1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016, Semihalf
4 * Author: Tomasz Nowicki <tn@semihalf.com>
5 *
6 * This file implements early detection/parsing of I/O mapping
7 * reported to OS through firmware via I/O Remapping Table (IORT)
8 * IORT document number: ARM DEN 0049A
9 */
10
11 #define pr_fmt(fmt) "ACPI: IORT: " fmt
12
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/dma-map-ops.h>
22
23 #define IORT_TYPE_MASK(type) (1 << (type))
24 #define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP)
25 #define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \
26 (1 << ACPI_IORT_NODE_SMMU_V3))
27
28 struct iort_its_msi_chip {
29 struct list_head list;
30 struct fwnode_handle *fw_node;
31 phys_addr_t base_addr;
32 u32 translation_id;
33 };
34
35 struct iort_fwnode {
36 struct list_head list;
37 struct acpi_iort_node *iort_node;
38 struct fwnode_handle *fwnode;
39 };
40 static LIST_HEAD(iort_fwnode_list);
41 static DEFINE_SPINLOCK(iort_fwnode_lock);
42
43 /**
44 * iort_set_fwnode() - Create iort_fwnode and use it to register
45 * iommu data in the iort_fwnode_list
46 *
47 * @iort_node: IORT table node associated with the IOMMU
48 * @fwnode: fwnode associated with the IORT node
49 *
50 * Returns: 0 on success
51 * <0 on failure
52 */
iort_set_fwnode(struct acpi_iort_node * iort_node,struct fwnode_handle * fwnode)53 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
54 struct fwnode_handle *fwnode)
55 {
56 struct iort_fwnode *np;
57
58 np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
59
60 if (WARN_ON(!np))
61 return -ENOMEM;
62
63 INIT_LIST_HEAD(&np->list);
64 np->iort_node = iort_node;
65 np->fwnode = fwnode;
66
67 spin_lock(&iort_fwnode_lock);
68 list_add_tail(&np->list, &iort_fwnode_list);
69 spin_unlock(&iort_fwnode_lock);
70
71 return 0;
72 }
73
74 /**
75 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
76 *
77 * @node: IORT table node to be looked-up
78 *
79 * Returns: fwnode_handle pointer on success, NULL on failure
80 */
iort_get_fwnode(struct acpi_iort_node * node)81 static inline struct fwnode_handle *iort_get_fwnode(
82 struct acpi_iort_node *node)
83 {
84 struct iort_fwnode *curr;
85 struct fwnode_handle *fwnode = NULL;
86
87 spin_lock(&iort_fwnode_lock);
88 list_for_each_entry(curr, &iort_fwnode_list, list) {
89 if (curr->iort_node == node) {
90 fwnode = curr->fwnode;
91 break;
92 }
93 }
94 spin_unlock(&iort_fwnode_lock);
95
96 return fwnode;
97 }
98
99 /**
100 * iort_delete_fwnode() - Delete fwnode associated with an IORT node
101 *
102 * @node: IORT table node associated with fwnode to delete
103 */
iort_delete_fwnode(struct acpi_iort_node * node)104 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
105 {
106 struct iort_fwnode *curr, *tmp;
107
108 spin_lock(&iort_fwnode_lock);
109 list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
110 if (curr->iort_node == node) {
111 list_del(&curr->list);
112 kfree(curr);
113 break;
114 }
115 }
116 spin_unlock(&iort_fwnode_lock);
117 }
118
119 /**
120 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
121 *
122 * @fwnode: fwnode associated with device to be looked-up
123 *
124 * Returns: iort_node pointer on success, NULL on failure
125 */
iort_get_iort_node(struct fwnode_handle * fwnode)126 static inline struct acpi_iort_node *iort_get_iort_node(
127 struct fwnode_handle *fwnode)
128 {
129 struct iort_fwnode *curr;
130 struct acpi_iort_node *iort_node = NULL;
131
132 spin_lock(&iort_fwnode_lock);
133 list_for_each_entry(curr, &iort_fwnode_list, list) {
134 if (curr->fwnode == fwnode) {
135 iort_node = curr->iort_node;
136 break;
137 }
138 }
139 spin_unlock(&iort_fwnode_lock);
140
141 return iort_node;
142 }
143
144 typedef acpi_status (*iort_find_node_callback)
145 (struct acpi_iort_node *node, void *context);
146
147 /* Root pointer to the mapped IORT table */
148 static struct acpi_table_header *iort_table;
149
150 static LIST_HEAD(iort_msi_chip_list);
151 static DEFINE_SPINLOCK(iort_msi_chip_lock);
152
153 /**
154 * iort_register_domain_token() - register domain token along with related
155 * ITS ID and base address to the list from where we can get it back later on.
156 * @trans_id: ITS ID.
157 * @base: ITS base address.
158 * @fw_node: Domain token.
159 *
160 * Returns: 0 on success, -ENOMEM if no memory when allocating list element
161 */
iort_register_domain_token(int trans_id,phys_addr_t base,struct fwnode_handle * fw_node)162 int iort_register_domain_token(int trans_id, phys_addr_t base,
163 struct fwnode_handle *fw_node)
164 {
165 struct iort_its_msi_chip *its_msi_chip;
166
167 its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
168 if (!its_msi_chip)
169 return -ENOMEM;
170
171 its_msi_chip->fw_node = fw_node;
172 its_msi_chip->translation_id = trans_id;
173 its_msi_chip->base_addr = base;
174
175 spin_lock(&iort_msi_chip_lock);
176 list_add(&its_msi_chip->list, &iort_msi_chip_list);
177 spin_unlock(&iort_msi_chip_lock);
178
179 return 0;
180 }
181
182 /**
183 * iort_deregister_domain_token() - Deregister domain token based on ITS ID
184 * @trans_id: ITS ID.
185 *
186 * Returns: none.
187 */
iort_deregister_domain_token(int trans_id)188 void iort_deregister_domain_token(int trans_id)
189 {
190 struct iort_its_msi_chip *its_msi_chip, *t;
191
192 spin_lock(&iort_msi_chip_lock);
193 list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
194 if (its_msi_chip->translation_id == trans_id) {
195 list_del(&its_msi_chip->list);
196 kfree(its_msi_chip);
197 break;
198 }
199 }
200 spin_unlock(&iort_msi_chip_lock);
201 }
202
203 /**
204 * iort_find_domain_token() - Find domain token based on given ITS ID
205 * @trans_id: ITS ID.
206 *
207 * Returns: domain token when find on the list, NULL otherwise
208 */
iort_find_domain_token(int trans_id)209 struct fwnode_handle *iort_find_domain_token(int trans_id)
210 {
211 struct fwnode_handle *fw_node = NULL;
212 struct iort_its_msi_chip *its_msi_chip;
213
214 spin_lock(&iort_msi_chip_lock);
215 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
216 if (its_msi_chip->translation_id == trans_id) {
217 fw_node = its_msi_chip->fw_node;
218 break;
219 }
220 }
221 spin_unlock(&iort_msi_chip_lock);
222
223 return fw_node;
224 }
225
iort_scan_node(enum acpi_iort_node_type type,iort_find_node_callback callback,void * context)226 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
227 iort_find_node_callback callback,
228 void *context)
229 {
230 struct acpi_iort_node *iort_node, *iort_end;
231 struct acpi_table_iort *iort;
232 int i;
233
234 if (!iort_table)
235 return NULL;
236
237 /* Get the first IORT node */
238 iort = (struct acpi_table_iort *)iort_table;
239 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
240 iort->node_offset);
241 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
242 iort_table->length);
243
244 for (i = 0; i < iort->node_count; i++) {
245 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
246 "IORT node pointer overflows, bad table!\n"))
247 return NULL;
248
249 if (iort_node->type == type &&
250 ACPI_SUCCESS(callback(iort_node, context)))
251 return iort_node;
252
253 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
254 iort_node->length);
255 }
256
257 return NULL;
258 }
259
iort_match_node_callback(struct acpi_iort_node * node,void * context)260 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
261 void *context)
262 {
263 struct device *dev = context;
264 acpi_status status = AE_NOT_FOUND;
265
266 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
267 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
268 struct acpi_device *adev;
269 struct acpi_iort_named_component *ncomp;
270 struct device *nc_dev = dev;
271
272 /*
273 * Walk the device tree to find a device with an
274 * ACPI companion; there is no point in scanning
275 * IORT for a device matching a named component if
276 * the device does not have an ACPI companion to
277 * start with.
278 */
279 do {
280 adev = ACPI_COMPANION(nc_dev);
281 if (adev)
282 break;
283
284 nc_dev = nc_dev->parent;
285 } while (nc_dev);
286
287 if (!adev)
288 goto out;
289
290 status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
291 if (ACPI_FAILURE(status)) {
292 dev_warn(nc_dev, "Can't get device full path name\n");
293 goto out;
294 }
295
296 ncomp = (struct acpi_iort_named_component *)node->node_data;
297 status = !strcmp(ncomp->device_name, buf.pointer) ?
298 AE_OK : AE_NOT_FOUND;
299 acpi_os_free(buf.pointer);
300 } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
301 struct acpi_iort_root_complex *pci_rc;
302 struct pci_bus *bus;
303
304 bus = to_pci_bus(dev);
305 pci_rc = (struct acpi_iort_root_complex *)node->node_data;
306
307 /*
308 * It is assumed that PCI segment numbers maps one-to-one
309 * with root complexes. Each segment number can represent only
310 * one root complex.
311 */
312 status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
313 AE_OK : AE_NOT_FOUND;
314 }
315 out:
316 return status;
317 }
318
iort_id_map(struct acpi_iort_id_mapping * map,u8 type,u32 rid_in,u32 * rid_out,bool check_overlap)319 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
320 u32 *rid_out, bool check_overlap)
321 {
322 /* Single mapping does not care for input id */
323 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
324 if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
325 type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
326 *rid_out = map->output_base;
327 return 0;
328 }
329
330 pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
331 map, type);
332 return -ENXIO;
333 }
334
335 if (rid_in < map->input_base ||
336 (rid_in > map->input_base + map->id_count))
337 return -ENXIO;
338
339 if (check_overlap) {
340 /*
341 * We already found a mapping for this input ID at the end of
342 * another region. If it coincides with the start of this
343 * region, we assume the prior match was due to the off-by-1
344 * issue mentioned below, and allow it to be superseded.
345 * Otherwise, things are *really* broken, and we just disregard
346 * duplicate matches entirely to retain compatibility.
347 */
348 pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
349 map, rid_in);
350 if (rid_in != map->input_base)
351 return -ENXIO;
352
353 pr_err(FW_BUG "applying workaround.\n");
354 }
355
356 *rid_out = map->output_base + (rid_in - map->input_base);
357
358 /*
359 * Due to confusion regarding the meaning of the id_count field (which
360 * carries the number of IDs *minus 1*), we may have to disregard this
361 * match if it is at the end of the range, and overlaps with the start
362 * of another one.
363 */
364 if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
365 return -EAGAIN;
366 return 0;
367 }
368
iort_node_get_id(struct acpi_iort_node * node,u32 * id_out,int index)369 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
370 u32 *id_out, int index)
371 {
372 struct acpi_iort_node *parent;
373 struct acpi_iort_id_mapping *map;
374
375 if (!node->mapping_offset || !node->mapping_count ||
376 index >= node->mapping_count)
377 return NULL;
378
379 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
380 node->mapping_offset + index * sizeof(*map));
381
382 /* Firmware bug! */
383 if (!map->output_reference) {
384 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
385 node, node->type);
386 return NULL;
387 }
388
389 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
390 map->output_reference);
391
392 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
393 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
394 node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
395 node->type == ACPI_IORT_NODE_SMMU_V3 ||
396 node->type == ACPI_IORT_NODE_PMCG) {
397 *id_out = map->output_base;
398 return parent;
399 }
400 }
401
402 return NULL;
403 }
404
iort_get_id_mapping_index(struct acpi_iort_node * node)405 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
406 {
407 struct acpi_iort_smmu_v3 *smmu;
408 struct acpi_iort_pmcg *pmcg;
409
410 switch (node->type) {
411 case ACPI_IORT_NODE_SMMU_V3:
412 /*
413 * SMMUv3 dev ID mapping index was introduced in revision 1
414 * table, not available in revision 0
415 */
416 if (node->revision < 1)
417 return -EINVAL;
418
419 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
420 /*
421 * ID mapping index is only ignored if all interrupts are
422 * GSIV based
423 */
424 if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
425 && smmu->sync_gsiv)
426 return -EINVAL;
427
428 if (smmu->id_mapping_index >= node->mapping_count) {
429 pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
430 node, node->type);
431 return -EINVAL;
432 }
433
434 return smmu->id_mapping_index;
435 case ACPI_IORT_NODE_PMCG:
436 pmcg = (struct acpi_iort_pmcg *)node->node_data;
437 if (pmcg->overflow_gsiv || node->mapping_count == 0)
438 return -EINVAL;
439
440 return 0;
441 default:
442 return -EINVAL;
443 }
444 }
445
iort_node_map_id(struct acpi_iort_node * node,u32 id_in,u32 * id_out,u8 type_mask)446 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
447 u32 id_in, u32 *id_out,
448 u8 type_mask)
449 {
450 u32 id = id_in;
451
452 /* Parse the ID mapping tree to find specified node type */
453 while (node) {
454 struct acpi_iort_id_mapping *map;
455 int i, index, rc = 0;
456 u32 out_ref = 0, map_id = id;
457
458 if (IORT_TYPE_MASK(node->type) & type_mask) {
459 if (id_out)
460 *id_out = id;
461 return node;
462 }
463
464 if (!node->mapping_offset || !node->mapping_count)
465 goto fail_map;
466
467 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
468 node->mapping_offset);
469
470 /* Firmware bug! */
471 if (!map->output_reference) {
472 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
473 node, node->type);
474 goto fail_map;
475 }
476
477 /*
478 * Get the special ID mapping index (if any) and skip its
479 * associated ID map to prevent erroneous multi-stage
480 * IORT ID translations.
481 */
482 index = iort_get_id_mapping_index(node);
483
484 /* Do the ID translation */
485 for (i = 0; i < node->mapping_count; i++, map++) {
486 /* if it is special mapping index, skip it */
487 if (i == index)
488 continue;
489
490 rc = iort_id_map(map, node->type, map_id, &id, out_ref);
491 if (!rc)
492 break;
493 if (rc == -EAGAIN)
494 out_ref = map->output_reference;
495 }
496
497 if (i == node->mapping_count && !out_ref)
498 goto fail_map;
499
500 node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
501 rc ? out_ref : map->output_reference);
502 }
503
504 fail_map:
505 /* Map input ID to output ID unchanged on mapping failure */
506 if (id_out)
507 *id_out = id_in;
508
509 return NULL;
510 }
511
iort_node_map_platform_id(struct acpi_iort_node * node,u32 * id_out,u8 type_mask,int index)512 static struct acpi_iort_node *iort_node_map_platform_id(
513 struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
514 int index)
515 {
516 struct acpi_iort_node *parent;
517 u32 id;
518
519 /* step 1: retrieve the initial dev id */
520 parent = iort_node_get_id(node, &id, index);
521 if (!parent)
522 return NULL;
523
524 /*
525 * optional step 2: map the initial dev id if its parent is not
526 * the target type we want, map it again for the use cases such
527 * as NC (named component) -> SMMU -> ITS. If the type is matched,
528 * return the initial dev id and its parent pointer directly.
529 */
530 if (!(IORT_TYPE_MASK(parent->type) & type_mask))
531 parent = iort_node_map_id(parent, id, id_out, type_mask);
532 else
533 if (id_out)
534 *id_out = id;
535
536 return parent;
537 }
538
iort_find_dev_node(struct device * dev)539 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
540 {
541 struct pci_bus *pbus;
542
543 if (!dev_is_pci(dev)) {
544 struct acpi_iort_node *node;
545 /*
546 * scan iort_fwnode_list to see if it's an iort platform
547 * device (such as SMMU, PMCG),its iort node already cached
548 * and associated with fwnode when iort platform devices
549 * were initialized.
550 */
551 node = iort_get_iort_node(dev->fwnode);
552 if (node)
553 return node;
554 /*
555 * if not, then it should be a platform device defined in
556 * DSDT/SSDT (with Named Component node in IORT)
557 */
558 return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
559 iort_match_node_callback, dev);
560 }
561
562 pbus = to_pci_dev(dev)->bus;
563
564 return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
565 iort_match_node_callback, &pbus->dev);
566 }
567
568 /**
569 * iort_msi_map_id() - Map a MSI input ID for a device
570 * @dev: The device for which the mapping is to be done.
571 * @input_id: The device input ID.
572 *
573 * Returns: mapped MSI ID on success, input ID otherwise
574 */
iort_msi_map_id(struct device * dev,u32 input_id)575 u32 iort_msi_map_id(struct device *dev, u32 input_id)
576 {
577 struct acpi_iort_node *node;
578 u32 dev_id;
579
580 node = iort_find_dev_node(dev);
581 if (!node)
582 return input_id;
583
584 iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
585 return dev_id;
586 }
587
588 /**
589 * iort_pmsi_get_dev_id() - Get the device id for a device
590 * @dev: The device for which the mapping is to be done.
591 * @dev_id: The device ID found.
592 *
593 * Returns: 0 for successful find a dev id, -ENODEV on error
594 */
iort_pmsi_get_dev_id(struct device * dev,u32 * dev_id)595 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
596 {
597 int i, index;
598 struct acpi_iort_node *node;
599
600 node = iort_find_dev_node(dev);
601 if (!node)
602 return -ENODEV;
603
604 index = iort_get_id_mapping_index(node);
605 /* if there is a valid index, go get the dev_id directly */
606 if (index >= 0) {
607 if (iort_node_get_id(node, dev_id, index))
608 return 0;
609 } else {
610 for (i = 0; i < node->mapping_count; i++) {
611 if (iort_node_map_platform_id(node, dev_id,
612 IORT_MSI_TYPE, i))
613 return 0;
614 }
615 }
616
617 return -ENODEV;
618 }
619
iort_find_its_base(u32 its_id,phys_addr_t * base)620 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
621 {
622 struct iort_its_msi_chip *its_msi_chip;
623 int ret = -ENODEV;
624
625 spin_lock(&iort_msi_chip_lock);
626 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
627 if (its_msi_chip->translation_id == its_id) {
628 *base = its_msi_chip->base_addr;
629 ret = 0;
630 break;
631 }
632 }
633 spin_unlock(&iort_msi_chip_lock);
634
635 return ret;
636 }
637
638 /**
639 * iort_dev_find_its_id() - Find the ITS identifier for a device
640 * @dev: The device.
641 * @id: Device's ID
642 * @idx: Index of the ITS identifier list.
643 * @its_id: ITS identifier.
644 *
645 * Returns: 0 on success, appropriate error value otherwise
646 */
iort_dev_find_its_id(struct device * dev,u32 id,unsigned int idx,int * its_id)647 static int iort_dev_find_its_id(struct device *dev, u32 id,
648 unsigned int idx, int *its_id)
649 {
650 struct acpi_iort_its_group *its;
651 struct acpi_iort_node *node;
652
653 node = iort_find_dev_node(dev);
654 if (!node)
655 return -ENXIO;
656
657 node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
658 if (!node)
659 return -ENXIO;
660
661 /* Move to ITS specific data */
662 its = (struct acpi_iort_its_group *)node->node_data;
663 if (idx >= its->its_count) {
664 dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
665 idx, its->its_count);
666 return -ENXIO;
667 }
668
669 *its_id = its->identifiers[idx];
670 return 0;
671 }
672
673 /**
674 * iort_get_device_domain() - Find MSI domain related to a device
675 * @dev: The device.
676 * @id: Requester ID for the device.
677 * @bus_token: irq domain bus token.
678 *
679 * Returns: the MSI domain for this device, NULL otherwise
680 */
iort_get_device_domain(struct device * dev,u32 id,enum irq_domain_bus_token bus_token)681 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
682 enum irq_domain_bus_token bus_token)
683 {
684 struct fwnode_handle *handle;
685 int its_id;
686
687 if (iort_dev_find_its_id(dev, id, 0, &its_id))
688 return NULL;
689
690 handle = iort_find_domain_token(its_id);
691 if (!handle)
692 return NULL;
693
694 return irq_find_matching_fwnode(handle, bus_token);
695 }
696
iort_set_device_domain(struct device * dev,struct acpi_iort_node * node)697 static void iort_set_device_domain(struct device *dev,
698 struct acpi_iort_node *node)
699 {
700 struct acpi_iort_its_group *its;
701 struct acpi_iort_node *msi_parent;
702 struct acpi_iort_id_mapping *map;
703 struct fwnode_handle *iort_fwnode;
704 struct irq_domain *domain;
705 int index;
706
707 index = iort_get_id_mapping_index(node);
708 if (index < 0)
709 return;
710
711 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
712 node->mapping_offset + index * sizeof(*map));
713
714 /* Firmware bug! */
715 if (!map->output_reference ||
716 !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
717 pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
718 node, node->type);
719 return;
720 }
721
722 msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
723 map->output_reference);
724
725 if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
726 return;
727
728 /* Move to ITS specific data */
729 its = (struct acpi_iort_its_group *)msi_parent->node_data;
730
731 iort_fwnode = iort_find_domain_token(its->identifiers[0]);
732 if (!iort_fwnode)
733 return;
734
735 domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
736 if (domain)
737 dev_set_msi_domain(dev, domain);
738 }
739
740 /**
741 * iort_get_platform_device_domain() - Find MSI domain related to a
742 * platform device
743 * @dev: the dev pointer associated with the platform device
744 *
745 * Returns: the MSI domain for this device, NULL otherwise
746 */
iort_get_platform_device_domain(struct device * dev)747 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
748 {
749 struct acpi_iort_node *node, *msi_parent = NULL;
750 struct fwnode_handle *iort_fwnode;
751 struct acpi_iort_its_group *its;
752 int i;
753
754 /* find its associated iort node */
755 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
756 iort_match_node_callback, dev);
757 if (!node)
758 return NULL;
759
760 /* then find its msi parent node */
761 for (i = 0; i < node->mapping_count; i++) {
762 msi_parent = iort_node_map_platform_id(node, NULL,
763 IORT_MSI_TYPE, i);
764 if (msi_parent)
765 break;
766 }
767
768 if (!msi_parent)
769 return NULL;
770
771 /* Move to ITS specific data */
772 its = (struct acpi_iort_its_group *)msi_parent->node_data;
773
774 iort_fwnode = iort_find_domain_token(its->identifiers[0]);
775 if (!iort_fwnode)
776 return NULL;
777
778 return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
779 }
780
acpi_configure_pmsi_domain(struct device * dev)781 void acpi_configure_pmsi_domain(struct device *dev)
782 {
783 struct irq_domain *msi_domain;
784
785 msi_domain = iort_get_platform_device_domain(dev);
786 if (msi_domain)
787 dev_set_msi_domain(dev, msi_domain);
788 }
789
790 #ifdef CONFIG_IOMMU_API
iort_get_msi_resv_iommu(struct device * dev)791 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
792 {
793 struct acpi_iort_node *iommu;
794 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
795
796 iommu = iort_get_iort_node(fwspec->iommu_fwnode);
797
798 if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
799 struct acpi_iort_smmu_v3 *smmu;
800
801 smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
802 if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
803 return iommu;
804 }
805
806 return NULL;
807 }
808
iort_fwspec_iommu_ops(struct device * dev)809 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
810 {
811 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
812
813 return (fwspec && fwspec->ops) ? fwspec->ops : NULL;
814 }
815
iort_add_device_replay(struct device * dev)816 static inline int iort_add_device_replay(struct device *dev)
817 {
818 int err = 0;
819
820 if (dev->bus && !device_iommu_mapped(dev))
821 err = iommu_probe_device(dev);
822
823 return err;
824 }
825
826 /**
827 * iort_iommu_msi_get_resv_regions - Reserved region driver helper
828 * @dev: Device from iommu_get_resv_regions()
829 * @head: Reserved region list from iommu_get_resv_regions()
830 *
831 * Returns: Number of msi reserved regions on success (0 if platform
832 * doesn't require the reservation or no associated msi regions),
833 * appropriate error value otherwise. The ITS interrupt translation
834 * spaces (ITS_base + SZ_64K, SZ_64K) associated with the device
835 * are the msi reserved regions.
836 */
iort_iommu_msi_get_resv_regions(struct device * dev,struct list_head * head)837 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
838 {
839 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
840 struct acpi_iort_its_group *its;
841 struct acpi_iort_node *iommu_node, *its_node = NULL;
842 int i, resv = 0;
843
844 iommu_node = iort_get_msi_resv_iommu(dev);
845 if (!iommu_node)
846 return 0;
847
848 /*
849 * Current logic to reserve ITS regions relies on HW topologies
850 * where a given PCI or named component maps its IDs to only one
851 * ITS group; if a PCI or named component can map its IDs to
852 * different ITS groups through IORT mappings this function has
853 * to be reworked to ensure we reserve regions for all ITS groups
854 * a given PCI or named component may map IDs to.
855 */
856
857 for (i = 0; i < fwspec->num_ids; i++) {
858 its_node = iort_node_map_id(iommu_node,
859 fwspec->ids[i],
860 NULL, IORT_MSI_TYPE);
861 if (its_node)
862 break;
863 }
864
865 if (!its_node)
866 return 0;
867
868 /* Move to ITS specific data */
869 its = (struct acpi_iort_its_group *)its_node->node_data;
870
871 for (i = 0; i < its->its_count; i++) {
872 phys_addr_t base;
873
874 if (!iort_find_its_base(its->identifiers[i], &base)) {
875 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
876 struct iommu_resv_region *region;
877
878 region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
879 prot, IOMMU_RESV_MSI);
880 if (region) {
881 list_add_tail(®ion->list, head);
882 resv++;
883 }
884 }
885 }
886
887 return (resv == its->its_count) ? resv : -ENODEV;
888 }
889
iort_iommu_driver_enabled(u8 type)890 static inline bool iort_iommu_driver_enabled(u8 type)
891 {
892 switch (type) {
893 case ACPI_IORT_NODE_SMMU_V3:
894 return IS_ENABLED(CONFIG_ARM_SMMU_V3);
895 case ACPI_IORT_NODE_SMMU:
896 return IS_ENABLED(CONFIG_ARM_SMMU);
897 default:
898 pr_warn("IORT node type %u does not describe an SMMU\n", type);
899 return false;
900 }
901 }
902
arm_smmu_iort_xlate(struct device * dev,u32 streamid,struct fwnode_handle * fwnode,const struct iommu_ops * ops)903 static int arm_smmu_iort_xlate(struct device *dev, u32 streamid,
904 struct fwnode_handle *fwnode,
905 const struct iommu_ops *ops)
906 {
907 int ret = iommu_fwspec_init(dev, fwnode, ops);
908
909 if (!ret)
910 ret = iommu_fwspec_add_ids(dev, &streamid, 1);
911
912 return ret;
913 }
914
iort_pci_rc_supports_ats(struct acpi_iort_node * node)915 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
916 {
917 struct acpi_iort_root_complex *pci_rc;
918
919 pci_rc = (struct acpi_iort_root_complex *)node->node_data;
920 return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
921 }
922
iort_iommu_xlate(struct device * dev,struct acpi_iort_node * node,u32 streamid)923 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
924 u32 streamid)
925 {
926 const struct iommu_ops *ops;
927 struct fwnode_handle *iort_fwnode;
928
929 if (!node)
930 return -ENODEV;
931
932 iort_fwnode = iort_get_fwnode(node);
933 if (!iort_fwnode)
934 return -ENODEV;
935
936 /*
937 * If the ops look-up fails, this means that either
938 * the SMMU drivers have not been probed yet or that
939 * the SMMU drivers are not built in the kernel;
940 * Depending on whether the SMMU drivers are built-in
941 * in the kernel or not, defer the IOMMU configuration
942 * or just abort it.
943 */
944 ops = iommu_ops_from_fwnode(iort_fwnode);
945 if (!ops)
946 return iort_iommu_driver_enabled(node->type) ?
947 -EPROBE_DEFER : -ENODEV;
948
949 return arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops);
950 }
951
952 struct iort_pci_alias_info {
953 struct device *dev;
954 struct acpi_iort_node *node;
955 };
956
iort_pci_iommu_init(struct pci_dev * pdev,u16 alias,void * data)957 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
958 {
959 struct iort_pci_alias_info *info = data;
960 struct acpi_iort_node *parent;
961 u32 streamid;
962
963 parent = iort_node_map_id(info->node, alias, &streamid,
964 IORT_IOMMU_TYPE);
965 return iort_iommu_xlate(info->dev, parent, streamid);
966 }
967
iort_named_component_init(struct device * dev,struct acpi_iort_node * node)968 static void iort_named_component_init(struct device *dev,
969 struct acpi_iort_node *node)
970 {
971 struct property_entry props[2] = {};
972 struct acpi_iort_named_component *nc;
973
974 nc = (struct acpi_iort_named_component *)node->node_data;
975 props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
976 FIELD_GET(ACPI_IORT_NC_PASID_BITS,
977 nc->node_flags));
978
979 if (device_add_properties(dev, props))
980 dev_warn(dev, "Could not add device properties\n");
981 }
982
iort_nc_iommu_map(struct device * dev,struct acpi_iort_node * node)983 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
984 {
985 struct acpi_iort_node *parent;
986 int err = -ENODEV, i = 0;
987 u32 streamid = 0;
988
989 do {
990
991 parent = iort_node_map_platform_id(node, &streamid,
992 IORT_IOMMU_TYPE,
993 i++);
994
995 if (parent)
996 err = iort_iommu_xlate(dev, parent, streamid);
997 } while (parent && !err);
998
999 return err;
1000 }
1001
iort_nc_iommu_map_id(struct device * dev,struct acpi_iort_node * node,const u32 * in_id)1002 static int iort_nc_iommu_map_id(struct device *dev,
1003 struct acpi_iort_node *node,
1004 const u32 *in_id)
1005 {
1006 struct acpi_iort_node *parent;
1007 u32 streamid;
1008
1009 parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1010 if (parent)
1011 return iort_iommu_xlate(dev, parent, streamid);
1012
1013 return -ENODEV;
1014 }
1015
1016
1017 /**
1018 * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1019 *
1020 * @dev: device to configure
1021 * @id_in: optional input id const value pointer
1022 *
1023 * Returns: iommu_ops pointer on configuration success
1024 * NULL on configuration failure
1025 */
iort_iommu_configure_id(struct device * dev,const u32 * id_in)1026 const struct iommu_ops *iort_iommu_configure_id(struct device *dev,
1027 const u32 *id_in)
1028 {
1029 struct acpi_iort_node *node;
1030 const struct iommu_ops *ops;
1031 int err = -ENODEV;
1032
1033 /*
1034 * If we already translated the fwspec there
1035 * is nothing left to do, return the iommu_ops.
1036 */
1037 ops = iort_fwspec_iommu_ops(dev);
1038 if (ops)
1039 return ops;
1040
1041 if (dev_is_pci(dev)) {
1042 struct iommu_fwspec *fwspec;
1043 struct pci_bus *bus = to_pci_dev(dev)->bus;
1044 struct iort_pci_alias_info info = { .dev = dev };
1045
1046 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1047 iort_match_node_callback, &bus->dev);
1048 if (!node)
1049 return NULL;
1050
1051 info.node = node;
1052 err = pci_for_each_dma_alias(to_pci_dev(dev),
1053 iort_pci_iommu_init, &info);
1054
1055 fwspec = dev_iommu_fwspec_get(dev);
1056 if (fwspec && iort_pci_rc_supports_ats(node))
1057 fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1058 } else {
1059 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1060 iort_match_node_callback, dev);
1061 if (!node)
1062 return NULL;
1063
1064 err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1065 iort_nc_iommu_map(dev, node);
1066
1067 if (!err)
1068 iort_named_component_init(dev, node);
1069 }
1070
1071 /*
1072 * If we have reason to believe the IOMMU driver missed the initial
1073 * add_device callback for dev, replay it to get things in order.
1074 */
1075 if (!err) {
1076 ops = iort_fwspec_iommu_ops(dev);
1077 err = iort_add_device_replay(dev);
1078 }
1079
1080 /* Ignore all other errors apart from EPROBE_DEFER */
1081 if (err == -EPROBE_DEFER) {
1082 ops = ERR_PTR(err);
1083 } else if (err) {
1084 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1085 ops = NULL;
1086 }
1087
1088 return ops;
1089 }
1090
1091 #else
iort_iommu_msi_get_resv_regions(struct device * dev,struct list_head * head)1092 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
1093 { return 0; }
iort_iommu_configure_id(struct device * dev,const u32 * input_id)1094 const struct iommu_ops *iort_iommu_configure_id(struct device *dev,
1095 const u32 *input_id)
1096 { return NULL; }
1097 #endif
1098
nc_dma_get_range(struct device * dev,u64 * size)1099 static int nc_dma_get_range(struct device *dev, u64 *size)
1100 {
1101 struct acpi_iort_node *node;
1102 struct acpi_iort_named_component *ncomp;
1103
1104 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1105 iort_match_node_callback, dev);
1106 if (!node)
1107 return -ENODEV;
1108
1109 ncomp = (struct acpi_iort_named_component *)node->node_data;
1110
1111 if (!ncomp->memory_address_limit) {
1112 pr_warn(FW_BUG "Named component missing memory address limit\n");
1113 return -EINVAL;
1114 }
1115
1116 *size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1117 1ULL<<ncomp->memory_address_limit;
1118
1119 return 0;
1120 }
1121
rc_dma_get_range(struct device * dev,u64 * size)1122 static int rc_dma_get_range(struct device *dev, u64 *size)
1123 {
1124 struct acpi_iort_node *node;
1125 struct acpi_iort_root_complex *rc;
1126 struct pci_bus *pbus = to_pci_dev(dev)->bus;
1127
1128 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1129 iort_match_node_callback, &pbus->dev);
1130 if (!node || node->revision < 1)
1131 return -ENODEV;
1132
1133 rc = (struct acpi_iort_root_complex *)node->node_data;
1134
1135 if (!rc->memory_address_limit) {
1136 pr_warn(FW_BUG "Root complex missing memory address limit\n");
1137 return -EINVAL;
1138 }
1139
1140 *size = rc->memory_address_limit >= 64 ? U64_MAX :
1141 1ULL<<rc->memory_address_limit;
1142
1143 return 0;
1144 }
1145
1146 /**
1147 * iort_dma_setup() - Set-up device DMA parameters.
1148 *
1149 * @dev: device to configure
1150 * @dma_addr: device DMA address result pointer
1151 * @dma_size: DMA range size result pointer
1152 */
iort_dma_setup(struct device * dev,u64 * dma_addr,u64 * dma_size)1153 void iort_dma_setup(struct device *dev, u64 *dma_addr, u64 *dma_size)
1154 {
1155 u64 end, mask, dmaaddr = 0, size = 0, offset = 0;
1156 int ret;
1157
1158 /*
1159 * If @dev is expected to be DMA-capable then the bus code that created
1160 * it should have initialised its dma_mask pointer by this point. For
1161 * now, we'll continue the legacy behaviour of coercing it to the
1162 * coherent mask if not, but we'll no longer do so quietly.
1163 */
1164 if (!dev->dma_mask) {
1165 dev_warn(dev, "DMA mask not set\n");
1166 dev->dma_mask = &dev->coherent_dma_mask;
1167 }
1168
1169 if (dev->coherent_dma_mask)
1170 size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1);
1171 else
1172 size = 1ULL << 32;
1173
1174 ret = acpi_dma_get_range(dev, &dmaaddr, &offset, &size);
1175 if (ret == -ENODEV)
1176 ret = dev_is_pci(dev) ? rc_dma_get_range(dev, &size)
1177 : nc_dma_get_range(dev, &size);
1178
1179 if (!ret) {
1180 /*
1181 * Limit coherent and dma mask based on size retrieved from
1182 * firmware.
1183 */
1184 end = dmaaddr + size - 1;
1185 mask = DMA_BIT_MASK(ilog2(end) + 1);
1186 dev->bus_dma_limit = end;
1187 dev->coherent_dma_mask = min(dev->coherent_dma_mask, mask);
1188 *dev->dma_mask = min(*dev->dma_mask, mask);
1189 }
1190
1191 *dma_addr = dmaaddr;
1192 *dma_size = size;
1193
1194 ret = dma_direct_set_offset(dev, dmaaddr + offset, dmaaddr, size);
1195
1196 dev_dbg(dev, "dma_offset(%#08llx)%s\n", offset, ret ? " failed!" : "");
1197 }
1198
acpi_iort_register_irq(int hwirq,const char * name,int trigger,struct resource * res)1199 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1200 int trigger,
1201 struct resource *res)
1202 {
1203 int irq = acpi_register_gsi(NULL, hwirq, trigger,
1204 ACPI_ACTIVE_HIGH);
1205
1206 if (irq <= 0) {
1207 pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1208 name);
1209 return;
1210 }
1211
1212 res->start = irq;
1213 res->end = irq;
1214 res->flags = IORESOURCE_IRQ;
1215 res->name = name;
1216 }
1217
arm_smmu_v3_count_resources(struct acpi_iort_node * node)1218 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1219 {
1220 struct acpi_iort_smmu_v3 *smmu;
1221 /* Always present mem resource */
1222 int num_res = 1;
1223
1224 /* Retrieve SMMUv3 specific data */
1225 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1226
1227 if (smmu->event_gsiv)
1228 num_res++;
1229
1230 if (smmu->pri_gsiv)
1231 num_res++;
1232
1233 if (smmu->gerr_gsiv)
1234 num_res++;
1235
1236 if (smmu->sync_gsiv)
1237 num_res++;
1238
1239 return num_res;
1240 }
1241
arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 * smmu)1242 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1243 {
1244 /*
1245 * Cavium ThunderX2 implementation doesn't not support unique
1246 * irq line. Use single irq line for all the SMMUv3 interrupts.
1247 */
1248 if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1249 return false;
1250
1251 /*
1252 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1253 * SPI numbers here.
1254 */
1255 return smmu->event_gsiv == smmu->pri_gsiv &&
1256 smmu->event_gsiv == smmu->gerr_gsiv &&
1257 smmu->event_gsiv == smmu->sync_gsiv;
1258 }
1259
arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 * smmu)1260 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1261 {
1262 /*
1263 * Override the size, for Cavium ThunderX2 implementation
1264 * which doesn't support the page 1 SMMU register space.
1265 */
1266 if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1267 return SZ_64K;
1268
1269 return SZ_128K;
1270 }
1271
arm_smmu_v3_init_resources(struct resource * res,struct acpi_iort_node * node)1272 static void __init arm_smmu_v3_init_resources(struct resource *res,
1273 struct acpi_iort_node *node)
1274 {
1275 struct acpi_iort_smmu_v3 *smmu;
1276 int num_res = 0;
1277
1278 /* Retrieve SMMUv3 specific data */
1279 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1280
1281 res[num_res].start = smmu->base_address;
1282 res[num_res].end = smmu->base_address +
1283 arm_smmu_v3_resource_size(smmu) - 1;
1284 res[num_res].flags = IORESOURCE_MEM;
1285
1286 num_res++;
1287 if (arm_smmu_v3_is_combined_irq(smmu)) {
1288 if (smmu->event_gsiv)
1289 acpi_iort_register_irq(smmu->event_gsiv, "combined",
1290 ACPI_EDGE_SENSITIVE,
1291 &res[num_res++]);
1292 } else {
1293
1294 if (smmu->event_gsiv)
1295 acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1296 ACPI_EDGE_SENSITIVE,
1297 &res[num_res++]);
1298
1299 if (smmu->pri_gsiv)
1300 acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1301 ACPI_EDGE_SENSITIVE,
1302 &res[num_res++]);
1303
1304 if (smmu->gerr_gsiv)
1305 acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1306 ACPI_EDGE_SENSITIVE,
1307 &res[num_res++]);
1308
1309 if (smmu->sync_gsiv)
1310 acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1311 ACPI_EDGE_SENSITIVE,
1312 &res[num_res++]);
1313 }
1314 }
1315
arm_smmu_v3_dma_configure(struct device * dev,struct acpi_iort_node * node)1316 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1317 struct acpi_iort_node *node)
1318 {
1319 struct acpi_iort_smmu_v3 *smmu;
1320 enum dev_dma_attr attr;
1321
1322 /* Retrieve SMMUv3 specific data */
1323 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1324
1325 attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1326 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1327
1328 /* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1329 dev->dma_mask = &dev->coherent_dma_mask;
1330
1331 /* Configure DMA for the page table walker */
1332 acpi_dma_configure(dev, attr);
1333 }
1334
1335 #if defined(CONFIG_ACPI_NUMA)
1336 /*
1337 * set numa proximity domain for smmuv3 device
1338 */
arm_smmu_v3_set_proximity(struct device * dev,struct acpi_iort_node * node)1339 static int __init arm_smmu_v3_set_proximity(struct device *dev,
1340 struct acpi_iort_node *node)
1341 {
1342 struct acpi_iort_smmu_v3 *smmu;
1343
1344 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1345 if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1346 int dev_node = pxm_to_node(smmu->pxm);
1347
1348 if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1349 return -EINVAL;
1350
1351 set_dev_node(dev, dev_node);
1352 pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1353 smmu->base_address,
1354 smmu->pxm);
1355 }
1356 return 0;
1357 }
1358 #else
1359 #define arm_smmu_v3_set_proximity NULL
1360 #endif
1361
arm_smmu_count_resources(struct acpi_iort_node * node)1362 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1363 {
1364 struct acpi_iort_smmu *smmu;
1365
1366 /* Retrieve SMMU specific data */
1367 smmu = (struct acpi_iort_smmu *)node->node_data;
1368
1369 /*
1370 * Only consider the global fault interrupt and ignore the
1371 * configuration access interrupt.
1372 *
1373 * MMIO address and global fault interrupt resources are always
1374 * present so add them to the context interrupt count as a static
1375 * value.
1376 */
1377 return smmu->context_interrupt_count + 2;
1378 }
1379
arm_smmu_init_resources(struct resource * res,struct acpi_iort_node * node)1380 static void __init arm_smmu_init_resources(struct resource *res,
1381 struct acpi_iort_node *node)
1382 {
1383 struct acpi_iort_smmu *smmu;
1384 int i, hw_irq, trigger, num_res = 0;
1385 u64 *ctx_irq, *glb_irq;
1386
1387 /* Retrieve SMMU specific data */
1388 smmu = (struct acpi_iort_smmu *)node->node_data;
1389
1390 res[num_res].start = smmu->base_address;
1391 res[num_res].end = smmu->base_address + smmu->span - 1;
1392 res[num_res].flags = IORESOURCE_MEM;
1393 num_res++;
1394
1395 glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1396 /* Global IRQs */
1397 hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1398 trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1399
1400 acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1401 &res[num_res++]);
1402
1403 /* Context IRQs */
1404 ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1405 for (i = 0; i < smmu->context_interrupt_count; i++) {
1406 hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1407 trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1408
1409 acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1410 &res[num_res++]);
1411 }
1412 }
1413
arm_smmu_dma_configure(struct device * dev,struct acpi_iort_node * node)1414 static void __init arm_smmu_dma_configure(struct device *dev,
1415 struct acpi_iort_node *node)
1416 {
1417 struct acpi_iort_smmu *smmu;
1418 enum dev_dma_attr attr;
1419
1420 /* Retrieve SMMU specific data */
1421 smmu = (struct acpi_iort_smmu *)node->node_data;
1422
1423 attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1424 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1425
1426 /* We expect the dma masks to be equivalent for SMMU set-ups */
1427 dev->dma_mask = &dev->coherent_dma_mask;
1428
1429 /* Configure DMA for the page table walker */
1430 acpi_dma_configure(dev, attr);
1431 }
1432
arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node * node)1433 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1434 {
1435 struct acpi_iort_pmcg *pmcg;
1436
1437 /* Retrieve PMCG specific data */
1438 pmcg = (struct acpi_iort_pmcg *)node->node_data;
1439
1440 /*
1441 * There are always 2 memory resources.
1442 * If the overflow_gsiv is present then add that for a total of 3.
1443 */
1444 return pmcg->overflow_gsiv ? 3 : 2;
1445 }
1446
arm_smmu_v3_pmcg_init_resources(struct resource * res,struct acpi_iort_node * node)1447 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1448 struct acpi_iort_node *node)
1449 {
1450 struct acpi_iort_pmcg *pmcg;
1451
1452 /* Retrieve PMCG specific data */
1453 pmcg = (struct acpi_iort_pmcg *)node->node_data;
1454
1455 res[0].start = pmcg->page0_base_address;
1456 res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1457 res[0].flags = IORESOURCE_MEM;
1458 res[1].start = pmcg->page1_base_address;
1459 res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1460 res[1].flags = IORESOURCE_MEM;
1461
1462 if (pmcg->overflow_gsiv)
1463 acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1464 ACPI_EDGE_SENSITIVE, &res[2]);
1465 }
1466
1467 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1468 /* HiSilicon Hip08 Platform */
1469 {"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1470 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
1471 { }
1472 };
1473
arm_smmu_v3_pmcg_add_platdata(struct platform_device * pdev)1474 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1475 {
1476 u32 model;
1477 int idx;
1478
1479 idx = acpi_match_platform_list(pmcg_plat_info);
1480 if (idx >= 0)
1481 model = pmcg_plat_info[idx].data;
1482 else
1483 model = IORT_SMMU_V3_PMCG_GENERIC;
1484
1485 return platform_device_add_data(pdev, &model, sizeof(model));
1486 }
1487
1488 struct iort_dev_config {
1489 const char *name;
1490 int (*dev_init)(struct acpi_iort_node *node);
1491 void (*dev_dma_configure)(struct device *dev,
1492 struct acpi_iort_node *node);
1493 int (*dev_count_resources)(struct acpi_iort_node *node);
1494 void (*dev_init_resources)(struct resource *res,
1495 struct acpi_iort_node *node);
1496 int (*dev_set_proximity)(struct device *dev,
1497 struct acpi_iort_node *node);
1498 int (*dev_add_platdata)(struct platform_device *pdev);
1499 };
1500
1501 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1502 .name = "arm-smmu-v3",
1503 .dev_dma_configure = arm_smmu_v3_dma_configure,
1504 .dev_count_resources = arm_smmu_v3_count_resources,
1505 .dev_init_resources = arm_smmu_v3_init_resources,
1506 .dev_set_proximity = arm_smmu_v3_set_proximity,
1507 };
1508
1509 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1510 .name = "arm-smmu",
1511 .dev_dma_configure = arm_smmu_dma_configure,
1512 .dev_count_resources = arm_smmu_count_resources,
1513 .dev_init_resources = arm_smmu_init_resources,
1514 };
1515
1516 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1517 .name = "arm-smmu-v3-pmcg",
1518 .dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1519 .dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1520 .dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1521 };
1522
iort_get_dev_cfg(struct acpi_iort_node * node)1523 static __init const struct iort_dev_config *iort_get_dev_cfg(
1524 struct acpi_iort_node *node)
1525 {
1526 switch (node->type) {
1527 case ACPI_IORT_NODE_SMMU_V3:
1528 return &iort_arm_smmu_v3_cfg;
1529 case ACPI_IORT_NODE_SMMU:
1530 return &iort_arm_smmu_cfg;
1531 case ACPI_IORT_NODE_PMCG:
1532 return &iort_arm_smmu_v3_pmcg_cfg;
1533 default:
1534 return NULL;
1535 }
1536 }
1537
1538 /**
1539 * iort_add_platform_device() - Allocate a platform device for IORT node
1540 * @node: Pointer to device ACPI IORT node
1541 * @ops: Pointer to IORT device config struct
1542 *
1543 * Returns: 0 on success, <0 failure
1544 */
iort_add_platform_device(struct acpi_iort_node * node,const struct iort_dev_config * ops)1545 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1546 const struct iort_dev_config *ops)
1547 {
1548 struct fwnode_handle *fwnode;
1549 struct platform_device *pdev;
1550 struct resource *r;
1551 int ret, count;
1552
1553 pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1554 if (!pdev)
1555 return -ENOMEM;
1556
1557 if (ops->dev_set_proximity) {
1558 ret = ops->dev_set_proximity(&pdev->dev, node);
1559 if (ret)
1560 goto dev_put;
1561 }
1562
1563 count = ops->dev_count_resources(node);
1564
1565 r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1566 if (!r) {
1567 ret = -ENOMEM;
1568 goto dev_put;
1569 }
1570
1571 ops->dev_init_resources(r, node);
1572
1573 ret = platform_device_add_resources(pdev, r, count);
1574 /*
1575 * Resources are duplicated in platform_device_add_resources,
1576 * free their allocated memory
1577 */
1578 kfree(r);
1579
1580 if (ret)
1581 goto dev_put;
1582
1583 /*
1584 * Platform devices based on PMCG nodes uses platform_data to
1585 * pass the hardware model info to the driver. For others, add
1586 * a copy of IORT node pointer to platform_data to be used to
1587 * retrieve IORT data information.
1588 */
1589 if (ops->dev_add_platdata)
1590 ret = ops->dev_add_platdata(pdev);
1591 else
1592 ret = platform_device_add_data(pdev, &node, sizeof(node));
1593
1594 if (ret)
1595 goto dev_put;
1596
1597 fwnode = iort_get_fwnode(node);
1598
1599 if (!fwnode) {
1600 ret = -ENODEV;
1601 goto dev_put;
1602 }
1603
1604 pdev->dev.fwnode = fwnode;
1605
1606 if (ops->dev_dma_configure)
1607 ops->dev_dma_configure(&pdev->dev, node);
1608
1609 iort_set_device_domain(&pdev->dev, node);
1610
1611 ret = platform_device_add(pdev);
1612 if (ret)
1613 goto dma_deconfigure;
1614
1615 return 0;
1616
1617 dma_deconfigure:
1618 arch_teardown_dma_ops(&pdev->dev);
1619 dev_put:
1620 platform_device_put(pdev);
1621
1622 return ret;
1623 }
1624
1625 #ifdef CONFIG_PCI
iort_enable_acs(struct acpi_iort_node * iort_node)1626 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1627 {
1628 static bool acs_enabled __initdata;
1629
1630 if (acs_enabled)
1631 return;
1632
1633 if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1634 struct acpi_iort_node *parent;
1635 struct acpi_iort_id_mapping *map;
1636 int i;
1637
1638 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1639 iort_node->mapping_offset);
1640
1641 for (i = 0; i < iort_node->mapping_count; i++, map++) {
1642 if (!map->output_reference)
1643 continue;
1644
1645 parent = ACPI_ADD_PTR(struct acpi_iort_node,
1646 iort_table, map->output_reference);
1647 /*
1648 * If we detect a RC->SMMU mapping, make sure
1649 * we enable ACS on the system.
1650 */
1651 if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1652 (parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1653 pci_request_acs();
1654 acs_enabled = true;
1655 return;
1656 }
1657 }
1658 }
1659 }
1660 #else
iort_enable_acs(struct acpi_iort_node * iort_node)1661 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1662 #endif
1663
iort_init_platform_devices(void)1664 static void __init iort_init_platform_devices(void)
1665 {
1666 struct acpi_iort_node *iort_node, *iort_end;
1667 struct acpi_table_iort *iort;
1668 struct fwnode_handle *fwnode;
1669 int i, ret;
1670 const struct iort_dev_config *ops;
1671
1672 /*
1673 * iort_table and iort both point to the start of IORT table, but
1674 * have different struct types
1675 */
1676 iort = (struct acpi_table_iort *)iort_table;
1677
1678 /* Get the first IORT node */
1679 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1680 iort->node_offset);
1681 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1682 iort_table->length);
1683
1684 for (i = 0; i < iort->node_count; i++) {
1685 if (iort_node >= iort_end) {
1686 pr_err("iort node pointer overflows, bad table\n");
1687 return;
1688 }
1689
1690 iort_enable_acs(iort_node);
1691
1692 ops = iort_get_dev_cfg(iort_node);
1693 if (ops) {
1694 fwnode = acpi_alloc_fwnode_static();
1695 if (!fwnode)
1696 return;
1697
1698 iort_set_fwnode(iort_node, fwnode);
1699
1700 ret = iort_add_platform_device(iort_node, ops);
1701 if (ret) {
1702 iort_delete_fwnode(iort_node);
1703 acpi_free_fwnode_static(fwnode);
1704 return;
1705 }
1706 }
1707
1708 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1709 iort_node->length);
1710 }
1711 }
1712
acpi_iort_init(void)1713 void __init acpi_iort_init(void)
1714 {
1715 acpi_status status;
1716
1717 /* iort_table will be used at runtime after the iort init,
1718 * so we don't need to call acpi_put_table() to release
1719 * the IORT table mapping.
1720 */
1721 status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1722 if (ACPI_FAILURE(status)) {
1723 if (status != AE_NOT_FOUND) {
1724 const char *msg = acpi_format_exception(status);
1725
1726 pr_err("Failed to get table, %s\n", msg);
1727 }
1728
1729 return;
1730 }
1731
1732 iort_init_platform_devices();
1733 }
1734
1735 #ifdef CONFIG_ZONE_DMA
1736 /*
1737 * Extract the highest CPU physical address accessible to all DMA masters in
1738 * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1739 */
acpi_iort_dma_get_max_cpu_address(void)1740 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1741 {
1742 phys_addr_t limit = PHYS_ADDR_MAX;
1743 struct acpi_iort_node *node, *end;
1744 struct acpi_table_iort *iort;
1745 acpi_status status;
1746 int i;
1747
1748 if (acpi_disabled)
1749 return limit;
1750
1751 status = acpi_get_table(ACPI_SIG_IORT, 0,
1752 (struct acpi_table_header **)&iort);
1753 if (ACPI_FAILURE(status))
1754 return limit;
1755
1756 node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
1757 end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
1758
1759 for (i = 0; i < iort->node_count; i++) {
1760 if (node >= end)
1761 break;
1762
1763 switch (node->type) {
1764 struct acpi_iort_named_component *ncomp;
1765 struct acpi_iort_root_complex *rc;
1766 phys_addr_t local_limit;
1767
1768 case ACPI_IORT_NODE_NAMED_COMPONENT:
1769 ncomp = (struct acpi_iort_named_component *)node->node_data;
1770 local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
1771 limit = min_not_zero(limit, local_limit);
1772 break;
1773
1774 case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
1775 if (node->revision < 1)
1776 break;
1777
1778 rc = (struct acpi_iort_root_complex *)node->node_data;
1779 local_limit = DMA_BIT_MASK(rc->memory_address_limit);
1780 limit = min_not_zero(limit, local_limit);
1781 break;
1782 }
1783 node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
1784 }
1785 acpi_put_table(&iort->header);
1786 return limit;
1787 }
1788 #endif
1789