626 
627 static struct kobj_attribute cache_type_attr =
628 	__ATTR(type, 0444, type_show, NULL);
629 
level_show(struct kobject * k,struct kobj_attribute * attr,char * buf)630 static ssize_t level_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
631 {
632 	struct cache_index_dir *index;
633 	struct cache *cache;
634 
635 	index = kobj_to_cache_index_dir(k);
636 	cache = index->cache;
637 
638 	return sprintf(buf, "%d\n", cache->level);
639 }
640 
641 static struct kobj_attribute cache_level_attr =
642 	__ATTR(level, 0444, level_show, NULL);
643 
index_dir_to_cpu(struct cache_index_dir * index)644 static unsigned int index_dir_to_cpu(struct cache_index_dir *index)
645 {
646 	struct kobject *index_dir_kobj = &index->kobj;
647 	struct kobject *cache_dir_kobj = index_dir_kobj->parent;
648 	struct kobject *cpu_dev_kobj = cache_dir_kobj->parent;
649 	struct device *dev = kobj_to_dev(cpu_dev_kobj);
650 
651 	return dev->id;
652 }
653 
654 /*
655  * On big-core systems, each core has two groups of CPUs each of which
656  * has its own L1-cache. The thread-siblings which share l1-cache with
657  * @cpu can be obtained via cpu_smallcore_mask().
658  *
659  * On some big-core systems, the L2 cache is shared only between some
660  * groups of siblings. This is already parsed and encoded in
661  * cpu_l2_cache_mask().
662  *
663  * TODO: cache_lookup_or_instantiate() needs to be made aware of the
664  *       "ibm,thread-groups" property so that cache->shared_cpu_map
665  *       reflects the correct siblings on platforms that have this
666  *       device-tree property. This helper function is only a stop-gap
667  *       solution so that we report the correct siblings to the
668  *       userspace via sysfs.
669  */
get_shared_cpu_map(struct cache_index_dir * index,struct cache * cache)670 static const struct cpumask *get_shared_cpu_map(struct cache_index_dir *index, struct cache *cache)
671 {
672 	if (has_big_cores) {
673 		int cpu = index_dir_to_cpu(index);
674 		if (cache->level == 1)
675 			return cpu_smallcore_mask(cpu);
676 		if (cache->level == 2 && thread_group_shares_l2)
677 			return cpu_l2_cache_mask(cpu);
678 	}
679 
680 	return &cache->shared_cpu_map;
681 }
682 
683 static ssize_t
show_shared_cpumap(struct kobject * k,struct kobj_attribute * attr,char * buf,bool list)684 show_shared_cpumap(struct kobject *k, struct kobj_attribute *attr, char *buf, bool list)
685 {
686 	struct cache_index_dir *index;
687 	struct cache *cache;
688 	const struct cpumask *mask;
689 
690 	index = kobj_to_cache_index_dir(k);
691 	cache = index->cache;
692 
693 	mask = get_shared_cpu_map(index, cache);
694 
695 	return cpumap_print_to_pagebuf(list, buf, mask);
696 }
697 
shared_cpu_map_show(struct kobject * k,struct kobj_attribute * attr,char * buf)698 static ssize_t shared_cpu_map_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
699 {
700 	return show_shared_cpumap(k, attr, buf, false);
701 }
702 
shared_cpu_list_show(struct kobject * k,struct kobj_attribute * attr,char * buf)703 static ssize_t shared_cpu_list_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
704 {
705 	return show_shared_cpumap(k, attr, buf, true);
706 }
707 
708 static struct kobj_attribute cache_shared_cpu_map_attr =
709 	__ATTR(shared_cpu_map, 0444, shared_cpu_map_show, NULL);
710 
711 static struct kobj_attribute cache_shared_cpu_list_attr =
712 	__ATTR(shared_cpu_list, 0444, shared_cpu_list_show, NULL);
713 
714 /* Attributes which should always be created -- the kobject/sysfs core
715  * does this automatically via kobj_type->default_attrs.  This is the
716  * minimum data required to uniquely identify a cache.
717  */
718 static struct attribute *cache_index_default_attrs[] = {
719 	&cache_type_attr.attr,
720 	&cache_level_attr.attr,
721 	&cache_shared_cpu_map_attr.attr,
722 	&cache_shared_cpu_list_attr.attr,
723 	NULL,
724 };
725 
726 /* Attributes which should be created if the cache device node has the
727  * right properties -- see cacheinfo_create_index_opt_attrs
728  */
729 static struct kobj_attribute *cache_index_opt_attrs[] = {
730 	&cache_size_attr,
731 	&cache_line_size_attr,
732 	&cache_nr_sets_attr,
733 	&cache_assoc_attr,
734 };
735 
736 static const struct sysfs_ops cache_index_ops = {
737 	.show = cache_index_show,
738 };
739 
740 static struct kobj_type cache_index_type = {
741 	.release = cache_index_release,
742 	.sysfs_ops = &cache_index_ops,
743 	.default_attrs = cache_index_default_attrs,
744 };
745 
cacheinfo_create_index_opt_attrs(struct cache_index_dir * dir)746 static void cacheinfo_create_index_opt_attrs(struct cache_index_dir *dir)
747 {
748 	const char *cache_type;
749 	struct cache *cache;
750 	char *buf;
751 	int i;
752 
753 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
754 	if (!buf)
755 		return;
756 
757 	cache = dir->cache;
758 	cache_type = cache_type_string(cache);
759 
760 	/* We don't want to create an attribute that can't provide a
761 	 * meaningful value.  Check the return value of each optional
762 	 * attribute's ->show method before registering the
763 	 * attribute.
764 	 */
765 	for (i = 0; i < ARRAY_SIZE(cache_index_opt_attrs); i++) {
766 		struct kobj_attribute *attr;
767 		ssize_t rc;
768 
769 		attr = cache_index_opt_attrs[i];
770 
771 		rc = attr->show(&dir->kobj, attr, buf);
772 		if (rc <= 0) {
773 			pr_debug("not creating %s attribute for "
774 				 "%pOFP(%s) (rc = %zd)\n",
775 				 attr->attr.name, cache->ofnode,
776 				 cache_type, rc);
777 			continue;
778 		}
779 		if (sysfs_create_file(&dir->kobj, &attr->attr))
780 			pr_debug("could not create %s attribute for %pOFP(%s)\n",
781 				 attr->attr.name, cache->ofnode, cache_type);
782 	}
783 
784 	kfree(buf);
785 }
786 
cacheinfo_create_index_dir(struct cache * cache,int index,struct cache_dir * cache_dir)787 static void cacheinfo_create_index_dir(struct cache *cache, int index,
788 				       struct cache_dir *cache_dir)
789 {
790 	struct cache_index_dir *index_dir;
791 	int rc;
792 
793 	index_dir = kzalloc(sizeof(*index_dir), GFP_KERNEL);
794 	if (!index_dir)
795 		return;
796 
797 	index_dir->cache = cache;
798 
799 	rc = kobject_init_and_add(&index_dir->kobj, &cache_index_type,
800 				  cache_dir->kobj, "index%d", index);
801 	if (rc) {
802 		kobject_put(&index_dir->kobj);
803 		return;
804 	}
805 
806 	index_dir->next = cache_dir->index;
807 	cache_dir->index = index_dir;
808 
809 	cacheinfo_create_index_opt_attrs(index_dir);
810 }
811 
cacheinfo_sysfs_populate(unsigned int cpu_id,struct cache * cache_list)812 static void cacheinfo_sysfs_populate(unsigned int cpu_id,
813 				     struct cache *cache_list)
814 {
815 	struct cache_dir *cache_dir;
816 	struct cache *cache;
817 	int index = 0;
818 
819 	cache_dir = cacheinfo_create_cache_dir(cpu_id);
820 	if (!cache_dir)
821 		return;
822 
823 	cache = cache_list;
824 	while (cache) {
825 		cacheinfo_create_index_dir(cache, index, cache_dir);
826 		index++;
827 		cache = cache->next_local;
828 	}
829 }
830 
cacheinfo_cpu_online(unsigned int cpu_id)831 void cacheinfo_cpu_online(unsigned int cpu_id)
832 {
833 	struct cache *cache;
834 
835 	cache = cache_chain_instantiate(cpu_id);
836 	if (!cache)
837 		return;
838 
839 	cacheinfo_sysfs_populate(cpu_id, cache);
840 }
841 
842 /* functions needed to remove cache entry for cpu offline or suspend/resume */
843 
844 #if (defined(CONFIG_PPC_PSERIES) && defined(CONFIG_SUSPEND)) || \
845     defined(CONFIG_HOTPLUG_CPU)
846 
cache_lookup_by_cpu(unsigned int cpu_id)847 static struct cache *cache_lookup_by_cpu(unsigned int cpu_id)
848 {
849 	struct device_node *cpu_node;
850 	struct cache *cache;
851 
852 	cpu_node = of_get_cpu_node(cpu_id, NULL);
853 	WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
854 	if (!cpu_node)
855 		return NULL;
856 
857 	cache = cache_lookup_by_node(cpu_node);
858 	of_node_put(cpu_node);
859 
860 	return cache;
861 }
862 
remove_index_dirs(struct cache_dir * cache_dir)863 static void remove_index_dirs(struct cache_dir *cache_dir)
864 {
865 	struct cache_index_dir *index;
866 
867 	index = cache_dir->index;
868 
869 	while (index) {
870 		struct cache_index_dir *next;
871 
872 		next = index->next;
873 		kobject_put(&index->kobj);
874 		index = next;
875 	}
876 }
877 
remove_cache_dir(struct cache_dir * cache_dir)878 static void remove_cache_dir(struct cache_dir *cache_dir)
879 {
880 	remove_index_dirs(cache_dir);
881 
882 	/* Remove cache dir from sysfs */
883 	kobject_del(cache_dir->kobj);
884 
885 	kobject_put(cache_dir->kobj);
886 
887 	kfree(cache_dir);
888 }
889 
cache_cpu_clear(struct cache * cache,int cpu)890 static void cache_cpu_clear(struct cache *cache, int cpu)
891 {
892 	while (cache) {
893 		struct cache *next = cache->next_local;
894 
895 		WARN_ONCE(!cpumask_test_cpu(cpu, &cache->shared_cpu_map),
896 			  "CPU %i not accounted in %pOFP(%s)\n",
897 			  cpu, cache->ofnode,
898 			  cache_type_string(cache));
899 
900 		cpumask_clear_cpu(cpu, &cache->shared_cpu_map);
901 
902 		/* Release the cache object if all the cpus using it
903 		 * are offline */
904 		if (cpumask_empty(&cache->shared_cpu_map))
905 			release_cache(cache);
906 
907 		cache = next;
908 	}
909 }
910 
cacheinfo_cpu_offline(unsigned int cpu_id)911 void cacheinfo_cpu_offline(unsigned int cpu_id)
912 {
913 	struct cache_dir *cache_dir;
914 	struct cache *cache;
915 
916 	/* Prevent userspace from seeing inconsistent state - remove
917 	 * the sysfs hierarchy first */
918 	cache_dir = per_cpu(cache_dir_pcpu, cpu_id);
919 
920 	/* careful, sysfs population may have failed */
921 	if (cache_dir)
922 		remove_cache_dir(cache_dir);
923 
924 	per_cpu(cache_dir_pcpu, cpu_id) = NULL;
925 
926 	/* clear the CPU's bit in its cache chain, possibly freeing
927 	 * cache objects */
928 	cache = cache_lookup_by_cpu(cpu_id);
929 	if (cache)
930 		cache_cpu_clear(cache, cpu_id);
931 }
932 
cacheinfo_teardown(void)933 void cacheinfo_teardown(void)
934 {
935 	unsigned int cpu;
936 
937 	lockdep_assert_cpus_held();
938 
939 	for_each_online_cpu(cpu)
940 		cacheinfo_cpu_offline(cpu);
941 }
942 
cacheinfo_rebuild(void)943 void cacheinfo_rebuild(void)
944 {
945 	unsigned int cpu;
946 
947 	lockdep_assert_cpus_held();
948 
949 	for_each_online_cpu(cpu)
950 		cacheinfo_cpu_online(cpu);
951 }
952 
953 #endif /* (CONFIG_PPC_PSERIES && CONFIG_SUSPEND) || CONFIG_HOTPLUG_CPU */
954