1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20
dev_fwnode(struct device * dev)21 struct fwnode_handle *dev_fwnode(struct device *dev)
22 {
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 &dev->of_node->fwnode : dev->fwnode;
25 }
26 EXPORT_SYMBOL_GPL(dev_fwnode);
27
28 /**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
device_property_present(struct device * dev,const char * propname)35 bool device_property_present(struct device *dev, const char *propname)
36 {
37 return fwnode_property_present(dev_fwnode(dev), propname);
38 }
39 EXPORT_SYMBOL_GPL(device_property_present);
40
41 /**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)46 bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 const char *propname)
48 {
49 bool ret;
50
51 ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 !IS_ERR_OR_NULL(fwnode->secondary))
54 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 propname);
56 return ret;
57 }
58 EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60 /**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 * %0 if the property was found (success),
72 * %-EINVAL if given arguments are not valid,
73 * %-ENODATA if the property does not have a value,
74 * %-EPROTO if the property is not an array of numbers,
75 * %-EOVERFLOW if the size of the property is not as expected.
76 * %-ENXIO if no suitable firmware interface is present.
77 */
device_property_read_u8_array(struct device * dev,const char * propname,u8 * val,size_t nval)78 int device_property_read_u8_array(struct device *dev, const char *propname,
79 u8 *val, size_t nval)
80 {
81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82 }
83 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85 /**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 * %0 if the property was found (success),
97 * %-EINVAL if given arguments are not valid,
98 * %-ENODATA if the property does not have a value,
99 * %-EPROTO if the property is not an array of numbers,
100 * %-EOVERFLOW if the size of the property is not as expected.
101 * %-ENXIO if no suitable firmware interface is present.
102 */
device_property_read_u16_array(struct device * dev,const char * propname,u16 * val,size_t nval)103 int device_property_read_u16_array(struct device *dev, const char *propname,
104 u16 *val, size_t nval)
105 {
106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107 }
108 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110 /**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 * %0 if the property was found (success),
122 * %-EINVAL if given arguments are not valid,
123 * %-ENODATA if the property does not have a value,
124 * %-EPROTO if the property is not an array of numbers,
125 * %-EOVERFLOW if the size of the property is not as expected.
126 * %-ENXIO if no suitable firmware interface is present.
127 */
device_property_read_u32_array(struct device * dev,const char * propname,u32 * val,size_t nval)128 int device_property_read_u32_array(struct device *dev, const char *propname,
129 u32 *val, size_t nval)
130 {
131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132 }
133 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135 /**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 * %0 if the property was found (success),
147 * %-EINVAL if given arguments are not valid,
148 * %-ENODATA if the property does not have a value,
149 * %-EPROTO if the property is not an array of numbers,
150 * %-EOVERFLOW if the size of the property is not as expected.
151 * %-ENXIO if no suitable firmware interface is present.
152 */
device_property_read_u64_array(struct device * dev,const char * propname,u64 * val,size_t nval)153 int device_property_read_u64_array(struct device *dev, const char *propname,
154 u64 *val, size_t nval)
155 {
156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157 }
158 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160 /**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 * number of values available on success if @val is NULL,
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
device_property_read_string_array(struct device * dev,const char * propname,const char ** val,size_t nval)178 int device_property_read_string_array(struct device *dev, const char *propname,
179 const char **val, size_t nval)
180 {
181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182 }
183 EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185 /**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property type is not a string.
198 * %-ENXIO if no suitable firmware interface is present.
199 */
device_property_read_string(struct device * dev,const char * propname,const char ** val)200 int device_property_read_string(struct device *dev, const char *propname,
201 const char **val)
202 {
203 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204 }
205 EXPORT_SYMBOL_GPL(device_property_read_string);
206
207 /**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 * %-EINVAL if given arguments are not valid,
218 * %-ENODATA if the property does not have a value,
219 * %-EPROTO if the property is not an array of strings,
220 * %-ENXIO if no suitable firmware interface is present.
221 */
device_property_match_string(struct device * dev,const char * propname,const char * string)222 int device_property_match_string(struct device *dev, const char *propname,
223 const char *string)
224 {
225 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226 }
227 EXPORT_SYMBOL_GPL(device_property_match_string);
228
fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)229 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 const char *propname,
231 unsigned int elem_size, void *val,
232 size_t nval)
233 {
234 int ret;
235
236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 elem_size, val, nval);
238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 !IS_ERR_OR_NULL(fwnode->secondary))
240 ret = fwnode_call_int_op(
241 fwnode->secondary, property_read_int_array, propname,
242 elem_size, val, nval);
243
244 return ret;
245 }
246
247 /**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 * %0 if the property was found (success),
259 * %-EINVAL if given arguments are not valid,
260 * %-ENODATA if the property does not have a value,
261 * %-EPROTO if the property is not an array of numbers,
262 * %-EOVERFLOW if the size of the property is not as expected,
263 * %-ENXIO if no suitable firmware interface is present.
264 */
fwnode_property_read_u8_array(const struct fwnode_handle * fwnode,const char * propname,u8 * val,size_t nval)265 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 const char *propname, u8 *val, size_t nval)
267 {
268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 val, nval);
270 }
271 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273 /**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 * %0 if the property was found (success),
285 * %-EINVAL if given arguments are not valid,
286 * %-ENODATA if the property does not have a value,
287 * %-EPROTO if the property is not an array of numbers,
288 * %-EOVERFLOW if the size of the property is not as expected,
289 * %-ENXIO if no suitable firmware interface is present.
290 */
fwnode_property_read_u16_array(const struct fwnode_handle * fwnode,const char * propname,u16 * val,size_t nval)291 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 const char *propname, u16 *val, size_t nval)
293 {
294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 val, nval);
296 }
297 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299 /**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 * %0 if the property was found (success),
311 * %-EINVAL if given arguments are not valid,
312 * %-ENODATA if the property does not have a value,
313 * %-EPROTO if the property is not an array of numbers,
314 * %-EOVERFLOW if the size of the property is not as expected,
315 * %-ENXIO if no suitable firmware interface is present.
316 */
fwnode_property_read_u32_array(const struct fwnode_handle * fwnode,const char * propname,u32 * val,size_t nval)317 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 const char *propname, u32 *val, size_t nval)
319 {
320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 val, nval);
322 }
323 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325 /**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 * %0 if the property was found (success),
337 * %-EINVAL if given arguments are not valid,
338 * %-ENODATA if the property does not have a value,
339 * %-EPROTO if the property is not an array of numbers,
340 * %-EOVERFLOW if the size of the property is not as expected,
341 * %-ENXIO if no suitable firmware interface is present.
342 */
fwnode_property_read_u64_array(const struct fwnode_handle * fwnode,const char * propname,u64 * val,size_t nval)343 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 const char *propname, u64 *val, size_t nval)
345 {
346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 val, nval);
348 }
349 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351 /**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 * number of values available on success if @val is NULL,
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 * %-EOVERFLOW if the size of the property is not as expected,
367 * %-ENXIO if no suitable firmware interface is present.
368 */
fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)369 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 const char *propname, const char **val,
371 size_t nval)
372 {
373 int ret;
374
375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 val, nval);
377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 !IS_ERR_OR_NULL(fwnode->secondary))
379 ret = fwnode_call_int_op(fwnode->secondary,
380 property_read_string_array, propname,
381 val, nval);
382 return ret;
383 }
384 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386 /**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found. The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 * %-EINVAL if given arguments are not valid,
397 * %-ENODATA if the property does not have a value,
398 * %-EPROTO or %-EILSEQ if the property is not a string,
399 * %-ENXIO if no suitable firmware interface is present.
400 */
fwnode_property_read_string(const struct fwnode_handle * fwnode,const char * propname,const char ** val)401 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 const char *propname, const char **val)
403 {
404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406 return ret < 0 ? ret : 0;
407 }
408 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410 /**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 * %-EINVAL if given arguments are not valid,
421 * %-ENODATA if the property does not have a value,
422 * %-EPROTO if the property is not an array of strings,
423 * %-ENXIO if no suitable firmware interface is present.
424 */
fwnode_property_match_string(const struct fwnode_handle * fwnode,const char * propname,const char * string)425 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 const char *propname, const char *string)
427 {
428 const char **values;
429 int nval, ret;
430
431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 if (nval < 0)
433 return nval;
434
435 if (nval == 0)
436 return -ENODATA;
437
438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 if (!values)
440 return -ENOMEM;
441
442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 if (ret < 0)
444 goto out;
445
446 ret = match_string(values, nval, string);
447 if (ret < 0)
448 ret = -ENODATA;
449 out:
450 kfree(values);
451 return ret;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455 /**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode: Firmware node where to look for the reference
458 * @prop: The name of the property
459 * @nargs_prop: The name of the property telling the number of
460 * arguments in the referred node. NULL if @nargs is known,
461 * otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index: Index of the reference, from zero onwards.
464 * @args: Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 * %-ENOENT when the index is out of bounds, the index has an empty
474 * reference or the property was not found
475 * %-EINVAL on parse error
476 */
fwnode_property_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)477 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 const char *prop, const char *nargs_prop,
479 unsigned int nargs, unsigned int index,
480 struct fwnode_reference_args *args)
481 {
482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 nargs, index, args);
484 }
485 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487 /**
488 * fwnode_find_reference - Find named reference to a fwnode_handle
489 * @fwnode: Firmware node where to look for the reference
490 * @name: The name of the reference
491 * @index: Index of the reference
492 *
493 * @index can be used when the named reference holds a table of references.
494 *
495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496 * call fwnode_handle_put() on the returned fwnode pointer.
497 */
fwnode_find_reference(const struct fwnode_handle * fwnode,const char * name,unsigned int index)498 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 const char *name,
500 unsigned int index)
501 {
502 struct fwnode_reference_args args;
503 int ret;
504
505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 &args);
507 return ret ? ERR_PTR(ret) : args.fwnode;
508 }
509 EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511 /**
512 * device_remove_properties - Remove properties from a device object.
513 * @dev: Device whose properties to remove.
514 *
515 * The function removes properties previously associated to the device
516 * firmware node with device_add_properties(). Memory allocated to the
517 * properties will also be released.
518 */
device_remove_properties(struct device * dev)519 void device_remove_properties(struct device *dev)
520 {
521 struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523 if (!fwnode)
524 return;
525
526 if (is_software_node(fwnode->secondary)) {
527 fwnode_remove_software_node(fwnode->secondary);
528 set_secondary_fwnode(dev, NULL);
529 }
530 }
531 EXPORT_SYMBOL_GPL(device_remove_properties);
532
533 /**
534 * device_add_properties - Add a collection of properties to a device object.
535 * @dev: Device to add properties to.
536 * @properties: Collection of properties to add.
537 *
538 * Associate a collection of device properties represented by @properties with
539 * @dev. The function takes a copy of @properties.
540 *
541 * WARNING: The callers should not use this function if it is known that there
542 * is no real firmware node associated with @dev! In that case the callers
543 * should create a software node and assign it to @dev directly.
544 */
device_add_properties(struct device * dev,const struct property_entry * properties)545 int device_add_properties(struct device *dev,
546 const struct property_entry *properties)
547 {
548 struct fwnode_handle *fwnode;
549
550 fwnode = fwnode_create_software_node(properties, NULL);
551 if (IS_ERR(fwnode))
552 return PTR_ERR(fwnode);
553
554 set_secondary_fwnode(dev, fwnode);
555 return 0;
556 }
557 EXPORT_SYMBOL_GPL(device_add_properties);
558
559 /**
560 * fwnode_get_name - Return the name of a node
561 * @fwnode: The firmware node
562 *
563 * Returns a pointer to the node name.
564 */
fwnode_get_name(const struct fwnode_handle * fwnode)565 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566 {
567 return fwnode_call_ptr_op(fwnode, get_name);
568 }
569 EXPORT_SYMBOL_GPL(fwnode_get_name);
570
571 /**
572 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
573 * @fwnode: The firmware node
574 *
575 * Returns the prefix of a node, intended to be printed right before the node.
576 * The prefix works also as a separator between the nodes.
577 */
fwnode_get_name_prefix(const struct fwnode_handle * fwnode)578 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
579 {
580 return fwnode_call_ptr_op(fwnode, get_name_prefix);
581 }
582
583 /**
584 * fwnode_get_parent - Return parent firwmare node
585 * @fwnode: Firmware whose parent is retrieved
586 *
587 * Return parent firmware node of the given node if possible or %NULL if no
588 * parent was available.
589 */
fwnode_get_parent(const struct fwnode_handle * fwnode)590 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
591 {
592 return fwnode_call_ptr_op(fwnode, get_parent);
593 }
594 EXPORT_SYMBOL_GPL(fwnode_get_parent);
595
596 /**
597 * fwnode_get_next_parent - Iterate to the node's parent
598 * @fwnode: Firmware whose parent is retrieved
599 *
600 * This is like fwnode_get_parent() except that it drops the refcount
601 * on the passed node, making it suitable for iterating through a
602 * node's parents.
603 *
604 * Returns a node pointer with refcount incremented, use
605 * fwnode_handle_node() on it when done.
606 */
fwnode_get_next_parent(struct fwnode_handle * fwnode)607 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
608 {
609 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
610
611 fwnode_handle_put(fwnode);
612
613 return parent;
614 }
615 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
616
617 /**
618 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
619 * @fwnode: firmware node
620 *
621 * Given a firmware node (@fwnode), this function finds its closest ancestor
622 * firmware node that has a corresponding struct device and returns that struct
623 * device.
624 *
625 * The caller of this function is expected to call put_device() on the returned
626 * device when they are done.
627 */
fwnode_get_next_parent_dev(struct fwnode_handle * fwnode)628 struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
629 {
630 struct device *dev = NULL;
631
632 fwnode_handle_get(fwnode);
633 do {
634 fwnode = fwnode_get_next_parent(fwnode);
635 if (fwnode)
636 dev = get_dev_from_fwnode(fwnode);
637 } while (fwnode && !dev);
638 fwnode_handle_put(fwnode);
639 return dev;
640 }
641
642 /**
643 * fwnode_count_parents - Return the number of parents a node has
644 * @fwnode: The node the parents of which are to be counted
645 *
646 * Returns the number of parents a node has.
647 */
fwnode_count_parents(const struct fwnode_handle * fwnode)648 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
649 {
650 struct fwnode_handle *__fwnode;
651 unsigned int count;
652
653 __fwnode = fwnode_get_parent(fwnode);
654
655 for (count = 0; __fwnode; count++)
656 __fwnode = fwnode_get_next_parent(__fwnode);
657
658 return count;
659 }
660 EXPORT_SYMBOL_GPL(fwnode_count_parents);
661
662 /**
663 * fwnode_get_nth_parent - Return an nth parent of a node
664 * @fwnode: The node the parent of which is requested
665 * @depth: Distance of the parent from the node
666 *
667 * Returns the nth parent of a node. If there is no parent at the requested
668 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
669 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
670 *
671 * The caller is responsible for calling fwnode_handle_put() for the returned
672 * node.
673 */
fwnode_get_nth_parent(struct fwnode_handle * fwnode,unsigned int depth)674 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
675 unsigned int depth)
676 {
677 unsigned int i;
678
679 fwnode_handle_get(fwnode);
680
681 for (i = 0; i < depth && fwnode; i++)
682 fwnode = fwnode_get_next_parent(fwnode);
683
684 return fwnode;
685 }
686 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
687
688 /**
689 * fwnode_is_ancestor_of - Test if @test_ancestor is ancestor of @test_child
690 * @test_ancestor: Firmware which is tested for being an ancestor
691 * @test_child: Firmware which is tested for being the child
692 *
693 * A node is considered an ancestor of itself too.
694 *
695 * Returns true if @test_ancestor is an ancestor of @test_child.
696 * Otherwise, returns false.
697 */
fwnode_is_ancestor_of(struct fwnode_handle * test_ancestor,struct fwnode_handle * test_child)698 bool fwnode_is_ancestor_of(struct fwnode_handle *test_ancestor,
699 struct fwnode_handle *test_child)
700 {
701 if (!test_ancestor)
702 return false;
703
704 fwnode_handle_get(test_child);
705 while (test_child) {
706 if (test_child == test_ancestor) {
707 fwnode_handle_put(test_child);
708 return true;
709 }
710 test_child = fwnode_get_next_parent(test_child);
711 }
712 return false;
713 }
714
715 /**
716 * fwnode_get_next_child_node - Return the next child node handle for a node
717 * @fwnode: Firmware node to find the next child node for.
718 * @child: Handle to one of the node's child nodes or a %NULL handle.
719 */
720 struct fwnode_handle *
fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)721 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
722 struct fwnode_handle *child)
723 {
724 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
725 }
726 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
727
728 /**
729 * fwnode_get_next_available_child_node - Return the next
730 * available child node handle for a node
731 * @fwnode: Firmware node to find the next child node for.
732 * @child: Handle to one of the node's child nodes or a %NULL handle.
733 */
734 struct fwnode_handle *
fwnode_get_next_available_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)735 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
736 struct fwnode_handle *child)
737 {
738 struct fwnode_handle *next_child = child;
739
740 if (!fwnode)
741 return NULL;
742
743 do {
744 next_child = fwnode_get_next_child_node(fwnode, next_child);
745
746 if (!next_child || fwnode_device_is_available(next_child))
747 break;
748 } while (next_child);
749
750 return next_child;
751 }
752 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
753
754 /**
755 * device_get_next_child_node - Return the next child node handle for a device
756 * @dev: Device to find the next child node for.
757 * @child: Handle to one of the device's child nodes or a null handle.
758 */
device_get_next_child_node(struct device * dev,struct fwnode_handle * child)759 struct fwnode_handle *device_get_next_child_node(struct device *dev,
760 struct fwnode_handle *child)
761 {
762 struct acpi_device *adev = ACPI_COMPANION(dev);
763 struct fwnode_handle *fwnode = NULL, *next;
764
765 if (dev->of_node)
766 fwnode = &dev->of_node->fwnode;
767 else if (adev)
768 fwnode = acpi_fwnode_handle(adev);
769
770 /* Try to find a child in primary fwnode */
771 next = fwnode_get_next_child_node(fwnode, child);
772 if (next)
773 return next;
774
775 /* When no more children in primary, continue with secondary */
776 if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
777 next = fwnode_get_next_child_node(fwnode->secondary, child);
778
779 return next;
780 }
781 EXPORT_SYMBOL_GPL(device_get_next_child_node);
782
783 /**
784 * fwnode_get_named_child_node - Return first matching named child node handle
785 * @fwnode: Firmware node to find the named child node for.
786 * @childname: String to match child node name against.
787 */
788 struct fwnode_handle *
fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)789 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
790 const char *childname)
791 {
792 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
793 }
794 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
795
796 /**
797 * device_get_named_child_node - Return first matching named child node handle
798 * @dev: Device to find the named child node for.
799 * @childname: String to match child node name against.
800 */
device_get_named_child_node(struct device * dev,const char * childname)801 struct fwnode_handle *device_get_named_child_node(struct device *dev,
802 const char *childname)
803 {
804 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
805 }
806 EXPORT_SYMBOL_GPL(device_get_named_child_node);
807
808 /**
809 * fwnode_handle_get - Obtain a reference to a device node
810 * @fwnode: Pointer to the device node to obtain the reference to.
811 *
812 * Returns the fwnode handle.
813 */
fwnode_handle_get(struct fwnode_handle * fwnode)814 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
815 {
816 if (!fwnode_has_op(fwnode, get))
817 return fwnode;
818
819 return fwnode_call_ptr_op(fwnode, get);
820 }
821 EXPORT_SYMBOL_GPL(fwnode_handle_get);
822
823 /**
824 * fwnode_handle_put - Drop reference to a device node
825 * @fwnode: Pointer to the device node to drop the reference to.
826 *
827 * This has to be used when terminating device_for_each_child_node() iteration
828 * with break or return to prevent stale device node references from being left
829 * behind.
830 */
fwnode_handle_put(struct fwnode_handle * fwnode)831 void fwnode_handle_put(struct fwnode_handle *fwnode)
832 {
833 fwnode_call_void_op(fwnode, put);
834 }
835 EXPORT_SYMBOL_GPL(fwnode_handle_put);
836
837 /**
838 * fwnode_device_is_available - check if a device is available for use
839 * @fwnode: Pointer to the fwnode of the device.
840 *
841 * For fwnode node types that don't implement the .device_is_available()
842 * operation, this function returns true.
843 */
fwnode_device_is_available(const struct fwnode_handle * fwnode)844 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
845 {
846 if (!fwnode_has_op(fwnode, device_is_available))
847 return true;
848
849 return fwnode_call_bool_op(fwnode, device_is_available);
850 }
851 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
852
853 /**
854 * device_get_child_node_count - return the number of child nodes for device
855 * @dev: Device to cound the child nodes for
856 */
device_get_child_node_count(struct device * dev)857 unsigned int device_get_child_node_count(struct device *dev)
858 {
859 struct fwnode_handle *child;
860 unsigned int count = 0;
861
862 device_for_each_child_node(dev, child)
863 count++;
864
865 return count;
866 }
867 EXPORT_SYMBOL_GPL(device_get_child_node_count);
868
device_dma_supported(struct device * dev)869 bool device_dma_supported(struct device *dev)
870 {
871 /* For DT, this is always supported.
872 * For ACPI, this depends on CCA, which
873 * is determined by the acpi_dma_supported().
874 */
875 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
876 return true;
877
878 return acpi_dma_supported(ACPI_COMPANION(dev));
879 }
880 EXPORT_SYMBOL_GPL(device_dma_supported);
881
device_get_dma_attr(struct device * dev)882 enum dev_dma_attr device_get_dma_attr(struct device *dev)
883 {
884 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
885
886 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
887 if (of_dma_is_coherent(dev->of_node))
888 attr = DEV_DMA_COHERENT;
889 else
890 attr = DEV_DMA_NON_COHERENT;
891 } else
892 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
893
894 return attr;
895 }
896 EXPORT_SYMBOL_GPL(device_get_dma_attr);
897
898 /**
899 * fwnode_get_phy_mode - Get phy mode for given firmware node
900 * @fwnode: Pointer to the given node
901 *
902 * The function gets phy interface string from property 'phy-mode' or
903 * 'phy-connection-type', and return its index in phy_modes table, or errno in
904 * error case.
905 */
fwnode_get_phy_mode(struct fwnode_handle * fwnode)906 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
907 {
908 const char *pm;
909 int err, i;
910
911 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
912 if (err < 0)
913 err = fwnode_property_read_string(fwnode,
914 "phy-connection-type", &pm);
915 if (err < 0)
916 return err;
917
918 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
919 if (!strcasecmp(pm, phy_modes(i)))
920 return i;
921
922 return -ENODEV;
923 }
924 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
925
926 /**
927 * device_get_phy_mode - Get phy mode for given device
928 * @dev: Pointer to the given device
929 *
930 * The function gets phy interface string from property 'phy-mode' or
931 * 'phy-connection-type', and return its index in phy_modes table, or errno in
932 * error case.
933 */
device_get_phy_mode(struct device * dev)934 int device_get_phy_mode(struct device *dev)
935 {
936 return fwnode_get_phy_mode(dev_fwnode(dev));
937 }
938 EXPORT_SYMBOL_GPL(device_get_phy_mode);
939
fwnode_get_mac_addr(struct fwnode_handle * fwnode,const char * name,char * addr,int alen)940 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
941 const char *name, char *addr,
942 int alen)
943 {
944 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
945
946 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
947 return addr;
948 return NULL;
949 }
950
951 /**
952 * fwnode_get_mac_address - Get the MAC from the firmware node
953 * @fwnode: Pointer to the firmware node
954 * @addr: Address of buffer to store the MAC in
955 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
956 *
957 * Search the firmware node for the best MAC address to use. 'mac-address' is
958 * checked first, because that is supposed to contain to "most recent" MAC
959 * address. If that isn't set, then 'local-mac-address' is checked next,
960 * because that is the default address. If that isn't set, then the obsolete
961 * 'address' is checked, just in case we're using an old device tree.
962 *
963 * Note that the 'address' property is supposed to contain a virtual address of
964 * the register set, but some DTS files have redefined that property to be the
965 * MAC address.
966 *
967 * All-zero MAC addresses are rejected, because those could be properties that
968 * exist in the firmware tables, but were not updated by the firmware. For
969 * example, the DTS could define 'mac-address' and 'local-mac-address', with
970 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
971 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
972 * exists but is all zeros.
973 */
fwnode_get_mac_address(struct fwnode_handle * fwnode,char * addr,int alen)974 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
975 {
976 char *res;
977
978 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
979 if (res)
980 return res;
981
982 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
983 if (res)
984 return res;
985
986 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
987 }
988 EXPORT_SYMBOL(fwnode_get_mac_address);
989
990 /**
991 * device_get_mac_address - Get the MAC for a given device
992 * @dev: Pointer to the device
993 * @addr: Address of buffer to store the MAC in
994 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
995 */
device_get_mac_address(struct device * dev,char * addr,int alen)996 void *device_get_mac_address(struct device *dev, char *addr, int alen)
997 {
998 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
999 }
1000 EXPORT_SYMBOL(device_get_mac_address);
1001
1002 /**
1003 * fwnode_irq_get - Get IRQ directly from a fwnode
1004 * @fwnode: Pointer to the firmware node
1005 * @index: Zero-based index of the IRQ
1006 *
1007 * Returns Linux IRQ number on success. Other values are determined
1008 * accordingly to acpi_/of_ irq_get() operation.
1009 */
fwnode_irq_get(struct fwnode_handle * fwnode,unsigned int index)1010 int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1011 {
1012 struct device_node *of_node = to_of_node(fwnode);
1013 struct resource res;
1014 int ret;
1015
1016 if (IS_ENABLED(CONFIG_OF) && of_node)
1017 return of_irq_get(of_node, index);
1018
1019 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1020 if (ret)
1021 return ret;
1022
1023 return res.start;
1024 }
1025 EXPORT_SYMBOL(fwnode_irq_get);
1026
1027 /**
1028 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1029 * @fwnode: Pointer to the parent firmware node
1030 * @prev: Previous endpoint node or %NULL to get the first
1031 *
1032 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1033 * are available.
1034 */
1035 struct fwnode_handle *
fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)1036 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1037 struct fwnode_handle *prev)
1038 {
1039 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1040 }
1041 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1042
1043 /**
1044 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1045 * @endpoint: Endpoint firmware node of the port
1046 *
1047 * Return: the firmware node of the device the @endpoint belongs to.
1048 */
1049 struct fwnode_handle *
fwnode_graph_get_port_parent(const struct fwnode_handle * endpoint)1050 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1051 {
1052 struct fwnode_handle *port, *parent;
1053
1054 port = fwnode_get_parent(endpoint);
1055 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1056
1057 fwnode_handle_put(port);
1058
1059 return parent;
1060 }
1061 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1062
1063 /**
1064 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1065 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1066 *
1067 * Extracts firmware node of a remote device the @fwnode points to.
1068 */
1069 struct fwnode_handle *
fwnode_graph_get_remote_port_parent(const struct fwnode_handle * fwnode)1070 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1071 {
1072 struct fwnode_handle *endpoint, *parent;
1073
1074 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1075 parent = fwnode_graph_get_port_parent(endpoint);
1076
1077 fwnode_handle_put(endpoint);
1078
1079 return parent;
1080 }
1081 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1082
1083 /**
1084 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1085 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1086 *
1087 * Extracts firmware node of a remote port the @fwnode points to.
1088 */
1089 struct fwnode_handle *
fwnode_graph_get_remote_port(const struct fwnode_handle * fwnode)1090 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1091 {
1092 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1093 }
1094 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1095
1096 /**
1097 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1098 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1099 *
1100 * Extracts firmware node of a remote endpoint the @fwnode points to.
1101 */
1102 struct fwnode_handle *
fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)1103 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1104 {
1105 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1106 }
1107 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1108
1109 /**
1110 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1111 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1112 * @port_id: identifier of the parent port node
1113 * @endpoint_id: identifier of the endpoint node
1114 *
1115 * Return: Remote fwnode handle associated with remote endpoint node linked
1116 * to @node. Use fwnode_node_put() on it when done.
1117 */
1118 struct fwnode_handle *
fwnode_graph_get_remote_node(const struct fwnode_handle * fwnode,u32 port_id,u32 endpoint_id)1119 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1120 u32 endpoint_id)
1121 {
1122 struct fwnode_handle *endpoint = NULL;
1123
1124 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1125 struct fwnode_endpoint fwnode_ep;
1126 struct fwnode_handle *remote;
1127 int ret;
1128
1129 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1130 if (ret < 0)
1131 continue;
1132
1133 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1134 continue;
1135
1136 remote = fwnode_graph_get_remote_port_parent(endpoint);
1137 if (!remote)
1138 return NULL;
1139
1140 return fwnode_device_is_available(remote) ? remote : NULL;
1141 }
1142
1143 return NULL;
1144 }
1145 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1146
1147 /**
1148 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1149 * @fwnode: parent fwnode_handle containing the graph
1150 * @port: identifier of the port node
1151 * @endpoint: identifier of the endpoint node under the port node
1152 * @flags: fwnode lookup flags
1153 *
1154 * Return the fwnode handle of the local endpoint corresponding the port and
1155 * endpoint IDs or NULL if not found.
1156 *
1157 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1158 * has not been found, look for the closest endpoint ID greater than the
1159 * specified one and return the endpoint that corresponds to it, if present.
1160 *
1161 * Do not return endpoints that belong to disabled devices, unless
1162 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1163 *
1164 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1165 * it when it is not needed any more.
1166 */
1167 struct fwnode_handle *
fwnode_graph_get_endpoint_by_id(const struct fwnode_handle * fwnode,u32 port,u32 endpoint,unsigned long flags)1168 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1169 u32 port, u32 endpoint, unsigned long flags)
1170 {
1171 struct fwnode_handle *ep = NULL, *best_ep = NULL;
1172 unsigned int best_ep_id = 0;
1173 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1174 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1175
1176 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1177 struct fwnode_endpoint fwnode_ep = { 0 };
1178 int ret;
1179
1180 if (enabled_only) {
1181 struct fwnode_handle *dev_node;
1182 bool available;
1183
1184 dev_node = fwnode_graph_get_remote_port_parent(ep);
1185 available = fwnode_device_is_available(dev_node);
1186 fwnode_handle_put(dev_node);
1187 if (!available)
1188 continue;
1189 }
1190
1191 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1192 if (ret < 0)
1193 continue;
1194
1195 if (fwnode_ep.port != port)
1196 continue;
1197
1198 if (fwnode_ep.id == endpoint)
1199 return ep;
1200
1201 if (!endpoint_next)
1202 continue;
1203
1204 /*
1205 * If the endpoint that has just been found is not the first
1206 * matching one and the ID of the one found previously is closer
1207 * to the requested endpoint ID, skip it.
1208 */
1209 if (fwnode_ep.id < endpoint ||
1210 (best_ep && best_ep_id < fwnode_ep.id))
1211 continue;
1212
1213 fwnode_handle_put(best_ep);
1214 best_ep = fwnode_handle_get(ep);
1215 best_ep_id = fwnode_ep.id;
1216 }
1217
1218 if (best_ep)
1219 return best_ep;
1220
1221 if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
1222 return fwnode_graph_get_endpoint_by_id(fwnode->secondary, port,
1223 endpoint, flags);
1224
1225 return NULL;
1226 }
1227 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1228
1229 /**
1230 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1231 * @fwnode: pointer to endpoint fwnode_handle
1232 * @endpoint: pointer to the fwnode endpoint data structure
1233 *
1234 * Parse @fwnode representing a graph endpoint node and store the
1235 * information in @endpoint. The caller must hold a reference to
1236 * @fwnode.
1237 */
fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)1238 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1239 struct fwnode_endpoint *endpoint)
1240 {
1241 memset(endpoint, 0, sizeof(*endpoint));
1242
1243 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1244 }
1245 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1246
device_get_match_data(struct device * dev)1247 const void *device_get_match_data(struct device *dev)
1248 {
1249 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1250 }
1251 EXPORT_SYMBOL_GPL(device_get_match_data);
1252
1253 static void *
fwnode_graph_devcon_match(struct fwnode_handle * fwnode,const char * con_id,void * data,devcon_match_fn_t match)1254 fwnode_graph_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1255 void *data, devcon_match_fn_t match)
1256 {
1257 struct fwnode_handle *node;
1258 struct fwnode_handle *ep;
1259 void *ret;
1260
1261 fwnode_graph_for_each_endpoint(fwnode, ep) {
1262 node = fwnode_graph_get_remote_port_parent(ep);
1263 if (!fwnode_device_is_available(node))
1264 continue;
1265
1266 ret = match(node, con_id, data);
1267 fwnode_handle_put(node);
1268 if (ret) {
1269 fwnode_handle_put(ep);
1270 return ret;
1271 }
1272 }
1273 return NULL;
1274 }
1275
1276 static void *
fwnode_devcon_match(struct fwnode_handle * fwnode,const char * con_id,void * data,devcon_match_fn_t match)1277 fwnode_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1278 void *data, devcon_match_fn_t match)
1279 {
1280 struct fwnode_handle *node;
1281 void *ret;
1282 int i;
1283
1284 for (i = 0; ; i++) {
1285 node = fwnode_find_reference(fwnode, con_id, i);
1286 if (IS_ERR(node))
1287 break;
1288
1289 ret = match(node, NULL, data);
1290 fwnode_handle_put(node);
1291 if (ret)
1292 return ret;
1293 }
1294
1295 return NULL;
1296 }
1297
1298 /**
1299 * fwnode_connection_find_match - Find connection from a device node
1300 * @fwnode: Device node with the connection
1301 * @con_id: Identifier for the connection
1302 * @data: Data for the match function
1303 * @match: Function to check and convert the connection description
1304 *
1305 * Find a connection with unique identifier @con_id between @fwnode and another
1306 * device node. @match will be used to convert the connection description to
1307 * data the caller is expecting to be returned.
1308 */
fwnode_connection_find_match(struct fwnode_handle * fwnode,const char * con_id,void * data,devcon_match_fn_t match)1309 void *fwnode_connection_find_match(struct fwnode_handle *fwnode,
1310 const char *con_id, void *data,
1311 devcon_match_fn_t match)
1312 {
1313 void *ret;
1314
1315 if (!fwnode || !match)
1316 return NULL;
1317
1318 ret = fwnode_graph_devcon_match(fwnode, con_id, data, match);
1319 if (ret)
1320 return ret;
1321
1322 return fwnode_devcon_match(fwnode, con_id, data, match);
1323 }
1324 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1325